WO2018163620A1 - 活性炭スラリーの供給方法 - Google Patents

活性炭スラリーの供給方法 Download PDF

Info

Publication number
WO2018163620A1
WO2018163620A1 PCT/JP2018/001808 JP2018001808W WO2018163620A1 WO 2018163620 A1 WO2018163620 A1 WO 2018163620A1 JP 2018001808 W JP2018001808 W JP 2018001808W WO 2018163620 A1 WO2018163620 A1 WO 2018163620A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
water
acid
carbon slurry
slurry
Prior art date
Application number
PCT/JP2018/001808
Other languages
English (en)
French (fr)
Inventor
智 美馬
貞光 塩出
裕行 大矢知
清高 杉浦
Original Assignee
メタウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メタウォーター株式会社 filed Critical メタウォーター株式会社
Priority to US16/472,995 priority Critical patent/US20190381478A1/en
Priority to JP2019504362A priority patent/JP7053567B2/ja
Priority to CA3051824A priority patent/CA3051824C/en
Priority to EP18763671.7A priority patent/EP3539930B1/en
Priority to CN201880005158.4A priority patent/CN110088045A/zh
Publication of WO2018163620A1 publication Critical patent/WO2018163620A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/384Granulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/26Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles

Definitions

  • the present invention relates to a method for supplying activated carbon slurry, and more particularly to a method for supplying activated carbon slurry that can satisfactorily suppress scale deposition from the activated carbon slurry.
  • activated carbon is wet-pulverized to a predetermined particle size, and by adding suspension water containing the wet-pulverized activated carbon to the water to be treated, the adsorption performance of the activated carbon while suppressing secondary aggregation of the activated carbon fine particles. Is fully utilized.
  • an object of the present invention is to provide a method for supplying activated carbon slurry that can satisfactorily suppress scale deposition from the activated carbon slurry, even if the activated carbon slurry contains pulverized activated carbon and water.
  • the present inventors have intensively studied to achieve the above object.
  • the inventors have found that the problem of scale precipitation from the activated carbon slurry is that the activated carbon, which has been pulverized to have a reduced particle size, and water come into contact with each other over a larger area, so that a large amount of calcium compound is dissolved in water. I thought it might be due to the ease of taking out.
  • the inventors of the present invention add fine acids at a predetermined timing. It was found that even with an activated carbon slurry containing activated carbon, scale deposition can be satisfactorily suppressed, and the present invention has been completed.
  • the supply method of the activated carbon slurry of this invention is the process A which obtains the activated carbon slurry containing a pulverized activated carbon and raw material water, and the said activated carbon slurry.
  • the activated carbon containing the pulverized activated carbon obtained by pulverizing the raw activated carbon and the raw water is mixed with a predetermined point (a mixing point with the dilution water, or in the case of mixing with the treatment water without mixing with the dilution water, To the mixing point).
  • step A means “before the end of step A1” in the wet pulverization method in which step A1 is performed after step A2 (that is, for example, a raw material in activated carbon suspension water described later).
  • the activated carbon is pulverized to prepare the pulverized activated carbon before the activated slurry is obtained.
  • step A2 that is, for example, includes raw material water and pulverized activated carbon described later
  • the “particle diameter” of the raw activated carbon and pulverized activated carbon is a volume average particle whose cumulative volume calculated from the small diameter side is 50% in the particle diameter distribution (volume basis) measured by the laser diffraction scattering method. Refers to the diameter (D50).
  • the method for supplying activated carbon slurry of the present invention further includes a step D for determining the amount of acid added in the step C, and the step D is the start of the step after either the step A1 or the step A2.
  • the waiting time is determined based on the relationship between the step D1 for determining the time required from the start of the step B to the end of the step B, the amount of acid contained in the activated carbon slurry and the waiting time until the calcium compound starts to precipitate from the activated carbon slurry. It is preferable to include the step D2 of determining the amount of acid that exceeds the time determined in D1 as the amount of acid added in the step C.
  • Step C if the amount of acid determined according to Step D1 and Step D2 is added, scale precipitation from the activated carbon slurry is surely suppressed by using the waiting time until the precipitation of the calcium compound from the activated carbon slurry starts. This is because the activated carbon slurry can be supplied better.
  • “time required until the end of the step B” means that when the activated carbon slurry is mixed with the water to be treated without diluting with the dilution water, the activated carbon slurry is transferred to the mixing point with the water to be treated. It refers to the time required to transfer the activated carbon slurry to the mixing point with the dilution water when the activated carbon slurry is mixed with the water to be treated and then mixed with the water to be treated.
  • the amount of acid determined in the step D2 is equal to or less than the amount of acid required for making the Langeria index of the activated carbon slurry zero.
  • the amount of the acid is set to the above upper limit or less, This is because scale deposition from the activated carbon slurry can be efficiently suppressed using a smaller amount of acid, and the activated carbon slurry can be supplied more satisfactorily.
  • “Langeria index” refers to, for example, Langelier, W.
  • the “Langelia index” is calculated according to the method published by the Ministry of Health, Labor and Welfare and the Water Supply Division (inspection method for water quality management target setting items—No. 101001 from Kensui dated October 10, 2003—Appendix 4). can do.
  • the step A2 is performed after the step A1, and in the step A2, the pulverized activated carbon water containing the pulverized activated carbon obtained in the step A1 and the raw water is used. It is preferable to add the acid to at least one of the raw water before flowing into the mixer and the pulverized activated carbon water in the mixer.
  • the dry pulverization method in which step A2 is performed after step A1 is incorporated in the activated carbon slurry supply method, the pulverized activated carbon having a reduced particle size and the raw water are brought into contact with each other in a large area in the pulverized activated carbon water by mixing.
  • step C an acid is added to at least the raw water before flowing into the mixer.
  • the dry pulverization method is adopted in the activated carbon slurry supply method, at least if the acid is added to the raw water before flowing into the mixer, the pulverized activated carbon and the raw water are brought into contact with each other so that the calcium compound is in water. It is possible to reliably add an acid before starting to dissolve in a large amount. Therefore, scale deposition from the activated carbon slurry can be more effectively suppressed.
  • the step A1 is performed after the step A2, and in the step A1, the raw material activated carbon in the activated carbon suspension water in which the raw material activated carbon and the raw material water are mixed.
  • the activated carbon slurry is pulverized with a pulverizer to obtain the activated carbon slurry.
  • the step C at least one of the raw water, the activated carbon suspension water before flowing into the pulverizer, and the activated carbon suspension water in the pulverizer is acidified. Is preferably added.
  • the pulverized activated carbon in which the activated carbon in the activated carbon suspension water is pulverized to reduce the particle size is large.
  • a large amount of the calcium compound is easily dissolved in water. Therefore, as described above, if an acid is added to at least one of the raw water, the activated carbon suspension water before flowing into the pulverizer, and the activated carbon suspension water in the pulverizer, the raw activated carbon is pulverized in the activated carbon suspension water. This is because the acid addition can be performed before the calcium compound is dissolved in a large amount in water, so that the scale deposition from the activated carbon slurry can be more effectively suppressed.
  • step C an acid is added to at least one of the raw water and the activated carbon suspension before flowing into the pulverizer.
  • the activated carbon slurry was pulverized in the activated carbon suspension water. It is possible to reliably add an acid before starting to dissolve a large amount of calcium compound from raw material activated carbon (pulverized activated carbon) into the water, and to suppress scale deposition from the activated carbon suspension water before being supplied to the pulverizer. Therefore, scale deposition from the activated carbon slurry can be more effectively suppressed.
  • the acid is preferably carbon dioxide or sulfuric acid. If carbon dioxide or sulfuric acid is used as the acid, for example, it is possible to suppress corrosion of metal piping used for supplying activated carbon slurry, and the activated carbon slurry can be suitably used for water purification treatment such as drinking water. is there.
  • the present invention it is possible to provide a method for supplying activated carbon slurry that can satisfactorily suppress scale deposition from the activated carbon slurry, even if the activated carbon slurry contains pulverized activated carbon and water.
  • FIG. 1A It is explanatory drawing which shows the addition position of the acid in the case of adding the acid to raw material water in the case of the wet pulverization method in the process C in the supply flow of the activated carbon slurry shown in FIG. 1B.
  • the activated carbon slurry supply method of the present invention is used, for example, as a method for supplying activated carbon when the water to be treated is activated in various water treatments such as water treatment, water treatment, sewage treatment, and wastewater treatment. be able to.
  • the activated carbon slurry supplied by the method of the present invention contains pulverized activated carbon and raw material water, and the activated carbon slurry contained in the activated carbon slurry has a large specific surface area. It can be reduced efficiently. Therefore, the activated carbon slurry supply method of the present invention can be particularly suitably used for a water purification process such as activated carbon treatment in waterworks, as described above.
  • the activated carbon slurry supply method of the present invention includes a step A1 for preparing pulverized activated carbon and a step A2 for mixing raw water in no particular order, and a step A for obtaining an activated carbon slurry containing pulverized activated carbon and raw water, It is necessary to include a process B for transferring to the point of (2) and a process C for adding an acid at least before the completion of the process A. Moreover, it is preferable that the supply method of the activated carbon slurry of this invention further includes the process D which determines the addition amount of the acid in the said process C.
  • FIG. 1 shows a typical activated carbon slurry supply flow 1 incorporating (A) a dry pulverization method and (B) a wet pulverization method according to the present invention.
  • the supply flow 1 of activated carbon slurry incorporating the dry pulverization method shown in FIG. 1 (A) first, raw material activated carbon is introduced into the pulverizer 3 through a pipe 11.
  • the starting raw material activated carbon is pulverized in the pulverizer 3, and pulverized activated carbon having a particle diameter smaller than that of the raw material activated carbon is discharged from the pulverizer 3 ⁇ step A1>.
  • the pulverized activated carbon that has flowed out of the pulverizer 3 flows into the mixer 2 through the pipe 31, and the raw water also flows into the mixer 2 through the pipe 12, and includes the pulverized activated carbon and the raw water in the mixer 2.
  • a pulverized activated carbon water is obtained.
  • the pulverized activated carbon water is mixed well in the mixer 2 by stirring or the like, and the activated carbon slurry containing the pulverized activated carbon and the raw water is discharged from the mixer 2 ⁇ Step A2>.
  • step A2 that is, mixing of pulverized activated carbon water including pulverized activated carbon and raw water is completed.
  • the activated carbon slurry is obtained corresponds to “end of step A”.
  • the obtained pulverized activated carbon may be temporarily stored in a storage tank (not shown) provided at an arbitrary position between the pulverizer 3 and the mixer 2.
  • the activated carbon slurry that has flowed out of the mixer 2 is transferred to the mixer 5 with the water to be treated through the pipe 21 without being mixed with the dilution water, It may be mixed with treated water, or as shown by a broken line in FIG. 1 (A), it is transferred to the mixer 4 with the dilution water through the pipe 21 and mixed with the dilution water, and then further through the pipe 41. It may be transferred to the mixer 5 with the treated water and mixed with the treated water.
  • the raw material activated carbon is first introduced into the mixer 2 through the pipe 11, and the raw water is also supplied to the mixer 2 through the pipe 12. Inflow.
  • the raw material activated carbon and raw material water that have been introduced are mixed in the mixer 2 and discharged from the mixer 2 as activated carbon suspension water ⁇ Step A2>.
  • the activated carbon suspension water that has flowed out of the mixer 2 flows into the pulverizer 3 through the pipe 21.
  • the activated carbon in the activated carbon suspension water that has flowed into the pulverizer 3 is pulverized, and activated carbon slurry containing pulverized activated carbon having a particle diameter smaller than the particle diameter of the raw activated carbon and raw water is discharged from the pulverizer 3 ⁇ Step A1. >.
  • the end of the step A1 that is, the pulverization of the raw material activated carbon in the activated carbon suspension water is completed and the activated carbon slurry is To be obtained
  • the obtained activated carbon suspension water may be once stored in the storage tank 20 (refer FIG. 3 (B)) provided in the arbitrary places between the mixer 2 and the grinder 3.
  • FIG. 1B the activated carbon slurry that has flowed out of the pulverizer 3 is transferred to the mixer 5 with the water to be treated through the pipe 31 without being mixed with the dilution water, It may be mixed with treated water, or as shown by a broken line in FIG. 1 (B), transferred to the diluting water mixer 4 through the pipe 31 and mixed with the diluting water. It may be transferred to the mixer 5 with the treated water and mixed with the treated water.
  • step A an activated carbon slurry containing pulverized activated carbon and raw water is obtained.
  • the process A includes the process A1 for preparing the pulverized activated carbon and the process A2 for mixing the raw activated carbon or the pulverized activated carbon and the raw water in no particular order.
  • the step A1 can be performed after the step A1 is performed in a dry manner.
  • the process A1 can be performed in a wet process after the process A2, as shown in FIG.
  • the pulverized activated carbon obtained by pulverizing the raw material activated carbon can be contacted with the water to be treated with a large specific surface area, a high adsorption effect can be achieved.
  • a sufficient adsorption effect can be obtained even when a small amount of a commercially available raw material activated carbon having a relatively large particle diameter and a relatively low price is used, so that the cost can be reduced.
  • an activated carbon slurry is obtained by adopting a dry pulverization method
  • the particle size distribution of the pulverized activated carbon and the concentration of the activated carbon slurry can be easily controlled.
  • an activated carbon slurry is obtained by adopting a wet pulverization method, it is possible to improve the working environment by suppressing the generation of dust, or easily disperse the activated carbon slurry while suppressing secondary aggregation of the pulverized activated carbon. It is easy to obtain.
  • Step A1 raw activated carbon is pulverized with a pulverizer to prepare pulverized activated carbon having a particle size smaller than that of the raw activated carbon.
  • the raw material activated carbon in the dry state can be pulverized alone in the pulverizer 3 in the step A1.
  • FIG. 1A when preparing the pulverized activated carbon by the dry pulverization method, the raw material activated carbon in the dry state can be pulverized alone in the pulverizer 3 in the step A1.
  • step A1 when preparing pulverized activated carbon by a wet pulverization method, in step A1, the raw material activated carbon contained in the activated carbon suspension water in which the raw material activated carbon and the raw material water are mixed, It can grind
  • the activated carbon is not particularly limited.
  • a starting material is a carbon substance such as coconut charcoal, coal, sawdust, wood chips, etc., and chemical activation treatment with zinc chloride, phosphoric acid or the like, or water vapor, carbon dioxide, air
  • general activated carbon obtained by performing a physical activation treatment with combustion gas or the like.
  • the above-mentioned general activated carbon is usually a kind of amorphous carbon having a porous structure, and is fibrous, honeycomb-like, cylindrical, crushed, granular (particle diameter 150 ⁇ m or more), powder (particle diameter less than 150 ⁇ m). Or any other shape.
  • the pores of general activated carbon are classified into micropores, mesopores, and macropores depending on the pore size. For example, pore sizes of 20 mm or less are micropores, and pore sizes of more than 20 mm and less than 500 mm are mesopores, 500 mm or more. The pore diameter is called macropore.
  • the specific surface area of general activated carbon is 500 m 2 / g or more and 2500 m 2 / g or less.
  • commercially available activated carbon can be used as activated carbon. Among these, from the viewpoint of satisfactorily pulverizing the raw material activated carbon in Step A, it is preferable to use powdered activated carbon.
  • the pulverizer 3 is not particularly limited as long as it is an apparatus capable of pulverizing the raw material activated carbon into powder.
  • a pulverizing apparatus such as a mill or a jet mill can be mentioned as a suitable example.
  • the pulverization conditions such as pulverization media diameter, pulverization media filling rate, pulverization speed, pulverization time, and pulverization temperature can be appropriately selected according to the properties of the desired activated carbon slurry.
  • Step A2 raw material water and raw material activated carbon or raw material water and pulverized activated carbon are mixed with a mixer.
  • the pulverized activated carbon water containing the pulverized activated carbon obtained in the above step A1 and the raw water is mixed. Can be mixed in machine 2.
  • the pulverized activated carbon and raw material water are mixed in a mixer 2 to obtain activated carbon suspension water. it can.
  • the raw material activated carbon which can be used by process A2
  • the raw material activated carbon similar to what was mentioned above in the paragraph of process A1 can be used.
  • the raw water is not particularly limited as long as it does not inhibit the water to be treated from being reformed to the target water quality.
  • purified water purified by a purification method including the supply method of the present invention Treated water, tap water, industrial water, purified water, treated water itself, etc. that are being purified by the purification method including the supply method of the invention can be used.
  • the mixing ratio of the raw water and the raw activated carbon, or the raw water and the pulverized activated carbon can be appropriately set according to, for example, a suitable activated carbon concentration of the activated carbon slurry described later.
  • the mixer 2 is not particularly limited, and examples thereof include known mixers such as a mixer. Various mixing conditions such as mixing time and mixing temperature can be appropriately selected according to the properties of the desired activated carbon slurry.
  • concentration of the activated carbon slurry obtained at the process A is 0.1 to 10 mass%. This is because if the activated carbon concentration of the activated carbon slurry exceeds the above upper limit, the viscosity of the activated carbon slurry increases, which makes it difficult to pump and clogged piping. In addition, when the activated carbon concentration of the activated carbon slurry exceeds the above upper limit, the viscosity of the activated carbon suspension water usually increases, so that, for example, it becomes difficult to pulverize the raw material activated carbon in the activated carbon suspension water. In addition, when the activated carbon slurry has an activated carbon concentration below the above lower limit, the amount of the activated carbon slurry added during water treatment increases. This is because it may lead to situations such as exceeding the limit.
  • the activated carbon slurry immediately after the preparation is usually in a state where a calcium compound such as calcium carbonate is dissolved at a supersaturated concentration when the acid is not added in the step C described later.
  • the particle diameter of the pulverized activated carbon contained in the activated carbon slurry is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more in terms of volume average particle diameter, and preferably 10 ⁇ m or less.
  • the particle diameter of the pulverized activated carbon is less than the above lower limit, for example, when filtering the treated water to which the activated carbon slurry is added and purifying it, it is difficult to remove the pulverized activated carbon from the treated water to which the activated carbon slurry is added. Because it becomes.
  • the particle size of the pulverized activated carbon exceeds the above upper limit, the pulverized activated carbon cannot sufficiently secure the surface area that comes into contact with the water to be treated in the water treatment, and the activated carbon slurry sufficiently exhibits the adsorption effect. It is because it is not possible.
  • Step B the activated carbon slurry obtained in Step A is transferred to a mixing point with dilution water or a mixing point with treated water.
  • the activated carbon slurry flowing out from the mixer 2 or the pulverizer 3 is mixed with the water to be treated. It may be directly transferred to (Mixer 5), and as shown by the broken lines in FIGS. 1 (A) and (B), the activated carbon slurry flowing out from the mixer 2 or the pulverizer 3 is mixed with the dilution water (mixing point).
  • the activated carbon slurry that has flowed out of the mixer 4 may be further transferred to a mixing point with the water to be treated (mixer 5).
  • the mixer 4 for mixing the activated carbon slurry and the dilution water is directly connected to the mixer 2 or the pulverizer 3 without passing through the piping, so that the activated carbon slurry is diluted immediately after obtaining the activated slurry. It is good (not shown).
  • the transferred activated carbon slurry is mixed in the mixer 5.
  • the treated water is purified by mixing with treated water by an arbitrary method.
  • the activated carbon slurry is mixed with the water to be treated, the calcium concentration in the activated carbon slurry is significantly reduced. Therefore, after the time when the activated carbon slurry is mixed with the water to be treated, it is considered that the possibility of scale deposition from the activated carbon slurry is significantly reduced.
  • the water to be treated is not particularly limited. For example, water flowing in a water treatment system, water flowing in a water treatment system, water flowing in a wastewater treatment system, and water flowing in a sewage treatment system. Is mentioned. Among these, from the viewpoint of fully utilizing the high adsorption effect of the activated carbon slurry, the water to be treated is preferably water used for the production of drinking water such as potable water that requires a high purification level.
  • the mixing conditions such as the mixing ratio of the water to be treated and the activated carbon slurry and the mixing temperature can be appropriately set depending on the desired water quality and properties desired to be obtained by the water treatment.
  • the activated carbon slurry is mixed with dilution water in the step B (indicated by a broken line in FIGS. 1 (A) and (B))
  • the calcium concentration in the activated carbon slurry is greatly reduced. Therefore, it is generally considered that the possibility of scale deposition from the activated carbon slurry is greatly reduced after the dilution water is mixed with the activated carbon slurry.
  • dilution water it is not specifically limited, For example, water equivalent to raw material water can be used.
  • the degree of dilution of the activated carbon slurry using the dilution water is not particularly limited and can be arbitrarily set. For example, it is preferably 1.5 times or more and 10 times or less, and is preferably about 2 times. More preferably. This is because the calcium concentration in the activated carbon slurry can be appropriately lowered by the addition of the dilution water. If the degree of dilution is not less than the above lower limit, the slurry deposition in the activated carbon slurry can be more effectively suppressed.
  • the calcium compound may be supersaturated, saturated, or unsaturated.
  • the dilution method is not particularly limited, and dilution water may be added to and mixed with the flowing activated carbon slurry or the stored activated carbon slurry.
  • the activated carbon slurry is added to the dilution water. , May be mixed.
  • Step C in order to supply the activated carbon slurry while suppressing scale deposition from the activated carbon slurry, it is necessary to add an acid at least at any stage before obtaining the activated carbon slurry in Step A. .
  • FIG. 1 (A) when an activated carbon slurry is obtained by adopting a dry pulverization method, the activated carbon slurry is finished before the end of step A2, that is, after mixing the pulverized activated carbon water containing pulverized activated carbon and raw water.
  • the acid can be added at any stage of preparing the activated carbon slurry, such as before obtaining.
  • the activated carbon slurry is obtained before the end of step A1, that is, after pulverizing the raw activated carbon in the activated carbon suspension water into pulverized activated carbon.
  • the acid can be added at any stage of preparing the activated carbon slurry, such as before obtaining.
  • the timing it is preferable to add an acid to at least one of the raw water before flowing into the mixer 2 and the raw water in the mixer 2 (for example, raw water contained in the pulverized activated carbon water), at least It is more preferable to add an acid to the raw water before flowing into the mixer 2. Further, the acid may be continuously added to the raw water before and after flowing into the mixer 2. This is because if the acid is added at the above timing, the acid addition can be surely performed before the pulverized activated carbon and the raw water come into contact with each other and the calcium compound is dissolved in a large amount in the water.
  • acid addition can be surely performed before a large amount of calcium compound dissolves in the water due to pulverization from raw activated carbon to pulverized activated carbon in activated carbon suspension water, and a pulverizer This is because scale deposition from the activated carbon suspension before being supplied to 3 can also be suppressed.
  • Timing of adding acid to raw water is as follows. An acid may be added, or (b) an acid may be added to the raw water being transferred to the mixer 2 through the pipe 12.
  • Timing of adding acid to pulverized activated carbon water As a specific timing for adding the acid to the pulverized activated carbon water including the pulverized activated carbon and the raw material water, as shown in FIG. An acid can be added to the pulverized activated carbon water before the raw material water is stirred and mixed and / or to the pulverized activated carbon water being stirred and mixed.
  • the acid may be added at any timing, and the acid may be added by combining (successively) the above-described plurality of timings.
  • the dry pulverization method is adopted for the above-described reason, at least FIG. 2 (A) (a) the acid is added to the raw water in advance, or (b) the pipe 12 is being transferred to the mixer 2 It is preferable to add an acid to the raw water.
  • the timing of adding the acid to the raw water is as shown in FIG. 2B, (a) the acid may be added to the raw water in advance, and (b) the piping 12, an acid may be added to the raw water being transferred to the mixer 2, and (c) an acid may be added to the raw water mixed with the raw carbon in the mixer 2.
  • the acid may be added at any timing, and the acid may be added by combining (successively) the above-described plurality of timings.
  • Timing of adding acid to the activated carbon suspension before flowing into the grinder is as shown in FIG.
  • Acid may be added to the activated carbon suspension water being transferred to the pulverizer 3, and (b) the activated carbon suspension water is temporarily stored in a storage tank 20 provided at an arbitrary position between the mixer 2 and the pulverizer 3. Then, an acid may be added to the stored activated carbon suspension water.
  • the acid may be added at any timing, and the acid may be added by combining (successively) the above-described plurality of timings.
  • Timing of adding acid to the activated carbon suspension in the grinder >> Furthermore, in the case of incorporating the wet pulverization method, the timing of adding the acid to the activated carbon suspension water in the pulverizer 3 is as shown in FIG. Can be mentioned during grinding.
  • the acid is not particularly limited as long as the pH of the raw material water to which the acid is added, the pulverized activated carbon water and / or the activated carbon suspension water can be adjusted to the acidic side as compared with that before the addition.
  • the acid is preferably a gas or a liquid, and examples thereof include carbon dioxide, sulfuric acid, nitric acid and hydrochloric acid.
  • the acid is more preferably carbon dioxide or sulfuric acid.
  • the acid is more preferably carbon dioxide.
  • calcium carbonate (CaCO 3 ) which is the main component of the scale
  • acid is contained in the activated carbon slurry
  • solubility of calcium carbonate in the activated carbon slurry and the easier it is to suppress scale deposition. Therefore, even when a large amount of calcium compound is eluted from the pulverized activated carbon into water, if acid is added at the predetermined timing in step C, scale deposition from the activated carbon slurry can be easily suppressed.
  • CaCO 3 calcium carbonate
  • reaction formula (2) CaCO 3 + CO 2 + H 2 O ⁇ Ca (HCO 3 ) 2
  • Ca (HCO 3 ) 2 dissolved in water as calcium bicarbonate
  • the activated carbon slurry can be satisfactorily supplied to the water purification process or the like while favorably suppressing scale deposition.
  • the acid addition method is not particularly limited.
  • an acid introduction port is provided in each mixer, storage device, pulverizer, and pipe that is in contact with raw water, pulverized activated carbon water and / or activated carbon suspension water,
  • the addition amount can be controlled automatically or by manual control using a flow meter and a valve.
  • the set amount of the acid is usually adjusted without changing or adjusting the addition amount of the acid during the activated carbon slurry supply process. Because it can be operated continuously, it is excellent in workability.
  • the activated carbon slurry supply method of the present invention further includes a step D of determining the amount of acid added in the above-described step C by a predetermined method.
  • the amount of acid added in step C is determined by considering the time required for the predetermined step and the predetermined waiting time through step D1 and step D2 described later. It is preferable to determine.
  • the calcium concentration in the activated carbon slurry is likely to be significantly increased due to the contact between the pulverized activated carbon whose raw material activated carbon has been pulverized to reduce the particle size and the raw water.
  • Step D1 the time required from the start of the process after either the process A1 or the process A2 to the end of the process B (hereinafter, may be referred to as “time T R ” or “T R ”).
  • time T R the time required from the start of the process after either the process A1 or the process A2 to the end of the process B
  • Step B such as a mixture of pulverized activated carbon water, pulverizing and mixing the activated carbon and the raw material water
  • the time T R is the time required from the start of the step A1 (grinding of the raw material the activated carbon suspended in water) until the end of step B . Then, the time T R is, for example, in the feed flow 1 of the activated carbon slurry shown in FIG. 1 (A) and (B), the calcium compound is a time required for most deposition likely interval.
  • Time T R is generally set prior to performing the supply process of the activated carbon slurry.
  • the time T R is, for example, the particle diameter of the raw material activated carbon, the desired grinding condition of grinding the activated carbon in the activated carbon slurry, based on the desired concentration of the pulverized activated carbon in the activated carbon slurry, grinding time, And it can set by defining the transfer time to the mixing point with dilution water or the mixing point with to-be-processed water.
  • the predetermined time T R usually adjusted during the supply process of the activated carbon slurry, without changing, can be continuous operation at a constant set value.
  • Step D2 the amount of acid contained in the activated carbon slurry (that is, the amount of acid added in step C) and a waiting time until the calcium compound starts to precipitate from the activated carbon slurry (hereinafter referred to as “waiting time T”).
  • T S a waiting time until the calcium compound starts to precipitate from the activated carbon slurry
  • T R a waiting time until the calcium compound starts to precipitate from the activated carbon slurry
  • the concentration of calcium that can be dissolved in the activated carbon slurry usually increases as the amount of acid added increases. That is, the waiting time T S as the added amount of the acid is increased tends to be longer. Therefore, according to Step D, the preferred minimum amount of acid added in Step C can be determined.
  • the relationship between the amount of acid contained in the activated carbon slurry and the waiting time T S until the calcium compound starts to precipitate from the activated carbon slurry is the process of supplying the activated carbon slurry from the viewpoint of work cost and work simplicity. Before performing, it can be determined at the laboratory level using, for example, the following method. In addition, the method shown below is an example and this invention is not limited to this. Specifically, first, the concentration of calcium contained in the starting activated carbon is measured.
  • the concentration of calcium contained in the raw activated carbon is determined by, for example, using an ICP-MS (inductively coupled plasma mass spectrometer) for a sample in which the ash content of the raw activated carbon heated at a temperature of 600 ° C. is dissolved with an acid such as hydrochloric acid or nitric acid. Can be measured by calculating the amount of calcium compound contained in the raw material activated carbon. Next, based on the amount of the calcium compound in the raw material activated carbon measured and the mixing ratio of the raw material activated carbon and raw water used in the actual activated carbon slurry supply process, the calcium compound contained in the charged raw material activated carbon is The calcium concentration in the activated carbon slurry when it is assumed that all are dissolved in the raw water is calculated.
  • ICP-MS inductively coupled plasma mass spectrometer
  • a calcium salt such as calcium chloride is dissolved in the raw water used in the actual supply method so that the calcium concentration calculated above is obtained.
  • sodium bicarbonate can be further dissolved and adjusted so that the obtained calcium aqueous solution has an alkalinity equivalent to the alkalinity of the activated carbon slurry used in the actual supply method.
  • alkalinity means carbonic acid (H 2 CO 3 ), carbonate ion (CO 3 2 ⁇ ), hydrogen carbonate ion (HCO 3 ⁇ ), hydroxide ion that can be contained in the activated carbon slurry.
  • the pH of the aqueous calcium solution obtained can be adjusted by adding sodium hydroxide and / or sulfuric acid in accordance with the desired pH.
  • what is necessary is just to match the temperature at the time of preparing calcium aqueous solution with the supply process temperature of an actual activated carbon slurry.
  • the addition amount of the acid corresponding to the time T S ′ may be a parameter that directly indicates the addition amount of the acid, such as the mass or volume of the added acid, or the pH of the aqueous calcium solution, etc. It may be a parameter that indirectly indicates the amount of acid added.
  • the time T S ′ may be measured, for example, as the time until the calcium concentration in the calcium aqueous solution starts to decrease, or as the time until the white precipitate can be visually confirmed in the calcium aqueous solution. May be.
  • the time T S ′ until the calcium compound starts to precipitate in the aqueous calcium solution determined at the laboratory level is the waiting time until the calcium compound starts to precipitate from the activated carbon slurry in the actual supply process. it can be used as T S.
  • the relationship data (table or table) between the addition amount of each acid (the direct parameter or the indirect parameter described above) and the time T S ′ Graph). More specifically, the horizontal axis represents the acid addition mass and the vertical axis represents T S ′, the horizontal axis represents the acid addition capacity and the vertical axis represents T S ′, the horizontal axis represents pH, and the vertical axis represents T S ′. You can get a graph of 'etc.
  • the calcium concentration in the activated carbon slurry described above it is preferable to consider the calcium concentration contained in the raw water itself.
  • tap water which is mainly assumed as raw water
  • purified water purified by a purification method including the supply method of the present invention and being purified by a purification method including the supply method of the present invention
  • the calcium concentration in the treated water is generally in the range of 10 mg / L to 100 mg / L (tap water quality standard).
  • the time latency T S is determined in step D1 T R
  • the amount of (T S > T R ) acid is determined as the amount of acid added in Step C.
  • the amount of the acid added in Step C can be determined as the amount of the acid more than MIN or less than pH MAX .
  • T S > T R it is possible to reliably suppress the generation of scale before the point of mixing with the water to be treated or the dilution water when supplying the activated carbon slurry.
  • the amount of acid to be determined is equal to or less than the amount of acid (acid amount MAX ) required to make the Langelia index of the activated carbon slurry zero.
  • the Langeria index becomes negative (that is, an amount of acid larger than the above-mentioned amount of acid MAX is added, and the calcium compound becomes unsaturated).
  • Add acid in the activated carbon slurry containing the pulverized activated carbon obtained by pulverizing the raw activated carbon and the raw water, a large amount of the calcium compound can be eluted from the activated carbon into the water, and the elution of the calcium compound can be accelerated by the addition of the acid.
  • the point that scale precipitation is suppressed is that a large amount of calcium compound is eluted as a result of contact between the pulverized activated carbon whose particle diameter has been reduced by pulverization and the raw water, and
  • the present invention focuses on the specific problems seen in the technology using pulverized activated carbon and water, such as the elution of the calcium compound being promoted in the unsaturated state of the calcium compound.
  • the quantity MAX of the acid required in order to make the Langerial index zero with respect to the activated carbon slurry which shows alkalinity is a suitable maximum quantity of the acid which can be added in the process C normally.
  • the Langeria index is an index indicating the degree of saturation of calcium carbonate, but in general, the main component of the calcium compound that causes scale precipitation is calcium carbonate. Therefore, in the present invention, the Langeria index is used. Therefore, the suppression of the scale precipitation can be made more efficient.
  • the waiting time is from the addition of acid to the start of precipitation.
  • the amount of acid determined according to step D is compared with the raw water before flowing into the mixer 2 in step C when the dry pulverization method is adopted; raw water in step C in the case of incorporating, with respect to the activated carbon water suspension before flowing into the pulverizer 3; when added, at the end of step B the addition of the acid (at the end of the T R) May be longer than the waiting time T S until the precipitation of the calcium compound determined above starts.
  • the section before step A2 when the dry pulverization method is adopted, the section before step A2; when the wet pulverization method is adopted, the section before step A1; (in other words, the pulverized activated carbon and the raw water are in contact with each other). In the section before starting), almost no elution of calcium compounds from the activated carbon occurred.
  • the pH in the raw material water and / or the activated carbon suspension water tends to increase with the passage of time after the addition of the acid. Accordingly, in Step C, in particular, at an early timing (for example, raw water before flowing into the mixer 2 when a dry pulverization method is incorporated; raw water and / or a pulverizer when a wet pulverization method is incorporated)
  • the amount of acid determined according to step D is added in small portions to keep the pH adjusted in the process to the desired value. May be.
  • the acid when the dry pulverization method is adopted, the acid may be added in small amounts continuously; until the start time of the step A2; when the wet pulverization method is incorporated, until the start time of the step A1.
  • an amount of acid that can suppress the increase in pH may be further added.
  • Step C particularly for raw water before flowing into the mixer when the dry pulverization method is adopted; activated carbon suspension water before flowing into the pulverizer when the wet pulverization method is adopted;
  • the acid when the acid is added, the acid may be added immediately before the start of Step A2; Step A1; respectively, in order to keep the pH adjusted to the desired value in the process.
  • Example 1 The activated carbon slurry obtained by pulverizing the activated carbon in the activated carbon suspension water mixed with the activated carbon and the raw water with a pulverizer (wet bead mill) is transferred to the point where it is mixed with the water to be treated flowing in the water treatment system.
  • a pulverizer wet bead mill
  • carbon dioxide was blown into the activated carbon suspension water in the pulverizer. Specifically, until the pH of the activated carbon slurry does not decrease (the amount of carbon dioxide per 1 kg of pulverized activated carbon contained in the activated carbon slurry becomes 15 normal L), carbon dioxide at a rate of 2.0 normal L / min. Continued to blow.
  • Example 2 By adding nitric acid to the raw material activated carbon heated at a temperature of 600 ° C. for 2 hours, a sample solution in which the components contained in the raw material activated carbon were dissolved was prepared. Next, about the obtained sample liquid, the calcium concentration contained in raw material activated carbon was measured using ICP-MS. The calcium concentration in the raw material activated carbon measured was 2.9 g / kg. Then, the maximum concentration of the calcium compound that can exist in the activated carbon slurry was theoretically calculated from the measured calcium concentration and the mixing ratio of the raw activated carbon and raw water used in the actual continuous supply system.
  • an aqueous calcium solution was prepared so that the calcium concentration was the above maximum concentration.
  • sodium hydrogen carbonate was added to the obtained calcium aqueous solution so as to have an alkalinity equivalent to the alkalinity of the activated carbon slurry.
  • the pH of the aqueous calcium solution was adjusted by 0.1 in the range of 6.0 to 9.0 by adding sodium hydroxide aqueous solution or sulfuric acid according to the pH to be adjusted. Thereafter, in each calcium aqueous solution, a waiting time T S ′ from the time of adjusting the pH to the time when the calcium compound starts to precipitate was measured.
  • the time when the calcium compound started to precipitate was the time when the calcium concentration of the filtrate measured by the titration method was reduced by more than 1% by filtering the calcium aqueous solution with a filter paper (grade: GF / B). Then, by plotting the prepared pH on the x-axis and the waiting time T S ′ corresponding to the pH on the y-axis, a graph showing the pH-waiting time T S ′ relationship for the aqueous calcium solution was obtained. The obtained graph was a graph in which the waiting time T S ′ increased exponentially as the pH decreased.
  • the activated carbon slurry was continuously supplied in the same manner as in Example 1 except that the amount of carbon dioxide per 1 kg of pulverized activated carbon contained in the activated carbon slurry was blown at a rate of 6 minutes / min. At this time, the calcium carbonate in the activated carbon slurry was supersaturated. And when the presence or absence of the scale precipitation in piping was confirmed visually similarly to Example 1, the scale was not confirmed. Thereby, in Example 2, a small amount of acid was added compared with Example 1, and scale precipitation was able to be prevented more efficiently.
  • Example 1 In the continuous supply system, the activated carbon slurry was continuously supplied in the same manner as in Example 1 except that carbon dioxide was not blown. And when the presence or absence of the scale precipitation in piping was confirmed visually similarly to Example 1, scale precipitation was confirmed.
  • the activated carbon suspension water containing the raw activated carbon and water is directly used without pulverizing the raw activated carbon in the activated carbon suspension water (that is, without obtaining activated carbon slurry) and without blowing carbon dioxide. Supplied. And when the presence or absence of the scale precipitation in piping was confirmed visually similarly to Example 1, the scale was not confirmed.
  • the present invention it is possible to provide a method for supplying activated carbon slurry that can satisfactorily suppress scale deposition from the activated carbon slurry, even if the activated carbon slurry contains pulverized activated carbon and water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Sorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

粉砕活性炭および原料水を含む活性炭スラリーを得る工程Aと、活性炭スラリーを希釈水との混合地点または被処理水との混合地点まで移送する工程Bと、を含む活性炭スラリーの供給方法である。当該供給方法において、工程Aは、原料活性炭を粉砕機で粉砕して原料活性炭の粒子径よりも小さな粒子径を有する粉砕活性炭を調製する工程A1と、原料水および原料活性炭、或いは、原料水および粉砕活性炭を混合機で混合する工程A2と、を順不同で有し、少なくとも工程Aの終了前に酸を添加する工程Cを更に含む。

Description

活性炭スラリーの供給方法
 本発明は、活性炭スラリーの供給方法に関するものであり、特には、活性炭スラリーからのスケール析出を良好に抑制し得る、活性炭スラリーの供給方法に関するものである。
 活性炭の吸着作用によって被処理水の水質を向上させる水処理において、活性炭を粉砕することにより活性炭の吸着性能を高める技術が知られている。例えば、特許文献1では、乾燥状態であるドライ粉末活性炭を乾式粉砕し、微粉化された活性炭を乾燥状態のまま溶解水と混合して活性炭のスラリーを得ている。そして、特許文献1では、乾式粉砕機を用いて活性炭を微粉化し、活性炭について安定的にシャープな粒度分布を得ることで活性炭の吸着性能を良好に高めている。また、特許文献2では、活性炭を所定の粒度に湿式粉砕し、湿式粉砕された活性炭を含む懸濁水を被処理水に添加することにより、活性炭微粒子の二次凝集を抑制しつつ活性炭の吸着性能を十分に活用している。
特許第5910973号公報 特許第4468895号公報
 ここで、粉砕処理が施された活性炭を用いている上記従来の水処理技術について本発明者らが検討を重ねたところ、粉砕された活性炭を水の存在下で活性炭スラリーの状態で移送すると、活性炭自体に元来含有されているカルシウム化合物が水中に大量に溶け出して、例えば炭酸カルシウムなどのカルシウム化合物のスケールが発生し易くなることが新たに分かった。
 そこで、本発明は、粉砕した活性炭および水を含む活性炭スラリーであっても、当該活性炭スラリーからのスケール析出を良好に抑制し得る、活性炭スラリーの供給方法を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を行った。ここで、本発明者らは、活性炭スラリーからのスケール析出の問題は、粉砕されて粒子径が小さくなった活性炭と水とがより大きな面積で接触することにより、カルシウム化合物が水中により大量に溶け出し易くなることに起因するのではないかと考えた。そして、本発明者らは、粉砕された原料活性炭(粉砕活性炭)と原料水とを含む活性炭スラリーを所定地点まで移送する活性炭スラリーの供給方法において、所定のタイミングで酸を添加すれば、微粉化した活性炭を含む活性炭スラリーであってもスケール析出を良好に抑制し得ることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の活性炭スラリーの供給方法は、粉砕活性炭および原料水を含む活性炭スラリーを得る工程Aと、前記活性炭スラリーを希釈水との混合地点または被処理水との混合地点まで移送する工程Bと、を含む活性炭スラリーの供給方法であって、前記工程Aは、原料活性炭を粉砕機で粉砕して前記原料活性炭の粒子径よりも小さな粒子径を有する前記粉砕活性炭を調製する工程A1と、前記原料水および前記原料活性炭、或いは、前記原料水および前記粉砕活性炭を混合機で混合する工程A2と、を順不同で有し、少なくとも前記工程Aの終了前に酸を添加する工程Cを更に含むことを特徴とする。このように、工程Aの終了前、つまり、活性炭スラリーを調製している段階などの活性炭スラリーを得る前の段階で酸を添加すれば、原料活性炭が粉砕された粉砕活性炭および原料水を含む活性炭スラリーであっても、スケール析出を良好に抑制しつつ、活性炭スラリーを所定地点(希釈水との混合地点、または、希釈水と混合することなく被処理水と混合する場合には被処理水との混合地点)まで供給することができる。
 ここで、本発明において、「工程Aの終了前」は、工程A2の後に工程A1が行われる湿式粉砕法においては「工程A1の終了前」(つまり、例えば、後述する活性炭懸濁水中の原料活性炭を粉砕して粉砕活性炭を調製しつつ活性化スラリーを得る前の段階)とすることができる。また、本発明において、「工程Aの終了前」は、工程A1の後に工程A2が行われる乾式粉砕法においては「工程A2の終了前」(つまり、例えば、後述する原料水および粉砕活性炭を含む粉砕活性炭水を混合して活性化スラリーを得る前の段階)とすることができる。
 なお、本発明において、原料活性炭および粉砕活性炭の「粒子径」は、レーザー回折散乱法にて測定した粒子径分布(体積基準)において、小径側から計算した累積体積が50%となる体積平均粒子径(D50)を指す。
 ここで、本発明の活性炭スラリーの供給方法は、前記工程Cにおける酸の添加量を決定する工程Dを更に含み、前記工程Dは、前記工程A1または前記工程A2のいずれか後の工程の開始から前記工程Bの終了までに要する時間を求める工程D1と、活性炭スラリーに含有させる酸の量および活性炭スラリーからカルシウム化合物の析出が開始するまでの待ち時間の関係に基づき、前記待ち時間が前記工程D1で求めた時間超になる酸の量を前記工程Cにおける酸の添加量として決定する工程D2と、を含むことが好ましい。工程Cにて、工程D1および工程D2に従って決定した量の酸を添加すれば、活性炭スラリーからカルシウム化合物の析出が開始するまでの待ち時間を利用して活性炭スラリーからのスケール析出を確実に抑制しつつ、活性炭スラリーをより良好に供給することができるからである。
 なお、本発明において、「工程Bの終了までに要する時間」とは、活性炭スラリーを希釈水で希釈することなく被処理水と混合する場合には被処理水との混合地点まで活性炭スラリーを移送するのに要する時間を指し、活性炭スラリーを希釈水と混合してから被処理水と混合する場合には希釈水との混合地点まで活性炭スラリーを移送するのに要する時間を指す。
 また、本発明の活性炭スラリーの供給方法は、前記工程D2で決定する酸の添加量が、活性炭スラリーのランゲリア指数をゼロとするために必要な酸の量以下であることが好ましい。添加する酸の添加量を、待ち時間が工程D1で求めた時間超になる酸の量にして活性炭スラリーからのスケール析出を確実に抑制するに当たり、当該酸の量を上記上限以下とすれば、より少量の酸を用いて活性炭スラリーからのスケール析出を効率的に抑制し、活性炭スラリーを更に良好に供給することができるからである。
 なお、本発明において、「ランゲリア指数」とは、例えば、Langelier, W. F.著、"The Analytical Control of Anticorrosion Water Treatment”、J.American Water Works、第28巻、1936年発行、p.1500に記載の通り、水中での炭酸カルシウムの飽和度を示す指標である。
 そして、本発明において、「ランゲリア指数」は、厚生労働省・水道課公示の方法(水質管理目標設定項目の検査方法-平成15年10月10日付健水発第101001号-別添4)に従って算出することができる。
 また、本発明の活性炭スラリーの供給方法は、前記工程Aでは前記工程A1の後に前記工程A2を行い、前記工程A2では、前記工程A1で得られた粉砕活性炭および前記原料水を含む粉砕活性炭水を混合機で混合して前記活性炭スラリーを得、前記工程Cでは、前記混合機に流入する前の原料水および前記混合機中の粉砕活性炭水の少なくとも一方に酸を添加することが好ましい。活性炭スラリーの供給方法において、工程A1の後に工程A2を行う乾式粉砕法を取り入れた場合には、粒子径が小さくなった粉砕活性炭と原料水とが混合により粉砕活性炭水中で大きな面積で接触することに伴い、カルシウム化合物が水中に大量に溶け出し易い。従って、上記のように、混合機に流入する前の原料水および混合機中の粉砕活性炭水の少なくとも一方に酸を添加すれば、粉砕活性炭と原料水との接触によりカルシウム化合物が水中に大量に溶け出す前に酸添加を行うことができるため、活性炭スラリーからのスケール析出をより良好に抑制することができるからである。
 また、本発明の活性炭スラリーの供給方法は、前記工程Cでは、少なくとも前記混合機に流入する前の原料水に酸を添加することが好ましい。このように、活性炭スラリーの供給方法において乾式粉砕法を取り入れた場合に、少なくとも混合機に流入する前の原料水に酸を添加すれば、粉砕活性炭と原料水とが接触してカルシウム化合物が水中に大量に溶け出す前に確実に酸添加を行うことができる。従って、活性炭スラリーからのスケール析出を更に良好に抑制することができるからである。
 また、本発明の活性炭スラリーの供給方法は、前記工程Aでは前記工程A2の後に前記工程A1を行い、前記工程A1では、前記原料活性炭および前記原料水が混合された活性炭懸濁水中の原料活性炭を粉砕機で粉砕して前記活性炭スラリーを得、前記工程Cでは、前記原料水、前記粉砕機に流入する前の前記活性炭懸濁水および前記粉砕機中の前記活性炭懸濁水の少なくとも一つに酸を添加することが好ましい。活性炭スラリーの供給方法において、工程A2の後に工程A1を行う湿式粉砕法を取り入れた場合には、活性炭懸濁水中の原料活性炭が粉砕されて粒子径が小さくなった粉砕活性炭と原料水とが大きな面積で接触されることに伴い、カルシウム化合物が水中に大量に溶け出し易い。従って、上記のように、原料水、粉砕機に流入する前の活性炭懸濁水および粉砕機中の活性炭懸濁水の少なくとも一つに酸を添加すれば、活性炭懸濁水中での原料活性炭の粉砕によりカルシウム化合物が水中に大量に溶け出す前に酸添加を行うことができるため、活性炭スラリーからのスケール析出をより良好に抑制することができるからである。
 また、本発明の活性炭スラリーの供給方法は、前記工程Cでは、前記原料水および前記粉砕機に流入する前の前記活性炭懸濁水の少なくとも一方に酸を添加することが好ましい。このように、活性炭スラリーの供給方法において湿式粉砕法を取り入れた場合に、原料水および粉砕機に流入する前の活性炭懸濁水の少なくとも一方に酸を添加すれば、活性炭懸濁水中で粉砕された原料活性炭(粉砕活性炭)から水中にカルシウム化合物が大量に溶け出す前に確実に酸添加を行うと共に、粉砕機に供給する前の活性炭懸濁水からのスケール析出も抑制することができる。従って、活性炭スラリーからのスケール析出を更に良好に抑制することができるからである。
 そして、本発明の活性炭スラリーの供給方法は、前記酸が二酸化炭素または硫酸であることが好ましい。酸として二酸化炭素または硫酸を用いれば、例えば、活性炭スラリーの供給に使用する金属配管等が腐食することを抑制できると共に、活性炭スラリーを飲み水等の浄水処理用に好適に用いることができるからである。
 本発明によれば、粉砕した活性炭および水を含む活性炭スラリーであっても、当該活性炭スラリーからのスケール析出を良好に抑制し得る、活性炭スラリーの供給方法を提供することができる。
本発明に従った乾式粉砕法を取り入れた代表的な活性炭スラリーの供給フローを示すブロック図である。 本発明に従った湿式粉砕法を取り入れた代表的な活性炭スラリーの供給フローを示すブロック図である。 図1Aに示す活性炭スラリーの供給フロー中の工程Cにおいて、乾式粉砕法の場合における、原料水に酸を添加する場合の酸の添加位置を示す説明図である。 図1Bに示す活性炭スラリーの供給フロー中の工程Cにおいて、湿式粉砕法の場合における、原料水に酸を添加する場合の酸の添加位置を示す説明図である。 図1Aに示す活性炭スラリーの供給フロー中の工程Cにおいて、乾式粉砕法の場合における粉砕活性炭水に酸を添加する場合の酸の添加位置を示す説明図である。 図1Bに示す活性炭スラリーの供給フロー中の工程Cにおいて、湿式粉砕法の場合における粉砕機に流入する前の活性炭懸濁水に酸を添加する場合の酸の添加位置を示す説明図である。 湿式粉砕法を取り入れた図1Bに示す活性炭スラリーの供給フロー中の工程Cにおいて、粉砕機中の活性炭懸濁水に酸を添加する場合の酸の添加位置を示す説明図である。
 以下、本発明の実施形態について、図面に基づき詳細に説明する。なお、各図において同一の記号を付したものは、同一の構成要素を示すものとする。また、本発明は、以下に示す実施形態に限定されない。
(活性炭スラリーの供給方法)
 ここで、本発明の活性炭スラリーの供給方法は、例えば、上水処理、用水処理、下水処理、排水処理などの各種水処理において被処理水を活性炭処理する際に活性炭を供給する方法として使用することができる。なお、本発明の方法で供給する活性炭スラリーは、粉砕活性炭および原料水を含んでおり、活性炭スラリー中に含まれている活性炭の比表面積が大きいので、被処理水の不快臭および不快味などを効率的に低減することができる。従って、本発明の活性炭スラリーの供給方法は、上述した中でも、上水道における活性炭処理といった浄水プロセスに特に好適に使用することができる。
 本発明の活性炭スラリーの供給方法は、粉砕活性炭を調製する工程A1および原料水を混合する工程A2を順不同で有し、粉砕活性炭および原料水を含む活性炭スラリーを得る工程Aと、活性炭スラリーを所定の地点まで移送する工程Bと、少なくとも前記工程Aの終了前に酸を添加する工程Cとを含むことを必要とする。また、本発明の活性炭スラリーの供給方法は、上記工程Cにおける酸の添加量を決定する工程Dを更に含むことが好ましい。
 図1には、本発明に従った、(A)乾式粉砕法および(B)湿式粉砕法を取り入れた代表的な活性炭スラリーの供給フロー1を示す。
 図1(A)に示す乾式粉砕法を取り入れた活性炭スラリーの供給フロー1では、まず、原料活性炭が配管11を通じて粉砕機3に流入される。流入された原料活性炭は粉砕機3中で粉砕され、原料活性炭の粒子径よりも小さな粒子径を有する粉砕活性炭が粉砕機3から流出される<工程A1>。次に、粉砕機3から流出された粉砕活性炭は配管31を通じて混合機2に流入されると共に、原料水も配管12を通じて混合機2に流入され、混合機2中で粉砕活性炭および原料水を含む粉砕活性炭水が得られる。更に、粉砕活性炭水は混合機2中で撹拌などにより良好に混合され、粉砕活性炭および原料水を含む活性炭スラリーが混合機2から流出される<工程A2>。
 ここで、図1(A)に示す乾式粉砕法を取り入れた活性炭スラリーの供給フロー1では、通常、上記工程A2の終了(つまり、粉砕活性炭と原料水とを含む粉砕活性炭水の混合が終了して活性炭スラリーが得られること)が「工程Aの終了」に相当する。なお、得られた粉砕活性炭は、粉砕機3および混合機2の間の任意の箇所に設けられた貯留槽(図示せず)に一旦貯留されてもよい。そして、混合機2から流出された活性炭スラリーは、図1(A)に実線で示すように、希釈水と混合されることなく、配管21を通じて被処理水との混合機5まで移送され、被処理水と混合されてもよいし、図1(A)に破線で示すように、配管21を通じて希釈水との混合機4まで移送され、希釈水と混合された後に、更に、配管41を通じて被処理水との混合機5まで移送され、被処理水と混合されてもよい。
 また、図1(B)に示す湿式粉砕法を取り入れた活性炭スラリーの供給フロー1では、まず、原料活性炭が配管11を通じて混合機2に流入されると共に、原料水も配管12を通じて混合機2に流入される。流入された原料活性炭および原料水は混合機2中で混合され、活性炭懸濁水として混合機2から流出される<工程A2>。次に、混合機2から流出した活性炭懸濁水は配管21を通じて粉砕機3に流入される。粉砕機3に流入された活性炭懸濁水中の原料活性炭は粉砕され、原料活性炭の粒子径よりも小さな粒子径を有する粉砕活性炭および原料水を含む活性炭スラリーが粉砕機3から流出される<工程A1>。
 ここで、図1(B)に示す湿式粉砕法を取り入れた活性炭スラリーの供給フロー1では、通常、上記工程A1の終了(つまり、活性炭懸濁水中の原料活性炭の粉砕が終了して活性炭スラリーが得られること)が「工程Aの終了」に相当する。なお、得られた活性炭懸濁水は、混合機2および粉砕機3の間の任意の箇所に設けられた貯留槽20(図3(B)参照)に一旦貯留されてもよい。そして、粉砕機3から流出された活性炭スラリーは、図1(B)に実線で示すように、希釈水と混合されることなく、配管31を通じて被処理水との混合機5まで移送され、被処理水と混合されてもよいし、図1(B)に破線で示すように、配管31を通じて希釈水との混合機4まで移送され、希釈水と混合された後に、更に、配管41を通じて被処理水との混合機5まで移送され、被処理水と混合されてもよい。
 以下、各工程についてより詳細に説明する。
<工程A>
 図1には、活性炭スラリーの供給フローにおける工程Aの範囲を示す。工程Aでは、粉砕活性炭および原料水を含む活性炭スラリーを得る。また、工程Aでは、活性炭スラリーを得るにあたり、粉砕活性炭を調製する工程A1、並びに、原料活性炭または粉砕活性炭と原料水とを混合する工程A2を順不同で有する。例えば、乾式粉砕法を取り入れて活性炭スラリーを得る場合には、図1(A)に示すように、工程A1を乾式で行った後に工程A2を行うことができる。また、湿式粉砕法を取り入れて活性炭スラリーを得る場合には、図1(B)に示すように、工程A2の後に工程A1を湿式で行うことができる。
 ここで、原料活性炭が微粉化された粉砕活性炭は被処理水と大きな比表面積で接触できるため、高い吸着効果を奏することができる。また、原料活性炭を粉砕することにより、比較的粒子径が大きく安価な一般市販品の原料活性炭を少量用いた場合であっても十分な吸着効果が得られるため、コスト低減を図ることができる。更には、例えば、乾式粉砕法を取り入れて活性炭スラリーを得れば、粉砕活性炭の粒度分布および活性炭スラリーの濃度などを容易に制御し易い。一方、例えば、湿式粉砕法を取り入れて活性炭スラリーを得れば、粉塵の発生を抑制して作業環境を良好にしたり、粉砕活性炭の二次凝集を抑制しつつ良好に分散した活性炭スラリーを容易に得たりし易い。
<<工程A1>>
 工程A1では、原料活性炭を粉砕機で粉砕して原料活性炭の粒子径よりも小さな粒子径を有する粉砕活性炭を調製する。ここで、図1(A)に示すように、乾式粉砕法にて粉砕活性炭を調製する場合は、工程A1では、乾燥状態の原料活性炭を単独で粉砕機3中で粉砕することができる。また、図1(B)に示すように、湿式粉砕法にて粉砕活性炭を調製する場合は、工程A1では、原料活性炭および原料水が混合された活性炭懸濁水に含まれている原料活性炭を、湿式環境下で、粉砕機3中で粉砕することができる。
[原料活性炭]
 原料活性炭としては、特に制限されず、例えば、ヤシ穀炭、石炭、オガ屑、木材チップ等の炭素物質を出発材料とし、塩化亜鉛、燐酸等による化学的賦活処理、または水蒸気、二酸化炭素、空気、燃焼ガス等による物理的賦活処理を施して得られる一般的な活性炭を挙げることができる。
 上記一般的な活性炭は、通常、多孔質構造を有する無定形炭素の一種であり、繊維状、ハニカム状、円柱状、破砕状、粒状(粒子径150μm以上)、粉末状(粒子径150μm未満)等、任意の形状を有する。また、一般的な活性炭が有する細孔は細孔径によりミクロ孔、メソ孔、マクロ孔に分類され、例えば、20Å以下の細孔径はミクロ孔、20Å超500Å未満の細孔径はメソ孔、500Å以上の細孔径はマクロ孔と呼ばれている。加えて、一般的な活性炭が有する比表面積は500m/g以上2500m/g以下である。
 そして、原料活性炭としては、市販されている活性炭を用いることもできる。中でも、工程Aにて原料活性炭を良好に粉砕する観点からは、粉末状の活性炭を用いることが好ましい。
[粉砕方法]
 粉砕機3としては、原料活性炭を粉状に砕くことが可能な機器であれば特に限定されず、例えば、粉砕メディアとしてビーズ、ボール、ロッドを用いたビーズミル、転動ボールミル、振動ボールミル、アトライターミル、またはジェットミルなどの微粉砕装置を好適例として挙げることができる。
 なお、粉砕メディア径、粉砕メディア充填率、粉砕速度、粉砕時間、粉砕温度等の粉砕条件は、所望の活性炭スラリーの性状に応じて適宜選択することができる。
<<工程A2>>
 また、工程A2では、原料水および原料活性炭、或いは、原料水および粉砕活性炭を混合機で混合する。ここで、図1(A)に示すように、乾式粉砕法にて粉砕活性炭を調製する場合は、工程A2では、上記工程A1で得られた粉砕活性炭と原料水とを含む粉砕活性炭水を混合機2中で混合することができる。また、図1(B)に示すように、湿式粉砕法にて粉砕活性炭を調製する場合は、工程A2では、原料活性炭および原料水を混合機2中で混合して活性炭懸濁水を得ることができる。
 なお、工程A2で使用し得る原料活性炭としては、工程A1の段落で上述したのと同様の原料活性炭を使用することができる。
[原料水]
 原料水としては、被処理水が目的の水質に改質されることを阻害しなければ特に制限されることなく、例えば、本発明の供給方法を含む浄化方法により浄化された浄化処理水、本発明の供給方法を含む浄化方法により浄化されている途中の処理水、水道水、工業用水、精製水、被処理水そのもの等を用いることができる。
 ここで、原料水および原料活性炭、或いは、原料水および粉砕活性炭の配合割合は、例えば、後述する活性炭スラリーの好適な活性炭濃度に従って、適宜設定することができる。
[混合方法]
 混合機2としては、特に限定されず、例えば、ミキサー等の既知の混合機を挙げることができる。また、混合時間、混合温度などの各種混合条件は、所望の活性炭スラリーの性状に応じて適宜選択することができる。
<<活性炭スラリー>>
 そして、工程Aで得られる活性炭スラリーの活性炭濃度は、0.1質量%以上10質量%以下であることが好ましい。活性炭スラリーの活性炭濃度が上記上限超であると、活性炭スラリーの粘性が高まり、ポンプ送液の困難化、配管の詰まりなどが生じ得るからである。加えて、活性炭スラリーの活性炭濃度が上記上限超の場合は、通常、活性炭懸濁水の粘性も高まるため、例えば、活性炭懸濁水中の原料活性炭の粉砕が困難となるからである。また、活性炭スラリーの活性炭濃度が上記下限未満であると、水処理の際の活性炭スラリーの添加量が多くなるため、活性炭スラリーの添加設備が大型化すること、当該添加設備で送液可能な上限量を超えることなどの事態を招き得るからである。
 なお、粉砕活性炭および原料水が混合により接触すると、或いは、活性炭懸濁水中の原料活性炭が粉砕されて粉砕活性炭および原料水が接触すると、原料活性炭が元来含有しているカルシウム化合物が水中に大量に溶け出し、活性炭スラリー中のカルシウム濃度が上昇する。従って、調製直後の活性炭スラリーは、通常、後述する工程Cにおける酸の添加を行わない場合、炭酸カルシウム等のカルシウム化合物が過飽和となる濃度で溶解している状態となる。また、本発明者らが上水用に市販されている複数種類の原料活性炭について検討したところ、工程Aで得られる活性炭スラリーのpHは、後述する工程Cにおける酸の添加を行わない場合、通常、9.9~12.0程度のアルカリ性を示した。
 また、活性炭スラリーに含まれる粉砕活性炭の粒子径は、体積平均粒子径で0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、10μm以下であることが好ましい。粉砕活性炭の粒子径が上記下限未満であると、例えば、活性炭スラリーを添加した被処理水をろ過して浄化する際に、活性炭スラリーを添加した被処理水から粉砕活性炭を除去することが困難になるからである。また、粉砕活性炭の粒子径が上記上限超であると、粉砕活性炭が、水処理において被処理水と接触する表面積を十分に確保することができず、活性炭スラリーが吸着効果を十分に発揮することができないからである。
<工程B>
 工程Bでは、工程Aで得られた活性炭スラリーを、希釈水との混合地点または被処理水との混合地点まで移送する。より具体的な例としては、工程Bでは、例えば、図1(A)および(B)に実線で示すように、混合機2または粉砕機3から流出した活性炭スラリーを被処理水との混合地点(混合機5)まで直接移送してもよく、図1(A)および(B)に破線で示すように、混合機2または粉砕機3から流出した活性炭スラリーを希釈水との混合地点(混合機4)まで移送し、活性炭スラリーを希釈水で希釈した後に、更に、混合機4から流出した活性炭スラリーを被処理水との混合地点(混合機5)まで移送してもよい。なお、工程Bでは、例えば、活性炭スラリーおよび希釈水を混合する混合機4を、配管を通じることなく混合機2または粉砕機3と直接連結させることにより、活性炭スラリーを得た直後に希釈してもよい(図示せず)。
 ここで、工程Bにおいて活性炭スラリーを希釈することなく被処理水と混合する場合(図1(A)および(B)に実線で示す場合)、移送された活性炭スラリーは、混合機5中で被処理水と任意の方法で混合されることにより、被処理水を浄化する。そして、通常、活性炭スラリーが被処理水と混合されると、活性炭スラリー中のカルシウム濃度は著しく低下する。従って、活性炭スラリーを被処理水に混合した時点以降は、活性炭スラリーからスケール析出が生じる可能性は著しく低下すると考えられる。
 なお、被処理水としては、特に限定されることなく、例えば、上水処理システム中を流れる水、用水処理システム中を流れる水、排水処理システム中を流れる水および下水処理システム中を流れる水等が挙げられる。中でも、活性炭スラリーが有する高い吸着効果を十分に活用する観点からは、被処理水としては、高い精製レベルが求められる飲用水等の上水の製造に用いられる水が好ましい。
 なお、被処理水および活性炭スラリーの混合割合、混合温度等の混合条件は、水処理によって得たい所望の水質、性状により適宜設定することができる。
 また、工程Bにおいて活性炭スラリーを希釈水と混合する場合(図1(A)および(B)に破線で示す場合)、活性炭スラリー中のカルシウム濃度は大きく低下する。従って、通常、活性炭スラリーに希釈水を混合した時点以降は、活性炭スラリーからスケール析出が生じる可能性は大きく低下すると考えられる。
 なお、希釈水としては、特に限定されることなく、例えば、原料水と同等の水を用いることができる。
 また、希釈水を用いた活性炭スラリーの希釈の程度は、特に限定されることなく、任意に設定することができるが、例えば、1.5倍以上10倍以下とすることが好ましく、2倍程度とすることがより好ましい。希釈水の添加により活性炭スラリー中のカルシウム濃度を適度に低めることができるところ、希釈程度が上記下限以上であれば、活性炭スラリー中のスラリー析出をより良好に抑制することができるからである。また、希釈程度が上記上限以下、好ましくは2倍程度であれば、活性炭スラリーを過度に希薄化することなく、活性炭スラリーの高い吸着効果を確保できるからである。
 なお、希釈された活性炭スラリーでは、カルシウム化合物が過飽和状態であっても、飽和状態であっても、未飽和状態であってもよい。
 そして、希釈方法としては、特に限定されることなく、流動している活性炭スラリーまたは貯留されている活性炭スラリーに対して希釈水を添加、混合してもよく、希釈水に対して活性炭スラリーを添加、混合してもよい。
<工程C>
 工程Cでは、少なくとも前記工程Aの終了前に酸を添加することを必要とする。換言すれば、工程Cでは、活性炭スラリーからのスケール析出を抑制しながら活性炭スラリーを供給するために、少なくとも工程Aで活性炭スラリーを得る前のいずれかの段階で酸を添加することを必要とする。例えば、図1(A)に示すように、乾式粉砕法を取り入れて活性炭スラリーを得る場合は、工程A2の終了前、即ち、粉砕活性炭および原料水を含む粉砕活性炭水を混合し終えて活性炭スラリーを得る前などの、活性炭スラリーを調製しているいずれかの段階で酸を添加することができる。また、図1(B)に示すように、湿式粉砕法を取り入れて活性炭スラリーを得る場合は、工程A1の終了前、即ち、活性炭懸濁水中の原料活性炭を粉砕活性炭に粉砕し終えて活性炭スラリーを得る前などの、活性炭スラリーを調製しているいずれかの段階で酸を添加することができる。
 ここで、図1(A)に示すように工程A1の後に工程A2を行う乾式粉砕法を取り入れる場合における、工程Aの終了前(活性炭スラリーを得る前のいずれかの段階)としての具体的なタイミングとしては、混合機2に流入される前の原料水、および、混合機2中の原料水(例えば、粉砕活性炭水中に含まれる原料水)の少なくとも一方に酸を添加することが好ましく、少なくとも混合機2に流入される前の原料水に酸を添加することがより好ましい。また、混合機2に流入される前後の原料水に連続的に酸を添加してもよい。上記タイミングで酸を添加すれば、粉砕活性炭と原料水とが接触してカルシウム化合物が水中に大量に溶け出す前に確実に酸添加を行い得るからである。
 また、図1(B)に示すように工程A2の後に工程A1を行う湿式粉砕法を取り入れる場合における、工程Aの終了前(活性炭スラリーを得る前のいずれかの段階)としての具体的なタイミングとしては、原料水、粉砕機3に流入する前の活性炭懸濁水、粉砕機3中の活性炭懸濁水の少なくとも一つに酸を添加することが好ましく、原料水および粉砕機3に流入する前の活性炭懸濁水の少なくとも一方に酸を添加することがより好ましい。また、原料水および粉砕機3に流入する前の活性炭懸濁水の少なくとも一方から粉砕機3中の活性炭懸濁水に連続的に酸を添加してもよい。上記タイミングで酸を添加すれば、活性炭懸濁水中で原料活性炭から粉砕活性炭へと粉砕されることに伴って水中にカルシウム化合物が大量に溶け出す前に確実に酸添加を行い得ると共に、粉砕機3に供給する前の活性炭懸濁水からのスケール析出も抑制し得るからである。
<<原料水に酸を添加するタイミング>>
 更に、乾式粉砕法を取り入れる場合において、混合機2に流入される前の原料水に酸を添加する具体的なタイミングとしては、図2(A)に示すように、(a)予め原料水に酸を添加してもよく、(b)配管12を通じて混合機2に移送中の原料水に酸を添加してもよい。
<<粉砕活性炭水に酸を添加するタイミング>>
 また、乾式粉砕法を取り入れる場合において、粉砕活性炭および原料水を含む粉砕活性炭水に酸を添加する具体的なタイミングとしては、図3(A)に示すように、混合機2中で粉砕活性炭と原料水とが撹拌、混合される前の粉砕活性炭水、および/または、撹拌、混合されている最中の粉砕活性炭水に対して酸を添加することができる。
 これらは、何れのタイミングで酸を添加してもよく、上述した複数のタイミングを組み合わせて(連続して)酸を添加してもよい。
 中でも、上述した理由から、乾式粉砕法を取り入れる場合においては、少なくとも、図2(A)(a)予め原料水に酸を添加すること、または(b)配管12を通じて混合機2に移送中の原料水に酸を添加することが好ましい。
 また、湿式粉砕法を取り入れる場合において、原料水に酸を添加するタイミングとしては、図2(B)に示すように、(a)予め原料水に酸を添加してもよく、(b)配管12を通じて混合機2に移送中の原料水に酸を添加してもよく、(c)混合機2中で原料活性炭と混合されている原料水に酸を添加してもよい。これらは、何れのタイミングで酸を添加してもよく、上述した複数のタイミングを組み合わせて(連続して)酸を添加してもよい。
<<粉砕機に流入する前の活性炭懸濁水に酸を添加するタイミング>>
 また、湿式粉砕法を取り入れる場合において、粉砕機3に流入する前の活性炭懸濁水に酸を添加するタイミングとしては、図3(B)に示すように、(a)および(c)配管21を通じて粉砕機3へと移送中の活性炭懸濁水に酸を添加してもよく、(b)活性炭懸濁水を混合機2および粉砕機3の間の任意の箇所に設けられた貯留槽20で一旦貯留し、当該貯留している活性炭懸濁水に酸を添加してもよい。これらは、何れのタイミングで酸を添加してもよく、上述した複数のタイミングを組み合わせて(連続して)酸を添加してもよい。
<<粉砕機中の活性炭懸濁水に酸を添加するタイミング>>
 更に、湿式粉砕法を取り入れる場合において、粉砕機3中の活性炭懸濁水に酸を添加するタイミングとしては、図4に示すように、粉砕機3中にて活性炭懸濁水中の原料活性炭を粉砕活性炭に粉砕している間、が挙げられる。
 中でも、上述した理由から、湿式粉砕法を取り入れる場合においては、少なくとも、図2(B)(a)~(c)原料水、または、図3(B)(a)~(c)粉砕機3に流入する前の前記活性炭懸濁水に酸を添加することが好ましい。
<<酸>>
 酸は、酸を添加された原料水、粉砕活性炭水および/または活性炭懸濁水のpHを、添加前と比較して酸性側に調節することができれば特に限定されることない。原料水、粉砕活性炭水および活性炭懸濁水中に添加するハンドリング性の観点からは、酸としては気体または液体が好ましく、例えば、二酸化炭素、硫酸、硝酸、塩酸等が挙げられる。中でも、例えば、活性炭スラリーの供給に使用する金属配管等の腐食を抑制する観点からは、酸としては二酸化炭素または硫酸であることがより好ましい。更に、例えば、活性炭スラリーを飲み水等の浄水処理用に好適に用いることができる観点からは、酸としては二酸化炭素であることが更に好ましい。
 ここで、一般に、スケールの主成分である炭酸カルシウム(CaCO)は、酸および水の存在下において、下記の反応式(1):
 CaCO+H+HO → Ca2++HCO +HO ・・・(1)
に従い、水中に溶解する。よって、活性炭スラリーに酸を含有させるほど、活性炭スラリー中の炭酸カルシウムの溶解度が高まり、スケール析出を抑制し易い。
 従って、粉砕活性炭から水中に大量のカルシウム化合物が溶出する場合であっても、工程Cにおいて、上記所定のタイミングで酸を添加すれば、活性炭スラリーからのスケール析出を抑制し易くできる。つまり、粉砕活性炭から原料水、粉砕活性炭水および/または活性炭懸濁水中に大量のカルシウム化合物が溶出して、活性炭スラリー中の炭酸カルシウム等のカルシウム化合物が過飽和状態となっても、活性炭スラリーからのスケール析出を生じ難くすることができる。
 また、酸として二酸化炭素を用いた場合は、一般に、スケールの主成分である炭酸カルシウム(CaCO)は、下記の反応式(2):
 CaCO+CO+HO → Ca(HCO ・・・(2)
に従い、炭酸水素カルシウム(Ca(HCO)として水中に溶解する。よって、活性炭スラリーに二酸化炭素を含有させるほど、活性炭スラリーにおけるスケール析出を抑制し易い。
 従って、粉砕活性炭から原料水、粉砕活性炭水および/または活性炭懸濁水中に大量のカルシウム化合物が溶出する場合であっても、工程Cにおいて上述した所定のタイミングで二酸化炭素を添加すれば、活性炭スラリーからのスケール析出を抑制し易くできる。このように、工程Cにおいて上述した所定のタイミングで二酸化炭素を添加すれば、スケール析出を良好に抑制しながら、活性炭スラリーを浄水プロセス等に良好に供給することができる。
 酸の添加方法としては、特に制限されることなく、例えば、原料水、粉砕活性炭水および/または活性炭懸濁水と接触する各混合機、貯留機、粉砕機および配管に酸の導入口を設け、添加量を自動制御または流量計およびバルブ等を用いて手動制御しながら行うことができる。
 なお、本発明において、例えば、後述する手法により酸の添加量を予め定めた場合には、通常、活性炭スラリーの供給プロセスの途中で酸の添加量を調節、変更することなく、一定の設定値で連続稼働することができるため、作業性に優れる。
<工程D>
 本発明の活性炭スラリーの供給方法は、上述した工程Cにおける酸の添加量を所定の方法で決定する工程Dを更に含むことが好ましい。具体的には、本発明の活性炭スラリーの供給方法は、後述する工程D1および工程D2を経て、所定の工程に要する時間および所定の待ち時間を考慮することにより、工程Cにおける酸の添加量を決定することが好ましい。本発明の活性炭スラリーの供給方法では、特に、原料活性炭が粉砕されて粒子径が小さくなった粉砕活性炭と原料水とが接触することに起因して、活性炭スラリー中のカルシウム濃度が顕著に高まり易いところ、所定の方法に従って定めた範囲の量の酸を添加すれば、活性炭スラリーからカルシウム化合物の析出が開始するまでの待ち時間を利用して活性炭スラリーからのスケール析出をより良好に抑制することができるからである。
<<工程D1>>
 まず、工程D1では、上述した工程A1または工程A2のいずれか後の工程の開始から工程Bの終了までに要する時間(以下、「時間T」または「T」と称することがある。)を求める。ここで、図1(A)に示す乾式粉砕法を取り入れた場合においては、時間Tは、工程A2(粉砕活性炭水の混合などの、粉砕活性炭および原料水の混合)の開始から工程Bの終了までに要する時間である。また、図1(B)に示す湿式粉砕法を取り入れた場合においては、時間Tは、工程A1(活性炭懸濁水中の原料活性炭の粉砕)の開始から工程Bの終了までに要する時間である。そして、当該時間Tは、例えば、図1(A)および(B)に示す活性炭スラリーの供給フロー1において、カルシウム化合物が最も析出しやすい区間の所要時間である。
 時間Tは、通常、活性炭スラリーの供給プロセスを行う前に設定することができる。具体的には、時間Tは、例えば、原料活性炭の粒子径、活性炭スラリー中での粉砕活性炭の所望の粉砕状態、活性炭スラリー中での粉砕活性炭の所望の濃度等に基づいて、粉砕時間、および、希釈水との混合地点または被処理水との混合地点までの移送時間を定めることにより設定することができる。そして、予め定めた時間Tは、通常、活性炭スラリーの供給プロセスの途中で調節、変更することなく、一定の設定値で連続稼働することができる。
<<工程D2>>
 次に、工程D2では、活性炭スラリーに含有させる酸の量(即ち、工程Cで添加する酸の量)と、活性炭スラリーからカルシウム化合物の析出が開始するまでの待ち時間(以下、「待ち時間T」または「T」と称することがある。)との関係に基づき、当該待ち時間Tが工程D1で求めた時間Tを超える(T>T)ために必要な酸の量を工程Cにおける酸の添加量として決定する。このように、T>Tとすれば、活性炭スラリーを供給するに際に、被処理水または希釈水との混合地点までの間にスケールが発生するのを確実に抑制することができる。
 ここで、上述した通り、通常、酸の添加量が増すほど、活性炭スラリー中に溶解し得るカルシウム濃度は増大する。つまり、酸の添加量が増すほど待ち時間Tは長くなる傾向にある。従って、工程Dに従えば、工程Cにおいて添加する酸の好適最小量を決定することができる。
[酸の量とTとの関係]
 ここで、活性炭スラリーに含有させる酸の量と、活性炭スラリーからカルシウム化合物の析出が開始するまでの待ち時間Tとの関係は、作業コストおよび作業の簡便性の観点から、活性炭スラリーの供給プロセスを行う前に、例えば以下の方法を用いて実験室レベルで求めておくことができる。なお、以下に示す方法は一例であり、本発明はこれに限定されない。
 即ち、具体的には、まず、原料活性炭が含有するカルシウム濃度を測定する。ここで、原料活性炭が含有するカルシウム濃度は、例えば、温度600℃で強熱した原料活性炭の灰分を塩酸または硝酸などの酸で溶解させた試料を、ICP-MS(誘導結合プラズマ質量分析計)を用いて分析し、原料活性炭が含有するカルシウム化合物の量を算出することで測定できる。次に、測定した原料活性炭中のカルシウム化合物の量、並びに、実際の活性炭スラリーの供給プロセスにて使用する原料活性炭および原料水の配合割合に基づき、投入された原料活性炭に含有されるカルシウム化合物が全て原料水中に溶解したと仮定したときの、活性炭スラリー中のカルシウム濃度を算出する。そして、上述で算出したカルシウム濃度となるよう、塩化カルシウム等のカルシウム塩を実際の供給方法で用いる原料水中に溶解させる。なお、塩化カルシウムを溶解させる際には、得られるカルシウム水溶液が実際の供給方法で使用する活性炭スラリーのアルカリ度と同等のアルカリ度を有するよう、炭酸水素ナトリウムを更に溶解させて調節することができる。
 ここで、本発明において、「アルカリ度」とは、活性炭スラリーに含まれ得る炭酸(HCO)、炭酸イオン(CO 2-)、炭酸水素イオン(HCO )、水酸化物イオン(OH)の合計量を炭酸カルシウム(CaCO)の量に換算した値(mg/L)」であり、滴定法によって求めることができる。また、得られるカルシウム水溶液のpHは、所望のpHに合わせて水酸化ナトリウムおよび/または硫酸を添加して調節することができる。更に、カルシウム水溶液を調製する際の温度は、実際の活性炭スラリーの供給プロセス温度に合わせればよい。
 続いて、得られたカルシウム水溶液に対する酸の添加量と、カルシウム水溶液の調製終了時点からカルシウム水溶液中にカルシウム化合物が析出し始めるまでの時間T’との関係を得る。ここで、時間T’に対応させる酸の添加量は、例えば、添加した酸の質量または容積などの酸の添加量を直接的に示すパラメータであってもよいし、カルシウム水溶液のpHなどの酸の添加量を間接的に示すパラメータであってもよい。また、上記時間T’は、例えば、カルシウム水溶液中のカルシウム濃度が減少し始めるまでの時間として計測してもよいし、カルシウム水溶液中に白い沈殿物が目視確認でき始めるまでの時間として計測してもよい。
 なお、上記のように、実験室レベルで求めたカルシウム水溶液中にカルシウム化合物が析出し始めるまでの時間T’を、実際の供給プロセスにおける活性炭スラリーからカルシウム化合物の析出が開始するまでの待ち時間Tとして使用することができる。
 そして、同様のことを酸の添加量を変更して複数回行うことにより、各酸の添加量(上記の直接的なパラメータまたは間接的なパラメータ)と時間T’との関係データ(表またはグラフ)を得ることができる。より具体的には、横軸が酸の添加質量で縦軸がT’のグラフ、横軸が酸の添加容量で縦軸がT’のグラフ、横軸がpHで縦軸がT’のグラフなどを得ることができる。
 なお、上述した活性炭スラリー中のカルシウム濃度の算出に際しては、原料水自体に含有されるカルシウム濃度も考慮することが好ましい。ここで、原料水として主に想定している、水道水、本発明の供給方法を含む浄化方法により浄化された浄化処理水、および、本発明の供給方法を含む浄化方法により浄化されている途中の処理水中のカルシウム濃度は、概ね10mg/L~100mg/Lの範囲(水道水質基準)である。
[酸の添加量の決定]
 次に、活性炭スラリーに含有させる酸の量と、活性炭スラリーからカルシウム化合物の析出が開始するまでの待ち時間Tとの関係に基づき、待ち時間Tが工程D1で求めた時間Tを超える(T>T)酸の量を工程Cにおける酸の添加量として決定する。具体的な一例としては、上述で得られた酸の量とTとの関係から、T=Tとなるときに活性炭スラリーに含有される酸の量(酸の量MIN)を求める。なお、当該酸の量MINは、T=Tとなるときに活性炭スラリーが示すpH(pHMAX)として求めてもよい。そして、酸の量MIN超、または、pHMAX未満とするのに必要な任意の酸の量を、工程Cにおける酸の添加量として決定することができる。このように、T>Tとすれば、活性炭スラリーを供給するにあたり、被処理水または希釈水との混合地点までの間にスケールが発生するのを確実に抑制することができる。
 なお、工程D2では、決定する酸の添加量が、活性炭スラリーのランゲリア指数をゼロとするために必要な酸の量(酸の量MAX)以下であることが好ましい。ここで、一般に、スケール析出を抑制する際には、ランゲリア指数がマイナスになる(即ち、上記酸の量MAXよりも多くの量の酸を添加し、カルシウム化合物が未飽和状態になる)量の酸を添加する。しかし、原料活性炭を粉砕した粉砕活性炭および原料水を含む活性炭スラリーでは、大量のカルシウム化合物が活性炭から水中に溶出し得ると共に、カルシウム化合物の溶出が酸の添加によって加速され得る。従って、粉砕活性炭を含む活性炭スラリーのスケール抑制においてランゲリア指数がマイナスになる量の酸を添加しようとすると、多量の酸が必要になる。一方、上述したように、活性炭スラリーからカルシウム化合物の析出が開始するまでには、待ち時間Tが存在する。そこで、工程D2において酸の添加量を上記上限以下にすれば、活性炭スラリー中のカルシウム化合物が過飽和状態であっても、スケールが析出しない条件にて活性炭スラリーを所定地点まで供給することができる。従って、より少量の酸を用いて、活性炭スラリーからのスケール析出をより効率的に抑制し、活性炭スラリーの供給コストをより低減することができる。
 上記の点は、比較的多量の酸を添加してカルシウム化合物を未飽和状態にすることによりスケール析出の問題に取り組んできた従来の技術と比較し、より少量の酸にてスケール析出を抑制し得、作業のコストおよび安全性の面において顕著な効果を奏するものである。また、カルシウム化合物が過飽和状態であってもスケール析出を抑制させるという点は、粉砕により粒子径が小さくなった粉砕活性炭と原料水とが接触することに伴い大量のカルシウム化合物が溶出すること、および、カルシウム化合物の未飽和状態ではカルシウム化合物の溶出が促進されること等の、粉砕された活性炭および水を用いる技術で見られる特有の問題に着眼するものである。
 なお、上記の通り、通常、アルカリ性を示す活性炭スラリーに対する、ランゲリア指数をゼロとするために必要な酸の量MAXとは、工程Cにおいて添加し得る酸の好適最大量であることがわかる。
 ここで、ランゲリア指数は、炭酸カルシウムの飽和度を示す指標ではあるが、一般に、スケール析出の原因となるカルシウム化合物の主成分は炭酸カルシウムであるため、本発明においては、ランゲリア指数を活用することによりスケール析出の抑制を更に効率的にすることができる。
 なお、上記では、酸の添加から析出開始までを待ち時間としている。ここで、本発明の一例として、例えば、工程Dに従って決定した量の酸を、乾式粉砕法を取り入れた場合の工程Cにおいては混合機2に流入する前の原料水に対して;湿式粉砕法を取り入れた場合の工程Cにおいては原料水、粉砕機3に流入する前の活性炭懸濁水に対して;添加した場合には、当該酸の添加から工程Bの終了時(Tの終了時)までの時間が、上記で求めたカルシウム化合物の析出が開始するまでの待ち時間Tよりも長くなることがある。しかしながら、乾式粉砕法を取り入れた場合においては工程A2よりも前の区間;湿式粉砕法を取り入れた場合においては工程A1よりも前の区間;(換言すれば、粉砕活性炭と原料水とが接触し始める前の区間)では、活性炭からのカルシウム化合物の溶出が殆ど起こっていない。従って、上記区間では、乾式粉砕法を取り入れた場合においては工程A2の開始~工程Bの終了区間;湿式粉砕法を取り入れた場合においては工程A1の開始~工程Bの終了区間(換言すれば、粉砕活性炭と原料水とが接触する区間)と比較して、カルシウム化合物の析出の原因となり得るカルシウム濃度が桁違いに低いため、スケール析出が相対的に問題とならない。従って、上記の場合であっても、工程Dにて決定した量の酸が所定のタイミングで添加されている限り、活性炭スラリーの供給プロセスにおいてスケール析出を良好に抑制することができる。
 因みに、原料水および/または活性炭懸濁水におけるpHは、酸を添加してからの時間の経過と共に上昇する傾向がみられることがある。従って、工程Cにおいて、とりわけ、早いタイミングで(例えば、乾式粉砕法を取り入れた場合においては混合機2に流入する前の原料水;湿式粉砕法を取り入れた場合においては原料水および/または粉砕機3に流入する前の活性炭懸濁水;に対して)酸を添加する場合には、所望の値に調節したpHをプロセス中で保つために、工程Dに従って決定した量の酸を少量ずつ添加してもよい。具体的には、乾式粉砕法を取り入れた場合においては工程A2の開始時点まで;湿式粉砕法を取り入れた場合においては工程A1の開始時点まで;連続して少量ずつ酸を添加してもよい。また、工程Dに従って決定した酸の量に加えてpHの上昇を抑制し得る量の酸を更に添加してもよい。更には、工程Cにおいて、とりわけ、乾式粉砕法を取り入れた場合においては混合機に流入する前の原料水;湿式粉砕法を取り入れた場合においては粉砕機に流入する前の活性炭懸濁水;に対して酸を添加する場合には、所望の値に調節したpHをプロセス中で保つために、酸の添加を、それぞれ工程A2;工程A1;の開始直前に行ってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」おは、特に断らない限り、質量基準である。
(実施例1)
 原料活性炭および原料水が混合された活性炭懸濁水中の原料活性炭を粉砕機(湿式ビーズミル)で粉砕して得た活性炭スラリーを、上水処理システム中を流れる被処理水と混合する地点まで移送する活性炭スラリーの連続供給システムにおいて、粉砕機中の活性炭懸濁水に対して二酸化炭素を吹き込んだ。具体的には、活性炭スラリーのpHが低下しなくなる(活性炭スラリーに含まれる粉砕活性炭1kgあたりの二酸化炭素量が15ノルマルLとなる)時点まで、2.0ノルマルL/分の速度で、二酸化炭素の吹き込みを続けた。次に、粉砕機中の活性炭懸濁水に対して硫酸を添加して、活性炭スラリーのランゲリア指数が0となるpH(6.3)にまで調整した。
 そして、連続供給システムでの運用1ヵ月後に配管中のスケール析出の有無を目視で確認したところ、スケールは確認されなかった。
 なお、原料活性炭としては、市販の上水処理用粉末活性炭(平均粒子径15μm)を用い、原料水としては水道水を用いた。
(実施例2)
 温度600℃下で2時間強熱した原料活性炭に硝酸を加えることにより、原料活性炭に含有される成分を溶解させた試料液を調製した。次に、得られた試料液について、ICP-MSを用いて、原料活性炭に含有されているカルシウム濃度を測定した。測定された原料活性炭中のカルシウム濃度は2.9g/kgであった。そして、測定したカルシウム濃度、並びに、実際の連続供給システムで用いる原料活性炭および原料水の配合割合から、活性炭スラリー中に存在し得るカルシウム化合物の最大濃度を理論的に算出した。そして、溶質としての塩化カルシウムおよび溶媒としての水道水(原料水)を用いて、カルシウム濃度が上記最大濃度となるようにカルシウム水溶液を調製した。
 次に、得られたカルシウム水溶液中に、活性炭スラリーのアルカリ度と同等のアルカリ度を有するよう、炭酸水素ナトリウムを添加した。更に、調整するpHに合わせて、水酸化ナトリウム水溶液または硫酸を添加することにより、カルシウム水溶液のpHを6.0~9.0の範囲で0.1ずつそれぞれ調整した。その後、各カルシウム水溶液において、pHの調整時点からカルシウム化合物が析出し始める時点までの待ち時間T’を計測した。なお、カルシウム化合物が析出し始める時点は、カルシウム水溶液をろ紙(グレード:GF/B)によりろ過し、滴定法により測定したろ液のカルシウム濃度が1%超低下した時点とした。
 そして、調製したpHをx軸に、当該pHに対応する待ち時間T’をy軸にプロットすることにより、カルシウム水溶液についてのpH-待ち時間T’の関係を示すグラフを得た。得られたグラフは、pHが小さくなるにつれて待ち時間T’が指数関数的に増大するグラフであった。
 続いて、得られたグラフにおいて、y軸が、上記連続供給システムにおける原料活性炭の粉砕開始(活性炭懸濁水の粉砕機への流入時点)から、活性炭スラリーを被処理水との混合地点へと移送するまでに要する時間T=5時間となるときのpH’=7.3を確認した。また、上述の厚生労働省による方法に従って、活性炭スラリーのランゲリア指数をゼロとするために必要なpH’’=6.3と算出した。
 そして、活性炭スラリーのpHが、上記pH’’以上pH’未満、つまり6.3以上7.3未満の範囲内である、pH=7.0となるよう、二酸化炭素を、0.5ノルマルL/分の速度で、活性炭スラリーに含まれる粉砕活性炭1kgあたりの二酸化炭素の量が6ノルマルLとなるように吹き込んだ以外は実施例1と同様にして、活性炭スラリーを連続供給した。なお、このとき、活性炭スラリー中の炭酸カルシウムは過飽和状態であった。
 そして、実施例1と同様にして配管中のスケール析出の有無を目視で確認したところ、スケールは確認されなかった。これにより、実施例2では、実施例1よりも少量の酸を添加して、スケール析出をより効率的に防止することができた。
(比較例1)
 上記連続供給システムにおいて、二酸化炭素を吹き込まなかった以外は実施例1と同様にして、活性炭スラリーを連続供給した。
 そして、実施例1と同様にして配管中のスケール析出の有無を目視で確認したところ、スケール析出が確認された。
(比較例2)
 上記連続供給システムにおいて、二酸化炭素を、原料水、粉砕機に流入する前の活性炭懸濁水および粉砕機中の活性炭懸濁水の何れに対しても吹き込まず、得られた活性炭スラリーに対してのみ吹き込んだ以外は実施例1と同様にして、活性炭スラリーを連続供給した。
 そして、実施例1と同様にして配管中のスケール析出の有無を目視で確認したところ、スケール析出が確認された。
(参考例)
 上記連続供給システムにおいて、活性炭懸濁水中の原料活性炭を粉砕することなく(つまり、活性炭スラリーを得ることなく)、また、二酸化炭素を吹き込むことなく、原料活性炭と水とを含む活性炭懸濁水をそのまま供給した。
 そして、実施例1と同様にして配管中のスケール析出の有無を目視で確認したところ、スケールは確認されなかった。
 本発明によれば、粉砕した活性炭および水を含む活性炭スラリーであっても、当該活性炭スラリーからのスケール析出を良好に抑制し得る、活性炭スラリーの供給方法を提供することができる。
1  代表的な活性炭スラリーの供給フロー
2  混合機
3  粉砕機
4  希釈水との混合機
5  被処理水との混合機
11,12,21,31,41 配管
20 貯留槽
 

Claims (8)

  1.  粉砕活性炭および原料水を含む活性炭スラリーを得る工程Aと、前記活性炭スラリーを希釈水との混合地点または被処理水との混合地点まで移送する工程Bと、を含む活性炭スラリーの供給方法であって、
     前記工程Aは、原料活性炭を粉砕機で粉砕して前記原料活性炭の粒子径よりも小さな粒子径を有する前記粉砕活性炭を調製する工程A1と、前記原料水および前記原料活性炭、或いは、前記原料水および前記粉砕活性炭を混合機で混合する工程A2と、を順不同で有し、
     少なくとも前記工程Aの終了前に酸を添加する工程Cを更に含むことを特徴とする、活性炭スラリーの供給方法。
  2.  前記工程Cにおける酸の添加量を決定する工程Dを更に含み、
     前記工程Dは、前記工程A1または前記工程A2のいずれか後の工程の開始から前記工程Bの終了までに要する時間を求める工程D1と、活性炭スラリーに含有させる酸の量および活性炭スラリーからカルシウム化合物の析出が開始するまでの待ち時間の関係に基づき、前記待ち時間が前記工程D1で求めた時間超になる酸の量を前記工程Cにおける酸の添加量として決定する工程D2と、を含むことを特徴とする、請求項1に記載の活性炭スラリーの供給方法。
  3.  前記工程D2で決定する酸の添加量が、活性炭スラリーのランゲリア指数をゼロとするために必要な酸の量以下であることを特徴とする、請求項2に記載の活性炭スラリーの供給方法。
  4.  前記工程Aでは前記工程A1の後に前記工程A2を行い、
     前記工程A2では、前記工程A1で得られた粉砕活性炭および前記原料水を含む粉砕活性炭水を混合機で混合して前記活性炭スラリーを得、
     前記工程Cでは、前記混合機に流入する前の原料水および前記混合機中の粉砕活性炭水の少なくとも一方に酸を添加することを特徴とする、請求項1~3のいずれか一項に記載の活性炭スラリーの供給方法。
  5.  前記工程Cでは、少なくとも前記混合機に流入する前の原料水に酸を添加することを特徴とする、請求項4に記載の活性炭スラリーの供給方法。
  6.  前記工程Aでは前記工程A2の後に前記工程A1を行い、
     前記工程A1では、前記原料活性炭および前記原料水が混合された活性炭懸濁水中の原料活性炭を粉砕機で粉砕して前記活性炭スラリーを得、
     前記工程Cでは、前記原料水、前記粉砕機に流入する前の前記活性炭懸濁水および前記粉砕機中の前記活性炭懸濁水の少なくとも一つに酸を添加することを特徴とする、請求項1~3のいずれか一項に記載の活性炭スラリーの供給方法。
  7.  前記工程Cでは、前記原料水および前記粉砕機に流入する前の前記活性炭懸濁水の少なくとも一方に酸を添加することを特徴とする、請求項6に記載の活性炭スラリーの供給方法。
  8.  前記酸が二酸化炭素または硫酸であることを特徴とする、請求項1~7のいずれか一項に記載の活性炭スラリーの供給方法。
PCT/JP2018/001808 2017-03-07 2018-01-22 活性炭スラリーの供給方法 WO2018163620A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/472,995 US20190381478A1 (en) 2017-03-07 2018-01-22 Activated carbon slurry supply method
JP2019504362A JP7053567B2 (ja) 2017-03-07 2018-01-22 活性炭スラリーの供給方法
CA3051824A CA3051824C (en) 2017-03-07 2018-01-22 Activated carbon slurry supply method
EP18763671.7A EP3539930B1 (en) 2017-03-07 2018-01-22 Method for supplying activated carbon slurry
CN201880005158.4A CN110088045A (zh) 2017-03-07 2018-01-22 活性炭浆料的供给方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017043169 2017-03-07
JP2017-043169 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018163620A1 true WO2018163620A1 (ja) 2018-09-13

Family

ID=63448196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001808 WO2018163620A1 (ja) 2017-03-07 2018-01-22 活性炭スラリーの供給方法

Country Status (6)

Country Link
US (1) US20190381478A1 (ja)
EP (1) EP3539930B1 (ja)
JP (1) JP7053567B2 (ja)
CN (1) CN110088045A (ja)
CA (1) CA3051824C (ja)
WO (1) WO2018163620A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491373B1 (ja) * 2018-02-16 2019-03-27 メタウォーター株式会社 吸着剤による水処理装置及び水処理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2022011185A (es) * 2020-03-09 2022-10-18 Chemtreat Inc Metodos para tratar agua con carbono activado en polvo para reducir el contenido de material organico.
CN111420586A (zh) * 2020-05-24 2020-07-17 浙江大业新材料股份有限公司 一种炭浆投加装置及其投加方法
DE102021131310A1 (de) * 2021-11-29 2023-06-01 Mecana Umwelttechnik Gmbh Verfahren zur Entfernung von gelösten organischen Substanzen in Flüssigkeiten mit einem superfeinen Adsorbens

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910973B2 (ja) 1980-03-31 1984-03-13 日本鋼管株式会社 熱風炉の壁構造
JP2000263039A (ja) * 1999-03-16 2000-09-26 Nippon Solid Co Ltd 微粒子懸濁液体及び汚濁水処理方法
JP2005187253A (ja) * 2003-12-25 2005-07-14 Japan Enviro Chemicals Ltd 二酸化炭素を吸着させた活性炭およびその製造方法
JP2006000693A (ja) * 2004-06-15 2006-01-05 Japan Enviro Chemicals Ltd 水処理用粉末活性炭およびその製造方法
JP2007237169A (ja) * 2006-02-10 2007-09-20 Japan Enviro Chemicals Ltd 液相処理用吸着剤及びその製法
JP4468895B2 (ja) 2003-01-16 2010-05-26 メタウォーター株式会社 浄水処理における活性炭の添加方法及び浄水処理方法
JP5910973B2 (ja) * 2014-08-11 2016-04-27 月島機械株式会社 ドライ粉末活性炭注入設備及びドライ粉末活性炭注入

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014120839A1 (en) * 2013-01-30 2014-08-07 Joseph Company International, Inc. Compaction apparatus and method for heat exchange unit
CN103848422B (zh) * 2014-02-26 2016-07-13 北京宝塔三聚能源科技有限公司 活性炭清洗系统及其方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910973B2 (ja) 1980-03-31 1984-03-13 日本鋼管株式会社 熱風炉の壁構造
JP2000263039A (ja) * 1999-03-16 2000-09-26 Nippon Solid Co Ltd 微粒子懸濁液体及び汚濁水処理方法
JP4468895B2 (ja) 2003-01-16 2010-05-26 メタウォーター株式会社 浄水処理における活性炭の添加方法及び浄水処理方法
JP2005187253A (ja) * 2003-12-25 2005-07-14 Japan Enviro Chemicals Ltd 二酸化炭素を吸着させた活性炭およびその製造方法
JP2006000693A (ja) * 2004-06-15 2006-01-05 Japan Enviro Chemicals Ltd 水処理用粉末活性炭およびその製造方法
JP2007237169A (ja) * 2006-02-10 2007-09-20 Japan Enviro Chemicals Ltd 液相処理用吸着剤及びその製法
JP5910973B2 (ja) * 2014-08-11 2016-04-27 月島機械株式会社 ドライ粉末活性炭注入設備及びドライ粉末活性炭注入

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Water Supply Division", 10 October 2003
LANGELIER, W. F.: "The Analytical Control of Anticorrosion Water Treatment", J. AMERICAN WATER WORKS, vol. 28, 1936, pages 1500
See also references of EP3539930A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491373B1 (ja) * 2018-02-16 2019-03-27 メタウォーター株式会社 吸着剤による水処理装置及び水処理方法
JP2019141753A (ja) * 2018-02-16 2019-08-29 メタウォーター株式会社 吸着剤による水処理装置及び水処理方法

Also Published As

Publication number Publication date
EP3539930A4 (en) 2020-07-01
CA3051824A1 (en) 2018-09-13
JPWO2018163620A1 (ja) 2020-01-09
CN110088045A (zh) 2019-08-02
EP3539930A1 (en) 2019-09-18
EP3539930B1 (en) 2023-08-02
JP7053567B2 (ja) 2022-04-12
US20190381478A1 (en) 2019-12-19
CA3051824C (en) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2018163620A1 (ja) 活性炭スラリーの供給方法
WO2013179939A1 (ja) 放射性ストロンチウム含有排水の処理方法及び処理装置
CN114522554A (zh) 一种超细悬浮氢氧化钙的制备及其应用
CN104039711A (zh) 含氧化镁的净水组合物及其应用
TW202012643A (zh) 從煉鋼爐渣回收鈣的方法
JP5637708B2 (ja) フッ素吸着剤によるフッ素イオン含有排水の処理方法
JP6060320B1 (ja) 被処理水中のリンの回収システム、被処理水中のリンの回収方法
JP4951805B2 (ja) 消石灰注入装置
CN104437593B (zh) 一种锰系触媒过滤材的制备方法
US20180363073A1 (en) Process including a carbonation step
JP5240109B2 (ja) 排水中のフッ素イオンの除去剤とそれを使用したフッ素イオンの除去方法
JP6731261B2 (ja) 重金属含有水の処理装置および処理方法
JP4468895B2 (ja) 浄水処理における活性炭の添加方法及び浄水処理方法
JP2009011914A (ja) セレン含有排水の処理方法及び処理装置
WO2014108941A1 (ja) 水処理方法及び水処理装置
CN111453749B (zh) 一种高固含量的氢氧化镁悬浮液的生产工艺及应用
JP4541042B2 (ja) 水処理用粉末活性炭およびその製造方法
JP2019155216A (ja) 水処理方法及び水処理装置
JP2016052654A (ja) 浄水処理方法
WO2018198714A1 (ja) 溶解性マンガン除去方法
JP6579317B2 (ja) 焼却灰の脱塩方法
JP2005000840A (ja) フッ素含有排水の処理方法
JP2006218343A (ja) セレン含有排水の処理方法および処理装置
TWI644857B (zh) 以流體化床結晶技術合成均質含鋅結晶物之方法
JP2008188484A (ja) フッ素含有排水の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504362

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018763671

Country of ref document: EP

Effective date: 20190614

ENP Entry into the national phase

Ref document number: 3051824

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE