WO2018163332A1 - 自動製氷機及び冷凍冷蔵庫 - Google Patents

自動製氷機及び冷凍冷蔵庫 Download PDF

Info

Publication number
WO2018163332A1
WO2018163332A1 PCT/JP2017/009281 JP2017009281W WO2018163332A1 WO 2018163332 A1 WO2018163332 A1 WO 2018163332A1 JP 2017009281 W JP2017009281 W JP 2017009281W WO 2018163332 A1 WO2018163332 A1 WO 2018163332A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
ice making
water
tray
water supply
Prior art date
Application number
PCT/JP2017/009281
Other languages
English (en)
French (fr)
Inventor
舞子 柴田
松本 真理子
大治 澤田
伊藤 敬
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019504206A priority Critical patent/JP6750725B2/ja
Priority to CN201780087433.7A priority patent/CN110352326B/zh
Priority to AU2017402441A priority patent/AU2017402441B2/en
Priority to PCT/JP2017/009281 priority patent/WO2018163332A1/ja
Priority to TW106119957A priority patent/TWI636223B/zh
Publication of WO2018163332A1 publication Critical patent/WO2018163332A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays

Definitions

  • the present invention relates to an automatic ice making machine and a refrigerator-freezer.
  • each size of ice that can be made with an automatic ice making machine as shown in Patent Document 1 is a truncated pyramid.
  • Each size of ice has a common lower surface dimension and a different height dimension. For this reason, in the case of small size ice, it becomes a flat shape compared with large size ice, and the surface area per unit volume, that is, the specific surface area becomes large. Therefore, the smaller size ice has a larger area in contact with the surrounding air, water, etc., and is easier to melt than the larger size ice.
  • the present invention has been made to solve such problems. Its purpose is to make ice at least in two sizes, an automatic ice maker and freezer refrigerator that can produce ice that is smaller in size and harder to melt than the same volume of ice. There is in getting.
  • An automatic ice making machine includes an ice tray having a plurality of ice making blocks partitioned by a first partition wall having a first height, and a water supply device that supplies water to the inside of each of the plurality of ice making blocks. And a cooling device that cools the water inside the ice making block into ice, and the ice tray is provided inside the ice making block, divides the ice making block into a plurality of pieces, and the first A second partition wall having a second height lower than the height is further provided.
  • the refrigerator-freezer according to the present invention includes an automatic ice maker configured as described above.
  • the automatic ice making machine and the refrigerator-freezer according to the present invention, at least two types of large and small sizes of ice can be made, and even the smaller size can make ice that is hard to melt compared to the same volume of ice. There is an effect that it is possible.
  • FIG. 5 is a cross-sectional view of the ice tray with a cross section AA shown in FIG. It is a block diagram which shows the structure of the control system of the refrigerator-freezer which concerns on Embodiment 1 of this invention.
  • FIG. 5 shows an example of the ice tray which concerns on Embodiment 2 of this invention.
  • FIG. 5 shows the block diagram which shows the structure of the control system of the refrigerator-freezer which concerns on Embodiment 2 of this invention.
  • FIG. 5 shows the other example of the ice tray which concerns on Embodiment 2 of this invention.
  • FIG. 1 to 11 relate to Embodiment 1 of the present invention.
  • FIG. 1 is a front view of a refrigerator-freezer equipped with an automatic ice maker
  • FIG. 2 is a longitudinal sectional view of the refrigerator-freezer
  • FIG. FIG. 4 is a top view of the ice tray in the ice chamber
  • FIG. 5 is a cross-sectional view of the ice tray according to the section AA shown in FIG. 4
  • FIG. 7 is a cross-sectional view showing a state where water is supplied to the ice tray to the first water level
  • FIG. 8 is a perspective view showing the shape of the ice made while water is supplied to the ice tray to the first water level.
  • FIG. 9 is a cross-sectional view showing a state where water is supplied to the ice tray to the second water level
  • FIG. 10 is a perspective view showing the shape of ice made while water is supplied to the ice tray to the second water level
  • FIG. It is a flowchart which shows ice making operation
  • the dimensional relationship and shape of each component may be different from the actual one.
  • the positional relationship (for example, up-down relationship etc.) of each structural member in a specification is a thing when installing a refrigerator in the usable state in principle.
  • the refrigerator-freezer 1 which concerns on Embodiment 1 of this invention has the heat insulation box 90, as shown in FIG.
  • the heat insulation box 90 has a front surface (front) opened and a storage space formed therein.
  • the heat insulation box 90 has an outer box, an inner box, and a heat insulating material.
  • the outer box is made of steel.
  • the inner box is made of resin.
  • the inner box is arranged inside the outer box.
  • the heat insulating material is, for example, urethane foam and is filled in a space between the outer box and the inner box.
  • the storage space formed inside the heat insulation box 90 is partitioned into a plurality of storage chambers for storing and storing food by one or a plurality of partition members.
  • the refrigerator-freezer 1 includes, for example, a refrigerator room 100, a switching room 200, an ice making room 300, a freezer room 400, and a vegetable room 500 as a plurality of storage rooms. These storage chambers are arranged in a four-stage configuration in the vertical direction in the heat insulating box 90.
  • the refrigerator compartment 100 is disposed on the uppermost stage of the heat insulation box 90.
  • the switching chamber 200 is disposed on one side of the left and right below the refrigerator compartment 100.
  • the cold insulation temperature zone of the switching chamber 200 can be switched by selecting one of a plurality of temperature zones.
  • the plurality of temperature zones that can be selected as the cooling temperature zone of the switching chamber 200 are, for example, a refrigeration temperature zone (eg, about ⁇ 18 ° C.), a refrigeration temperature zone (eg, about 3 ° C.), a chilled temperature zone (eg, about 0 ° C.), and the like.
  • Soft freezing temperature range for example, about -7 ° C.
  • the ice making chamber 300 is disposed adjacent to the side of the switching chamber 200 in parallel with the switching chamber 200, that is, on the left and right other sides below the refrigerator compartment 100.
  • the freezing room 400 is disposed below the switching room 200 and the ice making room 300.
  • the freezer compartment 400 is mainly used when the object to be stored is stored frozen for a relatively long period of time.
  • the vegetable room 500 is arranged at the lowermost stage below the freezer room 400.
  • the vegetable room 500 is mainly for storing vegetables and large-sized plastic bottles having a large capacity (for example, 2 L).
  • the opening formed in the front surface of the refrigerator compartment 100 is provided with a rotary refrigerator compartment door 7 that opens and closes the opening.
  • the refrigerator compartment door 7 is a double door type (double door type), and is constituted by a right door 7a and a left door 7b.
  • An operation panel 6 is provided on the outer surface of the refrigerator compartment door 7 (for example, the left door 7b) on the front surface of the refrigerator 1.
  • the operation panel 6 includes an operation unit 6a and a display unit 6b as shown in FIG.
  • the operation unit 6a is an operation switch for setting the cold temperature of each storage room and the operation mode (such as the thawing mode) of the refrigerator-freezer 1.
  • the display unit 6b is a liquid crystal display that displays various types of information such as the temperature of each storage room.
  • the operation panel 6 may include a touch panel that serves as both the operation unit 6a and the display unit 6b.
  • Each storage room (the switching room 200, the ice making room 300, the freezing room 400, and the vegetable room 500) other than the refrigerator room 100 is opened and closed by a drawer door.
  • These drawer-type doors slide in a depth direction (front-rear direction) of the refrigerator-freezer 1 by sliding a frame fixed to the door with respect to rails formed horizontally on the left and right inner wall surfaces of each storage chamber. ) Can be opened and closed.
  • freezer compartment storage cases 401 that can store foods and the like are housed in a freely retractable manner.
  • a vegetable compartment storage case 501 capable of storing food and the like is stored in a freely retractable manner.
  • the refrigerator-freezer 1 includes a refrigeration cycle circuit that cools the air supplied to each storage room.
  • the refrigeration cycle circuit includes a compressor 2, a condenser (not shown), a throttling device (not shown), a cooler 3, and the like.
  • the compressor 2 compresses and discharges the refrigerant in the refrigeration cycle circuit.
  • the condenser condenses the refrigerant discharged from the compressor 2.
  • the expansion device expands the refrigerant that has flowed out of the condenser.
  • the cooler 3 cools the air supplied to each storage chamber by the refrigerant expanded by the expansion device.
  • the compressor 2 is arrange
  • the freezer 1 is formed with an air passage 5 for supplying the air cooled by the refrigeration cycle circuit to each storage room.
  • This air passage 5 is mainly arranged on the back side in the refrigerator 1.
  • the cooler 3 of the refrigeration cycle circuit is installed in the air path 5. Further, a blower fan 4 for sending the air cooled by the cooler 3 to each storage chamber is also installed in the air passage 5.
  • the air (cold air) cooled by the cooler 3 is sent to the freezing room 400, the switching room 200, the ice making room 300, and the refrigerating room 100 through the air path 5, and these storage rooms are passed through. Cooling.
  • the vegetable room 500 is cooled by introducing the return cold air from the refrigerating room 100 into the vegetable room 500 through the return air passage for the refrigerating room.
  • the cold air that has cooled the vegetable compartment 500 is returned to the air passage 5 with the cooler 3 through the vegetable compartment return air passage (these return air passages are not shown). And it cools again by the cooler 3, and cold air is circulated through the refrigerator-freezer 1.
  • a damper (not shown) is provided in the middle of the air passage 5 leading to each storage room.
  • Each damper opens and closes a portion of the air passage 5 that leads to each storage chamber.
  • the amount of cool air supplied to each storage chamber can be adjusted.
  • the temperature of the cool air can be adjusted by controlling the operation of the compressor 2.
  • the refrigeration cycle circuit including the compressor 2 and the cooler 3, the blower fan 4, the air path 5, and the damper provided as described above constitute a cooling unit that cools the inside of each storage chamber including the ice making chamber 300. ing.
  • a control device 8 is accommodated in the upper part of the freezer 1 for example on the back side.
  • the control device 8 is provided with a control circuit and the like for performing various controls necessary for the operation of the refrigerator-freezer 1.
  • a control circuit with which the control apparatus 8 is provided for example, a circuit for controlling the operation of the compressor 2 and the blower fan 4 and the opening degree of the damper based on the temperature in each storage chamber and information input to the operation panel 6 or the like. Can be mentioned. That is, the control device 8 controls the operation of the refrigerator-freezer 1 by controlling the cooling means described above.
  • the temperature in each storage chamber can be detected by a thermistor or the like installed in each storage chamber.
  • FIG. 3 is a cross-sectional view of the ice making chamber 300 portion of the refrigerator-freezer 1 according to the first embodiment.
  • An ice making room door 9 is provided in front of the ice making room 300.
  • An ice storage case 10 and an ice tray 11 are accommodated in the ice making chamber 300.
  • the ice storage case 10 is supported by a frame (not shown) of the ice making chamber door 9.
  • the ice storage case 10 is disposed below the ice tray 11.
  • the ice storage case 10 receives the ice removed from the ice tray 11 and stores the ice.
  • a water supply tank 12 and a water supply pump 13 are provided inside the refrigerator compartment 100.
  • the water supply pipe 14 is provided so that the refrigerator compartment 100 and the ice making room 300 may be connected.
  • the water supply tank 12 and the water supply pump 13 are arrange
  • One end of the water supply pipe 14 is connected to the water supply pump 13.
  • the other end of the water supply pipe 14 is disposed above the ice tray 11 in the ice making chamber 300.
  • the water supply tank 12 water for ice making is stored.
  • the water supply pump 13 is for pumping up water in the water supply tank 12.
  • the water pumped up by the water supply pump 13 is supplied to the ice tray 11 through the water supply pipe 14.
  • the water supply tank 12, the water supply pump 13, and the water supply pipe 14 comprise the water supply apparatus which supplies water to each inside of the several ice-making block 20 (FIG. 4, 5) mentioned later of the ice tray 11. is doing.
  • a cold air outlet 15 is formed on the back surface of the ice making chamber 300. From the cold air outlet 15, the cold air blows out into the ice making chamber 300 through the air passage 5 of the cooling means described above. The cold air blown out from the cold air outlet 15 into the ice making chamber 300 cools the water in the ice tray 11.
  • the cooling means and the cold air outlet 15 constitute a cooling device that cools water inside an ice making block 20 (FIGS. 4 and 5) described later of the ice tray 11 to make ice. Yes.
  • a rotating device 16 In the ice making chamber 300, a rotating device 16, an ice detecting lever 17 and a temperature sensor 18 are provided.
  • the ice tray 11 is rotatably supported in the ice making chamber 300 so as to be turned upside down.
  • the rotating device 16 can rotate the ice tray 11 to reverse the top and bottom of the ice tray 11.
  • the ice detection lever 17 is for detecting the amount of ice in the ice storage case 10.
  • the height of the ice in the ice storage case 10 can be detected by lowering the ice detecting lever 17 until it contacts the ice in the ice storage case 10.
  • the temperature sensor 18 is disposed above the ice tray 11 in the ice making chamber 300.
  • the temperature sensor 18 detects the temperature of water in the ice tray 11.
  • the ice tray 11 is a molded product made of a synthetic resin material such as polypropylene.
  • the ice tray 11 can be bent.
  • the ice tray 11 has an outer shape that is rectangular in a plan view with an upper surface opened.
  • the ice tray 11 has a plurality of ice making blocks 20.
  • the plurality of ice making blocks 20 are formed by the inside of the ice tray 11 being partitioned into a plurality by the first partition wall 19.
  • Each of the ice making blocks 20 is concave.
  • the first partition wall 19 has a first height from the bottom surface of the ice tray 11. Here, the first height is the same height as the outer edge wall of the ice tray 11.
  • a plurality of ice making cells 22 are formed inside each ice making block 20.
  • the ice making cell 22 is formed by dividing the ice making block 20 into a plurality of parts by the second partition wall 21. That is, the second partition wall 21 is provided inside the ice making block 20.
  • Each of the ice making cells 22 is concave.
  • the second partition wall 21 has a second height from the bottom surface of the ice tray 11. The second height is lower than the first height.
  • the internal volume of the ice making block 20 is larger than the internal volume of the ice making cell 22.
  • the inner surface of the ice making block 20, that is, the surfaces of the first partition wall 19 and the second partition wall 21 are formed smoothly so that the ice is easily peeled off.
  • a total of six ice making blocks 20 arranged in two rows and three stages are provided on the ice tray 11.
  • the arrangement, number, shape, and the like of the ice making blocks 20 are not limited to this example.
  • a total of four ice making cells 22 arranged in two rows and two stages are provided in one ice making block 20.
  • the arrangement, number, shape, etc. of the ice making cells 22 are not limited to this example.
  • a groove portion 23 is formed in the first partition wall 19.
  • the insides of the ice making blocks 20 that are adjacent to each other through the first partition wall 19 communicate with each other through a groove portion 23 formed in the first partition wall 19.
  • a cutout 24 is formed in the second partition wall 21.
  • the insides of the ice making cells 22 adjacent to each other via the second partition wall 21 communicate with each other through a notch 24 formed in the second partition wall 21.
  • the ice tray 11 is supplied with water from the water supply pipe 14 of the water supply device. Therefore, first, water enters the ice making block 20 immediately below the water supply pipe 14. When the water supply from the water supply pipe 14 is continued, water spreads from the ice making block 20 immediately below the water supply pipe 14 to the adjacent ice making block 20 through the groove 23. Finally, the water from the water supply pipe 14 reaches all the ice making blocks 20 through the groove 23.
  • the groove portions 23 are formed in all the first partition walls 19. However, if all the ice making blocks 20 communicate directly or indirectly with the ice making block 20 directly below the water supply pipe 14, the position of the groove 23 on the first partition wall 19 is determined by this. It is not limited.
  • all the ice making cells 22 communicate directly or indirectly with the ice making cells 22 immediately below the water supply pipe 14 via the groove 23 or the notch 24.
  • the notch portion 24 is arranged in the second partition wall 21 is not limited to this.
  • the height from the bottom surface of the ice tray 11 to the lowermost portion of the groove 23 is lower than the second height.
  • the height from the bottom surface of the ice tray 11 to the lowermost portion of the groove 23 is the same as the height from the bottom surface of the ice tray 11 to the lowermost portion of the notch 24.
  • the ice tray 11 may be supported with an inclination so that the side near the water supply pipe 14 is high and the side far from the water supply pipe 14 is low. By doing in this way, water can make it easy to spread from the ice making block 20 or the ice making cell 22 directly under the water supply pipe 14 to the other ice making block 20 or the ice making cell 22.
  • the ice tray 11 includes a rotating device mounting portion 25 and a stopper portion 26.
  • the rotating device mounting portion 25 is provided on one end side of the ice tray 11 in the longitudinal direction, for example.
  • the rotating device 16 is attached to the rotating device mounting portion 25.
  • the ice tray 11 is supported by the rotating device 16 through the rotating device mounting portion 25 so as to be rotatable in both directions.
  • the rotation device 16 includes a rotation drive mechanism including a motor, a gear, and the like (not shown). The rotation device 16 rotates the ice tray 11 in both directions around the rotation axis X shown in FIG.
  • the stopper portion 26 is provided on one side of the ice tray 11 opposite to the rotating device mounting portion 25.
  • the stopper part 26 is a flat member.
  • the stopper portion 26 protrudes laterally from the ice tray 11.
  • the ice tray 11 is supported with the opening side facing upward.
  • the stopper portion 26 comes into contact with a member fixed inside the ice making chamber 300 when the rotation angle becomes a predetermined constant angle.
  • the stopper portion 26 comes into contact with this member, further rotation of the ice tray 11 on the stopper portion 26 side is prevented.
  • the rotation device 16 further rotates the ice tray 11 in this state, only the rotation device mounting portion 25 side of the ice tray 11 rotates, and the ice tray 11 is twisted and deformed.
  • the ice formed in the ice making block 20 or the ice making cell 22 of the ice making tray 11 receives a force from each direction on the surface of the ice making tray 11 and is peeled off from the surface of the ice making tray 11 to be deiced.
  • FIG. 6 is a block diagram illustrating a functional configuration of a control system of the refrigerator-freezer 1.
  • the control device 8 includes a microcomputer, for example, and includes a processor 8a and a memory 8b.
  • the control device 8 controls the refrigerator-freezer 1 by executing a preset process when the processor 8a executes the program stored in the memory 8b.
  • the control device 8 receives a detection signal of the amount of ice in the ice storage case 10 output from the ice detecting lever 17.
  • the control device 8 also receives a detection signal of the temperature of the water in the ice tray 11 output from the temperature sensor 18.
  • the control device 8 also receives a detection signal of the temperature in each storage chamber output from the thermistor installed in each storage chamber. Further, an operation signal from the operation unit 6 a of the operation panel 6 is also input to the control device 8.
  • the control device 8 controls the operations of the cooling devices such as the compressor 2 and the blower fan 4 so that each storage chamber including the ice making chamber 300 is maintained at a set temperature. Execute the process. In addition, the control device 8 outputs a display signal to the display unit 6 b of the operation panel 6. Further, the control device 8 operates the water supply pump 13 and the rotating device 16 to control the ice making operation. In the control of the ice making operation, the detection signal of the amount of ice in the ice storage case 10 output from the ice detecting lever 17, the detection signal of the temperature of water in the ice tray 11 output from the temperature sensor 18, and the operation unit 6a. The operation signal from is used.
  • the operation panel 6 allows the user to select the ice making size.
  • the operation panel 6 is provided with “L” and “S” buttons as the operation unit 6a.
  • the user operates the “L” button to select the large ice making size.
  • the user operates the “S” button.
  • the control device 8 determines the amount of water supplied to the ice tray 11 according to the ice making size of the button operated by the operation unit 6a. And the control apparatus 8 operates the water supply pump 13 only for the water supply time determined according to the amount of water supply.
  • the water supply time when the large ice making size is selected is ⁇ T1.
  • the water supply time when the small ice making size is selected is ⁇ T2.
  • ⁇ T2 is shorter than ⁇ T1. Specifically, for example, ⁇ T1 is 12 seconds and ⁇ T2 is 6 seconds.
  • FIG. 7 shows the water level supplied to the ice tray 11 when the large ice making size is selected.
  • the control device 8 operates the water supply pump 13 by ⁇ T1.
  • water enters the ice tray 11 up to a preset first water level.
  • the first water level is lower than the first height and higher than the second height.
  • the ice tray 11 is supplied with water up to a height exceeding the second partition wall 21 and less than the first partition wall 19.
  • Figure 8 shows the ice that can be produced when ice is made at this first water level.
  • the ice completed in the ice tray 11 is in a state where the ice of each ice making block 20 is connected by the ice formed by freezing the water in the groove 23.
  • the ice is divided into individual ices for each ice making block 20, and each ice has a shape as shown in FIG.
  • FIG. 9 shows the water level supplied to the ice tray 11 when the small ice making size is selected.
  • the control device 8 operates the water supply pump 13 by ⁇ T2.
  • water supply pump 13 When the water supply pump 13 is operated by ⁇ T2, water enters the ice tray 11 to a preset second water level.
  • the second water level is lower than the second height. That is, water is supplied to the ice tray 11 to a height less than the second partition wall 21.
  • the height from the bottom surface of the ice tray 11 to the bottom of the groove 23 and the height from the bottom surface of the ice tray 11 to the bottom of the notch 24 are the same height. For this reason, when water is supplied to the second water level, the water passes through both the groove portion 23 and the notch portion 24, and the water can be distributed to all the ice making cells 22.
  • FIG. 10 shows the ice that can be produced when ice is made at this second water level.
  • the ice completed in the ice tray 11 is in a state in which the ice in each ice making block 20 is connected by ice formed by freezing water in the groove 23 and the notch 24.
  • the ice is divided into individual ices for each ice making cell 22 due to the stress generated at the time of deicing, and each ice has a shape as shown in FIG.
  • the individual ice for each ice making cell 22 is smaller than the individual ice for each ice making block 20.
  • the water supply apparatus including the water supply tank 12, the water supply pump 13, and the water supply pipe 14 selects the water level supplied to the inside of the ice making block 20 from at least two types of water levels, the first water level and the second water level. Is possible.
  • the first water level is lower than the first height and higher than the second height.
  • the second water level is lower than the second height.
  • the control device 8 determines that ice making is completed when the temperature of the water in the ice tray 11 detected by the temperature sensor 18 is equal to or lower than a preset reference temperature.
  • This reference temperature is specifically set to, for example, -6 ° C.
  • the control device 8 operates the ice detecting lever 17 to detect the amount of ice in the ice storage case 10. .
  • the control device 8 rotates the ice tray 11 by the rotation device 16. At this time, by rotating the ice tray 11 so as to be twisted, the ice tray 11 is temporarily deformed to promote ice removal from the ice tray 11.
  • the full ice amount is set in advance so that the height of ice in the ice storage case 10 is lower than the lowest position of the rotation trajectory of the ice tray 11.
  • the water supply device may be able to select whether to supply water to the first water level or to the second water level for each of the plurality of ice making blocks 20. By doing in this way, large and small ices of different sizes can be made simultaneously with one ice making.
  • step S101 When the user operates the operation unit 6a to select the ice making size, the control device 8 starts the ice making operation.
  • the control device 8 sets the operation time ⁇ T of the feed water pump 13 to ⁇ T1 in step S101.
  • the control device 8 sets the operation time ⁇ T of the water supply pump 13 to ⁇ T2 in step S102. Regardless of whether step S101 or step S102 is executed, the process proceeds to step S103.
  • step S103 the control device 8 starts the operation of the water supply pump 13. Therefore, water supply to the ice tray 11 by the water supply device is started. After step S103, the process proceeds to step S104.
  • step S104 the control device 8 resets the timer t for counting the water supply time to 0, and starts measuring time by the timer. After step S104, the process proceeds to step S105.
  • step S105 the control device 8 checks whether or not the timer t has reached ⁇ T set in step S101 or step S102. That is, the control device 8 checks whether or not ⁇ T has elapsed since the start of water supply in step S103. If ⁇ T has not elapsed since the start of water supply, the confirmation in step S105 is repeated until ⁇ T has elapsed. If ⁇ T has elapsed since the start of water supply, the process proceeds to step S106.
  • step S106 the control device 8 stops the operation of the water supply pump 13. Accordingly, water supply to the ice tray 11 by the water supply device is stopped. After step S106, the process proceeds to step S107.
  • step S107 the control device 8 checks whether or not the temperature ⁇ of the water in the ice tray 11 detected by the temperature sensor 18 is equal to or lower than a preset reference temperature ⁇ 1. If the temperature ⁇ of the water in the ice tray 11 is not equal to or lower than the reference temperature ⁇ 1, the confirmation in step S107 is repeated until the temperature ⁇ becomes equal to or lower than the reference temperature ⁇ 1. When the temperature ⁇ of the water in the ice tray 11 becomes equal to or lower than the reference temperature ⁇ 1, the process proceeds to step S108.
  • step S108 the control device 8 starts the operation of the rotating device 16.
  • the rotation direction of the rotation device 16 is a preset positive direction. Therefore, rotation of the ice tray 11 in the positive direction by the rotating device 16 is started.
  • step S109 the process proceeds to step S109.
  • step S109 the control device 8 resets the timer t, which counts the rotation time, to 0, and starts measuring time using the timer. After step S109, the process proceeds to step S110.
  • step S110 the control device 8 confirms whether or not the timer t has reached a preset rotation drive time tr.
  • the rotational drive time tr is specifically set to 5 seconds, for example. That is, the control device 8 confirms whether or not the rotational drive time tr has elapsed since the start of rotation in step S109. If the rotation drive time tr has not elapsed since the start of rotation, the confirmation in step S110 is repeated until the rotation drive time tr elapses. When the rotation drive time tr has elapsed since the start of rotation, the process proceeds to step S111.
  • step S111 the control device 8 rotates the rotating device 16 in the reverse direction.
  • This reverse direction is a direction opposite to the forward direction described above. Therefore, rotation of the ice tray 11 in the reverse direction by the rotating device 16 is started.
  • step S111 the process proceeds to step S112.
  • step S112 the control device 8 resets the timer t for counting the rotation time to 0, and starts measuring time by the timer. After step S112, the process proceeds to step S113.
  • step S113 the control device 8 confirms whether or not the timer t has reached a preset rotation drive time tr.
  • This rotational drive time tr has the same value as the rotational drive time tr in step S110. That is, the control device 8 checks whether or not the rotation drive time tr has elapsed since the start of reverse rotation in step S111. If the rotational drive time tr has not elapsed since the start of reverse rotation, the confirmation in step S113 is repeated until the rotational drive time tr has elapsed. Then, when the rotational drive time tr has elapsed since the start of reverse rotation, the process proceeds to step S114.
  • step S114 since the ice tray 11 has returned to the original position, the control device 8 stops the rotation of the rotating device 16. After step S114, the process proceeds to step S115.
  • step S115 the control device 8 operates the ice detection lever 17 to detect the amount of ice in the ice storage case 10. Then, the control device 8 confirms whether or not the amount of ice in the ice storage case 10 detected by the ice detection lever 17 has reached the above-mentioned full ice amount. When the amount of ice in the ice storage case 10 is the full ice amount, the confirmation in this step S115 is repeated until the ice in the ice storage case 10 is taken out and is not full. On the other hand, when the amount of ice in the ice storage case 10 is not the full ice amount, the process returns to step S103 to continue ice making.
  • the automatic ice maker configured as described above and the refrigerator-freezer 1 equipped with the automatic ice maker can make ice of different sizes with one ice tray 11. Further, not only large-size ice but also small-size ice can be shaped like a cube. For this reason, even a small size ice can reduce the specific surface area, and it is possible to make ice that does not melt easily even if it is small. Further, when the small ice making size is selected, a larger number of ice pieces than can be obtained by one ice making can be obtained by one ice making when the large ice making size is selected. Therefore, efficient ice making can be performed when a large amount of fine ice is desired.
  • FIG. FIGS. 12 to 14 relate to Embodiment 2 of the present invention
  • FIG. 12 is a cross-sectional view corresponding to FIG. 5 showing an example of an ice tray
  • FIG. 13 is a block diagram showing a configuration of a control system of a refrigerator
  • FIG. 14 is a sectional view corresponding to FIG. 5 showing another example of the ice tray.
  • Embodiment 2 described here is a configuration in which, in the configuration of Embodiment 1 described above, a heating device that heats the ice making tray in which ice is generated is provided inside the ice making block of the ice making tray.
  • a heating device that heats the ice making tray in which ice is generated is provided inside the ice making block of the ice making tray.
  • a heater 27 is attached to the ice tray 11 of the refrigerator 1.
  • the heater 27 is provided in contact with the outer surface of the ice tray 11.
  • the heater 27 is disposed outside the side wall of each ice making block 20 and at a position near the bottom of the ice making tray 11.
  • the heater 27 has an elliptical cross section. The heater 27 can heat the ice tray 11 from the outside of the ice tray 11.
  • the control device 8 also controls the operation of the heater 27.
  • the water supply device up to the first water level or the second water level
  • the water inside the ice making block 20 is cooled by the cooling device described above.
  • the control device 8 determines that the ice making is completed when the temperature of the water in the ice tray 11 detected by the temperature sensor 18 is equal to or lower than the reference temperature described above.
  • the control device 8 starts the operation of the heater 27.
  • the heater 27 operates for a predetermined time period to heat the ice tray 11. That is, the heater 27 is a heating device that heats the ice tray 11 in which ice is generated inside the ice making block 20.
  • the heater 27 heats the ice tray 11, the contact surface of the ice with the ice tray 11 is heated by the heated ice tray 11. And by this heating, the contact surface of the ice making block 20 with the ice making tray 11 can be melted.
  • the control device 8 rotates the ice tray 11 by the rotating device 16. That is, in the second embodiment, the rotating device 16 rotates the ice tray 11 whose ice surface has been melted by the heating of the heater 27, which is a heating device, to release the ice. At this time, by rotating the ice tray 11 so as to be twisted, the ice tray 11 can be temporarily deformed, and ice removal from the ice tray 11 can be promoted.
  • Other configurations and operations are the same as those in the first embodiment, and a description thereof is omitted here.
  • the automatic ice maker configured as described above and the refrigerator-freezer 1 including the same can also achieve the same effects as those of the first embodiment. Further, by heating the ice tray 11 with the heater 27 and melting the surface of the ice in the ice tray 11 before the ice tray 11 is rotated after the ice making is completed, the ice making size can be large or small. The generated ice can be reliably deiced from the ice tray 11.
  • the ice making block 20 and the ice making cells 22 having a small stress acting on the ice depending on the position in the ice making pan 11 only by twisting the ice making plate 11 and temporarily deforming it. 22 may exist.
  • the ice making block 20 and the ice making cell 22 having a small stress acting on the ice may not be able to be deiced well.
  • the ice making block 20 and the ice making cell 22 having a small stress acting on the ice can be reliably deiced.
  • a thin sheet heater 27 may be disposed so as to cover the bottom surface portion of the ice tray 11 from the outside.
  • FIG. 15 to 17 relate to Embodiment 3 of the present invention.
  • FIG. 15 is an enlarged cross-sectional view of the ice making chamber portion of the refrigerator-freezer
  • FIG. 16 is a perspective view of the upper ice storage case of the ice making chamber
  • FIG. It is sectional drawing equivalent to FIG. 5 of a plate.
  • the ice storage case is provided with a separation device that separates ice with a large ice making size and ice with a small ice making size. Large size ice and small ice making size ice can be stored separately.
  • the automatic ice maker and the refrigerator-freezer according to the third embodiment will be described mainly with respect to differences from the first embodiment, taking as an example a case based on the configuration of the first embodiment.
  • the ice storage case 10 includes an upper ice storage case 28.
  • the upper ice storage case 28 is disposed inside the ice storage case 10.
  • the bottom surface 29 of the upper ice storage case 28 is disposed below the ice tray 11 and above the bottom surface of the ice storage case 10.
  • the bottom surface 29 of the upper ice storage case 28 has a lattice shape in which a plurality of openings 30 are formed.
  • Each of the openings 30 has a rectangular shape or a square shape, for example.
  • the opening 30 is rectangular, the length of the long side is set to l.
  • the opening 30 is a square, the length of one side is defined as l.
  • these are collectively referred to as a dimension l of the opening 30.
  • the width of the ice making cell 22 of the ice tray 11 is assumed to be x. That is, the distance from the second partition wall 21 to the first partition wall 19 and the distance from the second partition wall 21 to the outer peripheral wall portion of the ice tray 11 are x.
  • the width x of the ice making cell 22 is the size of ice with a small ice making size.
  • the width of the ice making block 20 of the ice tray 11 is assumed to be y. That is, the distance from the first partition wall 19 to the outer peripheral wall portion of the ice tray 11 is y.
  • the width y of the ice making block 20 is the size of ice having a large ice making size.
  • the dimension l of the opening 30 is adjusted to be larger than the width x of the ice making cell 22 and smaller than the width y of the ice making block 20. Therefore, the small ice making size ice separated from the ice making tray 11 passes through the opening 30 and falls to the ice storage case 10. On the other hand, ice of a large ice making size that has been removed from the ice tray 11 does not pass through the opening 30 and remains in the upper ice storage case 28. Therefore, ice having a small ice making size is stored in the ice storage case 10.
  • the upper ice storage case 28 stores ice of a large ice making size.
  • the upper ice storage case 28 passes the ice generated by supplying water up to the second water level to the inside of the ice making block 20 that is small in ice making size, that is, inside the ice making block 20.
  • a separation device that does not allow the ice generated by supplying water to the first water level to pass therethrough is configured.
  • Other configurations are the same as those in the first or second embodiment, and the description thereof is omitted here.
  • the automatic ice maker configured as described above and the refrigerator-freezer 1 including the automatic ice maker can also achieve the same effects as those of the first or second embodiment.
  • the ice storage case 10 is provided with a sorting device for separating ice with a large ice making size and ice with a small ice making size, so that even if ices of different sizes are made at the same time, the ice making size ice and the ice making size are the same. Small ice can be stored separately. Therefore, the user can use both large and small sizes of ice without selecting with his / her hand, and convenience is improved.
  • the present invention can be used for an automatic ice making machine and a freezer refrigerator that make ice using an ice tray.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

少なくとも大小2種類のサイズの氷を作ることができ、小さい方のサイズであっても同体積の氷と比較して溶けにくい氷を作ることが可能な自動製氷機を提供する。このため、自動製氷機は、第1の高さの第1の区画壁(19)により区画された複数の製氷ブロック(20)を有する製氷皿(11)と、複数の製氷ブロック(20)のそれぞれの内側に水を供給する給水装置と、製氷ブロック(20)の内側の水を冷却して氷にする冷却装置と、を備える。製氷皿(11)は、製氷ブロック(20)の内側に設けられ、当該製氷ブロック(20)を複数に分割し、前記第1の高さより低い第2の高さの第2の区画壁(21)をさらに備える。

Description

自動製氷機及び冷凍冷蔵庫
 この発明は、自動製氷機及び冷凍冷蔵庫に関するものである。
 区画された製氷皿と、この製氷皿に水を給水する給水手段と、製氷完了後に製氷皿を回転させて離氷させる離氷手段と、給水手段から製氷皿への給水量を変化させる給水量可変手段とを備えた自動製氷機が知られている(例えば、特許文献1参照)。
日本特開平11-325682号公報
 特許文献1に示されるような自動製氷機で作ることができる各サイズの氷の形状は角錐台形状になる。そして、各サイズの氷は、下面の寸法が共通であり、高さ寸法が異なるものとなる。このため、小さいサイズの氷の場合、大きいサイズの氷と比較して平たい形状となり、単位体積あたりの表面積すなわち比表面積が大きくなる。したがって、小さいサイズの氷は、大きいサイズの氷に比べて、周囲の空気、水等と接触する面積が広くなり、溶けやすくなってしまう。
 この発明は、このような課題を解決するためになされたものである。その目的は、少なくとも大小2種類のサイズの氷を作ることができ、小さい方のサイズであっても同体積の氷と比較して溶けにくい氷を作ることが可能である自動製氷機及び冷凍冷蔵庫を得ることにある。
 この発明に係る自動製氷機は、第1の高さの第1の区画壁により区画された複数の製氷ブロックを有する製氷皿と、複数の前記製氷ブロックのそれぞれの内側に水を供給する給水装置と、前記製氷ブロックの内側の水を冷却して氷にする冷却装置と、を備え、前記製氷皿は、前記製氷ブロックの内側に設けられ、当該製氷ブロックを複数に分割し、前記第1の高さより低い第2の高さの第2の区画壁をさらに備える。
 また、この発明に係る冷凍冷蔵庫は、上述のように構成された自動製氷機を備える。
 この発明に係る自動製氷機及び冷凍冷蔵庫においては、少なくとも大小2種類のサイズの氷を作ることができ、小さい方のサイズであっても同体積の氷と比較して溶けにくい氷を作ることが可能であるという効果を奏する。
この発明の実施の形態1に係る自動製氷機を備えた冷凍冷蔵庫の正面図である。 この発明の実施の形態1に係る冷凍冷蔵庫の縦断面図である。 この発明の実施の形態1に係る冷凍冷蔵庫の製氷室部分の拡大断面図である。 この発明の実施の形態1に係る製氷室の製氷皿の上面図である。 図4中に示す断面A-Aによる製氷皿の断面図である。 この発明の実施の形態1に係る冷凍冷蔵庫の制御系統の構成を示すブロック図である。 この発明の実施の形態1に係る製氷皿に第1の水位まで給水した状態を示す断面図である。 この発明の実施の形態1に係る製氷皿に第1の水位まで給水した状態で製氷された氷の形状を示す斜視図である。 この発明の実施の形態1に係る製氷皿に第2の水位まで給水した状態を示す断面図である。 この発明の実施の形態1に係る製氷皿に第2の水位まで給水した状態で製氷された氷の形状を示す斜視図である。 この発明の実施の形態1に係る冷凍冷蔵庫の製氷動作を示すフロー図である。 この発明の実施の形態2に係る製氷皿の一例を示す図5相当の断面図である。 この発明の実施の形態2に係る冷凍冷蔵庫の制御系統の構成を示すブロック図である。 この発明の実施の形態2に係る製氷皿の別例を示す図5相当の断面図である。 この発明の実施の形態3に係る冷凍冷蔵庫の製氷室部分の拡大断面図である。 この発明の実施の形態3に係る製氷室の上段貯氷ケースの斜視図である。 この発明の実施の形態3に係る製氷皿の図5に相当する断面図である。
 この発明を実施するための形態について添付の図面を参照しながら説明する。各図において、同一又は相当する部分には同一の符号を付して、重複する説明は適宜に簡略化又は省略する。なお、本発明は以下の実施の形態に限定されることなく、本発明の趣旨を逸脱しない範囲で種々変形することが可能である。
実施の形態1.
 図1から図11は、この発明の実施の形態1に係るもので、図1は自動製氷機を備えた冷凍冷蔵庫の正面図、図2は冷凍冷蔵庫の縦断面図、図3は冷凍冷蔵庫の製氷室部分の拡大断面図、図4は製氷室の製氷皿の上面図、図5は図4中に示す断面A-Aによる製氷皿の断面図、図6は冷凍冷蔵庫の制御系統の構成を示すブロック図、図7は製氷皿に第1の水位まで給水した状態を示す断面図、図8は製氷皿に第1の水位まで給水した状態で製氷された氷の形状を示す斜視図、図9は製氷皿に第2の水位まで給水した状態を示す断面図、図10は製氷皿に第2の水位まで給水した状態で製氷された氷の形状を示す斜視図、図11は冷凍冷蔵庫の製氷動作を示すフロー図である。なお、各図では各構成部材の寸法の関係や形状等が実際のものとは異なる場合がある。また、明細書中における各構成部材同士の位置関係(例えば、上下関係等)は、原則として、冷蔵庫を使用可能な状態に設置したときのものである。
(冷凍冷蔵庫の構成)
 この発明の実施の形態1に係る冷凍冷蔵庫1は、図2に示すように断熱箱体90を有している。断熱箱体90は、前面(正面)が開口されて内部に貯蔵空間が形成されている。断熱箱体90は、外箱、内箱及び断熱材を有している。外箱は鋼鉄製である。内箱は樹脂製である。内箱は外箱の内側に配置される。断熱材は、例えば発泡ウレタン等であり、外箱と内箱との間の空間に充填されている。断熱箱体90の内部に形成された貯蔵空間は、1つ又は複数の仕切り部材により、食品を収納保存する複数の貯蔵室に区画されている。
 図1及び図2に示すように、ここでは、冷凍冷蔵庫1は、複数の貯蔵室として、例えば、冷蔵室100、切替室200、製氷室300、冷凍室400及び野菜室500を備えている。これらの貯蔵室は、断熱箱体90において上下方向に4段構成となって配置されている。
 冷蔵室100は、断熱箱体90の最上段に配置されている。切替室200は冷蔵室100の下方における左右の一側に配置されている。切替室200の保冷温度帯は、複数の温度帯のうちのいずれかを選択して切り替えることができる。切替室200の保冷温度帯として選択可能な複数の温度帯は、例えば、冷凍温度帯(例えば-18℃程度)、冷蔵温度帯(例えば3℃程度)、チルド温度帯(例えば0℃程度)及びソフト冷凍温度帯(例えば-7℃程度)等である。製氷室300は、切替室200の側方に隣接して切替室200と並列に、すなわち、冷蔵室100の下方における左右の他側に配置されている。
 冷凍室400は、切替室200及び製氷室300の下方に配置されている。冷凍室400は、主に貯蔵対象を比較的長期にわたって冷凍保存する際に用いるためのものである。野菜室500は、冷凍室400の下方の最下段に配置されている。野菜室500は、主に野菜や容量の大きな(例えば2L等)の大型ペットボトル等を収納するためのものである。
 冷蔵室100の前面に形成された開口部には、当該開口部を開閉する回転式の冷蔵室扉7が設けられている。ここでは、冷蔵室扉7は両開き式(観音開き式)であり、右扉7a及び左扉7bにより構成されている。冷凍冷蔵庫1の前面の冷蔵室扉7(例えば、左扉7b)の外側表面には、操作パネル6が設けられている。操作パネル6は、図6に示すように操作部6a及び表示部6bを備えている。操作部6aは、各貯蔵室の保冷温度及び冷凍冷蔵庫1の動作モード(解凍モード等)を設定するための操作スイッチである。表示部6bは、各貯蔵室の温度等の各種情報を表示する液晶ディスプレイである。また、操作パネル6は、操作部6aと表示部6bを兼ねるタッチパネルを備えていてもよい。
 冷蔵室100以外の各貯蔵室(切替室200、製氷室300、冷凍室400及び野菜室500)は、それぞれ引き出し式の扉によって開閉される。これらの引き出し式の扉は、扉に固定して設けられたフレームを各貯蔵室の左右の内壁面に水平に形成されたレールに対してスライドさせることにより、冷凍冷蔵庫1の奥行方向(前後方向)に開閉できるようになっている。
 また、冷凍室400の内部には、食品等を内部に収納できる冷凍室収納ケース401がそれぞれ引き出し自在に格納されている。同様に、野菜室500内には、食品等を内部に収納できる野菜室収納ケース501が引き出し自在に格納されている。
(冷却機構)
 冷凍冷蔵庫1は、各貯蔵室へ供給する空気を冷却する冷凍サイクル回路を備えている。冷凍サイクル回路は、圧縮機2、凝縮器(図示せず)、絞り装置(図示せず)及び冷却器3等によって構成されている。圧縮機2は、冷凍サイクル回路内の冷媒を圧縮し吐出する。凝縮器は、圧縮機2から吐出された冷媒を凝縮させる。絞り装置は、凝縮器から流出した冷媒を膨張させる。冷却器3は、絞り装置で膨張した冷媒によって各貯蔵室へ供給する空気を冷却する。圧縮機2は、例えば、冷凍冷蔵庫1の背面側の下部に配置される。
 冷凍冷蔵庫1には、冷凍サイクル回路によって冷却された空気を各貯蔵室へ供給するための風路5が形成されている。この風路5は、主に冷凍冷蔵庫1内の背面側に配置されている。冷凍サイクル回路の冷却器3は、この風路5内に設置される。また、風路5内には、冷却器3で冷却された空気を各貯蔵室へ送るための送風ファン4も設置されている。
 送風ファン4が動作すると、冷却器3で冷却された空気(冷気)が風路5を通って冷凍室400、切替室200、製氷室300及び冷蔵室100へと送られ、これらの貯蔵室内を冷却する。野菜室500は、冷蔵室100からの戻り冷気を冷蔵室用帰還風路を介して野菜室500内に導入することで冷却される。野菜室500を冷却した冷気は、野菜室用帰還風路を通って冷却器3のある風路5内へと戻される(これらの帰還風路は図示せず)。そして、冷却器3によって再度冷却されて、冷凍冷蔵庫1内を冷気が循環される。
 風路5からそれぞれの貯蔵室へと通じる中途の箇所には、図示しないダンパが設けられている。各ダンパは、風路5の各貯蔵室へと通じる箇所を開閉する。ダンパの開閉状態を変化させることで、各貯蔵室へと供給する冷気の送風量を調節することができる。また、冷気の温度は圧縮機2の運転を制御することで調節することができる。
 以上のようにして設けられた圧縮機2及び冷却器3からなる冷凍サイクル回路、送風ファン4、風路5及びダンパは、製氷室300を含む各貯蔵室の内部を冷却する冷却手段を構成している。
 冷凍冷蔵庫1の例えば背面側の上部には、制御装置8が収容されている。制御装置8には、冷凍冷蔵庫1の動作に必要な各種の制御を実施するための制御回路等が備えられている。制御装置8が備える制御回路として、例えば、各貯蔵室内の温度及び操作パネル6に入力された情報等に基づいて圧縮機2及び送風ファン4の動作並びにダンパの開度を制御するための回路が挙げられる。すなわち、制御装置8は前述した冷却手段等を制御して、冷凍冷蔵庫1の動作を制御する。なお、各貯蔵室内の温度は、それぞれの貯蔵室に設置されたサーミスタ等により検知することができる。
(製氷室の構成)
 図3は、実施の形態1に係る冷凍冷蔵庫1の製氷室300部分の断面図である。製氷室300の前面には、製氷室扉9が設けられている。製氷室300の内部には、貯氷ケース10及び製氷皿11が収容されている。貯氷ケース10は、製氷室扉9のフレーム(図示せず)によって支持されている。製氷室扉9を前方へと引き出すと、貯氷ケース10は製氷室扉9及びそのフレームと一体となって前方へと引き出される。貯氷ケース10は、製氷皿11の下方に配置されている。貯氷ケース10は、製氷皿11から離氷された氷を受け、氷を貯めておくものである。
 図2に示すように、冷蔵室100の内部には、給水タンク12及び給水ポンプ13が設けられている。また、冷蔵室100と製氷室300とを連通するようにして、給水パイプ14が設けられている。給水タンク12及び給水ポンプ13は、例えば、冷蔵室100の内部の最下段部に配置されている。給水パイプ14の一端は、給水ポンプ13に接続されている。給水パイプ14の他端は、製氷室300内における製氷皿11の上方に配置されている。
 給水タンク12には、製氷用の水が貯められている。給水ポンプ13は、給水タンク12内の水を汲み上げるためのものである。給水ポンプ13により汲み上げられた水は、給水パイプ14を通って、製氷皿11へと供給される。この実施の形態1において、給水タンク12、給水ポンプ13及び給水パイプ14は、製氷皿11の後述する複数の製氷ブロック20(図4、5)のそれぞれの内側に水を供給する給水装置を構成している。
 製氷室300の背面部には、冷気吹出口15が形成されている。冷気吹出口15からは、前述した冷却手段の風路5を通って冷気が製氷室300の内部へと吹き出す。冷気吹出口15から製氷室300の内部へと吹き出した冷気は、製氷皿11の水を冷却する。この実施の形態1において、前記冷却手段と冷気吹出口15とは、製氷皿11の後述する製氷ブロック20(図4、5)の内側の水を冷却して氷にする冷却装置を構成している。
 製氷室300内には、回転装置16、検氷レバー17及び温度センサ18が備えられている。製氷皿11は、製氷室300内において、上下が反転するように回転可能に支持されている。回転装置16は、製氷皿11を回転させて製氷皿11の上下を反転させることができる。検氷レバー17は、貯氷ケース10内の氷の量を検出するためのものである。貯氷ケース10内の氷に接触するまで検氷レバー17を下げていくことで、貯氷ケース10内の氷の高さを検出することができる。温度センサ18は、製氷室300内における製氷皿11の上方に配置されている。温度センサ18は、製氷皿11内の水の温度を検出する。
(製氷皿の構成)
 次に、図4及び図5を参照しながら、製氷皿11の構成について説明する。製氷皿11は、例えばポリプロピレン等の合成樹脂材質からなる成型品である。製氷皿11は、撓ませることができる。製氷皿11は、上面が開口された平面視で矩形を呈する外形を有している。製氷皿11は、複数の製氷ブロック20を有している。複数の製氷ブロック20は、第1の区画壁19により製氷皿11の内部が複数に区画されることで形成される。製氷ブロック20のそれぞれは凹状である。第1の区画壁19は、製氷皿11の底面から第1の高さである。ここでは、第1の高さは、製氷皿11の外縁壁と同じ高さである。
 製氷ブロック20のそれぞれの内部には、複数の製氷セル22が形成されている。製氷セル22は、第2の区画壁21により製氷ブロック20が複数の分割されることで形成される。すなわち、第2の区画壁21は、製氷ブロック20の内側に設けられている。製氷セル22のそれぞれは凹状である。第2の区画壁21は、製氷皿11の底面から第2の高さである。第2の高さは、前記第1の高さよりも低い。
 製氷ブロック20の内容積は、製氷セル22の内容積よりも大きい。製氷ブロック20の内面、すなわち第1の区画壁19及び第2の区画壁21の表面は、氷が剥がれやすいように滑らかに形成されている。
 なお、図4に示す例では、製氷皿11に2列3段に配置された計6個の製氷ブロック20が設けられている。しかし、製氷ブロック20の配置、数、形状等はこの例に限定されない。また、同例では、1つの製氷ブロック20内に、2列2段に配置された計4個の製氷セル22が設けられている。しかし、製氷ブロック20と同様に製氷セル22の配置、数、形状等についてもこの例に限定されない。
 第1の区画壁19には、溝部23が形成されている。第1の区画壁19を介して隣り合う製氷ブロック20同士の内側は、当該第1の区画壁19に形成された溝部23によって通じている。第2の区画壁21には、切欠部24が形成されている。第2の区画壁21を介して隣り合う製氷セル22同士の内側は、当該第2の区画壁21に形成された切欠部24によって通じている。
 前述したように、製氷皿11へは給水装置の給水パイプ14から給水される。したがって、まず、給水パイプ14の直下にある製氷ブロック20に水が入る。給水パイプ14からの給水が継続されると、給水パイプ14の直下の製氷ブロック20から、隣接する製氷ブロック20へと溝部23を通じて水が行き渡っていく。そして、最終的に、給水パイプ14からの水が溝部23を通じて全ての製氷ブロック20に行き渡るようになっている。図4に示す例では、全ての第1の区画壁19に溝部23が形成されている。しかし、全ての製氷ブロック20が、給水パイプ14の直下にある製氷ブロック20と直接的に、又は間接的に通じていれば、第1の区画壁19のどこに溝部23を配置するかはこれに限定されない。
 また、切欠部24についても同様に、全ての製氷セル22が、給水パイプ14の直下にある製氷セル22と、溝部23又は切欠部24を介して直接的に、又は間接的に通じていれば、第2の区画壁21のどこに切欠部24を配置するかはこれに限定されない。なお、特に図5に示すように、製氷皿11の底面から溝部23の最下部までの高さは、前記第2の高さよりも低くなっている。さらに言えば、製氷皿11の底面から溝部23の最下部までの高さは、製氷皿11の底面から切欠部24の最下部までの高さと同じである。このようにすることで、第1の区画壁19を介して隣り合う製氷セル22同士でも水が行き来できる。
 なお、製氷皿11を、給水パイプ14に近い側が高く、給水パイプ14に遠い側が低くなるように傾斜をつけて支持してもよい。このようにすることで、給水パイプ14の直下の製氷ブロック20又は製氷セル22から、他の製氷ブロック20又は製氷セル22へと水が行き渡りやすくすることができる。
 製氷皿11は、回転装置取付部25及びストッパー部26を備えている。回転装置取付部25は、製氷皿11の例えば長手方向の一端側に設けられる。回転装置取付部25には、回転装置16が取り付けられる。製氷皿11は、この回転装置取付部25を介して回転装置16によって両方向に回転可能に支持されている。回転装置16は、図示しないモータ、ギヤ等からなる回転駆動機構を備えている。回転装置16は、回転装置取付部25を介して図4に示す回転軸Xを中心に製氷皿11を両方向に回転させる。
 ストッパー部26は、製氷皿11における回転装置取付部25とは反対側の一側部に設けられる。ストッパー部26は、平板状の部材である。ストッパー部26は、製氷皿11から側方に突出している。
 通常時において、製氷皿11は、開口側を上方に向けた状態で支持されている。この状態から回転装置16が製氷皿11を回転させると、回転角が予め設定された一定角度になったところで、ストッパー部26が製氷室300の内部に固定された部材に接触する。ストッパー部26がこの部材に接触すると、製氷皿11のストッパー部26側は、これ以上の回転が妨げられる。この状態で回転装置16が製氷皿11をさらに回転させると、製氷皿11の回転装置取付部25側だけが回転し、製氷皿11は捻られて変形する。すると、製氷皿11の製氷ブロック20内又は製氷セル22内にできた氷は、製氷皿11の表面の各方向から力を受け、製氷皿11の表面から剥がされて離氷される。
(冷蔵庫の制御系統)
 図6は、冷凍冷蔵庫1の制御系統の機能的な構成を示すブロック図である。この図6には、特に製氷室300の制御に関係する部分が示されている。制御装置8は、例えばマイクロコンピュータを備えており、プロセッサ8a及びメモリ8bを備えている。制御装置8は、メモリ8bに記憶されたプログラムをプロセッサ8aが実行することにより、予め設定された処理を実行し、冷凍冷蔵庫1を制御する。
 制御装置8には、検氷レバー17から出力された貯氷ケース10内の氷の量の検出信号が入力される。また、制御装置8には、温度センサ18から出力された製氷皿11内の水の温度の検出信号も入力される。また、図6には図示していないが、制御装置8には、各貯蔵室に設置されたサーミスタから出力された各貯蔵室内の温度の検出信号も入力される。さらに、制御装置8には、操作パネル6の操作部6aからの操作信号も入力される。
 制御装置8は、入力された信号に基づいて、製氷室300を含む各貯蔵室内が設定された温度に維持されるように、圧縮機2及び送風ファン4等の前記冷却装置の動作を制御する処理を実行する。また、制御装置8は、操作パネル6の表示部6bに表示信号を出力する。さらに、制御装置8は、給水ポンプ13と回転装置16を動作させ、製氷動作の制御を行う。この製氷動作の制御においては、検氷レバー17から出力された貯氷ケース10内の氷の量の検出信号、温度センサ18から出力された製氷皿11内の水の温度の検出信号及び操作部6aからの操作信号が用いられる。
(製氷動作の制御)
 次に、制御装置8による製氷動作の制御について説明する。操作パネル6は、使用者が製氷サイズを選択できるようになっている。例えば、操作パネル6には、操作部6aとして「L」及び「S」のボタンが設けられている。使用者は、製氷サイズ大を選択するときは「L」のボタンを操作する。一方、製氷サイズ小を選択するときは使用者は「S」のボタンを操作する。
 制御装置8は、操作部6aで操作されたボタンの製氷サイズに応じて、製氷皿11への給水量を決定する。そして、制御装置8は、給水量に応じて決定される給水時間だけ、給水ポンプ13を動作させる。ここでは、製氷サイズ大が選択された場合の給水時間をΔT1とする。製氷サイズ小が選択された場合の給水時間をΔT2とする。ΔT2は、ΔT1よりも短い。具体的に例えば、ΔT1を12秒とし、ΔT2を6秒とする。
 図7は、製氷サイズ大が選択された場合に製氷皿11に給水される水位を示している。製氷サイズ大が選択された場合、制御装置8は、給水ポンプ13をΔT1だけ動作させる。給水ポンプ13をΔT1だけ動作させると、製氷皿11には予め設定された第1の水位まで水が入る。この第1の水位は、前記第1の高さより低く前記第2の高さより高い。すなわち、製氷皿11には、第2の区画壁21を超え、第1の区画壁19未満の高さまで給水される。
 この第1の水位で製氷された場合にできる氷を図8に示す。製氷皿11で完成した氷は、溝部23内の水が凍結してできた氷によって、それぞれの製氷ブロック20の氷が連結された状態である。しかし、離氷時に発生する応力により、製氷ブロック20毎の個々の氷に分割され、個々の氷は図8に示すような形状となる。
 図9は、製氷サイズ小が選択された場合に製氷皿11に給水される水位を示している。製氷サイズ小が選択された場合、制御装置8は、給水ポンプ13をΔT2だけ動作させる。給水ポンプ13をΔT2だけ動作させると、製氷皿11には予め設定された第2の水位まで水が入る。この第2の水位は、前記第2の高さより低い。すなわち、製氷皿11には、第2の区画壁21未満の高さまで給水される。
 前述したように、製氷皿11の底面から溝部23の最下部までの高さと、製氷皿11の底面から切欠部24の最下部までの高さとは同じ高さである。このため、第2の水位まで給水するときに、溝部23と切欠部24の両方を水が通り、全ての製氷セル22に水を行き渡らせることができる。
 この第2の水位で製氷された場合にできる氷を図10に示す。製氷皿11で完成した氷は、溝部23及び切欠部24内の水が凍結してできた氷によって、それぞれの製氷ブロック20の氷が連結された状態である。しかし、第1の水位の場合と同じく、離氷時に発生する応力により、製氷セル22毎の個々の氷に分割され、個々の氷は例えば図10に示すような形状となる。製氷セル22毎の個々の氷は、製氷ブロック20毎の個々の氷よりも小さい。
 このようにして、給水タンク12、給水ポンプ13及び給水パイプ14からなる給水装置は、製氷ブロック20の内側に給水する水位を、第1の水位と第2の水位の少なくとも2種類の水位から選択可能である。第1の水位は、前記第1の高さより低く前記第2の高さより高い。第2の水位は、前記第2の高さより低い。
 給水装置により製氷ブロック20の内側に給水した後、製氷ブロック20の内側の水は前述の冷却装置により冷却される。制御装置8は、温度センサ18が検知した製氷皿11内の水の温度が予め設定された基準温度以下になると、製氷が完了したと判定する。この基準温度は、具体的に例えば-6℃に設定される。制御装置8は、温度センサ18により製氷皿11内の水の温度が基準温度以下になったことが検知されると、検氷レバー17を動作させて貯氷ケース10内の氷の量を検出する。
 そして、貯氷ケース10内の氷の量が満氷量に達していない場合には、制御装置8は、回転装置16により製氷皿11を回転させる。この際、製氷皿11を捻るように回転させることで、製氷皿11を一時的に変形させて、製氷皿11からの離氷を促す。満氷量は、貯氷ケース10内の氷の高さが製氷皿11の回転軌跡の最低位置よりも低い位置になるように、予め設定される。
 なお、給水装置は、複数の製氷ブロック20毎に、前記第1の水位まで給水するか、前記第2の水位まで給水するかを選択可能としてもよい。このようにすることで、サイズの異なる大小の氷を1回の製氷で同時に作ることができる。
 次に、図11のフロー図を参照しながら、以上のように構成された自動製氷機を備えた冷凍冷蔵庫1における、制御装置8による製氷動作制御の流れの一例を説明する。使用者が操作部6aを操作して製氷サイズが選択されたら、制御装置8は、製氷動作を開始させる。操作部6aの操作により製氷サイズL(大)が選択された場合、ステップS101で、制御装置8は、給水ポンプ13の動作時間ΔTをΔT1に設定する。一方、操作部6aの操作により製氷サイズS(小)が選択された場合、ステップS102で、制御装置8は、給水ポンプ13の動作時間ΔTをΔT2に設定する。ステップS101及びステップS102いずれが実行された場合であっても、処理はステップS103へと進む。
 ステップS103においては、制御装置8は、給水ポンプ13の動作を開始させる。したがって、給水装置による製氷皿11への給水が開始される。ステップS103の後、処理はステップS104へと進む。
 ステップS104においては、制御装置8は、給水時間をカウントするタイマーtを0にリセットして、タイマーによる計時を開始する。ステップS104の後、処理はステップS105へと進む。
 ステップS105においては、制御装置8は、タイマーtがステップS101又はステップS102で設定したΔTに達したか否かを確認する。すなわち、制御装置8は、ステップS103で給水を開始してからΔTが経過したか否かを確認する。給水を開始してからΔTが経過していない場合は、ΔTが経過するまで、このステップS105の確認を繰り返す。そして、給水を開始してからΔTが経過したら、処理はステップS106へと進む。
 ステップS106においては、制御装置8は、給水ポンプ13の動作を停止させる。したがって、給水装置による製氷皿11への給水が停止される。ステップS106の後、処理はステップS107へと進む。
 ステップS107においては、制御装置8は、温度センサ18が検知した製氷皿11内の水の温度θが予め設定された基準温度θ1以下となったか否かを確認する。製氷皿11内の水の温度θが基準温度θ1以下でない場合は、基準温度θ1以下になるまで、このステップS107の確認を繰り返す。そして、製氷皿11内の水の温度θが基準温度θ1以下になれば、処理はステップS108へと進む。
 ステップS108においては、制御装置8は、回転装置16の動作を開始させる。この際の回転装置16の回転方向は、予め設定された正方向である。したがって、回転装置16による製氷皿11の正方向への回転が開始される。ステップS108の後、処理はステップS109へと進む。
 ステップS109においては、制御装置8は、回転時間をカウントするタイマーtを0にリセットして、タイマーによる計時を開始する。ステップS109の後、処理はステップS110へと進む。
 ステップS110においては、制御装置8は、タイマーtが予め設定された回転駆動時間trに達したか否かを確認する。回転駆動時間trは、具体的に例えば5秒に設定される。すなわち、制御装置8は、ステップS109で回転を開始してから回転駆動時間trが経過したか否かを確認する。回転を開始してから回転駆動時間trが経過していない場合は、回転駆動時間trが経過するまで、このステップS110の確認を繰り返す。そして、回転を開始してから回転駆動時間trが経過したら、処理はステップS111へと進む。
 ステップS111においては、制御装置8は、回転装置16を逆方向に回転させる。この逆方向とは、前述した正方向と反対の方向である。したがって、回転装置16による製氷皿11の逆方向への回転が開始される。ステップS111の後、処理はステップS112へと進む。
 ステップS112においては、制御装置8は、回転時間をカウントするタイマーtを0にリセットして、タイマーによる計時を開始する。ステップS112の後、処理はステップS113へと進む。
 ステップS113においては、制御装置8は、タイマーtが予め設定された回転駆動時間trに達したか否かを確認する。この回転駆動時間trは、ステップS110の回転駆動時間trと同値である。すなわち、制御装置8は、ステップS111で逆回転を開始してから回転駆動時間trが経過したか否かを確認する。逆回転を開始してから回転駆動時間trが経過していない場合は、回転駆動時間trが経過するまで、このステップS113の確認を繰り返す。そして、逆回転を開始してから回転駆動時間trが経過したら、処理はステップS114へと進む。
 ステップS114においては、製氷皿11が元の位置まで戻ってきたので、制御装置8は、回転装置16の回転を停止させる。ステップS114の後、処理はステップS115へと進む。
 ステップS115においては、制御装置8は、検氷レバー17を動作させて貯氷ケース10内の氷の量を検出する。そして、制御装置8は、検氷レバー17により検出された貯氷ケース10内の氷の量が、前述した満氷量に達したか否かを確認する。貯氷ケース10内の氷の量が満氷量である場合は、貯氷ケース10内の氷が取り出されて満氷でなくなるまで、このステップS115の確認を繰り返す。一方、貯氷ケース10内の氷の量が満氷量でない場合、処理はステップS103へと戻り製氷を続ける。
 以上のように構成された自動製氷機及びこれを備えた冷凍冷蔵庫1は、サイズの異なる氷を1つの製氷皿11で製氷することができる。また、大きいサイズの氷のみならず、小さいサイズの氷であっても、立方体に近い形状にすることができる。このため、小さいサイズの氷も比表面積を小さくすることができ、小さくても溶けにくい氷を作ることが可能である。さらに、製氷サイズ小を選択した場合、製氷サイズ大を選択した場合に1回の製氷で得られる氷の個数よりも多い個数の氷を1回の製氷で得ることができる。このため、細かい氷が大量に欲しい場合等に、効率的な製氷を行うことができる。
実施の形態2.
 図12から図14は、この発明の実施の形態2に係るもので、図12は製氷皿の一例を示す図5相当の断面図、図13は冷凍冷蔵庫の制御系統の構成を示すブロック図、図14は製氷皿の別例を示す図5相当の断面図である。
 ここで説明する実施の形態2は、前述した実施の形態1の構成において、製氷皿の製氷ブロックの内側に氷が生成された製氷皿を加熱する加熱装置を設けたものである。以下、この実施の形態2に係る自動製氷機を備えた冷凍冷蔵庫について、実施の形態1との相違点を中心に説明する。
 図12に示すように、この実施の形態2では、冷凍冷蔵庫1の製氷皿11には、ヒーター27が取り付けられている。ヒーター27は、製氷皿11の外表面に接して設けられている。同図に示す例では、ヒーター27は、それぞれの製氷ブロック20の側壁の外側であって、製氷皿11の底部寄りの位置に配置されている。また、この例では、ヒーター27は、断面が楕円状である。ヒーター27は、製氷皿11の外側から製氷皿11を加熱することができる。
 図13に示すように、この実施の形態2では、制御装置8は、ヒーター27の動作も制御する。実施の形態1と同様に、給水装置により製氷ブロック20のそれぞれの内側に前記第1の水位又は前記第2の水位まで給水した後、製氷ブロック20の内側の水は前述の冷却装置により冷却される。制御装置8は、温度センサ18が検知した製氷皿11内の水の温度が前述した基準温度以下になると、製氷が完了したと判定する。
 温度センサ18により製氷皿11内の水の温度が基準温度以下になったことが検知されると、制御装置8は、ヒーター27の動作を開始させる。ヒーター27は、予め設定した一定時間だけ動作して製氷皿11を加熱する。つまり、ヒーター27は、製氷ブロック20の内側に氷が生成された製氷皿11を加熱する加熱装置である。ヒーター27が製氷皿11を加熱すると、加熱された製氷皿11により、氷の製氷皿11との接触面が加熱される。そして、この加熱により、製氷ブロック20内の氷の製氷皿11との接触面を融解させることができる。
 そして、ヒーター27による製氷皿11の加熱が終了したら、制御装置8は、回転装置16により製氷皿11を回転させる。すなわち、この実施の形態2においては、回転装置16は、加熱装置であるヒーター27の加熱により氷の表面が融解された製氷皿11を回転させて離氷させる。この際、製氷皿11の捻るように回転させることで、製氷皿11を一時的に変形させて、製氷皿11からの離氷を促すことができる。
 なお、他の構成及び動作については実施の形態1と同様であり、ここでは、その説明を省略する。
 以上のように構成された自動製氷機及びこれを備えた冷凍冷蔵庫1も、実施の形態1と同様の効果を奏することができる。さらに、製氷終了後に製氷皿11を回転させる前にヒーター27で製氷皿11を加熱して製氷皿11内の氷の表面を融解することで、製氷サイズが大と小のどちらであっても、生成した氷を製氷皿11から確実に離氷させることができる。
 また、特に製氷ブロック20と製氷セル22の個数が多い場合、製氷皿11を捻って一時的に変形させるだけでは、製氷皿11における位置によっては氷に作用する応力が小さい製氷ブロック20、製氷セル22が存在する可能性がある。氷に作用する応力が小さい製氷ブロック20、製氷セル22では、うまく離氷できないおそれがある。この実施の形態2によれば、ヒーター27で氷の表面を融解することで、氷に作用する応力が小さい製氷ブロック20、製氷セル22でも確実に離氷させることができる。
 なお、ヒーター27の数、形状、配置等は、図12の例に限定されない。他に例えば、図14に示すように、薄いシート状のヒーター27を、製氷皿11の底面部分を外側から覆うように配置してもよい。
実施の形態3.
 図15から図17は、この発明の実施の形態3に係るもので、図15は冷凍冷蔵庫の製氷室部分の拡大断面図、図16は製氷室の上段貯氷ケースの斜視図、図17は製氷皿の図5に相当する断面図である。
 ここで説明する実施の形態3は、前述した実施の形態1又は実施の形態2の構成において、貯氷ケースに、製氷サイズ大の氷と製氷サイズ小の氷とを分別する分別装置を設け、製氷サイズ大の氷と製氷サイズ小の氷とを別々に貯蔵しておくことができるようにしたものである。以下、この実施の形態3に係る自動製氷機及び冷凍冷蔵庫について、実施の形態1の構成を元にした場合を例に挙げ、実施の形態1との相違点を中心に説明する。
 図15に示すように、この実施の形態3においては、貯氷ケース10は、上段貯氷ケース28を備えている。上段貯氷ケース28は、貯氷ケース10の内側に配置されている。そして、上段貯氷ケース28の底面29は、製氷皿11の下方、かつ、貯氷ケース10の底面の上方に配置されている。製氷室扉9を前方へと引き出すと、貯氷ケース10、上段貯氷ケース28は一体となって前方へと引き出される。製氷室扉9を引き出した状態で、上段貯氷ケース28を後方へスライドすると、貯氷ケース10だけが引き出された状態となり、貯氷ケース10の氷を出し入れすることができる。
 図16を参照しながら、上段貯氷ケース28の構成について説明を続ける。同図に示すように、上段貯氷ケース28の底面29は、複数の開口部30が形成された格子状となっている。開口部30のそれぞれは、例えば矩形又は正方形を呈する。開口部30が矩形の場合、その長辺の長さをlとする。開口部30が正方形の場合、その一辺の長さをlとする。以下においては、これらをまとめて開口部30の寸法lという。
 図17に示すように、製氷皿11の製氷セル22の幅をxとする。すなわち、第2の区画壁21から第1の区画壁19までの距離、及び、第2の区画壁21から製氷皿11外周の壁部までの距離がxである。製氷セル22の幅xは、製氷サイズ小の氷の大きさになる。また、製氷皿11の製氷ブロック20の幅をyとする。すなわち、第1の区画壁19から製氷皿11外周の壁部までの距離がyである。製氷ブロック20の幅yは、製氷サイズ大の氷の大きさになる。
 開口部30の寸法lは、製氷セル22の幅xより大きく、かつ、製氷ブロック20の幅yよりも小さくなるように調整される。したがって、製氷皿11から離氷された製氷サイズ小の氷は、開口部30を通過して、貯氷ケース10にまで落下する。一方、製氷皿11から離氷された製氷サイズ大の氷は、開口部30を通過せず、上段貯氷ケース28内に留まる。したがって、貯氷ケース10には製氷サイズ小の氷が貯蔵される。また、上段貯氷ケース28には製氷サイズ大の氷が貯蔵される。
 このようにして、上段貯氷ケース28は、製氷サイズ小の氷すなわち製氷ブロック20の内側に前記第2の水位まで給水して生成した氷を通過させ、製氷サイズ大の氷すなわち製氷ブロック20の内側に前記第1の水位まで給水して生成した氷を通過させない分別装置を構成している。
 なお、他の構成については実施の形態1又は実施の形態2と同様であり、ここでは、その説明を省略する。
 以上のように構成された自動製氷機及びこれを備えた冷凍冷蔵庫1も、実施の形態1又は実施の形態2と同様の効果を奏することができる。さらに、貯氷ケース10に、製氷サイズ大の氷と製氷サイズ小の氷とを分別する分別装置を設けることで、異なるサイズの氷を同時期に製氷しても、製氷サイズ大の氷と製氷サイズ小の氷とを別々に貯蔵しておくことができる。したがって、使用者は、自身の手で選り分けることなく、大小両サイズの氷を使用することができ、利便性が向上する。
 この発明は、製氷皿を用いて製氷する自動製氷機及び冷凍冷蔵庫に利用できる。
  1  冷凍冷蔵庫
  2  圧縮機
  3  冷却器
  4  送風ファン
  5  風路
  6  操作パネル
  6a 操作部
  6b 表示部
  7  冷蔵室扉
  7a 右扉
  7b 左扉
  8  制御装置
  8a プロセッサ
  8b メモリ
  9  製氷室扉
 10  貯氷ケース
 11  製氷皿
 12  給水タンク
 13  給水ポンプ
 14  給水パイプ
 15  冷気吹出口
 16  回転装置
 17  検氷レバー
 18  温度センサ
 19  第1の区画壁
 20  製氷ブロック
 21  第2の区画壁
 22  製氷セル
 23  溝部
 24  切欠部
 25  回転装置取付部
 26  ストッパー部
 27  ヒーター
 28  上段貯氷ケース
 29  底面
 30  開口部
 90  断熱箱体
100  冷蔵室
200  切替室
300  製氷室
400  冷凍室
500  野菜室
401  冷凍室収納ケース
501  野菜室収納ケース

Claims (6)

  1.  第1の高さの第1の区画壁により区画された複数の製氷ブロックを有する製氷皿と、
     複数の前記製氷ブロックのそれぞれの内側に水を供給する給水装置と、
     前記製氷ブロックの内側の水を冷却して氷にする冷却装置と、を備え、
     前記製氷皿は、前記製氷ブロックの内側に設けられ、当該製氷ブロックを複数に分割し、前記第1の高さより低い第2の高さの第2の区画壁をさらに備えた自動製氷機。
  2.  前記給水装置は、前記製氷ブロックの内側に給水する水位を、前記第1の高さより低く、前記第2の高さより高い第1の水位と、前記第2の高さより低い第2の水位の少なくとも2種類の水位から選択可能である請求項1に記載の自動製氷機。
  3.  前記給水装置は、複数の前記製氷ブロック毎に、前記第1の水位まで給水するか、前記第2の水位まで給水するかを選択可能である請求項2に記載の自動製氷機。
  4.  前記製氷皿の下方に配置され、前記製氷皿から離氷された氷を受ける貯氷ケースをさらに備え、
     前記貯氷ケースは、前記製氷ブロックの内側に前記第2の水位まで給水して生成した氷を通過させ、前記製氷ブロックの内側に前記第1の水位まで給水して生成した氷を通過させない分別装置を備えた請求項2又は請求項3に記載の自動製氷機。
  5.  前記製氷ブロックの内側に氷が生成された前記製氷皿を加熱する加熱装置と、
     前記加熱装置の加熱により氷の表面が融解された前記製氷皿を回転させて離氷させる回転装置と、をさらに備えた請求項1から請求項4のいずれか一項に記載の自動製氷機。
  6.  請求項1から請求項5のいずれか一項に記載の自動製氷機を備えた冷凍冷蔵庫。
PCT/JP2017/009281 2017-03-08 2017-03-08 自動製氷機及び冷凍冷蔵庫 WO2018163332A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019504206A JP6750725B2 (ja) 2017-03-08 2017-03-08 自動製氷機及び冷凍冷蔵庫
CN201780087433.7A CN110352326B (zh) 2017-03-08 2017-03-08 自动制冰机及冷藏冷冻箱
AU2017402441A AU2017402441B2 (en) 2017-03-08 2017-03-08 Automatic ice maker and freezer refrigerator
PCT/JP2017/009281 WO2018163332A1 (ja) 2017-03-08 2017-03-08 自動製氷機及び冷凍冷蔵庫
TW106119957A TWI636223B (zh) 2017-03-08 2017-06-15 自動製冰機及冷凍冰箱

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/009281 WO2018163332A1 (ja) 2017-03-08 2017-03-08 自動製氷機及び冷凍冷蔵庫

Publications (1)

Publication Number Publication Date
WO2018163332A1 true WO2018163332A1 (ja) 2018-09-13

Family

ID=63448159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009281 WO2018163332A1 (ja) 2017-03-08 2017-03-08 自動製氷機及び冷凍冷蔵庫

Country Status (5)

Country Link
JP (1) JP6750725B2 (ja)
CN (1) CN110352326B (ja)
AU (1) AU2017402441B2 (ja)
TW (1) TWI636223B (ja)
WO (1) WO2018163332A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111947362A (zh) * 2019-05-15 2020-11-17 青岛海尔电冰箱有限公司 一种制冰组件及其控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7385912B2 (ja) * 2019-12-25 2023-11-24 アクア株式会社 冷蔵庫およびその製造方法
AU2022433051A1 (en) * 2022-01-12 2023-12-21 Lg Electronics Inc. Ice maker, refrigerator and control method for refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB796588A (en) * 1955-07-15 1958-06-18 Gen Motors Corp Improvements in or relating to freezer tray assemblies
JPS4822858U (ja) * 1971-07-22 1973-03-15
JPS61200567U (ja) * 1985-06-03 1986-12-16
JPH0484086A (ja) * 1990-07-27 1992-03-17 Hitachi Ltd 冷蔵庫用製氷皿
JP2000180004A (ja) * 1998-12-18 2000-06-30 Matsushita Refrig Co Ltd 冷蔵庫
JP2013050238A (ja) * 2011-08-30 2013-03-14 Sharp Corp 冷蔵庫

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045562Y2 (ja) * 1972-10-18 1975-12-23
JPS5033864U (ja) * 1973-07-20 1975-04-11
JPH0393374U (ja) * 1990-01-12 1991-09-24
JPH07305930A (ja) * 1994-05-11 1995-11-21 Matsushita Refrig Co Ltd 製氷装置
JPH11223450A (ja) * 1998-02-04 1999-08-17 Toshiba Corp 冷蔵庫
JP4590713B2 (ja) * 2000-10-20 2010-12-01 パナソニック株式会社 冷蔵庫
JP3852609B2 (ja) * 2003-09-16 2006-12-06 三菱電機株式会社 製氷装置、冷蔵庫
JP3810427B1 (ja) * 2005-03-17 2006-08-16 シャープ株式会社 製氷装置ならびに製氷装置を備えた冷蔵庫
CN101946142B (zh) * 2008-02-12 2013-03-06 松下电器产业株式会社 冷藏库
CN201764765U (zh) * 2010-08-25 2011-03-16 合肥美的荣事达电冰箱有限公司 一种制冰装置及带有制冰装置的冰箱
KR101810466B1 (ko) * 2011-08-26 2017-12-19 엘지전자 주식회사 냉장고의 제빙장치 및 이의 조립방법
JP6118191B2 (ja) * 2013-06-21 2017-04-19 シャープ株式会社 製氷装置およびそれを備えた冷蔵庫
CN205192016U (zh) * 2015-06-24 2016-04-27 合肥美的电冰箱有限公司 制冰装置以及冰箱
CN205316769U (zh) * 2015-12-14 2016-06-15 合肥华凌股份有限公司 一种制冰组件、冰箱

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB796588A (en) * 1955-07-15 1958-06-18 Gen Motors Corp Improvements in or relating to freezer tray assemblies
JPS4822858U (ja) * 1971-07-22 1973-03-15
JPS61200567U (ja) * 1985-06-03 1986-12-16
JPH0484086A (ja) * 1990-07-27 1992-03-17 Hitachi Ltd 冷蔵庫用製氷皿
JP2000180004A (ja) * 1998-12-18 2000-06-30 Matsushita Refrig Co Ltd 冷蔵庫
JP2013050238A (ja) * 2011-08-30 2013-03-14 Sharp Corp 冷蔵庫

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111947362A (zh) * 2019-05-15 2020-11-17 青岛海尔电冰箱有限公司 一种制冰组件及其控制方法

Also Published As

Publication number Publication date
TW201833493A (zh) 2018-09-16
JPWO2018163332A1 (ja) 2019-11-07
TWI636223B (zh) 2018-09-21
CN110352326B (zh) 2021-06-11
AU2017402441A1 (en) 2019-07-18
JP6750725B2 (ja) 2020-09-02
AU2017402441B2 (en) 2020-04-16
CN110352326A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
US10690390B2 (en) Refrigerator
EP3059526B1 (en) Ice-making tray and refrigerator comprising the same
US10928114B2 (en) Ice maker, refrigerator having the same, and method for making ice
EP3270078B1 (en) Ice maker and refrigerator having the same
EP3062048B1 (en) Refrigerator
US20090211266A1 (en) Method of controlling ice making assembly for refrigerator
WO2018163332A1 (ja) 自動製氷機及び冷凍冷蔵庫
AU2016432230B2 (en) Ice-making device and refrigerator
KR20200085641A (ko) 제빙기 및 이를 포함하는 냉장고
JP6992394B2 (ja) 製氷装置、アイスディスペンサー及び冷蔵庫
KR101652585B1 (ko) 냉장고의 제어 방법
JP2019095122A (ja) 製氷機及び冷蔵庫
AU2019352420B2 (en) Refrigerator and method for controlling same
JP2011052934A (ja) 冷蔵庫
TWI651503B (zh) 製冰機
KR100662445B1 (ko) 제빙장치
US20210396441A1 (en) Refrigerator and method for controlling same
KR20230053107A (ko) 제빙기 및 이를 포함하는 냉장고
JP2023038035A (ja) 冷蔵庫
KR20210005781A (ko) 냉장고 및 그의 제어방법
KR20130009527A (ko) 아이스 메이커의 제빙 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504206

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017402441

Country of ref document: AU

Date of ref document: 20170308

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900254

Country of ref document: EP

Kind code of ref document: A1