WO2018163325A1 - 光吸収層、光電変換素子、及び太陽電池 - Google Patents
光吸収層、光電変換素子、及び太陽電池 Download PDFInfo
- Publication number
- WO2018163325A1 WO2018163325A1 PCT/JP2017/009266 JP2017009266W WO2018163325A1 WO 2018163325 A1 WO2018163325 A1 WO 2018163325A1 JP 2017009266 W JP2017009266 W JP 2017009266W WO 2018163325 A1 WO2018163325 A1 WO 2018163325A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- still
- light absorption
- absorption layer
- ions
- Prior art date
Links
- 230000031700 light absorption Effects 0.000 title claims abstract description 100
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 85
- 239000002096 quantum dot Substances 0.000 claims abstract description 152
- 150000001875 compounds Chemical class 0.000 claims abstract description 119
- 239000000460 chlorine Substances 0.000 claims description 126
- -1 halogen anion Chemical group 0.000 claims description 80
- 238000000034 method Methods 0.000 claims description 66
- 239000006185 dispersion Substances 0.000 claims description 42
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 23
- 239000002243 precursor Substances 0.000 claims description 21
- 239000002904 solvent Substances 0.000 claims description 20
- 150000001768 cations Chemical class 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 150000004770 chalcogenides Chemical class 0.000 claims description 9
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 8
- 150000002500 ions Chemical class 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- 229910044991 metal oxide Inorganic materials 0.000 claims description 7
- 150000004706 metal oxides Chemical class 0.000 claims description 7
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 claims description 6
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 claims description 6
- 150000001408 amides Chemical class 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 4
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical group [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 2
- 239000002798 polar solvent Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 239000002250 absorbent Substances 0.000 claims 1
- 230000002745 absorbent Effects 0.000 claims 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 30
- 229940049964 oleate Drugs 0.000 description 28
- 239000000243 solution Substances 0.000 description 24
- 239000003446 ligand Substances 0.000 description 22
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 description 18
- 239000000126 substance Substances 0.000 description 18
- 239000000758 substrate Substances 0.000 description 16
- 230000005525 hole transport Effects 0.000 description 15
- 239000000843 powder Substances 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- 238000000862 absorption spectrum Methods 0.000 description 13
- 239000013078 crystal Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 239000013110 organic ligand Substances 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 11
- 238000002441 X-ray diffraction Methods 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 238000005481 NMR spectroscopy Methods 0.000 description 10
- 239000010408 film Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 229910010413 TiO 2 Inorganic materials 0.000 description 8
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 8
- 238000002835 absorbance Methods 0.000 description 8
- 238000000295 emission spectrum Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 125000001424 substituent group Chemical group 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 238000004528 spin coating Methods 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 6
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 6
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 239000005642 Oleic acid Substances 0.000 description 6
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 6
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 6
- 238000007611 bar coating method Methods 0.000 description 5
- 238000007607 die coating method Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 238000007756 gravure coating Methods 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 5
- 229910001887 tin oxide Inorganic materials 0.000 description 5
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 4
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical compound Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 150000002892 organic cations Chemical class 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 239000011135 tin Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- PNKUSGQVOMIXLU-UHFFFAOYSA-N Formamidine Chemical compound NC=N PNKUSGQVOMIXLU-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- PLZVEHJLHYMBBY-UHFFFAOYSA-N Tetradecylamine Chemical compound CCCCCCCCCCCCCCN PLZVEHJLHYMBBY-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 2
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- ZASWJUOMEGBQCQ-UHFFFAOYSA-L dibromolead Chemical compound Br[Pb]Br ZASWJUOMEGBQCQ-UHFFFAOYSA-L 0.000 description 2
- FJBFPHVGVWTDIP-UHFFFAOYSA-N dibromomethane Chemical group BrCBr FJBFPHVGVWTDIP-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 2
- ISWNAMNOYHCTSB-UHFFFAOYSA-N methanamine;hydrobromide Chemical compound [Br-].[NH3+]C ISWNAMNOYHCTSB-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 2
- 238000001420 photoelectron spectroscopy Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 150000003346 selenoethers Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 1
- DHBXNPKRAUYBTH-UHFFFAOYSA-N 1,1-ethanedithiol Chemical compound CC(S)S DHBXNPKRAUYBTH-UHFFFAOYSA-N 0.000 description 1
- JRNVQLOKVMWBFR-UHFFFAOYSA-N 1,2-benzenedithiol Chemical compound SC1=CC=CC=C1S JRNVQLOKVMWBFR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- LHENQXAPVKABON-UHFFFAOYSA-N 1-methoxypropan-1-ol Chemical compound CCC(O)OC LHENQXAPVKABON-UHFFFAOYSA-N 0.000 description 1
- NBUKAOOFKZFCGD-UHFFFAOYSA-N 2,2,3,3-tetrafluoropropan-1-ol Chemical compound OCC(F)(F)C(F)F NBUKAOOFKZFCGD-UHFFFAOYSA-N 0.000 description 1
- FFQALBCXGPYQGT-UHFFFAOYSA-N 2,4-difluoro-5-(trifluoromethyl)aniline Chemical compound NC1=CC(C(F)(F)F)=C(F)C=C1F FFQALBCXGPYQGT-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- GGDYAKVUZMZKRV-UHFFFAOYSA-N 2-fluoroethanol Chemical compound OCCF GGDYAKVUZMZKRV-UHFFFAOYSA-N 0.000 description 1
- QKPVEISEHYYHRH-UHFFFAOYSA-N 2-methoxyacetonitrile Chemical compound COCC#N QKPVEISEHYYHRH-UHFFFAOYSA-N 0.000 description 1
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 102220475869 Keratin, type I cytoskeletal 10_R12A_mutation Human genes 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910005642 SnTe Inorganic materials 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- WOIHABYNKOEWFG-UHFFFAOYSA-N [Sr].[Ba] Chemical compound [Sr].[Ba] WOIHABYNKOEWFG-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- IQONKZQQCCPWMS-UHFFFAOYSA-N barium lanthanum Chemical compound [Ba].[La] IQONKZQQCCPWMS-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910021523 barium zirconate Inorganic materials 0.000 description 1
- DQBAOWPVHRWLJC-UHFFFAOYSA-N barium(2+);dioxido(oxo)zirconium Chemical compound [Ba+2].[O-][Zr]([O-])=O DQBAOWPVHRWLJC-UHFFFAOYSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- CLFSUXDTZJJJOK-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide 4-tert-butyl-2-pyrazol-1-ylpyridine cobalt(3+) Chemical compound [N-](S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F.[N-](S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F.[N-](S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F.[Co+3].N1(N=CC=C1)C1=NC=CC(=C1)C(C)(C)C.N1(N=CC=C1)C1=NC=CC(=C1)C(C)(C)C.N1(N=CC=C1)C1=NC=CC(=C1)C(C)(C)C CLFSUXDTZJJJOK-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910002115 bismuth titanate Inorganic materials 0.000 description 1
- 125000000609 carbazolyl group Chemical class C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- PBAYDYUZOSNJGU-UHFFFAOYSA-N chelidonic acid Natural products OC(=O)C1=CC(=O)C=C(C(O)=O)O1 PBAYDYUZOSNJGU-UHFFFAOYSA-N 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- WXZKPELXXQHDNS-UHFFFAOYSA-N decane-1,1-dithiol Chemical compound CCCCCCCCCC(S)S WXZKPELXXQHDNS-UHFFFAOYSA-N 0.000 description 1
- VTXVGVNLYGSIAR-UHFFFAOYSA-N decane-1-thiol Chemical compound CCCCCCCCCCS VTXVGVNLYGSIAR-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- IVUXZQJWTQMSQN-UHFFFAOYSA-N distrontium;oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Sr+2].[Sr+2].[Ta+5].[Ta+5] IVUXZQJWTQMSQN-UHFFFAOYSA-N 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 125000003983 fluorenyl group Chemical class C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-O hydron;octadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCC[NH3+] REYJJPSVUYRZGE-UHFFFAOYSA-O 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- LRDFRRGEGBBSRN-UHFFFAOYSA-N isobutyronitrile Chemical compound CC(C)C#N LRDFRRGEGBBSRN-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- LLWRXQXPJMPHLR-UHFFFAOYSA-N methylazanium;iodide Chemical compound [I-].[NH3+]C LLWRXQXPJMPHLR-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-M oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC([O-])=O ZQPPMHVWECSIRJ-KTKRTIGZSA-M 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- DOOBMVWXHWRGEB-UHFFFAOYSA-N pentane-2,4-dione propan-2-olate titanium(4+) Chemical compound [Ti+4].CC(C)[O-].CC(C)[O-].CC(=O)[CH-]C(C)=O.CC(=O)[CH-]C(C)=O DOOBMVWXHWRGEB-UHFFFAOYSA-N 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003196 poly(1,3-dioxolane) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229940071182 stannate Drugs 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2004—Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
- H01G9/2009—Solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035209—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035209—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
- H01L31/035218—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
- H01G9/0036—Formation of the solid electrolyte layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/043—Mechanically stacked PV cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/151—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
- H10K30/35—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/40—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/15—Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/50—Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L2031/0344—Organic materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a light absorption layer, a photoelectric conversion element having the light absorption layer, and a solar cell having the photoelectric conversion element.
- Photoelectric conversion elements that convert light energy into electrical energy are used in solar cells, photosensors, copiers, and the like.
- photoelectric conversion elements solar cells that use sunlight, which is inexhaustible clean energy, have attracted attention.
- General silicon solar cells cannot be expected to greatly reduce costs because they use ultra-high purity silicon and are manufactured by “dry processes” such as epitaxial crystal growth under high vacuum. Therefore, a solar cell manufactured by a “wet process” such as a coating process is expected as a low-cost next-generation solar cell.
- Quantum dot solar cells are the next-generation solar cells that can be manufactured by the “wet process”.
- Quantum dots are inorganic nanoparticles having a crystal structure with a particle size of about 20 nm or less, and exhibiting physical properties different from those of bulk bodies due to the manifestation of the quantum size effect. For example, it is known that the band gap energy increases (absorption wavelength becomes shorter) as the quantum dot particle size decreases, and lead sulfide (PbS) having a particle size of about 3 nm and a band gap energy of about 1.2 eV. ) It has been reported that quantum dots are used in quantum dot solar cells (ACS Nano 2014, 8, 614-622). However, quantum dot solar cells represented by PbS and PbSe quantum dots can perform photoelectric conversion in the near-infrared light region (800 to 2500 nm), but high voltage cannot be obtained because of low band gap energy. Conversion efficiency is low.
- Perovskite solar cells have been reported as the most promising candidates for next-generation solar cells, which have recently reported a rapid increase in photoelectric conversion efficiency.
- This perovskite solar cell includes, for example, a photoelectric conversion element using a perovskite compound (CH 3 NH 3 PbI 3 ) composed of a cation such as methylammonium and a metal halide salt such as lead iodide as a light absorption layer. (J. Am. Chem. Soc. 2009, 131, 6050-6051).
- Perovskite solar cells are capable of photoelectric conversion in the visible light region (400 to 800 nm) and show relatively high conversion efficiency, but cannot use the near-infrared light region, so they are not effective in terms of effective use of sunlight. It is enough.
- the present invention relates to a photoelectric conversion element capable of performing photoelectric conversion in both the visible light region and the near-infrared light region, a light conversion layer for forming a solar cell, and a photoelectric conversion device having the light absorption layer. And a solar cell.
- the present inventors have found that photoelectric conversion efficiency is improved by using a light absorption layer containing a perovskite compound and a quantum dot containing Cl element.
- the present invention relates to a light absorption layer containing a perovskite compound and a quantum dot containing a Cl element.
- a perovskite compound and a quantum dot containing Cl element as a material for forming a light absorption layer, in addition to light in a short wavelength region that can be absorbed by the perovskite compound, near infrared light that can be absorbed by a quantum dot containing Cl element Therefore, it is possible to obtain a photoelectric conversion element having a photoelectric conversion function in a wide wavelength region.
- the photoelectric conversion efficiency of a composite film (light absorption layer) containing a perovskite compound and a quantum dot containing a Cl element is used as compared with a case where a quantum dot containing no Cl element is used. Will improve. The cause is not clear, but it is presumed as follows.
- the presence of Cl element on the surface of the quantum dot can reduce the amount of organic ligands (for example, oleate anion) on the surface of the quantum dot, and can reduce the amount of organic ligand (for example, N, N-dimethylformamide) in the light absorption layer
- organic ligands for example, oleate anion
- organic ligand for example, N, N-dimethylformamide
- the dispersibility of the quantum dots in the liquid used as a solvent is improved.
- a high-quality light-absorbing layer having a high crystallinity of the perovskite compound (large crystallite diameter) and a high coverage is obtained, so that it is presumed that the photoelectric conversion efficiency has been improved.
- the presence of the Cl element on the surface of the quantum dot suppresses carrier movement from the perovskite compound to the quantum dot, and the carrier extraction efficiency from the perovskite compound is improved, and it is assumed that the photoelectric conversion efficiency is improved.
- the present invention it is possible to obtain a photoelectric conversion element and a solar cell with high conversion efficiency capable of photoelectric conversion in both the visible light region and the near-infrared light region.
- the light absorption layer of the present invention contains a perovskite compound and a quantum dot containing Cl element as a light absorber.
- the light absorption layer of this invention may contain light absorbers other than the above in the range which does not impair the effect of this invention.
- the light absorption layer contributes to charge separation of the photoelectric conversion element, and has a function of transporting electrons and holes generated by light absorption toward the electrodes in opposite directions, and the charge separation layer or the photoelectric conversion layer Also called.
- the perovskite compound is not particularly limited, but from the viewpoint of improving the photoelectric conversion efficiency, it is preferably one or more selected from a compound represented by the following general formula (1) and a compound represented by the following general formula (2). Yes, more preferably a compound represented by the following general formula (1).
- R is a monovalent cation
- M is a divalent metal cation
- X is a halogen anion.
- R is a monovalent cation, and examples thereof include cations of Group 1 elements of the periodic table and organic cations.
- Examples of the cation of the Group 1 element of the periodic table include Li + , Na + , K + , and Cs + .
- the ammonium ion which may have a substituent, and the phosphonium ion which may have a substituent are mentioned, for example. There is no particular limitation on the substituent.
- Examples of the ammonium ion that may have a substituent include alkylammonium ion, formamidinium ion, and arylammonium ion.
- the alkylammonium ion and formamidinium are preferable. 1 or more selected from um ions, more preferably 1 or more selected from monoalkylammonium ions and formamidinium ions, and more preferably methylammonium ions, ethylammonium ions, butylammonium ions, and formamidinium ions. Or more, and more preferably methylammonium ion.
- R 1 , R 2 , and R 3 are each independently a monovalent cation, and any or all of R 1 , R 2 , and R 3 may be the same.
- the cation of a periodic table 1st group element and an organic cation are mentioned.
- the cation of the Group 1 element of the periodic table include Li + , Na + , K + , and Cs + .
- the ammonium ion which may have a substituent, and the phosphonium ion which may have a substituent are mentioned, for example. There is no particular limitation on the substituent.
- ammonium ion examples include alkylammonium ion, formamidinium ion, and arylammonium ion. From the viewpoint of improving the photoelectric conversion efficiency, the alkylammonium ion and formamidinium are preferable.
- N is an integer of 1 to 10, and preferably 1 to 4 from the viewpoint of improving the photoelectric conversion efficiency.
- the M is a divalent metal cation, for example, Pb 2+ , Sn 2+ , Hg 2+ , Cd 2+ , Zn 2+ , Mn 2+ , Cu 2+ , Ni 2+ , Fe 2+ , Co 2+ , Pd 2+ , Ge 2+ , Y 2+ , Eu 2+ and the like.
- M from the viewpoint of excellent photoelectric conversion efficiency, preferably Pb 2+, Sn 2+, or Ge 2+, more preferably Pb 2+, or Sn 2+, more preferably from Pb 2+.
- X is a halogen anion, and examples thereof include a fluorine anion, a chlorine anion, a bromine anion, and an iodine anion.
- X is preferably an iodine anion, a chlorine anion, or a bromine anion, more preferably an iodine anion or a bromine anion, and still more preferably a bromine anion. It is.
- the perovskite compound in the light absorption layer is not particularly limited as long as it is a compound having a perovskite crystal structure, but preferably has a band gap energy of 1.5 eV or more and 4.0 eV or less from the viewpoint of improving photoelectric conversion efficiency. Is.
- the perovskite compound may be used alone or in combination of two or more different band gap energies.
- the band gap energy of the perovskite compound is preferably 1.7 eV or more, more preferably 2.0 eV or more, still more preferably 2.1 eV or more, and still more preferably, from the viewpoint of improving photoelectric conversion efficiency (voltage). From the viewpoint of improving the photoelectric conversion efficiency (current), it is more preferably 3.6 eV or less, still more preferably 3.0 eV or less, and still more preferably 2.4 eV or less.
- the band gap energy of the quantum dot containing a perovskite compound and Cl element can be calculated
- CH 3 NH 3 PbBr 3 and CH ( ⁇ NH) NH 3 PbBr 3 are preferable, and CH 3 NH 3 PbBr 3 is more preferable.
- Examples of the compound represented by the general formula (2) having a band gap energy of 1.5 eV or more and 4.0 eV or less include (C 4 H 9 NH 3 ) 2 PbI 4 , (C 6 H 13 NH 3 ). 2 PbI 4 , (C 8 H 17 NH 3 ) 2 PbI 4 , (C 10 H 21 NH 3 ) 2 PbI 4 , (C 12 H 25 NH 3 ) 2 PbI 4 , (C 4 H 9 NH 3 ) 2 ( CH 3 NH 3) Pb 2 I 7, (C 6 H 13 NH 3) 2 (CH 3 NH 3) Pb 2 I 7, (C 8 H 17 NH 3) 2 (CH 3 NH 3) Pb 2 I 7, (C 10 H 21 NH 3 ) 2 (CH 3 NH 3 ) Pb 2 I 7 , (C 12 H 25 NH 3 ) 2 (CH 3 NH 3 ) Pb 2 I 7 , (C 4 H 9 NH 3 ) 2 ( CH 3 NH 3)
- the crystallite size of the perovskite compound in the light absorption layer is preferably 10 nm or more, more preferably 20 nm or more, and further preferably 40 nm or more from the viewpoint of improving the photoelectric conversion efficiency, and from the same viewpoint, preferably 1000 nm or less. is there.
- the crystallite diameter of the light absorption layer in the range of 100 nm or less can be measured by the method described in Examples described later.
- the crystallite diameter in the range exceeding 100 nm cannot be measured by the method described in Examples described later, it does not exceed the thickness of the light absorption layer.
- the perovskite compound can be produced, for example, from a perovskite compound precursor as described below.
- the precursor of the perovskite compound include a combination of a compound represented by MX 2 and a compound represented by RNH 3 X when the perovskite compound is a compound represented by the general formula (1).
- the perovskite compound is a compound represented by the general formula (2)
- a compound represented by MX 2 a compound represented by R 1 NH 3 X
- R 2 NH 3 X a compound represented by R 2 NH 3 X
- combinations of at least one member selected from compounds represented by R 3 NH 3 X can be mentioned.
- the perovskite compound of the light absorption layer is, for example, elemental analysis, infrared (IR) spectrum, Raman spectrum, nuclear magnetic resonance (NMR) spectrum, X-ray diffraction pattern, absorption spectrum, emission spectrum, electron microscope observation, and electron diffraction It can identify by conventional methods, such as.
- the quantum dot containing Cl element is a quantum dot containing Cl element in addition to the component constituting the crystal structure, and the state of Cl element is not particularly limited, but preferably a compound in which Cl element is coordinated on the surface of the quantum dot (Compound in which a Cl element is coordinated to a metal element constituting a quantum dot).
- Other ligands may be coordinated with the Cl element on the surface of the quantum dots.
- the preferred embodiment of the quantum dots containing Cl element is a preferred embodiment common to the light absorption layer and its raw material, except for preferred embodiments of ligands other than Cl element.
- Examples of the quantum dots containing Cl element include compounds in which Cl element is coordinated on the surface of a metal oxide or metal chalcogenide (eg, sulfide, selenide, telluride, etc.). From the viewpoint of improving the photoelectric conversion efficiency, a compound in which a Cl element is coordinated on the surface of the metal chalcogenide is preferable.
- Specific examples of the metal chalcogenide include PbS, PbSe, PbTe, CdS, CdSe, CdTe, Sb 2 S 3 , Bi 2 S 3 , Ag 2 S, Ag 2 Se, Ag 2 Te, Au 2 S, Au 2.
- the quantum dots containing the Cl element preferably contain a Pb element, more preferably contain PbS or PbSe, and more preferably contain PbS, from the viewpoint of excellent photoelectric conversion efficiency. Further, in order to increase the interaction between the perovskite compound and the quantum dot, the metal constituting the perovskite compound and the metal constituting the quantum dot are preferably the same metal.
- the atomic ratio of the Cl element to the metal element constituting the quantum dot containing the Cl element is not particularly limited, from the viewpoint of improving the dispersibility of the quantum dot in the light absorption layer or the dispersion, and from the perovskite compound to the quantum dot From the viewpoint of suppressing the carrier movement, it is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.3 or more, preferably 1 or less, more preferably 0.8 or less, still more preferably 0.7 or less.
- the atomic ratio of the Cl element to the metal element constituting the quantum dot containing Cl element is the Cl to the metal element constituting the quantum dot in the quantum dot used as the raw material of the light absorption layer. It is thought that it is almost the same as the atomic ratio of elements.
- ligands optionally contained in the quantum dots containing Cl element are not particularly limited, but are preferable from the viewpoint of dispersibility in the light absorption layer and dispersion liquid of quantum dots containing Cl element.
- organic ligands include a carboxy group-containing compound, an amino group-containing compound, a thiol group-containing compound, and a phosphino group-containing compound.
- carboxy group-containing compound examples include oleic acid, stearic acid, palmitic acid, myristic acid, lauric acid, and capric acid.
- amino group-containing compound examples include oleylamine, stearylamine, palmitylamine, myristylamine, laurylamine, caprylamine, octylamine, hexylamine, and butylamine.
- thiol group-containing compound examples include ethanethiol, ethanedithiol, benzenethiol, benzenedithiol, decanethiol, decanedithiol, and mercaptopropionic acid.
- Examples of the phosphino group-containing compound include trioctylphosphine and tributylphosphine.
- the organic ligand is preferably a carboxy group-containing compound or an amino group-containing compound, more preferably a carboxy group-containing compound, from the viewpoints of manufacturability, dispersion stability, versatility, cost, and the like of the quantum dots containing the Cl element.
- a compound more preferably a long chain fatty acid, and still more preferably oleic acid.
- the organic ligand for the metal element constituting the quantum dot containing Cl element is used.
- the molar ratio is preferably 0.01 or more, more preferably 0.05 or more, more preferably from the viewpoint of promoting ligand exchange between the organic ligand and the perovskite compound precursor when producing the light absorption layer.
- it is 0.1 or more, More preferably, it is 0.12 or more.
- it is 0.4 or less, More preferably, it is 0.00. It is 3 or less, more preferably 0.2 or less, and still more preferably 0.15 or less.
- the quantum dot containing Cl element preferably contains an organic ligand
- the molar ratio of the organic ligand to the metal element constituting the quantum dot is not particularly limited, but the quantum dot in the light absorbing layer From the viewpoint of improving the dispersibility of the resin and exhibiting excellent performance, it is preferably 0.01 or more, more preferably 0.05 or more, still more preferably 0.09 or more, still more preferably 0.1 or more, preferably Is 0.4 or less, more preferably 0.3 or less, still more preferably 0.2 or less, and still more preferably 0.15 or less.
- the molar ratio of the organic ligand contained in the quantum dot containing Cl element to the metal element constituting the perovskite compound in the light absorption layer is although not particularly limited, it is preferably 0.001 or more, more preferably 0.005 or more, and still more preferably 0.01 or more, from the viewpoint of improving the dispersibility of the quantum dots in the light absorption layer and expressing excellent performance. , Preferably 0.1 or less, more preferably 0.05 or less, still more preferably 0.02 or less.
- the band gap energy of the quantum dot containing the Cl element is not particularly limited, but preferably from the viewpoint of improving the photoelectric conversion efficiency in the near infrared light region by complementing the band gap energy that the perovskite compound does not have. 2 eV or more and less than or equal to the band gap energy of the perovskite compound.
- the quantum dots containing the Cl element may be used alone or in combination of two or more different band gap energies.
- the band gap energy below the band gap energy of the perovskite compound that is the upper limit of the band gap energy of the quantum dots containing the Cl element is 2
- the band gap energy is equal to or less than the maximum value of the band gap energy of the perovskite compound of one or more species.
- the band gap energy of the quantum dots (including the Cl element) can be obtained from the absorption spectrum measured at 25 ° C. by the method described in Examples described later.
- the band gap energy of the quantum dots containing the Cl element is more preferably 0.7 eV or more, further preferably 0.8 eV or more, still more preferably 0.9 eV or more, More preferably, it is 1.0 eV or more, and from the viewpoint of improving the photoelectric conversion efficiency (current), more preferably 1.6 eV or less, still more preferably 1.4 eV or less, still more preferably 1.2 eV or less, and even more. Preferably it is 1.1 eV or less.
- the difference between the band gap energy of the perovskite compound in the light absorption layer and the band gap energy of the quantum dots containing the Cl element is preferably 0.4 eV or more, more preferably 0.6 eV or more, from the viewpoint of improving photoelectric conversion efficiency. More preferably, it is 0.8 eV or more, preferably 2.0 eV or less, more preferably 1.5 eV or less, still more preferably 1.3 eV or less.
- the particle size of the quantum dots containing Cl element in the light absorption layer and the quantum dots containing Cl element as the raw material of the light absorption layer is preferably 1 nm or more. Preferably it is 2 nm or more, More preferably, it is 3 nm or more, From a viewpoint of improving film formability and photoelectric conversion efficiency, Preferably it is 20 nm or less, More preferably, it is 10 nm or less, More preferably, it is 5 nm or less.
- the particle size of the quantum dots containing the Cl element can be measured by a conventional method such as XRD (X-ray diffraction) crystallite size analysis or transmission electron microscope observation.
- quantum dots including Cl element
- the particle size and type of quantum dots are determined by electron microscope observation, electron beam diffraction, and X-ray diffraction pattern
- the correlation between particle size and band gap energy for example, , ACS Nano 2014, 8, 6363-6371
- the band gap energy can also be calculated.
- the method for coordinating the Cl element to the surface of the quantum dot is not particularly limited.
- the Cl element is coordinated to the surface of the quantum dot by causing nucleation and crystal growth of the quantum dot in the presence of the Cl element ligand.
- Quantum dots can be prepared.
- a quantum dot in which a Cl element is coordinated on the surface of the quantum dot can be prepared by reacting a metal chloride containing a metal element constituting the quantum dot with an oxygen source or a chalcogen source.
- the quantum dots (including the Cl element) in the light absorption layer are, for example, elemental analysis, infrared (IR) spectrum, Raman spectrum, nuclear magnetic resonance (NMR) spectrum, X-ray diffraction pattern, absorption spectrum, emission spectrum, small angle X It can be identified by conventional methods such as line scattering, electron microscope observation, and electron beam diffraction.
- the quantum dot contains Cl element
- ESCA X-ray photoelectron spectroscopy
- Cl elements are not included as components constituting the quantum dots
- a Cl element is included as a component constituting the quantum dot, the crystal structure and the surface Cl element can be distinguished from the binding energy peak shift of Cl using ESCA or the like.
- a preferable combination of the perovskite compound and the quantum dot containing the Cl element is preferably a combination of compounds containing the same metal element from the viewpoint of improving the photoelectric conversion efficiency.
- the content ratio of the quantum dot containing the perovskite compound and the Cl element in the light absorption layer is not particularly limited, the quantum dot containing the Cl element with respect to the total content of the quantum dots containing the perovskite compound and the Cl element is not limited.
- the content ratio is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 2% by mass or more, and still more preferably 4% by mass or more. From the viewpoint of improving film properties and photoelectric conversion efficiency, it is preferably 10% by mass or less, more preferably 8% by mass or less, and still more preferably 7% by mass or less.
- the thickness of the light absorption layer is not particularly limited, but is preferably 30 nm or more, more preferably 50 nm or more from the viewpoint of increasing light absorption and improving photoelectric conversion efficiency, and from the same viewpoint, preferably 1000 nm or less. More preferably, it is 800 nm or less, More preferably, it is 600 nm or less, More preferably, it is 500 nm or less.
- the thickness of the light absorption layer can be measured by a measuring method such as electron microscope observation of the film cross section.
- the surface smoothness of the light absorption layer is preferably 30 nm or more, more preferably 50 nm or more, and further preferably 100 nm or more from the viewpoint of improving the strength of the hole transport agent (HTM) layer, and the viewpoint of improving the photoelectric conversion efficiency. Therefore, it is preferably 1000 nm or less, more preferably 500 nm or less, and still more preferably 300 nm or less.
- the surface smoothness of a light absorption layer can be measured by the method as described in the following Example.
- the coverage of the light absorbing layer with respect to the porous layer is preferably 10% or more, more preferably 20% or more, still more preferably 30% or more, and still more preferably 40%. It is above and is 100% or less.
- the coverage with respect to the porous layer of a light absorption layer can be measured by the method as described in the following Example.
- the absorbance ratio (QD / P) of the quantum dots (QD) (including the Cl element) to the perovskite compound (P) in the light absorption layer is preferably 0.3 or less from the viewpoint of improving the photoelectric conversion efficiency (voltage). More preferably, it is 0.2 or less, more preferably 0.1 or less, and still more preferably 0.
- the absorbance ratio (QD / P) in the light absorbing layer is the maximum value of the absorbance of at least one quantum dot (including Cl element) from the absorption spectrum of the light absorbing layer measured by the method described in the following examples.
- the ratio of at least one perovskite compound to the absorbance is respectively obtained as the absorbance at the absorption peak position when they are measured alone.
- the emission peak energy in the light absorption layer is preferably 0.2 eV or more, more preferably, when the light absorption layer is excited with light having a wavelength of 800 nm (energy 1.55 eV) from the viewpoint of improving photoelectric conversion efficiency (voltage). 0.4 eV or more, more preferably 0.6 eV or more, and even more preferably 0.8 eV or more. From the viewpoint of improving photoelectric conversion efficiency (current), preferably 1.4 eV or less, more preferably 1.3 eV or less. More preferably, it is 1.2 eV or less, and still more preferably 1.1 eV or less.
- the difference between the emission peak energy in the light absorption layer and the band gap energy of the perovskite compound is preferably 0.4 eV or more, more preferably 0.8 eV, and still more preferably 1.0 eV or more, from the viewpoint of improving the photoelectric conversion efficiency. More preferably, it is 1.2 eV or more, Preferably it is 3.4 eV or less, More preferably, it is 2.5 eV or less, More preferably, it is 2.0 eV or less, More preferably, it is 1.5 eV or less.
- the difference between the emission peak energy in the light absorption layer and the band gap energy of the quantum dots (including the Cl element) is preferably 0.5 eV or less, more preferably 0.2 eV or less, and still more preferably, from the viewpoint of improving photoelectric conversion efficiency. Is 0.1 eV or less.
- the difference (emission peak shift) between the emission peak energy in the dispersion of quantum dots (including the Cl element) and the emission peak energy in the light absorption layer is the particle of the quantum dots (including the Cl element) in the light absorption layer. It is estimated that there is a correlation in the inter-distance, that is, dispersibility, and from the viewpoint of improving the photoelectric conversion efficiency, it is preferably 0.5 eV or less, more preferably 0.2 eV or less, and still more preferably 0.1 eV or less. In order to improve the dispersibility of the quantum dots containing the Cl element in the light absorption layer, as described above, the content of the Cl element and the organic ligand, the particle size, etc. of the quantum dots, the dispersion, and the light absorption layer It is preferable to control the production method within a preferable range.
- the emission peak energy in the light absorption layer is determined as the peak wavelength (peak energy) of the emission spectrum when the light absorption layer is excited with light having a wavelength of 800 nm (energy 1.55 eV) as described in the following examples. Can do.
- the light absorption layer may be any layer that contains the perovskite compound and the quantum dot containing the Cl element, but preferably includes a complex formed by the perovskite compound and the quantum dot containing the Cl element.
- a method of forming a complex formed by the quantum dot containing the perovskite compound and the Cl element is not particularly limited, and a method of mixing the precursor of the perovskite compound and the quantum dot containing the Cl element in a dispersion liquid, etc. Is mentioned.
- the mixing temperature is preferably 0 ° C. or higher, more preferably 10 ° C. or higher, and still more preferably, from the viewpoints of ease of production, cost, storage stability of the dispersion, and improvement in photoelectric conversion efficiency. It is 20 ° C or higher, preferably 50 ° C or lower, more preferably 40 ° C or lower, and further preferably 30 ° C or lower.
- the mixing time is preferably more than 0 hour, more preferably 0.1 hour or more, preferably 72 hours or less, more preferably 24 hours or less, and further preferably 1 hour or less.
- the mixing temperature is preferably 0 ° C. or higher and 50 ° C. or lower, more preferably 10 ° C. or higher and 40 ° C. or lower, further preferably 20 ° C. or higher and 30 ° C. or lower, and the mixing time is preferably more than 0 hour. 72 hours or less, more preferably more than 0 hour and 24 hours or less, further preferably 0.1 hour or more and 1 hour or less.
- the photoelectric conversion element of this invention has the said light absorption layer.
- the configuration other than the light absorption layer is not particularly limited, and the configuration of a known photoelectric conversion element can be applied.
- the photoelectric conversion element of this invention can be manufactured by a well-known method except the said light absorption layer.
- FIG. 1 is only an example and is not limited to the mode shown in FIG.
- FIG. 1 is a schematic cross-sectional view showing an example of the structure of the photoelectric conversion element of the present invention.
- the photoelectric conversion element 1 has a structure in which a transparent substrate 2, a transparent conductive layer 3, a blocking layer 4, a porous layer 5, a light absorption layer 6, and a hole transport layer 7 are sequentially stacked.
- the transparent electrode substrate on the light 10 incident side is composed of a transparent substrate 2 and a transparent conductive layer 3, and the transparent conductive layer 3 is bonded to an electrode (negative electrode) 9 serving as a terminal for electrical connection with an external circuit.
- the hole transport layer 7 is joined to an electrode (positive electrode) 8 serving as a terminal for electrical connection with an external circuit.
- the material of the transparent substrate 2 may be any material as long as it has strength, durability, and light transmittance, and synthetic resin and glass can be used.
- synthetic resin include thermoplastic resins such as polyethylene naphthalate (PEN) film, polyethylene terephthalate (PET), polyester, polycarbonate, polyolefin, polyimide, and fluororesin.
- PEN polyethylene naphthalate
- PET polyethylene terephthalate
- polyester polycarbonate
- polyolefin polyimide
- fluororesin fluororesin
- Examples of the material of the transparent conductive layer 3 include tin-added indium oxide (ITO), fluorine-added tin oxide (FTO), tin oxide (SnO 2 ), indium zinc oxide (IZO), zinc oxide (ZnO), and high Examples thereof include a polymer material having conductivity.
- Examples of the polymer material include polyacetylene-based, polypyrrole-based, polythiophene-based, and polyphenylene vinylene-based polymer materials.
- a carbon-based thin film having high conductivity can be used as the material of the transparent conductive layer 3.
- Examples of the method for forming the transparent conductive layer 3 include a sputtering method, a vapor deposition method, and a method of applying a dispersion.
- Examples of the material of the blocking layer 4 include titanium oxide, aluminum oxide, silicon oxide, niobium oxide, tungsten oxide, tin oxide, and zinc oxide.
- Examples of the method for forming the blocking layer 4 include a method in which the above material is directly sputtered onto the transparent conductive layer 3 and a spray pyrolysis method. Moreover, the method of apply
- Examples of the coating method include a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method.
- the porous layer 5 is a layer having a function of supporting the light absorption layer 6 on the surface thereof. In order to increase the light absorption efficiency in the solar cell, it is preferable to increase the surface area of the portion that receives light. By providing the porous layer 5, the surface area of the portion that receives light can be increased.
- Examples of the material for the porous layer 5 include metal oxides, metal chalcogenides (for example, sulfides and selenides), compounds having a perovskite crystal structure (excluding the light absorber), silicon oxides, and the like. (For example, silicon dioxide and zeolite), and carbon nanotubes (including carbon nanowires and carbon nanorods).
- the metal oxide examples include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, aluminum, and an oxide of tantalum.
- the metal chalcogenide examples thereof include zinc sulfide, zinc selenide, cadmium sulfide, and cadmium selenide.
- Examples of the compound having a perovskite crystal structure include strontium titanate, calcium titanate, barium titanate, lead titanate, barium zirconate, barium stannate, lead zirconate, strontium zirconate, strontium tantalate, niobate
- Examples include potassium, bismuth ferrate, strontium barium titanate, barium lanthanum titanate, calcium titanate, sodium titanate, and bismuth titanate.
- the material for forming the porous layer 5 is preferably used as fine particles, more preferably as a dispersion containing fine particles.
- the method for forming the porous layer 5 include a wet method, a dry method, and other methods (for example, a method described in Chemical Review, Vol. 110, page 6595 (2010)). In these methods, it is preferable to fire after applying a dispersion (paste) to the surface of the blocking layer 4. Fine particles can be brought into close contact with each other by firing.
- the coating method include a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method.
- the light absorption layer 6 is the light absorption layer of the present invention described above.
- the method for forming the light absorption layer 6 is not particularly limited.
- a dispersion liquid containing the perovskite compound or a precursor thereof and a quantum dot containing the Cl element is prepared, and the dispersion prepared on the surface of the porous layer 5 is prepared.
- a method based on a so-called wet process in which a liquid is applied and dried is preferable.
- a dispersion liquid containing a perovskite compound or a precursor thereof and a quantum dot containing the Cl element has a viewpoint of film formation, cost, storage stability, and excellent performance (for example, photoelectric conversion characteristics). From the above, it preferably contains a solvent.
- the solvent examples include esters (methyl formate, ethyl formate, etc.), ketones ( ⁇ -butyrolactone, N-methyl-2-pyrrolidone, acetone, dimethyl ketone, diisobutyl ketone, etc.), ethers (diethyl ether, Methyl-tert-butyl ether, dimethoxymethane, 1,4-dioxane, tetrahydrofuran, etc.), alcohols (methanol, ethanol, 2-propanol, tert-butanol, methoxypropanol, diacetone alcohol, cyclohexanol, 2-fluoroethanol, 2 , 2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, etc.), glycol ethers (cellosolves), amide solvents (N, N-dimethylformamide, acetamide, N, N-dimethylacetamide), nitrile solvent
- the solvent of the dispersion is preferably a polar solvent, more preferably a ketone, an amide solvent, and dimethyl sulfoxide from the viewpoints of film formability, cost, storage stability, and excellent performance (for example, photoelectric conversion characteristics). And at least one solvent selected from the group consisting of amide solvents, still more preferably N, N-dimethylformamide.
- the metal concentration of the perovskite compound or the precursor thereof in the dispersion is preferably 0.1 mol / L or more from the viewpoint of film forming property, cost, storage stability, and excellent performance (for example, photoelectric conversion characteristics). More preferably, it is 0.2 mol / L or more, more preferably 0.3 mol / L or more, preferably 1.5 mol / L or less, more preferably 1.0 mol / L or less, still more preferably 0.5 mol / L or less. It is.
- the solid content concentration of the quantum dots containing the Cl element in the dispersion is preferably 1 mg / mL or more from the viewpoint of film forming property, cost, storage stability, and excellent performance (for example, photoelectric conversion characteristics).
- it is 5 mg / mL or more, More preferably, it is 10 mg / mL or more,
- the method for preparing the dispersion is not particularly limited.
- the specific preparation method is as described in the examples.
- the coating method in the wet process is not particularly limited, and examples thereof include a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method.
- drying method in the wet process examples include thermal drying, airflow drying, and vacuum drying from the viewpoint of production ease, cost, and excellent performance (for example, photoelectric conversion characteristics). is there.
- the following formation method is preferably exemplified.
- the specific formation method is based on description of an Example.
- a dispersion containing quantum dots in which Cl element and other ligands are coordinated is prepared.
- Other ligands are as described above.
- the method for coordinating the Cl element and other ligands to the surface of the quantum dots is as described above.
- a solution containing a perovskite compound precursor is prepared.
- the solvent include N, N-dimethylformamide, dimethyl sulfoxide, and ⁇ -butyrolactone.
- a dispersion containing quantum dots coordinated with the prepared Cl element and other ligands is mixed with a solution containing the prepared perovskite compound precursor, and a part of the ligands of the quantum dots is mixed. Is replaced with a perovskite compound precursor to prepare a dispersion containing quantum dots coordinated with the perovskite compound precursor.
- the dispersion medium of the dispersion liquid containing the quantum dots coordinated with Cl element and other ligands and the solvent of the solution containing the precursor of the perovskite compound are not miscible.
- the solution containing the detached ligand and the dispersion containing the quantum dot coordinated with the perovskite compound precursor can be phase-separated, and the quantum dot coordinated with the perovskite compound precursor is included.
- the dispersion can be extracted. What is necessary is just to use the thing which is not miscible from the said solvent, respectively as the dispersion medium of the said dispersion liquid, and the solvent of the said solution.
- the ligand removal rate of ligands other than the Cl element is preferably 10% or more, more preferably from the viewpoint of improving the dispersibility of the quantum dots in the light absorption layer or the dispersion. Is 15% or more, more preferably 20% or more.
- a dispersion liquid containing quantum dots coordinated with the prepared perovskite compound precursor is applied to the surface of the porous layer 5 and dried to form the light absorption layer 6.
- the coating method include a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method.
- Examples of the material for the hole transport layer 7 include carbazole derivatives, polyarylalkane derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorene derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic Group tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, porphyrin compounds, phthalocyanine compounds, polythiophene derivatives, polypyrrole derivatives, and polyparaphenylene vinylene derivatives.
- Examples of the method for forming the hole transport layer 7 include a coating method and a vacuum deposition method. Examples of the coating method include a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method.
- Examples of the material of the electrode (positive electrode) 8 and the electrode (negative electrode) 9 include metals such as aluminum, gold, silver, and platinum; tin-added indium oxide (ITO), indium zinc oxide (IZO), and zinc oxide (ZnO). Conductive metal oxides such as: organic conductive materials such as conductive polymers; carbon-based materials such as nanotubes. Examples of the method for forming the electrode (positive electrode) 8 and the electrode (negative electrode) 9 include a vacuum deposition method, a sputtering method, and a coating method.
- the solar cell of this invention has the said photoelectric conversion element.
- the configuration other than the light absorption layer is not particularly limited, and a known solar cell configuration can be applied.
- ⁇ IV curve> Using xenon lamp white light as the light source (PEC-L01, manufactured by Pexel Technologies Co., Ltd.), with a light intensity equivalent to sunlight (AM1.5) (100 mW / cm 2 ), a light irradiation area of 0.0363 cm 2 (2 mm square) ) Mask, using IV characteristic measuring device (PECK2400-N, manufactured by Pexel Technologies Co., Ltd.), scanning speed 0.1 V / sec (0.01 V step), waiting time after voltage setting 50 msec, measurement integration time 50 The cell IV curve was measured under the conditions of msec, start voltage of -0.1 V, and end voltage of 1.1 V. The light intensity was corrected with a silicon reference (BS-520, 0.5714 mA). Short-circuit current density (mA / cm 2 ), open circuit voltage (V), fill factor (FF), and conversion efficiency (%) were determined from the IV curve.
- IPCE incident photon-to-current (conversion) efficiency
- IPCE wavelength dependence of external conversion efficiency with respect to incident light
- CEP-2000MLR spectral sensitivity measuring device
- the measurement was performed.
- External quantum efficiencies at wavelengths of 500 nm and 900 nm were determined.
- the absorption spectrum of the light absorption layer was measured using a UV-Vis spectrophotometer (SolidSpec-3700, manufactured by Shimadzu Corporation) on the sample before applying the hole transport agent, with a medium scan speed, a sample pitch of 1 nm, A range of 300 to 1600 nm was measured under the conditions of slit width 20 and detector unit integrating sphere. Background measurement was performed using an FTO (Fluorine-doped tin oxide) substrate (Asahi Glass Fabrictech Co., Ltd., 25 ⁇ 25 ⁇ 1.8 mm).
- FTO Fluorine-doped tin oxide
- the absorption spectrum of the PbS quantum dot dispersion was measured in the same manner using a 1 cm square quartz cell in a hexane dispersion having a PbS quantum dot powder concentration of 0.1 mg / mL.
- a straight line was fitted, and the intersection of the straight line and the baseline was defined as the band gap energy.
- the emission spectrum of the light absorption layer was obtained by using a near-infrared fluorescence spectrometer (Fluorolog, manufactured by HORIBA, Ltd.) in the sample before applying the hole transport agent, and an excitation wavelength of 800 nm (Example 1, Comparative Example 1). Alternatively, the range of 850 to 1550 nm was measured under the conditions of excitation wavelength 815 nm (Example 2, Comparative Example 2), excitation light slit width 10 nm, emission slit width 15 nm, uptake time 0.1 sec, integrated twice average, dark offset on. .
- the emission spectrum of the PbS quantum dot dispersion was measured in the same manner using a 1 cm square tetrahedral transparent cell in a hexane dispersion having a PbS quantum dot powder concentration of 0.1 mg / mL.
- the surface smoothness of the light-absorbing layer can be measured using a nanoscale hybrid microscope (AFM, manufactured by Keyence Corporation, VN-8010) on the sample before applying the hole transport agent, DFM-H mode, measurement range 100 ⁇ m x 75 ⁇ m , Ry (Rmax) after automatic tilt correction was measured at five locations, and the average value was obtained.
- AFM nanoscale hybrid microscope
- the coverage of the light absorption layer is determined by measuring the surface of the light absorption layer using a field emission type high resolution scanning electron microscope (FE-SEM, manufactured by Hitachi, Ltd., S-4800) before applying the hole transport agent.
- FE-SEM field emission type high resolution scanning electron microscope
- the SEM photograph magnification magnification 20000 times was measured, and the SEM photograph was calculated from the area ratio (area ratio) of the light absorption layer with respect to the total area using the image analysis software (Winroof), specifying the light absorption layer with a pen tool. did.
- ⁇ X-ray diffraction analysis> The crystallite size of the perovskite compound in the light absorption layer was measured using a powder X-ray diffraction apparatus (manufactured by Rigaku Corporation, MiniFlex600, light source CuK ⁇ , tube voltage 40 kV, tube current 15 mA) in the sample before applying the hole transport agent.
- a powder X-ray diffraction apparatus manufactured by Rigaku Corporation, MiniFlex600, light source CuK ⁇ , tube voltage 40 kV, tube current 15 mA
- the Pb concentration in the PbS quantum dot powder was quantified by high frequency inductively coupled plasma emission spectroscopy (ICP) analysis after completely dissolving the PbS quantum dot powder in a nitric acid / hydrogen peroxide mixed solution.
- the oleate anion concentration in the PbS quantum dot powder is dibromomethane (manufactured by Wako Pure Chemical Industries, Ltd.) in heavy toluene (Sigma Aldrich Japan GK, 99 atom% D, containing TMS 0.03 vol%) as an internal standard substance. Used and quantified by proton ( 1 H) nuclear magnetic resonance (NMR) method.
- the vinyl proton of the oleate anion with respect to the integral value of dibromomethane (3.9 ppm vs. TMS)
- the concentration of oleate anion in the PbS quantum dot powder was determined from the ratio of the integral value of (5.5 ppm vs. TMS).
- the Cl concentration in the PbS quantum dot powder was quantified by photoelectron spectroscopy (ESCA) in the PbS quantum dot powder on the glass substrate.
- ESCA device manufactured by ULVAC-PHI, PHI Quantera SXM
- monochromatic X-ray source AlK ⁇ 25 W, 15 kV
- beam diameter 100 ⁇ m
- measurement range 1 mm 2 path energy 112 eV
- step 0.2 eV charging correction neutralizer
- ESCA measurement was performed under the conditions of Ar + irradiation, photoelectron extraction angle of 45 °, and binding energy correction C1s (284.8 eV), and the composition was determined from the Pb4f, S2p, and Cl2p peaks.
- ⁇ Mole ratio of oleate anion to Pb element constituting PbS quantum dots in light absorption layer The molar ratio of the oleate anion to the Pb element constituting the PbS quantum dot in the light absorbing layer was calculated from the amount of oleate anion in the PbS quantum dot before the ligand exchange and the oleate anion removal rate.
- Mole ratio of oleate anion to Pb element constituting PbS quantum dot in light absorption layer (1-oleate anion removal rate / 100) ⁇ (oleate anion / Pb mole of PbS quantum dot before ligand exchange) ratio)
- ⁇ Mole ratio of oleate anion to Pb element constituting perovskite in light absorption layer The molar ratio of the oleate anion to the Pb element constituting the perovskite in the light absorbing layer is determined based on the amount of oleate anion of the PbS quantum dot before the ligand exchange, the removal rate of the oleate anion, and the composition (perovskite The molar ratio of the Pb element constituting the PbS quantum dot to the Pb element was calculated.
- Mole ratio of oleate anion to Pb element constituting perovskite in light absorption layer (1-oleate anion removal rate / 100) ⁇ (oleate anion / Pb mole ratio of PbS quantum dot before ligand exchange) X (Pb mole of PbS quantum dot / Pb mole ratio of perovskite)
- PbS core-type quantum dots manufactured by Sigma Aldrich Japan GK, oleic acid coat, fluorescence wavelength 1000 nm, concentration 10 mg / mL toluene
- acetone Waako Pure Chemical Industries, Ltd.
- centrifuged Hitachi After removing the supernatant with Koki Co., Ltd., CR21GIII, R3S rotor, 2500 rpm, 60 minutes
- the resulting black precipitate was dried under reduced pressure to produce PbS quantum dot powder containing no Cl element.
- Example 1 The following steps (1) to (7) were sequentially performed to produce a cell.
- Etching and cleaning of FTO substrate A portion of a 25 mm square glass substrate with fluorine-doped tin oxide (FTO) (Asahi Glass Fabrictech Co., Ltd., 25 ⁇ 25 ⁇ 1.8 mm, hereinafter referred to as FTO substrate) and Zn powder Etching was performed with a 2 mol / L hydrochloric acid aqueous solution. Ultrasonic cleaning was performed for 10 minutes each in this order with 1% by weight neutral detergent, acetone, 2-propanol (IPA), and ion-exchanged water.
- FTO substrate fluorine-doped tin oxide
- Zn powder Etching Zn powder Etching was performed with a 2 mol / L hydrochloric acid aqueous solution.
- Ultrasonic cleaning was performed for 10 minutes each in this order with 1% by weight neutral detergent, acetone, 2-propanol (IPA), and ion-
- the FTO substrate was immersed in an aqueous solution (50 mM) of titanium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) and heated at 70 ° C. for 30 minutes. After washing with water and drying, a dense TiO 2 (cTiO 2 ) layer was formed by firing at 500 ° C. for 20 minutes (temperature rising 15 minutes).
- aqueous solution 50 mM of titanium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) and heated at 70 ° C. for 30 minutes.
- cTiO 2 dense TiO 2
- the brominated perovskite raw material prepared in 2 mL of hexane dispersion of PbS quantum dot powder in which Cl element and oleate anion are coordinated (PbS quantum dot powder 10 mg / mL hexane) is stirred at room temperature (25 ° C.). 1 mL of DMF solution was added, stirred for 10 minutes, and allowed to stand for 1 hour.
- the dispersion containing PbS quantum dots coordinated with the bromine-based perovskite raw material of the lower phase (mass ratio of PbS to the total content of PbS and perovskite is 6.3%) Filtration through a 0.45 ⁇ m PTFE filter.
- the dispersion was spin-coated on the mTiO 2 layer using a spin coater (MS-100 manufactured by Mikasa Corporation) (5000 rpm ⁇ 30 sec). In addition, 20 seconds after the start of spin, 1 mL of toluene (dehydrated, manufactured by Wako Pure Chemical Industries, Ltd.), which is a poor solvent, was dripped into the spin center at a stretch.
- This light absorption layer includes a bromine-based perovskite compound CH 3 NH 3 PbBr 3 and PbS quantum dots containing a Cl element.
- the formation of the perovskite compound was confirmed by X-ray diffraction pattern, absorption spectrum and electron microscope observation, and the formation of quantum dots was confirmed from the fluorescence spectrum.
- Gold electrode deposition Using a vacuum deposition device (VTR-060M / ERH manufactured by ULVAC Kiko Co., Ltd.), 100 nm of gold is deposited on the hole transport layer under vacuum (4-5 ⁇ 10 ⁇ 3 Pa). A gold electrode was formed at a deposition rate of 8-9 ⁇ / sec.
- VTR-060M / ERH manufactured by ULVAC Kiko Co., Ltd.
- Example 2 In the formation of the light absorption layer in Example 1 (5), 0.143 g of lead iodide (PbI 2 , perovskite precursor, manufactured by Tokyo Chemical Industry Co., Ltd.) instead of lead bromide, methylamine hydrobromide A light absorbing layer was formed in the same manner as in Example 1 except that 0.049 g of methylamine hydroiodide (CH 3 NH 3 I, manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of, and a cell was produced. did.
- PbI 2 lead iodide
- methylamine hydrobromide methylamine hydrobromide
- Example 1 The light absorption layer was formed in the same manner as in Example 1 except that PbS quantum dots containing no Cl element were used in place of the PbS quantum dots containing Cl element in the formation of the light absorption layer of Example 1 (5). To form a cell.
- the light absorption layer and the photoelectric conversion element of the present invention can be suitably used as a constituent member of a next-generation solar cell.
- Photoelectric conversion element 2 Transparent substrate 3: Transparent conductive layer 4: Blocking layer 5: Porous layer 6: Light absorption layer 7: Hole transport layer 8: Electrode (positive electrode) 9: Electrode (negative electrode) 10: Light
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
本発明の光吸収層は、光吸収剤として、ペロブスカイト化合物と、Cl元素を含む量子ドットとを含有する。なお、本発明の光吸収層は、本発明の効果を損なわない範囲で前記以外の光吸収剤を含有していてもよい。
(式中、Rは1価のカチオンであり、Mは2価の金属カチオンであり、Xはハロゲンアニオンである。)
(式中、R1、R2、及びR3はそれぞれ独立に1価のカチオンであり、Mは2価の金属カチオンであり、Xはハロゲンアニオンであり、nは1以上10以下の整数である。)
本発明の光電変換素子は、前記光吸収層を有するものである。本発明の光電変換素子において、前記光吸収層以外の構成は特に制限されず、公知の光電変換素子の構成を適用することができる。また、本発明の光電変換素子は、前記光吸収層以外は公知の方法で製造することができる。
本発明の太陽電池は、前記光電変換素子を有するものである。本発明の太陽電池において、前記光吸収層以外の構成は特に制限されず、公知の太陽電池の構成を適用することができる。
キセノンランプ白色光を光源(ペクセル・テクノロジーズ株式会社製、PEC-L01)とし、太陽光(AM1.5)相当の光強度(100 mW/cm2)にて、光照射面積0.0363 cm2(2mm角)のマスク下、I-V特性計測装置(ペクセル・テクノロジーズ株式会社製、PECK2400-N)を用いて走査速度0.1 V/sec(0.01 V step)、電圧設定後待ち時間50 msec、測定積算時間50 msec、開始電圧-0.1 V、終了電圧1.1 Vの条件でセルのI-V曲線を測定した。なお、シリコンリファレンス(BS-520、0.5714 mA)で光強度補正を行った。I-V曲線から短絡電流密度(mA/cm2)、開放電圧(V)、フィルファクター(FF)、及び変換効率(%)を求めた。
IPCE(入射光に対する外部変換効率の波長依存性)は、分光感度測定装置(分光計器株式会社製、CEP-2000MLR)を用い、光照射面積0.0363cm2のマスク下、300~1200nmの波長範囲で測定を行った。波長500nmと900nmの外部量子効率を求めた。
光吸収層の吸収スペクトルは、正孔輸送剤を塗布する前の試料において、UV-Vis分光光度計(株式会社島津製作所製、SolidSpec-3700)を用い、スキャンスピード中速、サンプルピッチ1 nm、スリット幅20、検出器ユニット積分球の条件で300~1600nmの範囲を測定した。FTO(Fluorine-doped tin oxide)基板(旭硝子ファブリテック株式会社製、25×25×1.8 mm)でバックグラウンド測定を行った。
PbS量子ドット分散液の吸収スペクトルは、PbS量子ドット粉末0.1mg/mLの濃度のヘキサン分散液において、1cm角石英セルを用いて、同様に測定した。
なお、横軸;波長λ、縦軸;吸光度Aの吸収スペクトルを、横軸;エネルギーhν、縦軸;(αhν)1/2(α;吸光係数)のスペクトルに変換し、吸収の立ち上がる部分に直線をフィッティングし、その直線とベースラインとの交点をバンドギャップエネルギーとした。
光吸収層の発光スペクトルは、正孔輸送剤を塗布する前の試料において、近赤外蛍光分光計(株式会社堀場製作所製、Fluorolog)を用い、励起波長800nm(実施例1、比較例1)または励起波長815nm(実施例2、比較例2)、励起光スリット幅10nm、発光スリット幅15nm、取り込み時間0.1sec、積算2回平均、ダークオフセットオンの条件で850~1550nmの範囲を測定した。
PbS量子ドット分散液の発光スペクトルは、PbS量子ドット粉末0.1mg/mLの濃度のヘキサン分散液において、1cm角四面透明セルを用いて、同様に測定した。
光吸収層の表面平滑性は、正孔輸送剤を塗布する前の試料において、ナノスケールハイブリッド顕微鏡(AFM、株式会社キーエンス製、VN-8010)を用い、DFM-Hモード、測定範囲100μm×75μmにおいて、5か所にて傾き自動補正後のRy(Rmax)を測定し、その平均値を求めた。
光吸収層の被覆率は、正孔輸送剤を塗布する前の試料において、電界放射型高分解能走査電子顕微鏡(FE-SEM、株式会社日立製作所製、S-4800)を用いて光吸収層表面のSEM写真(拡大倍率20000倍)を測定し、そのSEM写真を画像解析ソフト(Winroof)を用い、ペンツールで光吸収層を指定し、全面積に対する光吸収層の面積比(面積率)から算出した。
光吸収層のペロブスカイト化合物の結晶子径は、正孔輸送剤を塗布する前の試料において、粉末X線回折装置(株式会社リガク製、MiniFlex600、光源CuKα、管電圧40kV、管電流15mA)を用い、サンプリング幅0.02°、走査速度20°/min、ソーラースリット(入射)5.0°、発散スリット1.250°、縦発散13.0mm、散乱スリット13.0mm、ソーラースリット(反射)5.0°、受光スリット13.0mmの条件で5~60°の範囲を測定した。ペロブスカイト化合物の結晶子径は、解析ソフト(PDXL、ver.2.6.1.2)を用いてペロブスカイト化合物の最強ピークにおいて算出した。
PbS量子ドットの結晶子径(粒径)は、ガラスホルダー上のPbS量子ドット粉末において、同様に測定し、解析ソフト(PDXL、ver.2.6.1.2)を用いてPbSのcubic(220)ピーク(2θ=42°)において算出した。
PbS量子ドット粉末中のPb濃度は、PbS量子ドット粉末を硝酸/過酸化水素混合溶液に完全溶解後、高周波誘導結合プラズマ発光分光(ICP)分析により定量した。
PbS量子ドット粉末中のオレイン酸アニオン濃度は、重トルエン(シグマ アルドリッチ ジャパン合同会社製、99atom%D、TMS0.03vol%含有)溶媒中、ジブロモメタン(和光純薬株式会社製)を内部標準物質として用い、プロトン(1H)核磁気共鳴(NMR)法により定量した。NMR装置(アジレント社製、VNMRS400)を用い、共鳴周波数400HHz、遅延時間60秒、積算32回の条件で測定し、ジブロモメタン(3.9ppm vs.TMS)の積分値に対するオレイン酸アニオンのビニルプロトン(5.5ppm vs.TMS)の積分値の比からPbS量子ドット粉末中のオレイン酸アニオン濃度を求めた。
PbS量子ドット粉末中のCl濃度は、ガラス基板上のPbS量子ドット粉末において、光電子分光法(ESCA)により定量した。ESCA装置(アルバックファイ社製、PHI Quantera SXM)を用い、X線源単色化AlKα(25W,15kV)、ビーム径100μm、測定範囲1mm2、パスエネルギー112eV、ステップ0.2eV、帯電補正ニュウトラライザーおよびAr+照射、光電子取出し角度45°、結合エネルギー補正C1s(284.8eV)の条件でESCA測定し、Pb4f、S2p、Cl2pピークから組成を求めた。
PbS量子ドットのオレイン酸アニオンからペロブスカイト原料への配位子交換時のオレイン酸アニオン除去率は、配位子交換時の上相ヘキサン溶液中のオレイン酸濃度をNMR法により定量し、配位子交換前のPbS量子ドットのオレイン酸アニオン量に対するヘキサン溶液中のオレイン酸量のモル比を計算した。
オレイン酸アニオン除去率(%)=100×上相ヘキサン溶液中のオレイン酸量/配位子交換前のPbS量子ドットのオレイン酸アニオン量
光吸収層中のPbS量子ドットを構成するPb元素に対するオレイン酸アニオンのモル比は、配位子交換前のPbS量子ドットのオレイン酸アニオン量と該オレイン酸アニオン除去率から算出した。
光吸収層中のPbS量子ドットを構成するPb元素に対するオレイン酸アニオンのモル比=(1-オレイン酸アニオン除去率/100)×(配位子交換前のPbS量子ドットのオレイン酸アニオン/Pbモル比)
光吸収層中のペロブスカイトを構成するPb元素に対するオレイン酸アニオンのモル比は、配位子交換前のPbS量子ドットのオレイン酸アニオン量と該オレイン酸アニオン除去率と、配合組成(ペロブスカイトを構成するPb元素に対するPbS量子ドットを構成するPb元素のモル比)から算出した。
光吸収層中のペロブスカイトを構成するPb元素に対するオレイン酸アニオンのモル比=(1-オレイン酸アニオン除去率/100)×(配位子交換前のPbS量子ドットのオレイン酸アニオン/Pbモル比)×(PbS量子ドットのPbモル/ペロブスカイトのPbモル比)
塩化鉛(Alfa Aesar社製、99.999%)8.34g、オレイルアミン(Acros Organics社製、C18 80%以上)64.8gを300mL三口フラスコに入れ、80℃で反応系内をダイヤフラム型真空ポンプにより脱気、窒素ガス置換後、140℃で30分間撹拌、30℃まで冷却して、Pb源白濁液を調製した。一方、硫黄結晶(和光純薬株式会社製、99.999%)0.321gをオレイルアミン8.10gに120℃で溶解後、80℃まで冷却して、S源溶液を調製した。窒素ガス雰囲気、強撹拌下、Pb源白濁液(30℃)にS源溶液をシリンジを用いて10秒で注入し、Cl元素とオレイルアミンとを含むPbS量子ドット(黒濁液)を生成させた。更に、40秒撹拌後、冷ヘキサン200mLを添加し、PbS量子ドットの結晶成長を停止させた。遠心分離(日立工機株式会社製、CR21GIII、R12Aローター、4000rpm、3分)により灰色沈殿物(塩化鉛)を除去後、黒色上澄み液に同量のエタノールを添加して黒色沈殿物を得た。減圧乾燥した黒色沈殿物4gをヘキサン100gに再分散後、遠心分離により灰色沈殿物(塩化鉛)を除去後、黒色上澄み液にオレイン酸(シグマ アルドリッチ ジャパン合同会社製、90%)10gを添加混合後、18時間静置した。更に、遠心分離により灰色沈殿物(塩化鉛)を除去後、黒色上澄み液に同量のエタノールを添加して黒色沈殿物を得た。減圧ろ過(孔径0.2μm、材質PTFE)、エタノール洗浄後、黒色ろ過物を減圧乾燥してCl元素とオレイン酸アニオンとが配位したPbS量子ドット粉末を製造した。
ESCA分析結果よりPb/S/Cl原子比=1/1.2/0.65、NMRおよびICP分析結果よりオレイン酸アニオン/Pbモル比=0.13、X線回折結果より結晶子径3.6nm、吸収スペクトルより吸収端波長1240nm、発光スペクトルより発光ピーク波長1260nmであった。
PbS core-type quantum dots(シグマ アルドリッチ ジャパン合同会社製、オレイン酸コート、蛍光波長1000nm、濃度10mg/mLトルエン)5gに同量のアセトン(和光純薬株式会社製)を混合し、遠心分離(日立工機株式会社製、CR21GIII、R3Sローター、2500rpm、60分)により上澄み除去後、得られた黒色沈殿物を減圧乾燥することにより、Cl元素を含まないPbS量子ドット粉末を製造した。
ESCA分析結果よりPb/S/Cl原子比=1/1.1/0、NMRおよびICP分析結果よりオレイン酸アニオン/Pbモル比=0.62、X線回折結果より結晶子径3.0nm、吸収スペクトルより吸収端波長1050nm、発光スペクトルより発光ピーク波長1050nmであった。
次の(1)~(7)の工程を順に行い、セルを作製した。
(1)FTO基板のエッチング、洗浄
25mm角のフッ素ドープ酸化スズ(FTO)付ガラス基板(旭硝子ファブリテック株式会社製、25×25×1.8 mm、以下、FTO基板という)の一部をZn粉末と2mol/L塩酸水溶液でエッチングした。1質量%中性洗剤、アセトン、2-プロパノール(IPA)、イオン交換水で、この順に各10分間超音波洗浄を行った。
緻密TiO2層形成工程の直前にFTO基板のオゾン洗浄を行った。FTO面を上にして、基板をオゾン発生装置(メイワフォーシス株式会社製オゾンクリーナー、PC-450UV)に入れ、30分間UV照射した。
エタノール(脱水、和光純薬工業株式会社製)123.24 gにビス(2,4-ペンタンジオナト)ビス(2-プロパノラト)チタニウム(IV)(75 %IPA溶液、東京化成工業株式会社製)4.04 gを溶解させ、スプレー溶液を調製した。ホットプレート(450℃)上のFTO基板に約30cmの高さから0.3MPaでスプレーした。20cm×8列を2回繰り返して約7gスプレー後、450℃で3分間乾燥した。この操作を更に2回行うことにより合計約21gの溶液をスプレーした。その後、このFTO基板を、塩化チタン(和光純薬工業株式会社製)水溶液(50mM)に浸漬し、70℃で30分加熱した。水洗、乾燥後、500℃で20分焼成(昇温15分)することにより、緻密TiO2(cTiO2)層を形成した。
アナターゼ型TiO2ペースト(PST-18NR、日揮触媒化成株式会社製)0.404 gにエタノール(脱水、和光純薬工業株式会社製)1.41gを加え、1時間超音波分散を行い、TiO2コート液を調製した。ドライルーム内において、上記のcTiO2層上にスピンコーター(ミカサ株式会社製、MS-100)を用いてTiO2コート液をスピンコートした(5000rpm×30sec)。125℃のホットプレート上で30分間乾燥後、500℃で30分焼成(昇温時間60分)することにより、メソポーラスTiO2(mTiO2)層を形成した。
光吸収層および正孔輸送層の形成は、グローブボックス内にて行った。臭化鉛(PbBr2、ペロブスカイト前駆体用、東京化成工業株式会社製)0.114g、メチルアミン臭化水素酸塩(CH3NH3Br、東京化成工業株式会社製)0.035g、脱水N,N-ジメチルホルムアミド(脱水DMF、和光純薬工業株式会社製)1 mLを混合、室温撹拌し、0.31M臭素系ペロブスカイト(CH3NH3PbBr3)原料のDMF溶液(無色透明)を調製した。室温(25℃)、撹拌下、上記のCl元素とオレイン酸アニオンとが配位したPbS量子ドット粉末のヘキサン分散液(PbS量子ドット粉末10mg/mLヘキサン)2mLに上記調製した臭素系ペロブスカイト原料のDMF溶液1mLを添加し、10分間撹拌後、1時間静置した。上相の無色透明ヘキサン溶液を除去後、下相の臭素系ペロブスカイト原料が配位したPbS量子ドットを含む分散液(PbSとペロブスカイトの合計含有量に対するPbSの質量比は6.3%)を孔径0.45μmのPTFEフィルターでろ過した。上記のmTiO2層上にスピンコーター(ミカサ株式会社製MS-100)を用いて前記分散液をスピンコートした(5000rpm×30sec)。なお、スピン開始20秒後に貧溶媒であるトルエン(脱水、和光純薬工業株式会社製)1mLをスピン中心部に一気に滴下した。スピンコート後すぐに100℃ホットプレート上で10分間乾燥した。DMFを浸み込ませた綿棒でFTOとのコンタクト部分を拭き取った後、70℃で60分間乾燥させ、光吸収層を形成した。この光吸収層には臭素系ペロブスカイト化合物CH3NH3PbBr3、及びCl元素を含むPbS量子ドットが含まれる。ペロブスカイト化合物が生成していることはX線回折パターン、吸収スペクトル及び電子顕微鏡観察により、また、量子ドットが形成していることは蛍光スペクトルから確認した。
ビス(トリフルオロメタンスルホニル)イミドリチウム(LiTFSI、和光純薬工業株式会社製)9.1 mg、[トリス(2-(1H-ピラゾール-1-イル)-4-テrt-ブチルピリジン)コバルト(III) トリス(ビス(トリフルオロメチルスルホニル(イミド))(Co(4-tButylpyridyl-2-1H-pyrazole)3.3TFSI、和光純薬工業株式会社製)8.7 mg、2,2’,7,7’-テトラキス[N,N-ジ-p-メトキシフェニルアミノ]-9,9’-スピロビフルオレン(Spiro-OMeTAD、和光純薬工業株式会社製)72.3 mg、クロロベンゼン(ナカライテスク株式会社製)1 mL、トリブチルホスフィン(TBP、シグマアルドリッチ製)28.8 μLを混合し、室温撹拌して正孔輸送剤(HTM)溶液(黒紫色透明)を調製した。使用直前に、HTM溶液を孔径0.45 μmのPTFEフィルターでろ過した。上記の光吸収層上にスピンコーター(ミカサ株式会社、MS-100)を用いてHTM溶液をスピンコートした(4000 rpm×30sec)。スピンコート後すぐに70℃ホットプレート上で30分間乾燥した。乾燥後、クロロベンゼンを浸み込ませた綿棒でFTOとのコンタクト部分を拭き取った後、DMFを浸み込ませた綿棒で基板裏面全体を拭き取り、更に70℃のホットプレート上で数分間乾燥させ、正孔輸送層を形成した。
真空蒸着装置(アルバック機工株式会社製VTR-060M/ERH)を用い、真空下(4~5×10-3 Pa)、上記の正孔輸送層上に金を100nm蒸着(蒸着速度8~9 Å/sec)して、金電極を形成した。
実施例1の(5)光吸収層の形成において、臭化鉛の代わりにヨウ化鉛(PbI2、ペロブスカイト前駆体用、東京化成工業株式会社製)0.143g、メチルアミン臭化水素酸塩の代わりにメチルアミンヨウ化水素酸塩(CH3NH3I、東京化成工業株式会社製)0.049gを用いた以外は、実施例1と同様にして光吸収層を形成し、セルを作製した。
実施例1の(5)光吸収層の形成において、上記のCl元素を含むPbS量子ドットの代わりにCl元素を含まないPbS量子ドットを用いた以外は、実施例1と同様にして光吸収層を形成し、セルを作製した。
実施例2の(5)光吸収層の形成において、上記のCl元素を含むPbS量子ドットの代わりにCl元素を含まないPbS量子ドットを用いた以外は、実施例2と同様にして光吸収層を形成し、セルを作製した。
2:透明基板
3:透明導電層
4:ブロッキング層
5:多孔質層
6:光吸収層
7:正孔輸送層
8:電極(正極)
9:電極(負極)
10:光
Claims (21)
- ペロブスカイト化合物と、Cl元素を含む量子ドットと、を含有する光吸収層。
- 前記ペロブスカイト化合物は、好ましくは下記一般式(1)で表される化合物及び下記一般式(2)で表される化合物から選ばれる1種以上であり、より好ましくは下記一般式(1)で表される化合物である請求項1に記載の光吸収層。
RMX3 (1)
(式中、Rは1価のカチオンであり、Mは2価の金属カチオンであり、Xはハロゲンアニオンである。)
R1R2R3 n-1MnX3n+1 (2)
(式中、R1、R2、及びR3はそれぞれ独立に1価のカチオンであり、Mは2価の金属カチオンであり、Xはハロゲンアニオンであり、nは1以上10以下の整数である。) - 前記Xは、好ましくはフッ素アニオン、塩素アニオン、臭素アニオン、又はヨウ素アニオンであり、より好ましくはヨウ素アニオン、塩素アニオン、又は臭素アニオンであり、更に好ましくはヨウ素アニオン、又は臭素アニオンであり、より更に好ましくは臭素アニオンである請求項2に記載の光吸収層。
- 前記Rは、好ましくはアルキルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、より好ましくはモノアルキルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、更に好ましくはメチルアンモニウムイオン、エチルアンモニウムイオン、ブチルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、より更に好ましくはメチルアンモニウムイオンである請求項2又は3に記載の光吸収層。
- 前記R1、R2、及びR3は、好ましくはアルキルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、より好ましくはモノアルキルアンモニウムイオンであり、更に好ましくはメチルアンモニウムイオン、エチルアンモニウムイオン、ブチルアンモニウムイオン、ヘキシルアンモニウムイオン、オクチルアンモニウムイオン、デシルアンモニウムイオン、ドデシルアンモニウムイオン、テトラデシルアンモニウムイオン、ヘキサデシルアンモニウムイオン、及びオクタデシルアンモニウムイオンから選ばれる1種以上である請求項2~4のいずれかに記載の光吸収層。
- 前記Mは、好ましくはPb2+、Sn2+、又はGe2+であり、より好ましくはPb2+、又はSn2+であり、更に好ましくはPb2+である請求項2~5のいずれかに記載の光吸収層。
- 前記ペロブスカイト化合物のバンドギャップエネルギーは、好ましくは1.5eV以上、より好ましくは1.7eV以上、更に好ましくは2.0eV以上、より更に好ましくは2.1eV以上、より更に好ましくは2.2eV以上であり、好ましくは4.0eV以下、より好ましくは3.6eV以下、更に好ましくは3.0eV以下、より更に好ましくは2.4eV以下である請求項1~6のいずれかに記載の光吸収層。
- 前記Cl元素を含む量子ドットのバンドギャップエネルギーは、好ましくは0.2eV以上、より好ましくは0.7eV以上、更に好ましくは0.8eV以上、より更に好ましくは0.9eV以上、より更に好ましくは1.0eV以上であり、好ましくは前記ペロブスカイト化合物のバンドギャップエネルギー以下、より好ましくは1.6eV以下、更に好ましくは1.4eV以下、より更に好ましくは1.2eV以下、より更に好ましくは1.1eV以下である請求項1~7のいずれかに記載の光吸収層。
- 前記Cl元素を含む量子ドットは、好ましくは金属酸化物又は金属カルコゲナイドを含み、より好ましくは金属カルコゲナイドを含む請求項1~8のいずれかに記載の光吸収層。
- 前記Cl元素を含む量子ドットは、好ましくは金属酸化物又は金属カルコゲナイドの表面に少なくともCl元素が配位した化合物、より好ましくは金属カルコゲナイドの表面に少なくともCl元素が配位した化合物である請求項1~8のいずれかに記載の光吸収層。
- 前記Cl元素を含む量子ドットは、好ましくはPb元素を含み、より好ましくはPbS又はPbSeを含み、更に好ましくはPbSを含む請求項1~10のいずれかに記載の光吸収層。
- 前記ペロブスカイト化合物と前記Cl元素を含む量子ドットの合計含有量に対する前記Cl元素を含む量子ドットの含有割合は、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは2質量%以上、より更に好ましくは4質量%以上であり、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは7質量%以下である請求項1~11のいずれかに記載の光吸収層。
- 前記Cl元素を含む量子ドットは、量子ドットを構成する金属元素に対するCl元素の原子比が、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.3以上であり、好ましくは1以下、より好ましくは0.8以下、更に好ましくは0.7以下である請求項1~12のいずれかに記載の光吸収層。
- ペロブスカイト化合物又はその前駆体と、Cl元素を含む量子ドットと、を含有する分散液。
- 前記分散液は好ましくは溶剤を含有し、前記分散液の溶剤は、好ましくは極性溶剤、より好ましくはケトン類、アミド系溶剤、及びジメチルスルホキシドから選ばれる少なくとも1種の溶剤、更に好ましくはアミド系溶剤、より更に好ましくはN,N-ジメチルホルムアミドである請求項14に記載の分散液。
- 前記分散液中のペロブスカイト化合物又はその前駆体の金属濃度は、好ましくは0.1mol/L以上、より好ましくは0.2mol/L以上、更に好ましくは0.3mol/L以上であり、好ましくは1.5mol/L以下、より好ましくは1.0mol/L以下、更に好ましくは0.5mol/L以下である請求項14又は15に記載の分散液。
- 前記分散液中のCl元素を含む量子ドットの固形分濃度は、好ましくは1mg/mL以上、より好ましくは5mg/mL以上、更に好ましくは10mg/mL以上であり、好ましくは100mg/mL以下、より好ましくは50mg/mL以下、更に好ましくは30mg/mL以下である請求項14~16のいずれかに記載の分散液。
- ペロブスカイト化合物と、Cl元素を含む量子ドットと、を含有する光吸収層の製造方法であって、ペロブスカイト化合物又はその前駆体と、Cl元素を含む量子ドットと、を混合する工程を含む光吸収層の製造方法。
- 前記混合する工程は、好ましくはウエットプロセスの工程である請求項18に記載の光吸収層の製造方法。
- 請求項1~13のいずれかに記載の光吸収層を有する光電変換素子。
- 請求項20に記載の光電変換素子を有する太陽電池。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/009266 WO2018163325A1 (ja) | 2017-03-08 | 2017-03-08 | 光吸収層、光電変換素子、及び太陽電池 |
EP17900185.4A EP3595018A4 (en) | 2017-03-08 | 2017-03-08 | LIGHT ABSORPTION LAYER, ELEMENT FOR PHOTOELECTRIC CONVERSION AND SOLAR CELL |
CN201780087888.9A CN110383497B (zh) | 2017-03-08 | 2017-03-08 | 光吸收层及其制法、分散液、光电转换元件、太阳能电池 |
US16/491,903 US20200013558A1 (en) | 2017-03-08 | 2017-03-08 | Light absorption layer, photoelectric conversion element, and solar cell |
JP2018540181A JP6620246B2 (ja) | 2017-03-08 | 2017-03-08 | 光吸収層、光電変換素子、及び太陽電池 |
KR1020197022692A KR102165379B1 (ko) | 2017-03-08 | 2017-03-08 | 광 흡수층, 광전 변환 소자, 및 태양 전지 |
TW106144343A TWI746738B (zh) | 2017-03-08 | 2017-12-18 | 光吸收層、光電轉換元件、及太陽電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/009266 WO2018163325A1 (ja) | 2017-03-08 | 2017-03-08 | 光吸収層、光電変換素子、及び太陽電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018163325A1 true WO2018163325A1 (ja) | 2018-09-13 |
Family
ID=63447398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/009266 WO2018163325A1 (ja) | 2017-03-08 | 2017-03-08 | 光吸収層、光電変換素子、及び太陽電池 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20200013558A1 (ja) |
EP (1) | EP3595018A4 (ja) |
JP (1) | JP6620246B2 (ja) |
KR (1) | KR102165379B1 (ja) |
CN (1) | CN110383497B (ja) |
TW (1) | TWI746738B (ja) |
WO (1) | WO2018163325A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020105087A1 (ja) * | 2018-11-19 | 2020-05-28 | 花王株式会社 | 光吸収層、光電変換素子、及び太陽電池 |
RU2745015C2 (ru) * | 2019-04-17 | 2021-03-18 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ получения фоточувствительных слоев селенида свинца |
WO2021112072A1 (ja) | 2019-12-02 | 2021-06-10 | 花王株式会社 | 光吸収層及びその製造方法、分散液、光電変換素子、並びに太陽電池 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11708635B2 (en) | 2020-06-12 | 2023-07-25 | Applied Materials, Inc. | Processing chamber condition and process state monitoring using optical reflector attached to processing chamber liner |
US12009191B2 (en) | 2020-06-12 | 2024-06-11 | Applied Materials, Inc. | Thin film, in-situ measurement through transparent crystal and transparent substrate within processing chamber wall |
US20230082643A1 (en) * | 2021-09-13 | 2023-03-16 | Lawrence Livermore National Security, Llc | Surface treatment for colloidal stability of in-solution ligand exchanged quantum dots |
US12031910B2 (en) | 2021-09-15 | 2024-07-09 | Applied Materials, Inc. | Transmission corrected plasma emission using in-situ optical reflectometry |
CN116507139B (zh) * | 2023-06-30 | 2023-10-20 | 长江三峡集团实业发展(北京)有限公司 | 长支链烷基铵修饰的甲脒钙钛矿太阳能电池及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016109902A2 (en) * | 2015-01-05 | 2016-07-14 | The Governing Council Of The University Of Toronto | Quantum-dot-in-perovskite solids |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104388089B (zh) * | 2014-11-04 | 2017-06-06 | 深圳Tcl新技术有限公司 | 一种杂化钙钛矿量子点材料的制备方法 |
CN104576929A (zh) * | 2014-11-26 | 2015-04-29 | 华北电力大学 | 一种钙钛矿-硫化铅量子点叠层太阳电池及其制备方法 |
CN105609643B (zh) * | 2015-12-21 | 2017-12-05 | 永春新盛环保科技有限公司 | 一种钙钛矿型太阳能电池及制备方法 |
CN105576150B (zh) * | 2015-12-22 | 2017-12-19 | 成都新柯力化工科技有限公司 | 一种量子点尺寸梯度变化的钙钛矿型太阳能电池及制备方法 |
-
2017
- 2017-03-08 CN CN201780087888.9A patent/CN110383497B/zh active Active
- 2017-03-08 KR KR1020197022692A patent/KR102165379B1/ko active IP Right Grant
- 2017-03-08 JP JP2018540181A patent/JP6620246B2/ja active Active
- 2017-03-08 EP EP17900185.4A patent/EP3595018A4/en active Pending
- 2017-03-08 US US16/491,903 patent/US20200013558A1/en not_active Abandoned
- 2017-03-08 WO PCT/JP2017/009266 patent/WO2018163325A1/ja unknown
- 2017-12-18 TW TW106144343A patent/TWI746738B/zh not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016109902A2 (en) * | 2015-01-05 | 2016-07-14 | The Governing Council Of The University Of Toronto | Quantum-dot-in-perovskite solids |
Non-Patent Citations (9)
Title |
---|
ACS NANO, vol. 8, 2014, pages 6363 - 6371 |
CHEMICAL REVIEW, vol. 110, 2010, pages 6595 |
IP ALEXANDER, ET AL.: "Hybrid passivated colloidal quantum dot solids", NATURE NANOTECHNOLOGY, vol. 7, no. 9, September 2012 (2012-09-01), pages 577 - 582, XP055551267 * |
J. AM. CHEM. SOC., vol. 131, 2009, pages 6050 - 6051 |
J.ZHANG ET AL.: "Diffusion-Controlled Synthesis of PbS and PbSe Quantum Dots with in situ Halide Passivation for Quantum Dot Solar Cells", ACS NANO, vol. 8, no. 1, 28 January 2014 (2014-01-28), pages 614 - 622, XP055551263 * |
NANO LETT., vol. 15, 2015, pages 7539 - 7543 |
R.WANG ET AL.: "Colloidal quantum dot ligand engineering for high performance solar cells", ENERGY & ENVIRONMENTAL SCIENCE, vol. 9, no. 4, April 2016 (2016-04-01), pages 1130 - 1143, XP055551261 * |
Z. NING ET AL.: "All-Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution-Phase Halide Passivation", ADVANCED MATERIALS, vol. 24, no. 47, 11 December 2012 (2012-12-11), pages 6295 - 6299, XP055551271 * |
Z.YANG ET AL.: "Colloidal Quantum dot Photovoltaics Enhanced by Perovskite Shelling", NANO LETTERS, vol. 15, no. 11, 11 November 2015 (2015-11-11), pages 7539 - 7543, XP055551273 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020105087A1 (ja) * | 2018-11-19 | 2020-05-28 | 花王株式会社 | 光吸収層、光電変換素子、及び太陽電池 |
JPWO2020105087A1 (ja) * | 2018-11-19 | 2021-10-28 | 花王株式会社 | 光吸収層、光電変換素子、及び太陽電池 |
JP7345498B2 (ja) | 2018-11-19 | 2023-09-15 | 花王株式会社 | 光吸収層、光電変換素子、及び太陽電池 |
RU2745015C2 (ru) * | 2019-04-17 | 2021-03-18 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ получения фоточувствительных слоев селенида свинца |
WO2021112072A1 (ja) | 2019-12-02 | 2021-06-10 | 花王株式会社 | 光吸収層及びその製造方法、分散液、光電変換素子、並びに太陽電池 |
Also Published As
Publication number | Publication date |
---|---|
KR20190126057A (ko) | 2019-11-08 |
TW201902830A (zh) | 2019-01-16 |
JPWO2018163325A1 (ja) | 2019-03-14 |
US20200013558A1 (en) | 2020-01-09 |
CN110383497B (zh) | 2020-11-03 |
EP3595018A1 (en) | 2020-01-15 |
CN110383497A (zh) | 2019-10-25 |
EP3595018A4 (en) | 2020-11-04 |
JP6620246B2 (ja) | 2019-12-11 |
KR102165379B1 (ko) | 2020-10-14 |
TWI746738B (zh) | 2021-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6317535B1 (ja) | 光吸収層、光電変換素子、及び太陽電池 | |
JP6654250B2 (ja) | 光吸収層、光電変換素子、及び太陽電池 | |
JP6620246B2 (ja) | 光吸収層、光電変換素子、及び太陽電池 | |
JP6343406B1 (ja) | 光吸収層とその製造方法、分散液、光電変換素子、及び中間バンド型太陽電池 | |
JP6960460B2 (ja) | 光吸収層、光電変換素子、及び太陽電池 | |
WO2021112072A1 (ja) | 光吸収層及びその製造方法、分散液、光電変換素子、並びに太陽電池 | |
JP7345498B2 (ja) | 光吸収層、光電変換素子、及び太陽電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018540181 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17900185 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197022692 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017900185 Country of ref document: EP Effective date: 20191008 |