WO2021112072A1 - 光吸収層及びその製造方法、分散液、光電変換素子、並びに太陽電池 - Google Patents

光吸収層及びその製造方法、分散液、光電変換素子、並びに太陽電池 Download PDF

Info

Publication number
WO2021112072A1
WO2021112072A1 PCT/JP2020/044650 JP2020044650W WO2021112072A1 WO 2021112072 A1 WO2021112072 A1 WO 2021112072A1 JP 2020044650 W JP2020044650 W JP 2020044650W WO 2021112072 A1 WO2021112072 A1 WO 2021112072A1
Authority
WO
WIPO (PCT)
Prior art keywords
light absorption
absorption layer
less
amino acid
aliphatic amino
Prior art date
Application number
PCT/JP2020/044650
Other languages
English (en)
French (fr)
Inventor
裕平 尾込
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to KR1020227019796A priority Critical patent/KR20220107206A/ko
Priority to US17/781,390 priority patent/US20230006148A1/en
Priority to CN202080083493.3A priority patent/CN114788031A/zh
Priority to EP20897175.4A priority patent/EP4071840A4/en
Priority to JP2021562649A priority patent/JPWO2021112072A1/ja
Publication of WO2021112072A1 publication Critical patent/WO2021112072A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a light absorption layer and a method for manufacturing the same, a dispersion liquid for manufacturing the light absorption layer, a photoelectric conversion element having the light absorption layer, and a solar cell having the photoelectric conversion element.
  • Photoelectric conversion elements that convert light energy into electrical energy are used in solar cells, optical sensors, copiers, etc.
  • photoelectric conversion elements solar cells
  • solar cells that utilize sunlight, which is an inexhaustible clean energy, are attracting attention.
  • Quantum dots are inorganic nanoparticles having a crystal structure having a particle size of about 20 nm or less, and exhibit physical properties different from those of a bulk body due to the manifestation of the quantum size effect. For example, it is known that the bandgap energy increases (the absorption wavelength becomes shorter) as the particle size of the quantum dots decreases, and lead sulfide (PbS) having a bandgap energy of about 1.2 eV with a particle size of about 3 nm. ) It has been reported that quantum dots are used in quantum dot solar cells (ACS Nano 2014, 8, 614-622).
  • quantum dot solar cells typified by PbS and PbSe quantum dots are capable of photoelectric conversion in the near infrared light region (800 to 2500 nm), but cannot obtain a high voltage due to their small bandgap energy. Conversion efficiency is low.
  • Perovskite solar cells which have been reported to have a rapid increase in photoelectric conversion efficiency in recent years, are the most promising candidates for next-generation solar cells.
  • This perovskite solar cell includes, for example, a photoelectric conversion element using a perovskite compound (CH 3 NH 3 PbI 3 ) composed of a cation such as methylammonium and a metal halide salt such as lead iodide as a light absorption layer. (J. Am. Chem. Soc. 2009, 131, 6050-6051).
  • Perovskite solar cells are capable of photoelectric conversion in the visible light region (400 to 800 nm) and show relatively high conversion efficiency, but they cannot use the near infrared light region, so they are not suitable from the viewpoint of effective use of sunlight. It is enough.
  • a light absorption layer for forming a high conversion efficiency photoelectric conversion element and a solar cell capable of photoelectric conversion in both the visible light region and the near infrared light region, and contains a perovskite compound and a Cl element.
  • a light absorption layer containing quantum dots has been proposed (WO2018 / 163325).
  • a light absorption layer for forming a high conversion efficiency photoelectric conversion element and a solar cell capable of photoelectric conversion in both the visible light region and the near infrared light region, and is a perovskite compound, a halogen element and an organic substance.
  • a light absorption layer containing quantum dots containing a ligand and having a molar ratio of the organic ligand to a metal element constituting the quantum dots of 0.01 or more and 0.4 or less has been proposed ( WO2018 / 163327).
  • the method for improving the quantum yield include a method of filling the light absorption layer with quantum dots at a high density.
  • the content of the quantum dots in the light absorption layer is increased, a large number of voids are generated in the light absorption layer, or the coverage of the light absorption layer is lowered, so that the quantum yield is lowered.
  • the problem arose.
  • the present invention relates to a photoelectric conversion element having excellent photoelectric conversion efficiency, a light absorption layer for forming a solar cell, a photoelectric conversion element having the light absorption layer, and a solar cell.
  • the present invention also relates to a method for producing a light absorption layer having few voids.
  • the present inventor has found that the light absorption layer containing a perovskite compound and quantum dots containing an aliphatic amino acid has few voids, and the photoelectric conversion efficiency of the solar cell is improved by using the light absorption layer. ..
  • the present invention relates to a light absorption layer containing a perovskite compound and quantum dots containing an aliphatic amino acid.
  • the present invention also relates to a dispersion containing a perovskite compound or a precursor thereof and quantum dots containing an aliphatic amino acid.
  • the present invention relates to a method for producing a light absorbing layer in which quantum dots containing aliphatic amino acids are dispersed in a matrix of perovskite compounds, which comprises the following steps 1, 2 and 3.
  • Step 1 A step of exchanging the organic ligand of a quantum dot containing an organic ligand with an aliphatic amino acid to obtain a quantum dot solid containing the aliphatic amino acid as a ligand (step 2).
  • Step (Step 3) Obtained in Step 2 by mixing the quantum dot solid obtained in Step 1 with a solution or mixed solution containing one or more substances selected from the perovskite compound and its precursor to obtain a dispersion.
  • a perovskite compound and quantum dots containing aliphatic amino acids as a material for forming a light absorption layer, in addition to light in a short wavelength region that can be absorbed by the perovskite compound, near infrared rays that can be absorbed by the quantum dots, etc. Since it can absorb light in a wide wavelength region including light in a long wavelength region, it is possible to obtain a photoelectric conversion element having a photoelectric conversion function in a wide wavelength region.
  • the photoelectric conversion efficiency of the light absorption layer (composite film) containing the perovskite compound and the quantum dots is improved.
  • the cause is not clear, but it is presumed as follows.
  • An amino group which is a polar group, is present on the surface of the quantum dot, and the amino group interacts with a polar solvent (for example, N, N-dimethylformamide, etc.) in a dispersion for producing a light absorption layer.
  • a polar solvent for example, N, N-dimethylformamide, etc.
  • the light absorption layer of the present invention it is possible to obtain a photoelectric conversion element and a solar cell having excellent photoelectric conversion efficiency.
  • FIG. 1 It is the schematic sectional drawing which shows an example of the structure of the photoelectric conversion element of this invention. It is a cross-sectional SEM image of the light absorption layer produced in Example 2. It is a cross-sectional SEM image of the light absorption layer produced in Comparative Example 1. It is a schematic diagram which shows the solid in which the quantum dot and the perovskite compound are composited in the light absorption layer produced in Example 2. FIG. It is a schematic diagram which shows the solid in which the quantum dot and the perovskite compound are composite
  • the light absorbing layer of the present invention contains a perovskite compound and quantum dots containing an aliphatic amino acid as a light absorbing agent.
  • the light absorbing layer of the present invention may contain a light absorbing agent other than the above as long as the effect of the present invention is not impaired.
  • the light absorption layer of the present invention may have an intermediate band.
  • the intermediate band is an energy level formed by the interaction between quantum dots in the band gap of the perovskite compound, and exists at an energy position near the lower end of the conduction band and / or the upper end of the valence band of the quantum dots.
  • the intermediate band is formed, for example, by arranging quantum dots at high density in a matrix of perovskite compounds.
  • an intermediate band is present in the band gap of the perovskite compound, for example, two-step light absorption occurs in which electrons photoexcited from the valence band of the perovskite compound to the intermediate band are further photoexcited from the intermediate band to the conduction band of the perovskite compound. Therefore, the presence of the intermediate band can be confirmed by measuring the quantum yield of the two-step light absorption, that is, the difference in the external quantum yield.
  • the perovskite compound is preferably one or more selected from the compound represented by the following general formula (1) and the compound represented by the following general formula (2), and more preferably. Is a compound represented by the following general formula (1).
  • R is a monovalent cation
  • M is a divalent metal cation
  • X is a halogen anion.
  • the R is a monovalent cation, and examples thereof include a cation of a Group 1 element of the periodic table and an organic cation. From the viewpoint of improving the photoelectric conversion efficiency, the R is preferably an organic cation.
  • Examples of cations of Group 1 elements of the periodic table include Li + , Na + , K + , and Cs + .
  • Examples of the organic cation include an ammonium ion which may have a substituent and a phosphonium ion which may have a substituent.
  • ammonium ion which may have a substituent
  • alkylammonium ion, formamidinium ion and arylammonium ion examples include alkylammonium ion, formamidinium ion and arylammonium ion, and from the viewpoint of improving durability and photoelectric conversion efficiency, alkylammonium ion and alkylammonium ion are preferable.
  • One or more selected from form amidinium ion more preferably one or more selected from monoalkylammonium ion and formamidinium ion, still more preferably methylammonium ion, ethylammonium ion, butylammonium ion and form. It is one or more selected from amidinium ions, and more preferably methyl ammonium ions.
  • the R 1 , R 2 , and R 3 are independently monovalent cations, and any or all of R 1 , R 2 , and R 3 may be the same.
  • cations of Group 1 elements of the periodic table and organic cations can be mentioned.
  • cations of Group 1 elements of the periodic table include Li + , Na + , K + , and Cs + .
  • examples of the organic cation include an ammonium ion which may have a substituent and a phosphonium ion which may have a substituent.
  • ammonium ion which may have a substituent include alkylammonium ion, formamidinium ion and arylammonium ion, and from the viewpoint of improving durability and photoelectric conversion efficiency, alkylammonium ion and alkylammonium ion are preferable.
  • formamidinium ions more preferably monoalkylammonium ions, still more preferably methylammonium ions, ethylammonium ions, butylammonium ions, hexylammonium ions, octylammonium ions, decylammonium ions, One or more selected from dodecylammonium ion, tetradecylammonium ion, hexadecylammonium ion, and octadecylammonium ion.
  • n is an integer of 1 or more and 10 or less, and is preferably 1 or more and 4 or less from the viewpoint of improving durability and photoelectric conversion efficiency.
  • the M is a divalent metal cation, for example, Pb 2+ , Sn 2+ , Hg 2+ , Cd 2+ , Zn 2+ , Mn 2+ , Cu 2+ , Ni 2+ , Fe 2+ , Co 2+ , Pd 2+ , Ge 2+ , Y. 2+ , Eu 2+ and the like can be mentioned.
  • M is preferably Pb 2+ , Sn 2+ , or Ge 2+ , more preferably Pb 2+ , or Sn 2+ , and even more preferably Pb 2+. Is.
  • the X is a halogen anion, and examples thereof include a fluorine anion, a chlorine anion, a bromine anion, and an iodine anion.
  • the X is preferably a fluorine anion, a chlorine anion, or a bromine anion, more preferably a chlorine anion, or a bromine anion, and further preferably a bromine anion, in order to obtain a perovskite compound having a desired band gap energy. Is.
  • the perovskite compound preferably has a bandgap energy of 1.5 eV or more and 4.0 eV or less from the viewpoint of improving the photoelectric conversion efficiency.
  • the perovskite compound may be used alone or in combination of two or more with different bandgap energies.
  • the bandgap energy of the perovskite compound is preferably 1.7 eV or more, more preferably 2.0 eV or more, still more preferably 2.1 eV or more, still more preferably 2.2 eV, from the viewpoint of improving the photoelectric conversion efficiency (voltage). From the viewpoint of improving the photoelectric conversion efficiency (current), it is preferably 3.6 eV or less, more preferably 3.0 eV or less, and further preferably 2.4 eV or less.
  • the bandgap energies of the perovskite compound and the quantum dots can be obtained from the absorption spectrum measured at 25 ° C. by the method described in Examples described later. The wavelength corresponding to the bandgap energy obtained from the absorption spectrum is called the absorption edge wavelength.
  • CH 3 NH 3 PbBr 3 is preferable
  • CH 3 NH 3 PbBr 3 is more preferable.
  • Examples of the compound represented by the above general formula (2) having a band gap energy of 1.5 eV or more and 4.0 eV or less include (C 4 H 9 NH 3 ) 2 PbI 4 and (C 6 H 13 NH 3 ).
  • the crystallite diameter of the perovskite compound in the light absorption layer is preferably 10 nm or more, more preferably 20 nm or more, still more preferably 30 nm or more, still more preferably 40 nm, from the viewpoint of improving carrier transfer efficiency and improving photoelectric conversion efficiency. From the same viewpoint, it is preferably 1000 nm or less.
  • the perovskite compound can be produced, for example, from a precursor of the perovskite compound as described later.
  • the precursor of the perovskite compound include a combination of a compound represented by MX 2 and a compound represented by RX when the perovskite compound is a compound represented by the general formula (1).
  • the perovskite compound is the compound represented by the general formula (2), the compound represented by MX 2 , the compound represented by R 1 X, the compound represented by R 2 X, and any R Examples thereof include a combination with one or more selected from the compounds represented by 3 X.
  • Perovskite compounds in the light absorption layer include, for example, elemental analysis, infrared (IR) spectra, Raman spectra, nuclear magnetic resonance (NMR) spectra, X-ray diffraction patterns, absorption spectra, emission spectra, electron microscopy, and electron diffraction. It can be identified by a conventional method such as.
  • the quantum dot containing an aliphatic amino acid is a quantum dot containing an aliphatic amino acid in addition to the components constituting the crystal structure, and the state of the aliphatic amino acid is not particularly limited, but the aliphatic amino acid is preferably formed on the surface of the quantum dot. It is a coordinated compound (a compound in which an aliphatic amino acid is coordinated with a metal element constituting a quantum dot). In addition, other ligands may be coordinated with the aliphatic amino acid on the surface of the quantum dot.
  • preferred embodiments of quantum dots containing aliphatic amino acids are preferred embodiments common to the light absorption layer and its raw materials, except for preferred embodiments of ligands other than aliphatic amino acids.
  • Examples of the quantum dot containing an aliphatic amino acid include a compound containing a metal oxide or a metal chalcogenide (for example, a sulfide, a serene product, a telluride product, etc.), and the above is preferable from the viewpoint of excellent photoelectric conversion efficiency.
  • Examples thereof include compounds in which an aliphatic amino acid is coordinated on the surface of a metal oxide or a metal chalcogenide. From the viewpoint of improving the photoelectric conversion efficiency, a compound in which an aliphatic amino acid is coordinated on the surface of the metal chalcogenide is preferable.
  • metal chalcogenide examples include PbS, PbSe, PbTe, CdS, CdSe, CdTe, Sb 2 S 3 , Bi 2 S 3 , Ag 2 S, Ag 2 Se, Ag 2 Te, Au 2 S, and Au 2.
  • Se, Au 2 Te, Cu 2 S, Cu 2 Se, Cu 2 Te, Fe 2 S, Fe 2 Se, Fe 2 Te, In 2 S 3 , SnS, SnSe, SnTe, CuInS 2 , CuInSe 2 , CuInTe 2 , EuS, EuSe, EuTe and the like can be mentioned.
  • Quantum dots containing an aliphatic amino acid preferably contain a Pb element, more preferably PbS or PbSe, and even more preferably PbS, from the viewpoint of excellent photoelectric conversion efficiency. Further, in order to increase the interaction between the perovskite compound and the quantum dots, it is preferable that the metal constituting the perovskite compound and the metal constituting the quantum dots are the same metal.
  • the aliphatic amino acid may be a straight chain amino acid or a branched chain amino acid.
  • the linear amino acid means an aliphatic amino acid having a linear carbon chain structure
  • the branched chain amino acid means an aliphatic amino acid having a branched carbon chain structure.
  • the aliphatic amino acid is preferably a linear amino acid from the viewpoint of facilitating the coordination of the aliphatic amino acid on the surface of the quantum dots and improving the dispersibility of the quantum dots in the light absorbing layer and the dispersion liquid.
  • the carbon number of the aliphatic amino acid increases the carrier transfer rate in the light absorption layer to improve the photoelectric conversion efficiency, and reduces the distance between the quantum dots to form the quantum dots in the matrix of the perovskite compound. From the viewpoint of high-density dispersion, it is preferably 10 or less, more preferably 8 or less, still more preferably 7 or less, and from the viewpoint of ensuring dispersibility in the coating solution, it is preferably 2 or more, more preferably 3 or more. Is.
  • the amino group of the aliphatic amino acid may be bonded to any carbon in the carbon chain, but the aliphatic amino acid can be easily coordinated on the surface of the quantum dot to facilitate the coordination of the aliphatic amino acid in the light absorbing layer and the dispersion liquid. From the viewpoint of improving the dispersibility of the quantum dots, it is preferably bonded to the primary carbon.
  • the bandgap energy of the quantum dots containing the aliphatic amino acid is preferably 0.2 eV or more from the viewpoint of complementing the bandgap energy that the perovskite compound does not have and improving the photoelectric conversion efficiency in the near infrared light region. It is less than or equal to the bandgap energy of the perovskite compound.
  • the quantum dots containing the aliphatic amino acids may be used alone or in combination of two or more having different bandgap energies.
  • the band gap energy equal to or less than the band gap energy of the perovskite compound which is the upper limit of the band gap energy of the quantum dot containing the aliphatic amino acid, is defined as. It is a band gap energy equal to or less than the maximum value of the band gap energy of two or more kinds of perovskite compounds.
  • the bandgap energy of the quantum dots can be obtained from the absorption spectrum measured at 25 ° C. by the method described in Examples described later.
  • the band gap energy of the quantum dots containing the aliphatic amino acid is preferably 0.7 eV or more, more preferably 0.8 eV or more, still more preferably 0.9 eV or more, and further, from the viewpoint of improving the photoelectric conversion efficiency (voltage). It is preferably 1.0 eV or more, and is preferably 1.6 eV or less, more preferably 1.5 eV or less, still more preferably 1.4 eV or less, from the viewpoint of improving the photoelectric conversion efficiency (current).
  • the difference between the band gap energy of the perovskite compound and the band gap energy of the quantum dot containing the aliphatic amino acid is preferably 0.4 eV or more, more preferably 0.6 eV or more, still more preferably, from the viewpoint of improving the photoelectric conversion efficiency.
  • the particle size and type of the quantum dots are determined by, for example, electron microscope observation, electron diffraction, and X-ray diffraction pattern, the correlation between the particle size and the band gap energy (for example, ACS Nano2014, 8). , 6363-6371), the band gap energy can also be calculated.
  • the aliphatic amino acid is coordinated on the surface of the quantum dot by causing nucleation and crystal growth of the quantum dot in the presence of the aliphatic amino acid.
  • Quantum dots can be prepared.
  • the quantum dots in the light absorption layer are, for example, element analysis, infrared (IR) spectrum, Raman spectrum, nuclear magnetic resonance (NMR) spectrum, X-ray diffraction pattern, absorption spectrum, emission spectrum, small-angle X-ray scattering, electrons. It can be identified by conventional methods such as microscopic observation and electron diffraction.
  • Examples of the method for confirming that the quantum dots contain the aliphatic amino acids include a method for observing a change in dispersibility in an organic solvent, a thermal analysis method such as thermogravimetric-differential heat (TG-DTA), and a nucleus. Examples thereof include a method of detecting the aliphatic amino acid by a spectroscopic method such as a magnetic resonance (NMR) method or an infrared (IR) method.
  • a spectroscopic method such as a magnetic resonance (NMR) method or an infrared (IR) method.
  • the quantum dots are carboxy group-containing compounds other than the aliphatic amino acids and amino groups other than the aliphatic amino acids from the viewpoints of dispersibility in the light absorbing layer and the dispersion liquid, ease of production, cost, and excellent performance expression. It may contain an organic ligand such as a containing compound, a thiol group-containing compound, and a phosphino group-containing compound, and an inorganic ligand such as a halogen element-containing substance.
  • Examples of the carboxy group-containing compound other than the aliphatic amino acid include oleic acid, stearic acid, palmitic acid, myristic acid, lauric acid, and capric acid.
  • amino group-containing compounds other than the aliphatic amino acids examples include oleylamine, stearylamine, palmitylamine, myristylamine, laurylamine, caprylamine, octylamine, hexylamine, and butylamine.
  • thiol group-containing compound examples include ethanethiol, ethanedithiol, benzenethiol, benzenedithiol, decanethiol, decandithiol, and mercaptopropionic acid.
  • Examples of the phosphino group-containing compound include trioctylphosphine and tributylphosphine.
  • the organic ligand is preferably the carboxy group-containing compound or the amino group-containing compound, more preferably, from the viewpoints of ease of production of the quantum dots, dispersion stability, versatility, cost, excellent performance expression, and the like.
  • the carboxy group-containing compound more preferably a carboxylic acid, further preferably a fatty acid, further preferably a fatty acid having 8 or more and 30 or less carbon atoms, further preferably a fatty acid having 12 or more and 18 or less carbon atoms, still more preferably 12 or more and 18 or less carbon atoms.
  • Unsaturated fatty acids more preferably oleic acid.
  • halogen element of the halogen element-containing substance examples include fluorine, chlorine, bromine, and iodine.
  • halogen element-containing substance examples include iodine, ammonium iodide, and methyl ammonium iodide.
  • a preferable combination of the perovskite compound and the quantum dot containing an aliphatic amino acid is preferably a compound containing the same metal element from the viewpoint of uniform dispersibility of the quantum dot, durability of the light absorbing layer, and photoelectric conversion efficiency.
  • Combinations and / or combinations of compounds containing nitrogen-containing functional groups eg, ammonium groups, amino groups, etc.
  • nitrogen-containing functional groups eg, ammonium groups, amino groups, etc.
  • the content of the quantum dots in the light absorption layer is such that the quantum dots are densely packed to reduce the distance between the quantum dots and interact with each other to form an intermediate band in the light absorption layer.
  • it is preferably 7.5% by mass or more, more preferably 10% by mass or more, still more preferably 12% by mass or more, and from the film-forming property and the perovskite compound.
  • it is preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 25% by mass or less, still more preferably 20% by mass or less. ..
  • the porosity of the light absorption layer is preferably 10% or less, more preferably 8% or less, still more preferably 5% or less, still more preferably 0%, from the viewpoint of improving the photoelectric conversion efficiency.
  • the porosity refers to the ratio of voids in the solid in which the perovskite compound and the quantum dots are composited. The porosity is measured in detail by the method described in Examples.
  • the porosity of the light absorption layer is 10% or less, the distance between the quantum dots is the distance required to form the intermediate band, so that the interaction between the quantum dots is considered to be large. Therefore, it is considered that the quantum yield of two-step absorption is significantly improved.
  • the thickness of the light absorption layer is preferably 30 nm or more, more preferably 50 nm or more, still more preferably 80 nm or more, and the hole transporting agent layer or electron transporting, from the viewpoint of increasing light absorption and improving the photoelectric conversion efficiency. From the viewpoint of improving the carrier transfer efficiency to the agent layer and improving the photoelectric conversion efficiency, it is preferably 1000 nm or less, more preferably 800 nm or less, still more preferably 600 nm or less, still more preferably 500 nm or less.
  • the thickness of the light absorption layer can be measured by a measuring method such as electron microscope observation of the cross section of the film.
  • the surface smoothness of the light absorption layer is preferably 100 nm or more, more preferably 200 nm or more, still more preferably 300 nm or more, still more preferably 400 nm or more, from the viewpoint of improving the strength of the hole transporting agent (HTM) layer. From the viewpoint of improving the photoelectric conversion efficiency, it is preferably 1000 nm or less, more preferably 800 nm or less, and further preferably 700 nm or less.
  • the coverage of the light absorption layer on the functional layer is preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, from the viewpoint of improving the photoelectric conversion efficiency (current). More preferably, it is 100%.
  • the coverage of the light absorption layer on the functional layer can be measured by the method described in the following Examples.
  • a method for producing the light absorption layer for example, a so-called wet process method in which a dispersion liquid containing a perovskite compound and / or a precursor thereof and quantum dots containing an aliphatic amino acid is applied onto a substrate and dried is preferable. Can be mentioned. From the viewpoints of ease of production, cost, storage stability of the dispersion liquid, improvement of photoelectric conversion efficiency, and the like, a production method including the following steps 1, 2 and 3 is preferable.
  • Step 1 A step of exchanging the organic ligand of a quantum dot containing the organic ligand with an aliphatic amino acid to obtain a quantum dot solid containing the aliphatic amino acid as a ligand (step 2). )
  • Step 2 Obtained in Step 2 by mixing the quantum dot solid obtained in Step 1 with a solution or mixed solution containing one or more substances selected from the perovskite compound and its precursor. Step of obtaining a light absorbing layer from the obtained dispersion
  • step (step 1) of exchanging the organic ligand of the quantum dot containing the organic ligand with an aliphatic amino acid to obtain a quantum dot solid containing the aliphatic amino acid as a ligand is It is preferable from the viewpoint of improving the dispersibility of the dispersion liquid containing the perovskite compound and / or its precursor and the quantum dot, and from the viewpoint of improving the carrier transfer rate in the light absorption layer to improve the photoelectric conversion efficiency.
  • quantum dots may be synthesized using a hydrophobic compound with a relatively large molecular size such as oleic acid as a ligand. ..
  • the quantum dots show excellent dispersibility with respect to a non- (low) polar organic solvent such as toluene, but have poor dispersibility with respect to a polar organic solvent such as N, N-dimethylformamide and methanol.
  • the solvent for dispersing or dissolving the perovskite compound and / or its precursor is a polar organic solvent
  • Coordination is preferred.
  • a hydrophobic compound having a relatively large molecular size, such as oleic acid has low conductivity and inhibits the diffusion of carriers in the light absorption layer. Therefore, from the viewpoint of improving the carrier transfer rate in the light absorption layer and improving the photoelectric conversion efficiency, it is preferable to coordinate a substance having a relatively small molecular size to the quantum dots.
  • the ligand of the quantum dot is preferably an aliphatic amino acid having 2 to 10 carbon atoms, more preferably an aliphatic amino acid having 3 to 8 carbon atoms, and further preferably an aliphatic amino acid having 3 to 7 carbon atoms. It is an amino acid.
  • a method for exchanging the organic ligand of the quantum dot containing the organic ligand with an aliphatic amino acid there are viewpoints such as ease of production, cost, storage stability of dispersion, and improvement of photoelectric conversion efficiency. Therefore, a method of exchanging ligands in the dispersion is preferable, and the quantum dot dispersion containing the organic ligand and the solution containing the aliphatic amino acid are mixed at room temperature (25 ° C.) without stirring for a long time. A method of exchanging ligands is more preferable by allowing the mixture to stand after mixing.
  • the mixing amount of the aliphatic amino acid used for the ligand exchange is the aliphatic amino acid with respect to the organic ligand on the quantum dot surface from the viewpoints of ease of production, cost, storage stability of the dispersion, improvement of photoelectric conversion efficiency and the like.
  • the molar ratio of is preferably 0.1 or more, more preferably 1 or more, still more preferably 1.5 or more, preferably 10 or less, more preferably 8 or less, still more preferably 5 or less, still more preferably 3 or less. Is.
  • the solvent used for ligand exchange from the viewpoints of ease of production, cost, storage stability of the dispersion liquid, improvement of photoelectric conversion efficiency, etc., it is preferable to dissolve a solvent for satisfactorily dispersing quantum dots and an aliphatic amino acid. It is a mixed solvent with a solvent.
  • the dispersion solvent of the quantum dots is preferably one or more non- (low) polar organic solvents selected from toluene, hexane, octane and the like, more preferably toluene.
  • the solvent for dissolving the aliphatic amino acid is preferably one or more aprotic polar organic solvents selected from N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone and the like, more preferably N, N-dimethylformamide. is there.
  • the quantum dot solid content concentration in the quantum dot dispersion liquid to be mixed at the time of ligand exchange is preferably 10 mg / mL or more from the viewpoints of ease of production, cost, storage stability of the dispersion liquid, improvement of photoelectric conversion efficiency, and the like. It is preferably 50 mg / mL or more, more preferably 80 mg / mL or more, preferably 1000 mg / mL or less, more preferably 500 mg / mL or less, still more preferably 200 mg / mL or less, still more preferably 120 mg / mL or less.
  • the concentration of the aliphatic amino acid in the aliphatic amino acid solution mixed at the time of ligand exchange is preferably 0.01 mol / L or more from the viewpoints of ease of production, cost, storage stability of the dispersion, improvement of photoelectric conversion efficiency, and the like. It is more preferably 0.1 mol / L or more, further preferably 0.2 mol / L or more, preferably 1 mol / L or less, more preferably 0.5 mol / L or less, still more preferably 0.3 mol / L or less. ..
  • the mixing method of the quantum dot dispersion liquid and the aliphatic amino acid solution at the time of ligand exchange is not particularly limited as long as it is a method of mixing over time without stirring, but it is easy to manufacture and cost. From the viewpoint of storage stability of the dispersion, improvement of photoelectric conversion efficiency, etc., a continuous method or a dropping method (semi-continuous method) is preferable, and a dropping method is more preferable.
  • a method of mixing the aliphatic amino acid solution with the quantum dot dispersion liquid or a method of mixing the quantum dot dispersion liquid with the aliphatic amino acid solution may be used.
  • a method of mixing an aliphatic amino acid solution with the quantum dot dispersion is preferable.
  • the mixing rate is preferably 25 ⁇ L / sec or less, more preferably 5 ⁇ L / sec or less, still more preferably 3 ⁇ L / sec or less, from the viewpoints of ease of manufacture, cost, storage stability of the dispersion, improvement in photoelectric conversion efficiency, and the like. It is preferably 0.2 ⁇ L / sec or more, more preferably 0.4 ⁇ L / sec or more, and further preferably 1.5 ⁇ L / sec or more.
  • the dropping method may be a method of dropping an aliphatic amino acid solution into the quantum dot dispersion liquid or a method of dropping the quantum dot dispersion liquid into the aliphatic amino acid solution, but the ease of manufacture, cost, and storage stability of the dispersion liquid are satisfied.
  • a method of dropping an aliphatic amino acid solution into the quantum dot dispersion is preferable.
  • the dropping rate is preferably 1 drop / 1 second or less, more preferably 1 drop / 5 seconds or less, still more preferably 1 drop, from the viewpoints of ease of manufacture, cost, storage stability of the dispersion, improvement in photoelectric conversion efficiency, and the like. It is / 8 seconds or less, preferably 1 drop / 100 seconds or more, more preferably 1 drop / 50 seconds or more, and further preferably 1 drop / 15 seconds or more.
  • the time for allowing to stand is preferably 0.1 hour from the viewpoints of ease of production, cost, storage stability of the dispersion liquid, improvement of photoelectric conversion efficiency, and the like.
  • the above is more preferably 1 hour or more, further preferably 10 hours or more, preferably 100 hours or less, more preferably 48 hours or less, still more preferably 24 hours or less.
  • a washing solvent is added to a mixed dispersion of the quantum dot dispersion and the aliphatic amino acid solution, and the mixture is filtered.
  • the method of obtaining the quantum dot solid through the steps of removing the organic ligand, the excess aliphatic amino acid, and the solvent coordinated on the surface of the quantum dot is preferable.
  • the cleaning solvent is preferably an organic solvent in which it is difficult to disperse any quantum dots before and after the ligand exchange, and the organic ligand and the aliphatic amino acid are soluble, and the ease of production, cost, and dispersion liquid are preferable.
  • an alcohol solvent is more preferable, and methanol is more preferable.
  • the amount of the washing solvent is preferably 0.1 or more, more preferably 0.5 or more, still more preferably 0.5 or more, as the volume ratio of the washing solvent to the amount of the mixed dispersion of the quantum dot dispersion liquid and the aliphatic amino acid solution. It is 1 or more, preferably 10 or less, more preferably 5 or less, and further preferably 2 or less.
  • the filter pore diameter during filtration is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and preferably 1 ⁇ m or less. , More preferably 0.5 ⁇ m or less.
  • the filter material is preferably hydrophobic, more preferably polytetrafluoroethylene (PTFE).
  • step 2 From the perovskite compound and its precursor through a step (step 2) of mixing the quantum dot solid obtained in step 1 with a solution or a mixed solution containing one or more substances selected from the perovskite compound and its precursor. It is preferable to obtain a dispersion liquid containing one or more selected species and the quantum dots.
  • the dispersion liquid containing the perovskite compound and / or its precursor and the quantum dots preferably contains a solvent from the viewpoints of film formation property, cost, storage stability, and excellent performance (for example, photoelectric conversion characteristics).
  • a solvent from the viewpoints of film formation property, cost, storage stability, and excellent performance (for example, photoelectric conversion characteristics).
  • the solvent include esters (methyl formate, ethyl formate, etc.), ketones ( ⁇ -butyrolactone, N-methyl-2-pyrrolidone, acetone, dimethyl ketone, diisobutyl ketone, etc.), ethers (diethyl ether, etc.).
  • Methyl-tert-butyl ether dimethoxymethane, 1,4-dioxane, tetrahydrofuran, etc.
  • alcohols methanol, ethanol, 2-propanol, tert-butanol, methoxypropanol, diacetone alcohol, cyclohexanol, 2-fluoroethanol, 2 , 2,2-Trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, etc.
  • glycol ethers glycol ethers (cellosolves), amide solvents (N, N-dimethylformamide, acetamide, N, N- Dimethylacetamide, etc.), nitrile solvents (acetonitrile, isobutyronitrile, propionitrile, methoxynitrile, etc.), carbonates (ethylene carbonate, propylene carbonate, etc.), halogenated hydrocarbons (methylene chloride, dichloromethane, chloroform,
  • the solvent of the dispersion is preferably a polar solvent, more preferably a ketone, an amide solvent, and dimethyl sulfoxide from the viewpoints of film forming property, cost, storage stability, and excellent performance (for example, photoelectric conversion property).
  • a polar solvent more preferably a ketone, an amide solvent, and dimethyl sulfoxide from the viewpoints of film forming property, cost, storage stability, and excellent performance (for example, photoelectric conversion property).
  • the metal concentration of the perovskite compound and / or its precursor in the dispersion is preferably 0.1 mol / L from the viewpoint of film formation property, cost, storage stability, and excellent performance (for example, photoelectric conversion property). Above, more preferably 0.2 mol / L or more, further preferably 0.3 mol / L or more, preferably 1.5 mol / L or less, more preferably 1.0 mol / L or less, still more preferably 0.7 mol / L or less. It is L or less.
  • the solid content concentration of the quantum dots in the dispersion is preferably 10 mg / mL or more, more preferably 50 mg, from the viewpoints of film formation property, cost, storage stability, and excellent performance (for example, photoelectric conversion characteristics). It is / mL or more, more preferably 70 mg / mL or more, preferably 400 mg / mL or less, more preferably 300 mg / mL or less, still more preferably 200 mg / mL or less, still more preferably 130 mg / mL or less.
  • the method for preparing the dispersion is not particularly limited, but the mixing temperature is preferably 0 ° C. or higher, more preferably 10 ° C. or higher, from the viewpoints of ease of production, cost, storage stability of the dispersion liquid, improvement of photoelectric conversion efficiency, and the like. It is more preferably 20 ° C. or higher, preferably 50 ° C. or lower, more preferably 40 ° C. or lower, still more preferably 30 ° C. or lower. From the same viewpoint, the mixing time is preferably more than 0 hours, more preferably 0.1 hours or more, preferably 72 hours or less, more preferably 24 hours or less, still more preferably 1 hour or less.
  • the dispersion liquid is preferably filtered to remove coarse particles, and the filter pore diameter at the time of filtration is large from the viewpoints of ease of manufacture, cost, storage stability of the dispersion liquid, improvement of photoelectric conversion efficiency, and the like. It is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, preferably 1 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the filter material is preferably hydrophobic, more preferably polytetrafluoroethylene (PTFE).
  • the step (step 3) of obtaining the light absorption layer from the dispersion obtained in step 2 is preferably a wet process such as coating (coating) the dispersion obtained in step 2 on a substrate (functional layer), for example.
  • a wet process such as coating (coating) the dispersion obtained in step 2 on a substrate (functional layer), for example.
  • Gravure coating method bar coating method, printing method, spray method, spin coating method, dip method, die coating method, etc., from the viewpoint of ease of manufacture, cost, and excellent performance (for example, photoelectric conversion characteristics).
  • a spin coating method Preferably a spin coating method.
  • the maximum rotation speed of the spin coater in the spin coating method is preferably 500 rpm or more, more preferably 1000 rpm or more, still more preferably 2000 rpm or more, and preferably 8000 rpm or less from the viewpoint of exhibiting excellent performance (for example, photoelectric conversion characteristics). , More preferably 7000 rpm or less, still more preferably 6000 rpm or less.
  • the dispersion liquid is applied onto a substrate and then a poor solvent of the perovskite compound is applied or dropped to improve the crystal precipitation rate of the perovskite compound.
  • the poor solvent is preferably toluene, chlorobenzene, dichloromethane, or a mixed solvent thereof.
  • drying method in the wet process examples include heat drying, air flow drying, vacuum drying, and the like from the viewpoints of ease of manufacture, cost, and excellent performance (for example, photoelectric conversion characteristics), and are preferably heat drying.
  • the temperature of heat drying is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 90 ° C. or higher, from the viewpoint of exhibiting excellent performance (for example, photoelectric conversion characteristics), and from the same viewpoint and cost viewpoint. Therefore, it is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, still more preferably 120 ° C. or lower, still more preferably 110 ° C. or lower.
  • the heat drying time is preferably 1 minute or longer, more preferably 5 minutes or longer, still more preferably 8 minutes or longer, from the viewpoint of exhibiting excellent performance (for example, photoelectric conversion characteristics), and from the same viewpoint and cost viewpoint. Therefore, it is preferably 120 minutes or less, more preferably 60 minutes or less, still more preferably 20 minutes or less, still more preferably 12 minutes or less.
  • the photoelectric conversion element of the present invention has the light absorption layer.
  • a known configuration of the photoelectric conversion element can be applied to the configurations other than the light absorption layer.
  • the photoelectric conversion element of the present invention can be manufactured by a known method except for the light absorption layer.
  • FIG. 1 is merely an example and is not limited to the embodiment shown in FIG.
  • FIG. 1 is a schematic cross-sectional view showing an example of the structure of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element 1 has a structure in which a transparent substrate 2, a transparent conductive layer 3, a blocking layer 4, a porous layer 5, a light absorption layer 6, and a hole transport layer 7 are sequentially laminated.
  • the transparent electrode substrate on the light incident side is composed of a transparent substrate 2 and a transparent conductive layer 3, and the transparent conductive layer 3 is joined to an electrode (negative electrode) 9 which is a terminal for electrically connecting to an external circuit.
  • the hole transport layer 7 is bonded to an electrode (positive electrode) 8 which is a terminal for electrically connecting to an external circuit.
  • the transparent substrate 2 As the material of the transparent substrate 2, it is sufficient that it has strength, durability, and light transmission, and synthetic resin, glass, or the like can be used.
  • synthetic resin include thermoplastic resins such as polyethylene naphthalate (PEN) film, polyethylene terephthalate (PET), polyester, polycarbonate, polyolefin, polyimide, and fluororesins. From the viewpoint of strength, durability, cost and the like, it is preferable to use a glass substrate.
  • Examples of the material of the transparent conductive layer 3 include tin-added indium oxide (ITO), fluorine-added tin oxide (FTO), tin oxide (SnO 2 ), indium zinc oxide (IZO), zinc oxide (ZnO), and high. Examples thereof include a polymer material having conductivity. Examples of the polymer material include polyacetylene-based, polypyrrole-based, polythiophene-based, and polyphenylene vinylene-based polymer materials. Further, as the material of the transparent conductive layer 3, a carbon-based thin film having high conductivity can also be used. Examples of the method for forming the transparent conductive layer 3 include a sputtering method, a thin-film deposition method, and a method of applying a dispersion.
  • Examples of the material of the blocking layer 4 include titanium oxide, aluminum oxide, silicon oxide, niobium oxide, tungsten oxide, tin oxide, zinc oxide and the like.
  • Examples of the method for forming the blocking layer 4 include a method of directly sputtering the above-mentioned material onto the transparent conductive layer 3 and a spray pyrolysis method. Further, a method in which a solution in which the above-mentioned material is dissolved in a solvent or a solution in which a metal hydroxide which is a precursor of a metal oxide is dissolved is applied onto the transparent conductive layer 3, dried, and fired if necessary. Be done.
  • Examples of the coating method include a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method.
  • the porous layer 5 is a layer having a function of supporting a light absorption layer 6 on its surface. In order to increase the light absorption efficiency of a solar cell, it is preferable to increase the surface area of the portion that receives light. By providing the porous layer 5, the surface area of the portion that receives light can be increased.
  • Examples of the material of the porous layer 5 include metal oxides, metal chalcogenides (for example, sulfides and serenes), compounds having a perovskite-type crystal structure (excluding the light absorber), and silicon oxides. (For example, silicon dioxide and zeolite), carbon nanotubes (including carbon nanowires and carbon nanorods, etc.) and the like.
  • metal oxide examples include oxides of titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, aluminum, and tantalum, and examples of the metal chalcogenide
  • zinc sulfide, zinc selenide, cadmium sulfide, cadmium selenide and the like can be mentioned.
  • Examples of the compound having a perovskite type crystal structure include barium titanate, calcium titanate, barium titanate, lead titanate, barium zirconate, barium titanate, lead zirconate, strontium titanate, strontium titanate, and niobic acid.
  • Examples thereof include potassium, bismuth ironate, strontium titanate barium, barium titanate lanthanum, calcium titanate, sodium titanate, and bismuth titanate.
  • the material for forming the porous layer 5 is preferably used as fine particles, and more preferably used as a dispersion containing fine particles.
  • the method for forming the porous layer 5 include a wet method, a dry method, and other methods (for example, the method described in Chemical Reviews, Vol. 110, p. 6595 (2010)). In these methods, it is preferable to apply a dispersion (paste) to the surface of the blocking layer 4 and then bake it. By firing, the fine particles can be brought into close contact with each other.
  • the coating method include a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method.
  • the light absorption layer 6 is the above-mentioned light absorption layer of the present invention.
  • a method for forming the light absorption layer 6 for example, a dispersion liquid containing a perovskite compound and / or a precursor thereof and quantum dots containing an aliphatic amino acid is prepared, and the prepared dispersion liquid is applied to the surface of the porous layer 5.
  • a so-called wet process method of drying and drying is preferable.
  • the method for forming the light absorption layer 6 is preferably a production method including the above-mentioned steps 1, 2 and 3 from the viewpoints of ease of manufacture, cost, storage stability of the dispersion liquid, improvement of photoelectric conversion efficiency and the like.
  • Examples of the material of the hole transport layer 7 include carbazole derivative, polyarylalkane derivative, phenylenediamine derivative, arylamine derivative, amino-substituted chalcone derivative, styrylanthracene derivative, fluorene derivative, hydrazone derivative, stilben derivative, silazane derivative, and aromatic. Examples thereof include group tertiary amine compounds, styrylamine compounds, aromatic dimethyridin-based compounds, porphyrin-based compounds, phthalocyanine-based compounds, polythiophene derivatives, polypyrrole derivatives, and polyparaphenylene vinylene derivatives.
  • Examples of the method for forming the hole transport layer 7 include a coating method and a vacuum deposition method. Examples of the coating method include a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method.
  • Examples of the material of the electrode (positive electrode) 8 and the electrode (negative electrode) 9 include metals such as aluminum, gold, silver, and platinum; tin-added indium oxide (ITO), indium zinc oxide (IZO), and zinc oxide (ZnO). Such as conductive metal oxides; organic conductive materials such as conductive polymers; carbon-based materials such as nanotubes.
  • Examples of the method for forming the electrode (positive electrode) 8 and the electrode (negative electrode) 9 include a vacuum deposition method, a sputtering method, and a coating method.
  • the solar cell of the present invention has the photoelectric conversion element.
  • known solar cell configurations can be applied to configurations other than the light absorption layer.
  • a light absorbing layer containing a perovskite compound and quantum dots containing an aliphatic amino acid ⁇ 2>
  • the light absorption layer according to ⁇ 1> which has an intermediate band.
  • the perovskite compound is preferably one or more selected from the compound represented by the following general formula (1) and the compound represented by the following general formula (2), and more preferably the following general formula (1).
  • R is a monovalent cation
  • M is a divalent metal cation
  • X is a halogen anion.
  • R 1 R 2 R 3 n-1 M n X 3n + 1 (2)
  • R 1 , R 2 , and R 3 are independently monovalent cations
  • M is a divalent metal cation
  • X is a halogen anion
  • n is an integer of 1 or more and 10 or less.
  • the R is one or more selected from the cations of the Group 1 element of the periodic table and the organic cations, and the cations of the Group 1 element of the periodic table are preferably Li + , Na + , K + , and Cs +.
  • the organic cation is preferably one or more selected from ammonium ions which may have a substituent and phosphonium ions which may have a substituent.
  • the ammonium ion which may have a substituent is preferably one or more selected from alkylammonium ion, formamidinium ion and arylammonium ion, and more preferably selected from alkylammonium ion and formamidinium ion.
  • the light absorbing layer according to ⁇ 3> which is more than a species and more preferably a methylammonium ion.
  • the R 1 , R 2 and R 3 are one or more selected from the cations of the Group 1 element of the periodic table and the organic cations, and the cations of the Group 1 element of the periodic table are preferably Li + and Na.
  • the organic cation is preferably selected from an ammonium ion which may have a substituent, and may have a substituent group phosphonium ion
  • the ammonium ion which is one or more and may have the substituent is preferably one or more selected from alkylammonium ion, formamidinium ion and arylammonium ion, and more preferably alkylammonium ion.
  • formamidinium ion more preferably monoalkylammonium ion, still more preferably methylammonium ion, ethylammonium ion, butylammonium ion, hexylammonium ion, octylammonium ion, decylammonium ion.
  • the light absorbing layer according to ⁇ 3> which is one or more selected from, dodecylammonium ion, tetradecylammonium ion, hexadecylammonium ion, and octadecylammonium ion.
  • n is an integer of 1 or more and 4 or less.
  • the M is preferably selected from Pb 2+ , Sn 2+ , Hg 2+ , Cd 2+ , Zn 2+ , Mn 2+ , Cu 2+ , Ni 2+ , Fe 2+ , Co 2+ , Pd 2+ , Ge 2+ , Y 2+ , and Eu 2+.
  • Pb 2+ , Sn 2+ , and Ge 2+ further preferably one or more selected from Pb 2+ , and Sn 2+, and even more preferably Pb.
  • the light absorbing layer according to any one of ⁇ 3> to ⁇ 6> which is 2+ , Sn 2+ , or Ge 2+ , and more preferably Pb 2+.
  • the X is preferably one or more selected from fluorine anion, chlorine anion, bromine anion, and iodine anion, more preferably fluorine anion, chlorine anion, or bromine anion, and further preferably chlorine anion or bromine.
  • the light absorbing layer according to any one of ⁇ 3> to ⁇ 7> which is an anion, more preferably a bromine anion.
  • the bandgap energy of the perovskite compound is preferably 1.5 eV or more, more preferably 1.7 eV or more, still more preferably 2.0 eV or more, still more preferably 2.1 eV or more, still more preferably 2.2 eV or more.
  • the quantum dots containing the aliphatic amino acids are compounds in which the aliphatic amino acids are coordinated on the surface of the quantum dots (compounds in which the aliphatic amino acids are coordinated to the metal elements constituting the quantum dots), ⁇ 1> to ⁇ . 10>
  • the light absorbing layer according to any one item.
  • ⁇ 12> The light absorption layer according to any one of ⁇ 1> to ⁇ 11>, wherein the quantum dot containing the aliphatic amino acid is a compound in which the aliphatic amino acid is coordinated on the surface of the metal chalcogenide.
  • the quantum dot containing an aliphatic amino acid preferably contains a Pb element, more preferably contains PbS or PbSe, and more preferably contains PbS. layer.
  • ⁇ 14> The light absorption layer according to any one of ⁇ 1> to ⁇ 13>, wherein the metal constituting the perovskite compound and the metal constituting the quantum dots are preferably the same metal.
  • ⁇ 15> The light absorption layer according to any one of ⁇ 1> to ⁇ 14>, wherein the aliphatic amino acid is a linear amino acid.
  • the number of carbon atoms of the aliphatic amino acid is preferably 10 or less, more preferably 8 or less, further preferably 7 or less, preferably 2 or more, and more preferably 3 or more, any of ⁇ 1> to ⁇ 15>.
  • the light absorption layer according to item 1. ⁇ 17> The light absorption layer according to any one of ⁇ 1> to ⁇ 16>, wherein the amino group of the aliphatic amino acid is located at the end of the carbon chain.
  • the bandgap energy of the quantum dots is preferably 0.7 eV or more, more preferably 0.8 eV or more, still more preferably 0.9 eV or more, still more preferably 1.0 eV or more, preferably 1.6 eV or less, and more.
  • the difference between the bandgap energy of the perovskite compound and the bandgap energy of the quantum dots is preferably 0.4 eV or more, more preferably 0.6 eV or more, still more preferably 0.8 eV or more, and preferably 2.
  • the bandgap energy of the quantum dots is 0.7 eV or more and 1.6 eV or less, and the difference between the bandgap energy of the perovskite compound and the bandgap energy of the quantum dots is 0.4 eV or more.
  • the bandgap energy of the quantum dots is 0.8 eV or more and 1.5 eV or less, and the difference between the bandgap energy of the perovskite compound and the bandgap energy of the quantum dots is 0.6 eV or more and 1 .5 eV or less, More preferably, the bandgap energy of the quantum dots is 0.9 eV or more and 1.4 eV or less, and the difference between the bandgap energy of the perovskite compound and the bandgap energy of the quantum dots is 0.8 eV or more and 1 .3 eV or less, More preferably, the bandgap energy of the quantum dots is 1.0 eV or more and 1.4 eV or less, and the difference between the bandgap energy of the perovskite compound and the bandgap energy of the quantum dots is 0.8 eV or more and 1
  • the light absorbing layer according to any one of ⁇ 1> to ⁇ 18
  • the quantum dot is at least one organic compound selected from the group consisting of a carboxy group-containing compound other than the aliphatic amino acid, an amino group-containing compound other than the aliphatic amino acid, a thiol group-containing compound, and a phosphino group-containing compound.
  • the light absorbing layer according to any one of ⁇ 1> to ⁇ 21>, which contains a thiol.
  • the organic ligand is preferably the carboxy group-containing compound or the amino group-containing compound, more preferably the carboxy group-containing compound, still more preferably a carboxylic acid, still more preferably a fatty acid, still more preferably 8 or more and 30 or less carbon atoms.
  • the light absorption layer according to ⁇ 22> which is a fatty acid of the above, more preferably a fatty acid having 12 or more and 18 or less carbon atoms, still more preferably an unsaturated fatty acid having 12 or more and 18 or less carbon atoms, and further preferably oleic acid.
  • the combination of the perovskite compound and the quantum dot containing the aliphatic amino acid is any one of ⁇ 1> to ⁇ 23>, which is a combination of CH 3 NH 3 PbBr 3 and PbS coordinated with the aliphatic amino acid.
  • the perovskite compound is CH 3 NH 3 PbBr 3 and
  • the quantum dot is a light absorption layer in which a linear amino acid having 3 or more and 10 or less carbon atoms is coordinated on the surface of PbS.
  • the content of the quantum dots in the light absorption layer is preferably 7.5% by mass or more, more preferably 10% by mass or more, still more preferably 12% by mass or more, preferably 40% by mass or less, and more preferably.
  • the light absorption layer according to any one of ⁇ 1> to ⁇ 25>, which is 30% by mass or less, more preferably 25% by mass or less, still more preferably 20% by mass or less.
  • the porosity of the light absorption layer is preferably 10% or less, more preferably 8% or less, still more preferably 5% or less, still more preferably 0%, according to any one of ⁇ 1> to ⁇ 26>.
  • Light absorption layer. ⁇ 28> Preferably, the content of the quantum dots in the light absorption layer is 7.5% by mass or more and 40% by mass or less, and the porosity of the light absorption layer is 10% or less. More preferably, the content of the quantum dots in the light absorption layer is 10% by mass or more and 30% by mass or less, and the porosity of the light absorption layer is 8% or less.
  • the content of the quantum dots in the light absorption layer is 12% by mass or more and 25% by mass or less, and the porosity of the light absorption layer is 5% or less. More preferably, the content of the quantum dots in the light absorption layer is 12% by mass or more and 20% by mass or less, and the porosity of the light absorption layer is 0%, any of ⁇ 1> to ⁇ 25>.
  • the coverage of the light absorption layer on the functional layer is preferably 80% or more, more preferably 90% or more, further preferably 95% or more, still more preferably 100%, ⁇ 1> to.
  • ⁇ 30> A dispersion containing a perovskite compound or a precursor thereof and quantum dots containing an aliphatic amino acid.
  • ⁇ 31> The dispersion liquid according to ⁇ 30>, wherein the dispersion liquid contains a solvent.
  • ⁇ 32> The dispersion liquid according to ⁇ 30> or ⁇ 31>, wherein the solid content concentration of the quantum dots in the dispersion liquid is 10 mg / mL or more and 400 mg / mL or less.
  • ⁇ 33> A light absorption layer obtained from the dispersion liquid according to any one of ⁇ 30> to ⁇ 32>.
  • Step 1 A step of exchanging a ligand of the organic ligand of a quantum dot containing an organic ligand with an aliphatic amino acid to obtain a quantum dot solid containing the aliphatic amino acid as a ligand (step 2).
  • Step (Step 3) Obtained in Step 2 by mixing the quantum dot solid obtained in Step 1 with a solution or mixed solution containing one or more substances selected from the perovskite compound and its precursor to obtain a dispersion.
  • the aliphatic amino acid is preferably an aliphatic amino acid having 2 to 10 carbon atoms, more preferably an aliphatic amino acid having 3 to 8 carbon atoms, and further preferably an aliphatic amino acid having 3 to 7 carbon atoms.
  • the method for producing a light absorbing layer according to the above. ⁇ 36> The ligand exchange in the step 1 is preferably carried out in a dispersion liquid, more preferably by mixing a dispersion liquid of quantum dots containing an organic ligand and a solution containing an aliphatic amino acid. 34> or ⁇ 35>. The method for producing a light absorbing layer.
  • the mixing amount of the aliphatic amino acid used for the ligand exchange is preferably 0.1 or more, more preferably 1 or more, still more preferably 1 or more, as the molar ratio of the aliphatic amino acid to the organic ligand on the surface of the quantum dot.
  • the method for producing a light absorbing layer according to ⁇ 36> which is 1.5 or more, preferably 10 or less, more preferably 8 or less, still more preferably 5 or less, still more preferably 3 or less.
  • the solvent used for ligand exchange is a mixed solvent of a solvent for dispersing quantum dots and a solvent for dissolving the aliphatic amino acids, and the solvent for dispersing the quantum dots is preferably selected from toluene, hexane, and octane.
  • One or more non- (low) polar organic solvents to be used, more preferably toluene, and the solvent for dissolving the aliphatic amino acid is preferably selected from N, N-dimethylformamide, dimethylsulfoxide, and ⁇ -butyrolactone.
  • the quantum dot solid content concentration in the quantum dot dispersion liquid to be mixed at the time of ligand exchange is preferably 10 mg / mL or more, more preferably 50 mg / mL or more, still more preferably 80 mg / mL or more, and preferably 1000 mg / mL.
  • the method for producing a light absorbing layer according to any one of ⁇ 36> to ⁇ 38>, which is more preferably 500 mg / mL or less, still more preferably 200 mg / mL or less, still more preferably 120 mg / mL or less.
  • the concentration of the aliphatic amino acid in the aliphatic amino acid solution mixed at the time of ligand exchange is preferably 0.01 mol / L or more, more preferably 0.1 mol / L or more, still more preferably 0.2 mol / L or more. 3.
  • the light absorbing layer according to any one of ⁇ 36> to ⁇ 39> preferably 1 mol / L or less, more preferably 0.5 mol / L or less, still more preferably 0.3 mol / L or less.
  • Production method. ⁇ 41> The mixing method of the quantum dot dispersion liquid and the aliphatic amino acid solution at the time of ligand exchange is preferably a continuous method or a dropping method (semi-continuous method), and more preferably a dropping method, ⁇ 36> to ⁇ 40>.
  • the method for producing a light absorbing layer according to any one of the above items is preferably 1 mol / L or less, more preferably 0.5 mol / L or less, still more preferably 0.3 mol / L or less.
  • the continuous method is a method of mixing the aliphatic amino acid solution with the quantum dot dispersion, and the mixing rate is preferably 25 ⁇ L / sec or less, more preferably 5 ⁇ L / sec or less, still more preferably 3 ⁇ L / sec or less.
  • the dropping method is a method of dropping the aliphatic amino acid solution into a quantum dot dispersion liquid, and the dropping rate is preferably 1 drop / 1 second or less, more preferably 1 drop / 5 seconds or less, still more preferably 1 drop.
  • the method for producing a light absorbing layer according to ⁇ 41> which is 8 seconds or less, preferably 1 drop / 100 seconds or more, more preferably 1 drop / 50 seconds or more, and further preferably 1 drop / 15 seconds or more. .. ⁇ 44>
  • the time to stand is preferably 0.1 hour or more, more preferably 1 hour or more, still more preferably 10 hours or more, preferably 100 hours.
  • the method for obtaining a quantum dot solid having an aliphatic amino acid as a ligand is to add a washing solvent to the mixed dispersion of the quantum dot dispersion and the aliphatic amino acid solution, filter the mixture, and then filter the mixture. This is a step of removing the organic ligand, the excess aliphatic amino acid, and the solvent coordinated on the surface of the quantum dot, and the washing solvent preferably disperses any of the quantum dots before and after the ligand exchange.
  • the amount of the washing solvent is preferably 0.1 or more, more preferably 0.5 or more, still more preferably 0.5 or more, as the volume ratio of the washing solvent to the amount of the mixed dispersion of the quantum dot dispersion liquid and the aliphatic amino acid solution.
  • the filter pore diameter at the time of filtration is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and the filter material is preferably hydrophobic.
  • PTFE polytetrafluoroethylene
  • the solvent is preferably a polar solvent, more preferably a ketone, an amide solvent, and at least one solvent selected from dimethyl sulfoxide, still more preferably an amide solvent, still more preferably N, N-dimethylformamide.
  • the metal concentration of the perovskite compound and / or its precursor in the dispersion is preferably 0.1 mol / L or more, more preferably 0.2 mol / L or more, still more preferably 0.3 mol / L or more, and is preferable.
  • the solid content concentration of the quantum dots in the dispersion is preferably 10 mg / mL or more, more preferably 50 mg / mL or more, still more preferably 70 mg / mL or more, preferably 400 mg / mL or less, more preferably 300 mg.
  • the method for producing a light absorbing layer according to any one of ⁇ 34> to ⁇ 50> which is / mL or less, more preferably 200 mg / mL or less, still more preferably 130 mg / mL or less.
  • the mixing temperature at the time of preparing the dispersion is preferably 0 ° C. or higher, more preferably 10 ° C. or higher, still more preferably 20 ° C. or higher, preferably 50 ° C. or lower, more preferably 40 ° C. or lower, still more preferably 30 ° C. or higher.
  • the mixing time at the time of preparing the dispersion is preferably more than 0 hours, more preferably 0.1 hours or more, preferably 72 hours or less, more preferably 24 hours or less, still more preferably 1 hour or less.
  • the dispersion liquid is filtered to remove coarse particles, and the filter pore diameter at the time of filtration is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, preferably 1 ⁇ m or less, more preferably.
  • the step 3 is preferably a wet process, more preferably a spin coating method, and the maximum rotation speed of the spin coater in the spin coating method is preferably 500 rpm or more, more preferably 1000 rpm or more, still more preferably 2000 rpm or more.
  • ⁇ 56> The item according to any one of ⁇ 34> to ⁇ 55>, wherein in the step 3, after the dispersion liquid is applied onto the substrate, a poor solvent of the perovskite compound is applied or dropped to improve the crystal precipitation rate of the perovskite compound.
  • Method for manufacturing a light absorbing layer ⁇ 57>
  • the drying method in the wet process is preferably heat drying, and the temperature of the heat drying is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 90 ° C.
  • the light absorbing layer according to any one of ⁇ 55> to ⁇ 57>, preferably 120 minutes or less, more preferably 60 minutes or less, still more preferably 20 minutes or less, still more preferably 12 minutes or less. Production method.
  • ⁇ 59> A photoelectric conversion element having the light absorption layer according to any one of ⁇ 1> to ⁇ 29> and ⁇ 33>.
  • ⁇ 60> A solar cell having the photoelectric conversion element according to ⁇ 59>.
  • the evaluation / measurement method is as follows. Unless otherwise specified, the measurement was carried out in an environment of 25 ° C. and normal pressure. The "normal pressure" indicates 101.3 kPa.
  • ⁇ IV curve> Xenon lamp White light is used as a light source (PEC-L01 manufactured by Pexel Technologies), and the light intensity is equivalent to sunlight (AM1.5) (100 mW / cm 2 ), and the light irradiation area is 0.0363 cm 2 (2 mm square). Scanning speed 0.1V / sec (0.01V step), waiting time after voltage setting 50msec, measurement integration time 50msec, using an IV characteristic measuring device (PECK2400-N, manufactured by Pexel Technologies) under the mask of. The IV curve of the cell was measured under the conditions of a start voltage of ⁇ 0.1 V and an end voltage of 1.1 V. The light intensity was corrected with a silicon reference (BS-520, 0.5714 mA). The open circuit voltage (V) and fill factor (FF) were obtained from the IV curve.
  • ⁇ Absorption spectrum> For the absorption spectrum of the light absorption layer, a UV-Vi spectrophotometer (SolidSpec-3700, manufactured by Shimadzu Corporation) was used in the sample before applying the hole transport agent, and the scan speed was medium speed, the sample pitch was 1 nm, and the slit. The range of 300 to 1600 nm was measured under the conditions of a width of 20 and a detector unit integrating sphere. Background measurement was performed on an FTO (Fluorine-doped tin oxide) substrate (manufactured by Asahi Glass Fabricec Co., Ltd., 25 ⁇ 25 ⁇ 1.8 mm).
  • FTO Fluorine-doped tin oxide
  • the absorption spectrum of the PbS quantum dot dispersion was similarly measured using a 1 cm square quartz cell in a dispersion having a concentration of 0.1 mg / mL or more and 1 mg / mL or less for the PbS quantum dot solid.
  • hexane was used as the dispersion solvent
  • N, N-dimethylformamide (DMF) was used as the dispersion solvent.
  • the measurement was performed using an NMR device (VNMRS400 manufactured by Agilent) under the conditions of a resonance frequency of 400 MHz, a delay time of 60 seconds, and a total of 32 times.
  • the oleic acid concentration in the PbS quantum dot solid was determined from the ratio of the integral value of vinyl proton (5.5 ppm vs. TMS) of oleic acid to the integral value of dibromomethane (3.9 ppm vs. TMS).
  • the crystallite diameter was 2.7 nm from the X-ray diffraction results, the absorption edge wavelength was 1070 nm from the absorption spectrum, and the absorption peak wavelength was 970 nm (the peak absorbance of the solid content concentration 1 mg / mL hexane dispersion was 0.501).
  • ⁇ Coverage of light absorption layer was determined by using an electric field radiation type high resolution scanning electron microscope (FE-SEM, manufactured by Hitachi, Ltd., S-4800) in the sample before applying the hole transport agent. SEM photograph (magnification magnification 20000 times) is measured, the SEM photograph is specified by the pen tool using image analysis software (Winroof), and calculated from the area ratio (area ratio) of the light absorption layer to the total area. did.
  • FE-SEM electric field radiation type high resolution scanning electron microscope
  • a cross section of the light absorption layer was observed using a crioFIB-SEM (Scios DualBeam manufactured by FEI) (FIGS. 2 and 3). Platinum-palladium coating was performed twice for 120 seconds to protect the surface, and a carbon protective film was formed on the observation site in the FIB-SEM device.
  • the FIB cross section was processed at 30 kV and 0.3 nA, the Z contrast was detected by the reflected electrons, and the observation was performed at an acceleration voltage of 2 kV, a WD of 1 mm, and a magnification of 100,000 times.
  • FIG. 4 corresponds to FIG. 2.
  • FIG. 5 corresponds to FIG. 3
  • the porosity was measured over the entire cross-sectional area of the light absorption layer where the cross-sectional SEM observation was performed.
  • the porosity here is the ratio of voids (parts filled in black in FIGS. 4 and 5) in the light absorption layer (parts surrounded by broken lines in FIGS. 4 and 5), and is in the visual field. It is the average value in all solids.
  • Example 1 ⁇ Synthesis of PbS quantum dots coordinated with 3-aminopropanoic acid> 0.20 g of the above-mentioned oleic acid-coordinated PbS quantum dot solid was dispersed in 2 mL of toluene (dehydrated, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to obtain a black transparent dispersion.
  • 3-aminopropanoate hydroiodide (0.072 g, manufactured by Tokyo Kasei Kogyo Co., Ltd.) was mixed with 0.5 mL of DMF (dehydrated, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and toluene (dehydrated, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
  • FTO substrate A part of a 25 mm square glass substrate with fluorine-doped tin oxide (FTO) (manufactured by Asahi Glass Fabricec Co., Ltd., 25 x 25 x 1.8 mm, hereinafter referred to as FTO substrate) is Zn powder. And etched with a 2 mol / L hydrochloric acid aqueous solution. Ultrasonic cleaning was performed with 1% by mass neutral detergent, acetone, 2-propanol (IPA), and deionized water in this order for 10 minutes each.
  • FTO substrate fluorine-doped tin oxide
  • this FTO substrate was immersed in an aqueous solution (50 mM) of titanium chloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and heated at 70 ° C. for 30 minutes. After washing with water and drying, the mixture was fired at 500 ° C. for 20 minutes (heating temperature was raised for 15 minutes) to form a dense TiO 2 (cTiO 2 ) layer.
  • aqueous solution 50 mM
  • titanium chloride manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • a mixed dispersion (coating solution) of dots and a perovskite raw material was obtained.
  • the coating liquid was spin-coated on the above two layers of mTIO using a spin coater (MS-100, manufactured by Mikasa Sports Co., Ltd.) (5000 rpm ⁇ 30 sec).
  • MS-100 manufactured by Mikasa Sports Co., Ltd.
  • 1 mL of chlorobenzene manufactured by Sigma-Aldrich
  • This light absorption layer contains the perovskite compound CH 3 NH 3 PbBr 3 , PbS quantum dots, and a ligand.
  • the formation of the perovskite compound was confirmed by X-ray diffraction pattern, absorption spectrum and electron microscope observation, and the presence of quantum dots was confirmed by fluorescence spectrum and electron microscope observation.
  • HTM hole transporting agent
  • Example 2 In Example 1, the same as in Example 1 except that 4-aminobutanoic acid hydroiodide (0.077 g, manufactured by Tokyo Kasei Kogyo Co., Ltd.) was used instead of 3-aminopropanoate hydroiodide. A light absorbing layer was formed in the above, and a cell was prepared.
  • 4-aminobutanoic acid hydroiodide 0.077 g, manufactured by Tokyo Kasei Kogyo Co., Ltd.
  • Example 3 Example 1 and Example 1 except that 5-aminoheptate hydrogen iodide (0.082 g, manufactured by Tokyo Kasei Kogyo Co., Ltd.) was used instead of 3-aminopropanoate hydrogen iodide. A light absorbing layer was formed in the same manner to prepare a cell.
  • Example 1 Comparative Example 1 In Example 1, the same procedure as in Example 1 except that methylammonium hydroiodide (0.053 g, manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 3-aminopropanoate hydrogen iodide. A light absorbing layer was formed to prepare a cell.
  • methylammonium hydroiodide 0.053 g, manufactured by Tokyo Chemical Industry Co., Ltd.
  • the light absorption layer and the photoelectric conversion element of the present invention can be suitably used as constituent members of a next-generation solar cell.
  • Photoelectric conversion element 2 Transparent substrate 3: Transparent conductive layer 4: Blocking layer 5: Porous layer 6: Light absorption layer 7: Hole transport layer 8: Electrode (positive electrode) 9: Electrode (negative electrode) 10: Light

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明は、光電変換効率に優れる光電変換素子及び太陽電池を形成するための光吸収層、当該光吸収層を有する光電変換素子及び太陽電池を提供する。また本発明は、空隙が少ない光吸収層の製造方法を提供する。本発明の光吸収層は、ペロブスカイト化合物と、脂肪族アミノ酸を含む量子ドットと、を含有する。

Description

光吸収層及びその製造方法、分散液、光電変換素子、並びに太陽電池
 本発明は、光吸収層及びその製造方法、前記光吸収層を製造するための分散液、前記光吸収層を有する光電変換素子、並びに前記光電変換素子を有する太陽電池に関する。
 光エネルギーを電気エネルギーに変える光電変換素子は、太陽電池、光センサー、複写機などに利用されている。特に、環境・エネルギー問題の観点から、無尽蔵のクリーンエネルギーである太陽光を利用する光電変換素子(太陽電池)が注目されている。
 一般的なシリコン太陽電池は、超高純度のシリコンを利用すること、高真空下でのエピタキシャル結晶成長などの「ドライプロセス」により製造していること、などから、大きなコストダウンが期待できない。そこで、塗布プロセスなどの「ウエットプロセス」により製造される太陽電池が、低コストな次世代太陽電池として期待されている。
 「ウエットプロセス」により製造可能な次世代太陽電池として、量子ドット太陽電池がある。量子ドットとは、粒径が約20nm以下の、結晶構造を有する無機ナノ粒子であり、量子サイズ効果の発現により、バルク体とは異なる物性を示すものである。例えば、量子ドットの粒径の減少に伴い、バンドギャップエネルギーが増大(吸収波長が短波長化)することが知られており、粒径約3nmでバンドギャップエネルギー約1.2eVの硫化鉛(PbS)量子ドットを量子ドット太陽電池に用いることが報告されている(ACS Nano 2014,8,614-622)。しかしながら、PbSやPbSe量子ドットに代表される量子ドット太陽電池は、近赤外光領域(800~2500nm)の光電変換が可能であるが、バンドギャップエネルギーが小さいことから高電圧が得られず、変換効率が低い。
 次世代太陽電池の最有力候補として、近年の光電変換効率の急増が報告されている、ペロブスカイト太陽電池がある。このペロブスカイト太陽電池は、例えば、メチルアンモニウムなどのカチオンとヨウ化鉛などのハロゲン化金属塩から構成されるペロブスカイト化合物(CHNHPbI)を光吸収層に用いた光電変換素子を具備する(J.Am.Chem.Soc.2009,131,6050-6051)。ペロブスカイト太陽電池は、可視光領域(400~800nm)の光電変換が可能であり、比較的高い変換効率を示すものの、近赤外光領域を利用できないことから、太陽光の有効利用という観点では不十分である。
 最近、ペロブスカイト化合物(CHNHPbI)で表面処理したPbS量子ドットを光吸収層に用いた量子ドット太陽電池が報告されている(Nano Lett.2015,15,7539-7543)。しかしながら、ペロブスカイト化合物量が少なく、ペロブスカイト化合物の発電の寄与がほとんど無く、変換効率が不十分である。
 また、可視光領域と近赤外光領域の両領域において光電変換可能な、高変換効率の光電変換素子及び太陽電池を形成するための光吸収層であって、ペロブスカイト化合物と、Cl元素を含む量子ドットと、を含有する光吸収層が提案されている(WO2018/163325)。
 さらに、可視光領域と近赤外光領域の両領域において光電変換可能な、高変換効率の光電変換素子及び太陽電池を形成するための光吸収層であって、ペロブスカイト化合物と、ハロゲン元素及び有機配位子を含む量子ドットと、を含有し、前記量子ドットを構成する金属元素に対する前記有機配位子のモル比が0.01以上0.4以下である光吸収層が提案されている(WO2018/163327)。
 ペロブスカイト化合物と量子ドットを含有する光吸収層を用いた太陽電池の光電変換効率を向上させるためには、量子収率を向上させる必要がある。量子収率を向上させる方法としては、例えば、光吸収層中に量子ドットを高密度に充填する方法が挙げられる。しかし、光吸収層中の量子ドットの含有量を増やすと、それに伴って光吸収層中に空隙が多く発生したり、あるいは光吸収層の被覆率が低下することにより、量子収率が低下するという問題が生じた。
 本発明は、光電変換効率に優れる光電変換素子及び太陽電池を形成するための光吸収層、当該光吸収層を有する光電変換素子及び太陽電池に関する。また本発明は、空隙が少ない光吸収層の製造方法に関する。
 本発明者は、ペロブスカイト化合物と、脂肪族アミノ酸を含む量子ドットと、を含有する光吸収層は空隙が少なく、当該光吸収層を用いることにより太陽電池の光電変換効率が向上することを見出した。
 すなわち、本発明は、ペロブスカイト化合物と、脂肪族アミノ酸を含む量子ドットと、を含有する光吸収層、に関する。
 また、本発明は、ペロブスカイト化合物又はその前駆体と、脂肪族アミノ酸を含む量子ドットと、を含有する分散液、に関する。
 さらに、本発明は、次の工程1、工程2及び工程3を含む、ペロブスカイト化合物のマトリクス中に脂肪族アミノ酸を含む量子ドットが分散している光吸収層の製造方法、に関する。
(工程1)有機配位子を含む量子ドットの該有機配位子を、脂肪族アミノ酸へ配位子交換して、脂肪族アミノ酸を配位子として含む量子ドット固体を得る工程
(工程2)工程1で得られた量子ドット固体と、ペロブスカイト化合物及びその前駆体から選ばれる1種以上の物質を含む溶液又は混合液とを混合して分散液を得る工程
(工程3)工程2で得られた分散液から光吸収層を得る工程
 ペロブスカイト化合物と、脂肪族アミノ酸を含む量子ドットと、を光吸収層の形成材料として用いることにより、ペロブスカイト化合物が吸収できる短波長領域の光に加えて、前記量子ドットが吸収できる近赤外などの長波長領域の光も含む幅広い波長領域の光を吸収できるため、幅広い波長領域において光電変換機能を有する光電変換素子を得ることができる。
 また、従来の量子ドットを用いる場合と比べて、脂肪族アミノ酸を含む量子ドットを用いると、ペロブスカイト化合物と前記量子ドットとを含む光吸収層(複合膜)の光電変換効率が向上する。その原因は定かではないが、以下のように推察される。
 前記量子ドットの表面に極性基であるアミノ基が存在し、前記アミノ基が光吸収層を製造するための分散液中の極性溶媒(例えば、N,N-ジメチルホルムアミドなど)と相互作用することにより、前記量子ドットと前記極性溶媒との相溶性が向上し、且つ、アミノ基同士の静電反発により、前記量子ドットの凝集が妨げられるため、前記分散液中における前記量子ドットの分散性が向上する。その結果、空隙が少ない光吸収層、さらには空隙が少なく、ペロブスカイト化合物の結晶性が高く(結晶子径が大きく)、被覆率の高い光吸収層が得られるため、光電変換効率が向上したと推察される。
 したがって、本発明の光吸収層を用いれば、光電変換効率に優れる光電変換素子及び太陽電池を得ることができる。
本発明の光電変換素子の構造の一例を示す概略断面図である。 実施例2で作製した光吸収層の断面SEM画像である。 比較例1で作製した光吸収層の断面SEM画像である。 実施例2で作製した光吸収層における、量子ドットとペロブスカイト化合物が複合化した固体を示す概略図である。 比較例1で作製した光吸収層における、量子ドットとペロブスカイト化合物が複合化した固体と当該固体中の空隙を示す概略図である。
発明の詳細な説明
<光吸収層>
 本発明の光吸収層は、光吸収剤として、ペロブスカイト化合物と、脂肪族アミノ酸を含む量子ドットとを含有する。なお、本発明の光吸収層は、本発明の効果を損なわない範囲で前記以外の光吸収剤を含有してもよい。
 本発明の光吸収層は、中間バンドを有してもよい。中間バンドとは、ペロブスカイト化合物のバンドギャップ内に量子ドット間の相互作用により形成されるエネルギー準位であり、量子ドットの伝導帯下端近傍及び/又は価電子帯上端近傍のエネルギー位置に存在する。中間バンドは、例えば、ペロブスカイト化合物のマトリクス中に量子ドットを高密度に規則配列することにより形成される。ペロブスカイト化合物のバンドギャップ内に中間バンドが存在すると、例えば、ペロブスカイト化合物の価電子帯から中間バンドへ光励起した電子が、更に中間バンドからペロブスカイト化合物の伝導帯へ光励起するといった2段階光吸収が起こる。従って、中間バンドの存在は、2段階光吸収の量子収率、すなわち、外部量子収率差を測定することにより確認することができる。
 前記ペロブスカイト化合物は、光電変換効率を向上させる観点から、好ましくは下記一般式(1)で表される化合物及び下記一般式(2)で表される化合物から選ばれる1種以上であり、より好ましくは下記一般式(1)で表される化合物である。
 RMX    (1)
(式中、Rは1価のカチオンであり、Mは2価の金属カチオンであり、Xはハロゲンアニオンである。)
 R n-13n+1    (2)
(式中、R、R、及びRはそれぞれ独立に1価のカチオンであり、Mは2価の金属カチオンであり、Xはハロゲンアニオンであり、nは1以上10以下の整数である。)
 前記Rは1価のカチオンであり、例えば、周期表第一族元素のカチオン、及び有機カチオンが挙げられ、光電変換効率を向上させる観点から、好ましくは有機カチオンである。周期表第一族元素のカチオンとしては、例えば、Li、Na、K、及びCsが挙げられる。有機カチオンとしては、例えば、置換基を有していてもよいアンモニウムイオン、及び置換基を有していてもよいホスホニウムイオンが挙げられる。置換基を有していてもよいアンモニウムイオンとしては、例えば、アルキルアンモニウムイオン、ホルムアミジニウムイオン及びアリールアンモニウムイオンが挙げられ、耐久性と光電変換効率を向上させる観点から、好ましくはアルキルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、より好ましくはモノアルキルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、更に好ましくはメチルアンモニウムイオン、エチルアンモニウムイオン、ブチルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、更に好ましくはメチルアンモニウムイオンである。
 前記R、R、及びRはそれぞれ独立に1価のカチオンであり、R、R、及びRのいずれかまたは全てが同一でも良い。例えば、周期表第一族元素のカチオン、及び有機カチオンが挙げられる。周期表第一族元素のカチオンとしては、例えば、Li、Na、K、及びCsが挙げられる。有機カチオンとしては、例えば、置換基を有していてもよいアンモニウムイオン、及び置換基を有していてもよいホスホニウムイオンが挙げられる。置換基を有していてもよいアンモニウムイオンとしては、例えば、アルキルアンモニウムイオン、ホルムアミジニウムイオン及びアリールアンモニウムイオンが挙げられ、耐久性と光電変換効率を向上させる観点から、好ましくはアルキルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、より好ましくはモノアルキルアンモニウムイオンであり、更に好ましくはメチルアンモニウムイオン、エチルアンモニウムイオン、ブチルアンモニウムイオン、ヘキシルアンモニウムイオン、オクチルアンモニウムイオン、デシルアンモニウムイオン、ドデシルアンモニウムイオン、テトラデシルアンモニウムイオン、ヘキサデシルアンモニウムイオン、及びオクタデシルアンモニウムイオンから選ばれる1種以上である。
 前記nは1以上10以下の整数であり、耐久性と光電変換効率を向上させる観点から、好ましくは1以上4以下である。
 前記Mは2価の金属カチオンであり、例えば、Pb2+、Sn2+、Hg2+、Cd2+、Zn2+、Mn2+、Cu2+、Ni2+、Fe2+、Co2+、Pd2+、Ge2+、Y2+、及びEu2+などが挙げられる。前記Mは、耐久性(耐湿性)及び光電変換効率に優れる観点から、好ましくはPb2+、Sn2+、又はGe2+であり、より好ましくはPb2+、又はSn2+であり、更に好ましくはPb2+である。
 前記Xはハロゲンアニオンであり、例えば、フッ素アニオン、塩素アニオン、臭素アニオン、及びヨウ素アニオンが挙げられる。前記Xは、目的とするバンドギャップエネルギーを有するペロブスカイト化合物を得るために、好ましくはフッ素アニオン、塩素アニオン、又は臭素アニオンであり、より好ましくは塩素アニオン、又は臭素アニオンであり、更に好ましくは臭素アニオンである。
 前記ペロブスカイト化合物は、光電変換効率を向上させる観点から、好ましくは1.5eV以上4.0eV以下のバンドギャップエネルギーを有するものである。前記ペロブスカイト化合物は、1種単独でもよく、バンドギャップエネルギーが異なる2種以上であってもよい。
 前記ペロブスカイト化合物のバンドギャップエネルギーは、光電変換効率(電圧)を向上させる観点から、好ましくは1.7eV以上、より好ましくは2.0eV以上、更に好ましくは2.1eV以上、更に好ましくは2.2eV以上であり、光電変換効率(電流)を向上させる観点から、好ましくは3.6eV以下、より好ましくは3.0eV以下、更に好ましくは2.4eV以下である。なお、前記ペロブスカイト化合物及び前記量子ドットのバンドギャップエネルギーは、後述する実施例に記載の方法で、25℃で測定した吸収スペクトルから求めることができる。吸収スペクトルから求めたバンドギャップエネルギーに対応する波長を吸収端波長という。
 1.5eV以上4.0eV以下のバンドギャップエネルギーを有する上記一般式(1)で表される化合物としては、例えば、CHNHPbCl、CHNHPbBr、CHNHPbI、CHNHPbBrI、CHNHPbBrI、CHNHSnCl、CHNHSnBr、CHNHSnI、CH(=NH)NHPbCl、及びCH(=NH)NHPbBrなどが挙げられる。これらのうち、耐久性と光電変換効率を向上させる観点から、好ましくはCHNHPbBr、CH(=NH)NHPbBrであり、より好ましくはCHNHPbBrである。
 1.5eV以上4.0eV以下のバンドギャップエネルギーを有する上記一般式(2)で表される化合物としては、例えば、(CNHPbI、(C13NHPbI、(C17NHPbI、(C1021NHPbI、(C1225NHPbI、(CNH(CHNH)Pb、(C13NH(CHNH)Pb、(C17NH(CHNH)Pb、(C1021NH(CHNH)Pb、(C1225NH(CHNH)Pb、(CNH(CHNHPb10、(C13NH(CHNHPb10、(C17NH(CHNHPb10、(C1021NH(CHNHPb10、(C1225NH(CHNHPb10、(CNHPbBr、(C13NHPbBr、(C17NHPbBr、(C1021NHPbBr、(CNH(CHNH)PbBr、(C13NH(CHNH)PbBr、(C17NH(CHNH)PbBr、(C1021NH(CHNH)PbBr、(C1225NH(CHNH)PbBr、(CNH(CHNHPbBr10、(C13NH(CHNHPbBr10、(C17NH(CHNHPbBr10、(C1021NH(CHNHPbBr10、(C1225NH(CHNHPbBr10、(CNH(CHNHPbCl10、(C13NH(CHNHPbCl10、(C17NH(CHNHPbCl10、(C1021NH(CHNHPbCl10、及び(C1225NH(CHNHPbCl10などが挙げられる。
 光吸収層のペロブスカイト化合物の結晶子径は、キャリアの移動効率を向上させて光電変換効率を向上させる観点から、好ましくは10nm以上、より好ましくは20nm以上、更に好ましくは30nm以上、更に好ましくは40nm以上であり、同様の観点から、好ましくは1000nm以下である。
 前記ペロブスカイト化合物は、例えば、後述のようにペロブスカイト化合物の前駆体から製造することができる。ペロブスカイト化合物の前駆体としては、例えば、ペロブスカイト化合物が前記一般式(1)で表される化合物の場合、MXで表される化合物と、RXで表される化合物との組合せが挙げられる。また、ペロブスカイト化合物が前記一般式(2)で表される化合物の場合、MXで表される化合物と、RXで表される化合物、RXで表される化合物、及び任意のRXで表される化合物から選ばれる1種以上との組合せが挙げられる。
 光吸収層のペロブスカイト化合物は、例えば、元素分析、赤外(IR)スペクトル、ラマンスペクトル、核磁気共鳴(NMR)スペクトル、X線回折パターン、吸収スペクトル、発光スペクトル、電子顕微鏡観察、及び電子線回折などの常法により同定することができる。
 脂肪族アミノ酸を含む量子ドットとは、結晶構造を構成する成分以外に脂肪族アミノ酸を含む量子ドットであり、脂肪族アミノ酸の状態は特に限定されないが、好ましくは、量子ドット表面に脂肪族アミノ酸が配位した化合物(量子ドットを構成する金属元素に脂肪族アミノ酸が配位した化合物)である。なお、量子ドット表面に脂肪族アミノ酸と共にその他の配位子が配位していてもよい。以下、特に断らない限り、脂肪族アミノ酸を含む量子ドットの好ましい態様は、脂肪族アミノ酸以外の配位子の好ましい態様を除き、光吸収層とその原料に共通の好ましい態様である。
 脂肪族アミノ酸を含む量子ドットとしては、例えば、金属酸化物又は金属カルコゲナイド(例えば、硫化物、セレン化物、及びテルル化物など)を含む化合物が挙げられ、光電変換効率に優れる観点から、好ましくは前記金属酸化物又は金属カルコゲナイドの表面に脂肪族アミノ酸が配位した化合物が挙げられる。光電変換効率向上の観点から、金属カルコゲナイドの表面に脂肪族アミノ酸が配位した化合物が好ましい。金属カルコゲナイドとしては、具体的には、PbS、PbSe、PbTe、CdS、CdSe、CdTe、Sb23、Bi23、Ag2S、Ag2Se、Ag2Te、Au2S、Au2Se、Au2Te、Cu2S、Cu2Se、Cu2Te、Fe2S、Fe2Se、Fe2Te、In23、SnS、SnSe、SnTe、CuInS2、CuInSe2、CuInTe2、EuS、EuSe、及びEuTeなどが挙げられる。脂肪族アミノ酸を含む量子ドットは、光電変換効率に優れる観点から、好ましくはPb元素を含み、より好ましくはPbS又はPbSeを含み、更に好ましくはPbSを含む。また、ペロブスカイト化合物と量子ドットの相互作用を大きくするために、ペロブスカイト化合物を構成する金属と量子ドットを構成する金属は同じ金属であることが好ましい。
 前記脂肪族アミノ酸は、直鎖アミノ酸であってもよく、分岐鎖アミノ酸であってもよい。なお、本発明において、直鎖アミノ酸とは、炭素鎖の構造が直鎖状である脂肪族アミノ酸をいい、分岐鎖アミノ酸とは、炭素鎖の構造が分岐鎖状である脂肪族アミノ酸をいう。前記脂肪族アミノ酸は、量子ドット表面に前記脂肪族アミノ酸を配位させやすくして、光吸収層及び分散液中における前記量子ドットの分散性を向上させる観点から、好ましくは直鎖アミノ酸である。
 前記脂肪族アミノ酸の炭素数は、光吸収層中のキャリア移動速度を向上させて光電変換効率を向上させる観点、及び量子ドット間の距離を小さくして、ペロブスカイト化合物のマトリクス中に前記量子ドットを高密度に分散させる観点から、好ましくは10以下、より好ましくは8以下、更に好ましくは7以下であり、塗工溶液中での分散性確保の観点から、好ましくは2以上、より好ましくは3以上である。
 前記脂肪族アミノ酸のアミノ基は、炭素鎖中のいずれの炭素と結合していてもよいが、量子ドット表面に前記脂肪族アミノ酸を配位させやすくして、光吸収層及び分散液中における前記量子ドットの分散性を向上させる観点から、第一級炭素と結合していることが好ましい。
 前記脂肪族アミノ酸を含む量子ドットのバンドギャップエネルギーは、前記ペロブスカイト化合物が有しないバンドギャップエネルギーを補完して、近赤外光領域の光電変換効率を向上させる観点から、好ましくは0.2eV以上かつペロブスカイト化合物のバンドギャップエネルギー以下である。前記脂肪族アミノ酸を含む量子ドットは、1種単独で用いてもよく、バンドギャップエネルギーが異なる2種以上を併用してもよい。なお、バンドギャップエネルギーの異なる2種以上のペロブスカイト化合物を用いる場合、前記脂肪族アミノ酸を含む量子ドットのバンドギャップエネルギーの前記上限である「ペロブスカイト化合物のバンドギャップエネルギー以下のバンドギャップエネルギー」とは、2種以上のペロブスカイト化合物の有するバンドギャップエネルギーの最大値以下のバンドギャップエネルギーのことである。また、前記量子ドットのバンドギャップエネルギーは、前述の通り、後述する実施例に記載方法で、25℃で測定した吸収スペクトルから求めることができる。
 前記脂肪族アミノ酸を含む量子ドットのバンドギャップエネルギーは、光電変換効率(電圧)を向上させる観点から、好ましくは0.7eV以上、より好ましくは0.8eV以上、更に好ましくは0.9eV以上、更に好ましくは1.0eV以上であり、光電変換効率(電流)を向上させる観点から、好ましくは1.6eV以下、より好ましくは1.5eV以下、更に好ましくは1.4eV以下である。
 ペロブスカイト化合物のバンドギャップエネルギーと、前記脂肪族アミノ酸を含む量子ドットのバンドギャップエネルギーとの差は、光電変換効率向上の観点から、好ましくは0.4eV以上、より好ましくは0.6eV以上、更に好ましくは0.8eV以上であり、好ましくは2.0eV以下、より好ましくは1.5eV以下、更に好ましくは1.3eV以下である。
 前記量子ドットについては、例えば、電子顕微鏡観察、電子線回折、及びX線回折パターンなどにより量子ドットの粒径及び種類が決まれば、粒径とバンドギャップエネルギーとの相関(例えば、ACS Nano2014,8,6363-6371)から、バンドギャップエネルギーを算出することもできる。
 量子ドット表面に前記脂肪族アミノ酸を配位させる方法は、例えば、前記脂肪族アミノ酸の存在下で量子ドットの核発生と結晶成長をさせることにより、量子ドット表面に前記脂肪族アミノ酸が配位した量子ドットを調製できる。
 光吸収層中の前記量子ドットは、例えば、元素分析、赤外(IR)スペクトル、ラマンスペクトル、核磁気共鳴(NMR)スペクトル、X線回折パターン、吸収スペクトル、発光スペクトル、小角X線散乱、電子顕微鏡観察、及び電子線回折などの常法により同定することができる。
 前記脂肪族アミノ酸を含む量子ドットであることを確認する方法としては、例えば、有機溶媒への分散性の変化を観察する方法や熱重量-示差熱(TG-DTA)などの熱分析法、核磁気共鳴(NMR)法、赤外(IR)法などの分光法などにより前記脂肪族アミノ酸を検出する方法が挙げられる。
 前記量子ドットは、光吸収層及び分散液中における分散性、製造容易性、コスト、優れた性能発現などの観点から、前記脂肪族アミノ酸以外のカルボキシ基含有化合物、前記脂肪族アミノ酸以外のアミノ基含有化合物、チオール基含有化合物、及びホスフィノ基含有化合物などの有機配位子、ハロゲン元素含有物質などの無機配位子を含んでもよい。
 前記脂肪族アミノ酸以外のカルボキシ基含有化合物としては、例えば、オレイン酸、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸、及びカプリン酸などが挙げられる。
 前記脂肪族アミノ酸以外のアミノ基含有化合物としては、例えば、オレイルアミン、ステアリルアミン、パルミチルアミン、ミリスチルアミン、ラウリルアミン、カプリルアミン、オクチルアミン、ヘキシルアミン、及びブチルアミンなどが挙げられる。
 前記チオール基含有化合物としては、例えば、エタンチオール、エタンジチオール、ベンゼンチオール、ベンゼンジチオール、デカンチオール、デカンジチオール、及びメルカプトプロピオン酸などが挙げられる。
 前記ホスフィノ基含有化合物としては、例えば、トリオクチルホスフィン、及びトリブチルホスフィンなどが挙げられる。
 前記有機配位子は、前記量子ドットの製造容易性、分散安定性、汎用性、コスト、優れた性能発現などの観点から、好ましくは前記カルボキシ基含有化合物又は前記アミノ基含有化合物、より好ましくは前記カルボキシ基含有化合物、更に好ましくはカルボン酸、更に好ましくは脂肪酸、更に好ましくは炭素数8以上30以下の脂肪酸、更に好ましくは炭素数12以上18以下の脂肪酸、更に好ましくは炭素数12以上18以下の不飽和脂肪酸、更に好ましくはオレイン酸である。
 前記ハロゲン元素含有物質のハロゲン元素は、例えば、フッ素、塩素、臭素、及びヨウ素が挙げられる。
 前記ハロゲン元素含有物質としては、例えば、ヨウ素、ヨウ化アンモニウム、ヨウ化メチルアンモニウムなどが挙げられる。
 ペロブスカイト化合物と、脂肪族アミノ酸を含む量子ドットとの好ましい組み合わせとしては、前記量子ドットの均一分散性、光吸収層の耐久性、及び光電変換効率の観点から、好ましくは同じ金属元素を含む化合物の組み合わせ及び/又は窒素含有官能基(例えば、アンモニウム基、アミノ基など)を含む化合物の組み合わせであり、例えば、CHNHPbBrと前記脂肪族アミノ酸が配位したPbS、CHNHPbBrと前記脂肪族アミノ酸が配位したPbSe、CHNHPbIと前記脂肪族アミノ酸が配位したPbS、CHNHPbIと前記脂肪族アミノ酸が配位したPbSe、CH(=NH)NHPbBrと前記脂肪族アミノ酸が配位したPbS、CH(=NH)NHPbBrと前記脂肪族アミノ酸が配位したPbSeなどが挙げられ、より好ましくはCHNHPbBrと前記脂肪族アミノ酸が配位したPbSとの組み合わせである。
 光吸収層中の前記量子ドットの含有量は、量子ドットを高密度に充填することにより量子ドット間距離を小さくして量子ドット間で相互作用させることにより光吸収層中に中間バンドを形成し、2段階光吸収の量子収率を向上させる観点から、好ましくは7.5質量%以上、より好ましくは10質量%以上、更に好ましくは12質量%以上であり、成膜性、及びペロブスカイト化合物から量子ドットへのキャリア移動を抑制し光電変換効率を向上させる観点から、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下、更に好ましくは20質量%以下である。
 光吸収層の空隙率は、光電変換効率を向上させる観点から、好ましくは10%以下、より好ましくは8%以下、更に好ましくは5%以下、更に好ましくは0%である。なお、本発明において、空隙率とは、前記ペロブスカイト化合物と前記量子ドットが複合化した固体中における空隙の割合をいう。空隙率は、詳しくは実施例に記載の方法で測定する。なお、光吸収層の空隙率が10%以下である場合には、量子ドット間の距離が中間バンドを形成するために必要な距離となるため、量子ドット間の相互作用が大きくなると考えられる。そのため、2段階吸収の量子収率が著しく向上すると考えられる。
 光吸収層の厚さは、光吸収を大きくして光電変換効率を向上させる観点から、好ましくは30nm以上、より好ましくは50nm以上、更に好ましくは80nm以上であり、正孔輸送剤層や電子輸送剤層へのキャリア移動効率を向上させて光電変換効率を向上させる観点から、好ましくは1000nm以下、より好ましくは800nm以下、更に好ましくは600nm以下、更に好ましくは500nm以下である。なお、光吸収層の厚さは、膜断面の電子顕微鏡観察などの測定方法で測定できる。
 光吸収層の表面平滑性は、正孔輸送剤(HTM)層の強度を向上させる観点から、好ましくは100nm以上、より好ましくは200nm以上、更に好ましくは300nm以上、更に好ましくは400nm以上であり、光電変換効率向上の観点から、好ましくは1000nm以下、より好ましくは800nm以下、更に好ましくは700nm以下である。
 光吸収層の機能層(例えば、多孔質層)に対する被覆率は、光電変換効率(電流)を向上させる観点から、好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上、更に好ましくは100%である。なお、光吸収層の機能層(例えば、多孔質層)に対する被覆率は、下記実施例に記載の方法で測定することができる。
<光吸収層の製造方法>
 光吸収層の製造方法は、例えば、ペロブスカイト化合物及び/又はその前駆体と、脂肪族アミノ酸を含む量子ドットとを含む分散液を基板上に塗布し、乾燥する、いわゆるウエットプロセスによる方法が好適に挙げられる。製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、次の工程1、工程2及び工程3を含む製造方法が好ましい。
(工程1)前記有機配位子を含む量子ドットの該有機配位子を、脂肪族アミノ酸へ配位子交換して、脂肪族アミノ酸を配位子として含む量子ドット固体を得る工程
(工程2)工程1で得られた量子ドット固体と、ペロブスカイト化合物及びその前駆体から選ばれる1種以上の物質を含む溶液又は混合液とを混合して分散液を得る工程
(工程3)工程2で得られた分散液から光吸収層を得る工程
 前記有機配位子を含む量子ドットの該有機配位子を、脂肪族アミノ酸へ配位子交換して、前記脂肪族アミノ酸を配位子として含む量子ドット固体を得る工程(工程1)は、ペロブスカイト化合物及び/又はその前駆体と量子ドットとを含む分散液の分散性を向上させる観点、及び光吸収層中のキャリア移動速度を向上させて光電変換効率を向上させる観点から好ましい。
 一般に、量子ドットの粒径制御、凝集抑制、分散性向上などのために、オレイン酸などの比較的分子サイズが大きく疎水性の化合物を配位子として用いて量子ドットが合成される場合がある。この場合、量子ドットは、トルエンなどの非(低)極性有機溶媒に対しては優れた分散性を示すが、N,N-ジメチルホルムアミド、メタノールなどの極性有機溶媒に対して分散性が悪い。従って、ペロブスカイト化合物及び/又はその前駆体を分散又は溶解させる溶媒が極性有機溶媒である場合、量子ドットを極性有機溶媒に分散させる必要が有り、極性有機溶媒と相溶性の高い物質を量子ドットに配位させることが好ましい。また、オレイン酸などの比較的分子サイズが大きく疎水性の化合物は、導電性が低く光吸収層中のキャリアの拡散を阻害する。従って、光吸収層中のキャリア移動速度を向上させて光電変換効率を向上させる観点から、比較的分子サイズの小さい物質を量子ドットに配位させることが好ましい。以上の観点から、量子ドットの配位子としては、好ましくは炭素数2~10の脂肪族アミノ酸、より好ましくは炭素数3~8の脂肪族アミノ酸、更に好ましくは炭素数3~7の脂肪族アミノ酸である。
 前記有機配位子を含む量子ドットの該有機配位子を、脂肪族アミノ酸へ配位子交換する方法としては、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、分散液中で配位子交換する方法が好ましく、前記有機配位子を含む量子ドット分散液と、前記脂肪族アミノ酸を含む溶液とを室温(25℃)、無撹拌下、時間をかけて混合後、静置することにより、配位子交換する方法がより好ましい。
 配位子交換に使用する脂肪族アミノ酸の混合量は、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、量子ドット表面の前記有機配位子に対する脂肪族アミノ酸のモル比として、好ましくは0.1以上、より好ましくは1以上、更に好ましくは1.5以上であり、好ましくは10以下、より好ましくは8以下、更に好ましくは5以下、更に好ましくは3以下である。
 配位子交換に使用する溶媒としては、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、好ましくは量子ドットを良好に分散させる溶媒と脂肪族アミノ酸を溶解させる溶媒との混合溶媒である。量子ドットの分散溶媒は、好ましくはトルエン、ヘキサン、及びオクタンなどから選択される1種以上の非(低)極性有機溶媒、より好ましくはトルエンである。脂肪族アミノ酸の溶解溶媒は、好ましくはN,N-ジメチルホルムアミド、ジメチルスルホキシド、及びγ-ブチロラクトンなどから選択される1種以上の非プロトン性極性有機溶媒、より好ましくはN,N-ジメチルホルムアミドである。
 配位子交換時に混合する量子ドット分散液中の量子ドット固形分濃度は、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、好ましくは10mg/mL以上、より好ましくは50mg/mL以上、更に好ましくは80mg/mL以上であり、好ましくは1000mg/mL以下、より好ましくは500mg/mL以下、更に好ましくは200mg/mL以下、更に好ましくは120mg/mL以下である。
 配位子交換時に混合する脂肪族アミノ酸溶液中の脂肪族アミノ酸濃度は、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、好ましくは0.01mol/L以上、より好ましくは0.1mol/L以上、更に好ましくは0.2mol/L以上であり、好ましくは1mol/L以下、より好ましくは0.5mol/L以下、更に好ましくは0.3mol/L以下である。
 配位子交換時の量子ドット分散液と脂肪族アミノ酸溶液との混合方法は、無撹拌下で、時間を掛けて混合する方法であれば特に限定されるものではないが、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、好ましくは連続法又は滴下法(半連続法)、より好ましくは滴下法である。
 連続法としては、量子ドット分散液に脂肪族アミノ酸溶液を混合する方法でも、脂肪族アミノ酸溶液に量子ドット分散液を混合する方法でも良いが、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、量子ドット分散液に脂肪族アミノ酸溶液を混合する方法が好ましい。混合速度は、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、好ましくは25μL/秒以下、より好ましくは5μL/秒以下、更に好ましくは3μL/秒以下であり、好ましくは0.2μL/秒以上、より好ましくは0.4μL/秒以上、更に好ましくは1.5μL/秒以上である。
 滴下法としては、量子ドット分散液に脂肪族アミノ酸溶液を滴下する方法でも、脂肪族アミノ酸溶液に量子ドット分散液を滴下する方法でも良いが、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、量子ドット分散液に脂肪族アミノ酸溶液を滴下する方法が好ましい。滴下速度は、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、好ましくは1滴/1秒以下、より好ましくは1滴/5秒以下、更に好ましくは1滴/8秒以下であり、好ましくは1滴/100秒以上、より好ましくは1滴/50秒以上、更に好ましくは1滴/15秒以上である。
 前記量子ドット分散液と前記脂肪族アミノ酸溶液とを混合後、静置する時間は、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、好ましくは0.1時間以上、より好ましくは1時間以上、更に好ましくは10時間以上であり、好ましくは100時間以下、より好ましくは48時間以下、更に好ましくは24時間以下である。
 配位子交換後、脂肪族アミノ酸を配位子とする量子ドット固体を得る方法としては、前記量子ドット分散液と前記脂肪族アミノ酸溶液との混合分散液に洗浄溶媒を添加し、ろ過して、量子ドット表面に配位していた前記有機配位子、過剰の脂肪族アミノ酸、及び溶媒を除去する工程を経て、量子ドット固体を得る方法が好ましい。洗浄溶媒は、配位子交換前後のいずれの量子ドットも分散しにくく、且つ、前記有機配位子、及び前記脂肪族アミノ酸が可溶な有機溶媒が好ましく、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、より好ましくはアルコール溶媒、更に好ましくはメタノールである。洗浄溶媒の量は、前記量子ドット分散液と前記脂肪族アミノ酸溶液との混合分散液の量に対する洗浄溶媒の体積比として、好ましくは0.1以上、より好ましくは0.5以上、更に好ましくは1以上であり、好ましくは10以下、より好ましくは5以下、更に好ましくは2以下である。製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、ろ過時のフィルター孔径は、好ましくは0.1μm以上、より好ましくは0.2μm以上であり、好ましくは1μm以下、より好ましくは0.5μm以下である。フィルター材質は、好ましくは疎水性のもの、より好ましくはポリテトラフルオロエチレン(PTFE)である。
 工程1で得られた量子ドット固体と、ペロブスカイト化合物及びその前駆体から選ばれる1種以上の物質を含む溶液又は混合液とを混合する工程(工程2)を経て、ペロブスカイト化合物及びその前駆体から選ばれる1種以上と前記量子ドットとを含む分散液を得ることが好ましい。
 ペロブスカイト化合物及び/又はその前駆体と、前記量子ドットとを含む分散液は、成膜性、コスト、保存安定性、優れた性能(例えば、光電変換特性)発現の観点から、好ましくは溶剤を含有する。溶剤としては、例えば、エステル類(メチルホルメート、エチルホルメートなど)、ケトン類(γ-ブチロラクトン、N-メチル-2-ピロリドン、アセトン、ジメチルケトン、ジイソブチルケトンなど)、エーテル類(ジエチルエーテル、メチル-tert-ブチルエーテル、ジメトキシメタン、1,4-ジオキサン、テトラヒドロフランなど)、アルコール類(メタノール、エタノール、2-プロパノール、tert-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノールなど)、グリコールエーテル(セロソルブ)類、アミド系溶剤(N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミドなど)、ニトリル系溶剤(アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリルなど)、カーボネート系(エチレンカーボネート、プロピレンカーボネートなど)、ハロゲン化炭化水素(塩化メチレン、ジクロロメタン、クロロホルムなど)、炭化水素、及びジメチルスルホキシドなどが挙げられる。
 前記分散液の溶剤は、成膜性、コスト、保存安定性、優れた性能(例えば、光電変換特性)発現の観点から、好ましくは極性溶剤、より好ましくはケトン類、アミド系溶剤、及びジメチルスルホキシドから選ばれる少なくとも1種の溶剤、更に好ましくはアミド系溶剤、更に好ましくはN,N-ジメチルホルムアミドである。
 前記分散液中のペロブスカイト化合物及び/又はその前駆体の金属濃度は、成膜性、コスト、保存安定性、優れた性能(例えば、光電変換特性)発現の観点から、好ましくは0.1mol/L以上、より好ましくは0.2mol/L以上、更に好ましくは0.3mol/L以上であり、好ましくは1.5mol/L以下、より好ましくは1.0mol/L以下、更に好ましくは0.7mol/L以下である。
 前記分散液中の前記量子ドットの固形分濃度は、成膜性、コスト、保存安定性、優れた性能(例えば、光電変換特性)発現の観点から、好ましくは10mg/mL以上、より好ましくは50mg/mL以上、更に好ましくは70mg/mL以上であり、好ましくは400mg/mL以下、より好ましくは300mg/mL以下、更に好ましくは200mg/mL以下、更に好ましくは130mg/mL以下である。
 前記分散液の調製方法は特に限定されないが、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、混合温度は、好ましくは0℃以上、より好ましくは10℃以上、更に好ましくは20℃以上であり、好ましくは50℃以下、より好ましくは40℃以下、更に好ましくは30℃以下である。また、同様の観点から、混合時間は、好ましくは0時間超、より好ましくは0.1時間以上であり、好ましくは72時間以下、より好ましくは24時間以下、更に好ましくは1時間以下である。
 前記分散液は、粗大粒子を除去するためにろ過されたものであることが好ましく、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、ろ過時のフィルター孔径は、好ましくは0.1μm以上、より好ましくは0.2μm以上であり、好ましくは1μm以下、より好ましくは0.5μm以下である。フィルター材質は、好ましくは疎水性のもの、より好ましくはポリテトラフルオロエチレン(PTFE)である。
 工程2で得られた分散液から光吸収層を得る工程(工程3)は、工程2で得られた分散液を基板(機能層)上に塗布(コーティング)するなどのウエットプロセスが好ましく、例えば、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、及びダイコート法などが挙げられ、製造容易性、コスト、優れた性能(例えば、光電変換特性)発現の観点から、好ましくはスピンコーティング法である。スピンコーティング法におけるスピンコーターの最大回転数は、優れた性能(例えば、光電変換特性)発現の観点から、好ましくは500rpm以上、より好ましくは1000rpm以上、更に好ましくは2000rpm以上であり、好ましくは8000rpm以下、より好ましくは7000rpm以下、更に好ましくは6000rpm以下である。
 また、製造容易性、コスト、及び光電変換特性向上などの観点から、前記分散液を基板上に塗布した後にペロブスカイト化合物の貧溶媒を塗布又は滴下してペロブスカイト化合物の結晶析出速度を向上させてもよい。前記貧溶媒は、好ましくはトルエン、クロロベンゼン、ジクロロメタン、又はこれらの混合溶媒である。
 前記ウエットプロセスにおける乾燥方法としては、製造容易性、コスト、優れた性能(例えば、光電変換特性)発現などの観点から、例えば、熱乾燥、気流乾燥、真空乾燥などが挙げられ、好ましくは熱乾燥である。熱乾燥の温度は、優れた性能(例えば、光電変換特性)発現の観点から、好ましくは60℃以上、より好ましくは80℃以上、更に好ましくは90℃以上であり、同様の観点及びコストの観点から、好ましくは200℃以下、より好ましくは150℃以下、更に好ましくは120℃以下、更に好ましくは110℃以下である。熱乾燥の時間は、優れた性能(例えば、光電変換特性)発現の観点から、好ましくは1分以上、より好ましくは5分以上、更に好ましくは8分以上であり、同様の観点及びコストの観点から、好ましくは120分以下、より好ましくは60分以下、更に好ましくは20分以下、更に好ましくは12分以下である。
<光電変換素子>
 本発明の光電変換素子は、前記光吸収層を有するものである。本発明の光電変換素子において、前記光吸収層以外の構成は、公知の光電変換素子の構成を適用することができる。また、本発明の光電変換素子は、前記光吸収層以外は公知の方法で製造することができる。
 以下、本発明の光電変換素子の構成と製造方法を図1に基づいて説明するが、図1は一例にすぎず、図1に示す態様に限定されるものではない。
 図1は、本発明の光電変換素子の構造の一例を示す概略断面図である。光電変換素子1は、透明基板2、透明導電層3、ブロッキング層4、多孔質層5、光吸収層6、及び正孔輸送層7が順次積層された構造を有する。光10入射側の透明電極基板は、透明基板2と透明導電層3から構成されており、透明導電層3は外部回路と電気的につなげるための端子となる電極(負極)9に接合している。また、正孔輸送層7は外部回路と電気的につなげるための端子となる電極(正極)8に接合している。
 透明基板2の材料としては、強度、耐久性、光透過性があればよく、合成樹脂及びガラスなどを使用できる。合成樹脂としては、例えば、ポリエチレンナフタレート(PEN)フィルムなどの熱可塑性樹脂、ポリエチレンテレフタレート(PET)、ポリエステル、ポリカーボネート、ポリオレフィン、ポリイミド、及びフッ素樹脂などが挙げられる。強度、耐久性、コストなどの観点から、ガラス基板を用いることが好ましい。
 透明導電層3の材料としては、例えば、スズ添加酸化インジウム(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO2)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(ZnO)、及び高い導電性を有する高分子材料などが挙げられる。高分子材料としては、例えば、ポリアセチレン系、ポリピロール系、ポリチオフェン系、ポリフェニレンビニレン系の高分子材料が挙げられる。また、透明導電層3の材料として、高い導電性を有する炭素系薄膜を用いることもできる。透明導電層3の形成方法としては、スパッタ法、蒸着法、及び分散物を塗布する方法などが挙げられる。
 ブロッキング層4の材料としては、例えば、酸化チタン、酸化アルミ、酸化ケイ素、酸化ニオブ、酸化タングステン、酸化錫、及び酸化亜鉛などが挙げられる。ブロッキング層4の形成方法としては、上記材料を透明導電層3に直接スパッタする方法、及びスプレーパイロリシス法などが挙げられる。また、上記材料を溶媒に溶解した溶液、又は金属酸化物の前駆体である金属水酸化物を溶解した溶液を透明導電層3上に塗布し、乾燥し、必要に応じて焼成する方法が挙げられる。塗布方法としては、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、及びダイコート法などが挙げられる。
 多孔質層5は、その表面に光吸収層6を担持する機能を有する層である。太陽電池において光吸収効率を高めるためには、光を受ける部分の表面積を大きくすることが好ましい。多孔質層5を設けることにより、光を受ける部分の表面積を大きくすることができる。
 多孔質層5の材料としては、例えば、金属酸化物、金属カルコゲナイド(例えば、硫化物、及びセレン化物など)、ペロブスカイト型結晶構造を有する化合物(ただし、前記光吸収剤を除く)、ケイ素酸化物(例えば、二酸化ケイ素及びゼオライト)、及びカーボンナノチューブ(カーボンナノワイヤ及びカーボンナノロッドなどを含む)などが挙げられる。
 金属酸化物としては、例えば、チタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、アルミニウム、及びタンタルの酸化物などが挙げられ、金属カルコゲナイドとしては、例えば、硫化亜鉛、セレン化亜鉛、硫化カドミウム、及びセレン化カドミウムなどが挙げられる。
 ペロブスカイト型結晶構造を有する化合物としては、例えば、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸バリウム、チタン酸鉛、ジルコン酸バリウム、スズ酸バリウム、ジルコン酸鉛、ジルコン酸ストロンチウム、タンタル酸ストロンチウム、ニオブ酸カリウム、鉄酸ビスマス、チタン酸ストロンチウムバリウム、チタン酸バリウムランタン、チタン酸カルシウム、チタン酸ナトリウム、及びチタン酸ビスマスなどが挙げられる。
 多孔質層5の形成材料は、好ましくは微粒子として用いられ、より好ましくは微粒子を含有する分散物として用いられる。多孔質層5の形成方法としては、例えば、湿式法、乾式法、その他の方法(例えば、Chemical  Review,第110巻,6595頁(2010年刊)に記載の方法)が挙げられる。これらの方法において、ブロッキング層4の表面に分散物(ペースト)を塗布した後に、焼成することが好ましい。焼成により、微粒子同士を密着させることができる。塗布方法としては、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、及びダイコート法などが挙げられる。
 光吸収層6は前述の本発明の光吸収層である。光吸収層6の形成方法は、例えば、ペロブスカイト化合物及び/又はその前駆体と、脂肪族アミノ酸を含む量子ドットとを含む分散液を調製し、多孔質層5の表面に調製した分散液を塗布し、乾燥する、いわゆるウエットプロセスによる方法が好適に挙げられる。光吸収層6の形成方法は、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、前述の工程1、工程2及び工程3を含む製造方法が好ましい。
 正孔輸送層7の材料としては、例えば、カルバゾール誘導体、ポリアリールアルカン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、フタロシアニン系化合物、ポリチオフェン誘導体、ポリピロール誘導体、及びポリパラフェニレンビニレン誘導体などが挙げられる。正孔輸送層7の形成方法としては、例えば、塗布法、及び真空蒸着法などが挙げられる。塗布方法としては、例えば、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、及びダイコート法などが挙げられる。
 電極(正極)8及び電極(負極)9の材料としては、例えば、アルミニウム、金、銀、白金などの金属;スズ添加酸化インジウム(ITO)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(ZnO)などの導電性金属酸化物;導電性高分子などの有機系導電材料;ナノチューブなどの炭素系材料が挙げられる。電極(正極)8及び電極(負極)9の形成方法としては、例えば、真空蒸着法、スパッタリング法、及び塗布法などが挙げられる。
<太陽電池>
 本発明の太陽電池は、前記光電変換素子を有するものである。本発明の太陽電池において、前記光吸収層以外の構成は、公知の太陽電池の構成を適用することができる。
 以下に、本発明及び本発明の好ましい実施態様を示す。
<1>
 ペロブスカイト化合物と、脂肪族アミノ酸を含む量子ドットと、を含有する光吸収層。
<2>
 中間バンドを有する、<1>に記載の光吸収層。
<3>
 前記ペロブスカイト化合物は、好ましくは下記一般式(1)で表される化合物及び下記一般式(2)で表される化合物から選ばれる1種以上であり、より好ましくは下記一般式(1)で表される化合物である、<1>又は<2>に記載の光吸収層。
 RMX    (1)
(式中、Rは1価のカチオンであり、Mは2価の金属カチオンであり、Xはハロゲンアニオンである。)
 R n-13n+1    (2)
(式中、R、R、及びRはそれぞれ独立に1価のカチオンであり、Mは2価の金属カチオンであり、Xはハロゲンアニオンであり、nは1以上10以下の整数である。)
<4>
 前記Rは、周期表第一族元素のカチオン、及び有機カチオンから選ばれる1種以上であり、前記周期表第一族元素のカチオンは、好ましくはLi、Na、K、及びCsから選ばれる1種以上であり、前記有機カチオンは、好ましくは置換基を有していてもよいアンモニウムイオン、及び置換基を有していてもよいホスホニウムイオンから選ばれる1種以上であり、前記置換基を有していてもよいアンモニウムイオンは、好ましくはアルキルアンモニウムイオン、ホルムアミジニウムイオン及びアリールアンモニウムイオンから選ばれる1種以上であり、より好ましくはアルキルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、更に好ましくはモノアルキルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、更に好ましくはメチルアンモニウムイオン、エチルアンモニウムイオン、ブチルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、更に好ましくはメチルアンモニウムイオンである、<3>に記載の光吸収層。
<5>
 前記R、R、及びRは、周期表第一族元素のカチオン、及び有機カチオンから選ばれる1種以上であり、前記周期表第一族元素のカチオンは、好ましくはLi、Na、K、及びCsから選ばれる1種以上であり、前記有機カチオンは、好ましくは置換基を有していてもよいアンモニウムイオン、及び置換基を有していてもよいホスホニウムイオンから選ばれる1種以上であり、前記置換基を有していてもよいアンモニウムイオンは、好ましくはアルキルアンモニウムイオン、ホルムアミジニウムイオン及びアリールアンモニウムイオンから選ばれる1種以上であり、より好ましくはアルキルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、更に好ましくはモノアルキルアンモニウムイオンであり、更に好ましくはメチルアンモニウムイオン、エチルアンモニウムイオン、ブチルアンモニウムイオン、ヘキシルアンモニウムイオン、オクチルアンモニウムイオン、デシルアンモニウムイオン、ドデシルアンモニウムイオン、テトラデシルアンモニウムイオン、ヘキサデシルアンモニウムイオン、及びオクタデシルアンモニウムイオンから選ばれる1種以上である、<3>に記載の光吸収層。
<6>
 前記nは、1以上4以下の整数である、<3>又は<5>に記載の光吸収層。
<7>
 前記Mは、好ましくはPb2+、Sn2+、Hg2+、Cd2+、Zn2+、Mn2+、Cu2+、Ni2+、Fe2+、Co2+、Pd2+、Ge2+、Y2+、及びEu2+から選ばれる1種以上であり、より好ましくはPb2+、Sn2+、及びGe2+から選ばれる1種以上であり、更に好ましくはPb2+、及びSn2+から選ばれる1種以上であり、更に好ましくはPb2+、Sn2+、又はGe2+であり、更に好ましくはPb2+である、<3>~<6>のいずれか1項に記載の光吸収層。
<8>
 前記Xは、好ましくはフッ素アニオン、塩素アニオン、臭素アニオン、及びヨウ素アニオンから選ばれる1種以上であり、より好ましくはフッ素アニオン、塩素アニオン、又は臭素アニオンであり、更に好ましくは塩素アニオン、又は臭素アニオンであり、更に好ましくは臭素アニオンである、<3>~<7>のいずれか1項に記載の光吸収層。
<9>
 前記ペロブスカイト化合物のバンドギャップエネルギーは、好ましくは1.5eV以上、より好ましくは1.7eV以上、更に好ましくは2.0eV以上、更に好ましくは2.1eV以上、更に好ましくは2.2eV以上であり、好ましくは4.0eV以下、より好ましくは3.6eV以下、更に好ましくは3.0eV以下、更に好ましくは2.4eV以下である、<1>~<8>のいずれか1項に記載の光吸収層。
<10>
 前記一般式(1)で表される化合物は、好ましくはCHNHPbBr、及びCH(=NH)NHPbBrから選ばれる1種以上であり、より好ましくはCHNHPbBrである、<3>~<9>のいずれか1項に記載の光吸収層。
<11>
 前記脂肪族アミノ酸を含む量子ドットは、量子ドット表面に前記脂肪族アミノ酸が配位した化合物(量子ドットを構成する金属元素に前記脂肪族アミノ酸が配位した化合物)である、<1>~<10>のいずれか1項に記載の光吸収層。
<12>
 前記脂肪族アミノ酸を含む量子ドットは、金属カルコゲナイドの表面に前記脂肪族アミノ酸が配位した化合物である、<1>~<11>のいずれか1項に記載の光吸収層。
<13>
 前記脂肪族アミノ酸を含む量子ドットは、好ましくはPb元素を含み、より好ましくはPbS又はPbSeを含み、更に好ましくはPbSを含む、<1>~<11>のいずれか1項に記載の光吸収層。
<14>
 前記ペロブスカイト化合物を構成する金属と前記量子ドットを構成する金属は、好ましくは同じ金属である、<1>~<13>のいずれか1項に記載の光吸収層。
<15>
 前記脂肪族アミノ酸は、直鎖アミノ酸である、<1>~<14>のいずれか1項に記載の光吸収層。
<16>
 前記脂肪族アミノ酸の炭素数は、好ましくは10以下、より好ましくは8以下、更に好ましくは7以下であり、好ましくは2以上、より好ましくは3以上である、<1>~<15>のいずれか1項に記載の光吸収層。
<17>
 前記脂肪族アミノ酸のアミノ基は、炭素鎖の末端にある、<1>~<16>のいずれか1項に記載の光吸収層。
<18>
 前記量子ドットのバンドギャップエネルギーは、0.2eV以上かつ前記ペロブスカイト化合物のバンドギャップエネルギー以下である、<1>~<17>のいずれか1項に記載の光吸収層。
<19>
 前記量子ドットのバンドギャップエネルギーは、好ましくは0.7eV以上、より好ましくは0.8eV以上、更に好ましくは0.9eV以上、更に好ましくは1.0eV以上であり、好ましくは1.6eV以下、より好ましくは1.5eV以下、更に好ましくは1.4eV以下である、<1>~<18>のいずれか1項に記載の光吸収層。
<20>
 前記ペロブスカイト化合物のバンドギャップエネルギーと、前記量子ドットのバンドギャップエネルギーとの差は、好ましくは0.4eV以上、より好ましくは0.6eV以上、更に好ましくは0.8eV以上であり、好ましくは2.0eV以下、より好ましくは1.5eV以下、更に好ましくは1.3eV以下である、<1>~<19>のいずれか1項に記載の光吸収層。
<21>
 好ましくは、前記量子ドットのバンドギャップエネルギーは、0.7eV以上1.6eV以下であり、前記ペロブスカイト化合物のバンドギャップエネルギーと、前記量子ドットのバンドギャップエネルギーとの差は、0.4eV以上2.0eV以下であり、
 より好ましくは、前記量子ドットのバンドギャップエネルギーは、0.8eV以上1.5eV以下であり、前記ペロブスカイト化合物のバンドギャップエネルギーと、前記量子ドットのバンドギャップエネルギーとの差は、0.6eV以上1.5eV以下であり、
 更に好ましくは、前記量子ドットのバンドギャップエネルギーは、0.9eV以上1.4eV以下であり、前記ペロブスカイト化合物のバンドギャップエネルギーと、前記量子ドットのバンドギャップエネルギーとの差は、0.8eV以上1.3eV以下であり、
 更に好ましくは、前記量子ドットのバンドギャップエネルギーは、1.0eV以上1.4eV以下であり、前記ペロブスカイト化合物のバンドギャップエネルギーと、前記量子ドットのバンドギャップエネルギーとの差は、0.8eV以上1.3eV以下である、<1>~<18>のいずれか1項に記載の光吸収層。
<22>
 前記量子ドットは、前記脂肪族アミノ酸以外のカルボキシ基含有化合物、前記脂肪族アミノ酸以外のアミノ基含有化合物、チオール基含有化合物、及びホスフィノ基含有化合物からなる群より選択される少なくとも1種の有機配位子を含む、<1>~<21>のいずれか1項に記載の光吸収層。
<23>
 前記有機配位子は、好ましくは前記カルボキシ基含有化合物又は前記アミノ基含有化合物、より好ましくは前記カルボキシ基含有化合物、更に好ましくはカルボン酸、更に好ましくは脂肪酸、更に好ましくは炭素数8以上30以下の脂肪酸、更に好ましくは炭素数12以上18以下の脂肪酸、更に好ましくは炭素数12以上18以下の不飽和脂肪酸、更に好ましくはオレイン酸である、<22>に記載の光吸収層。
<24>
 前記ペロブスカイト化合物と、前記脂肪族アミノ酸を含む量子ドットとの組み合わせは、CHNHPbBrと前記脂肪族アミノ酸が配位したPbSとの組み合わせである、<1>~<23>のいずれか1項に記載の光吸収層。
<25>
 ペロブスカイト化合物と、量子ドットと、を含有する光吸収層であって、
 前記ペロブスカイト化合物がCHNHPbBrであり、
 前記量子ドットはPbSの表面に炭素数3以上10以下の直鎖アミノ酸が配位した化合物である、光吸収層。
<26>
 光吸収層中の前記量子ドットの含有量は、好ましくは7.5質量%以上、より好ましくは10質量%以上、更に好ましくは12質量%以上であり、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下、更に好ましくは20質量%以下である、<1>~<25>のいずれか1項に記載の光吸収層。
<27>
 光吸収層の空隙率は、好ましくは10%以下、より好ましくは8%以下、更に好ましくは5%以下、更に好ましくは0%である、<1>~<26>のいずれか1項に記載の光吸収層。
<28>
 好ましくは、光吸収層中の前記量子ドットの含有量は、7.5質量%以上40質量%以下であり、光吸収層の空隙率は、10%以下であり、
 より好ましくは、光吸収層中の前記量子ドットの含有量は、10質量%以上30質量%以下であり、光吸収層の空隙率は、8%以下であり、
 更に好ましくは、光吸収層中の前記量子ドットの含有量は、12質量%以上25質量%以下であり、光吸収層の空隙率は、5%以下であり、
 更に好ましくは、光吸収層中の前記量子ドットの含有量は、12質量%以上20質量%以下であり、光吸収層の空隙率は、0%である、<1>~<25>のいずれか1項に記載の光吸収層。
<29>
 光吸収層の機能層(例えば、多孔質層)に対する被覆率は、好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上、更に好ましくは100%である、<1>~<28>のいずれか1項に記載の光吸収層。
<30>
 ペロブスカイト化合物又はその前駆体と、脂肪族アミノ酸を含む量子ドットと、を含有する分散液。
<31>
 前記分散液は、溶剤を含有する、<30>に記載の分散液。
<32>
 前記分散液中の前記量子ドットの固形分濃度は、10mg/mL以上400mg/mL以下である、<30>又は<31>に記載の分散液。
<33>
 <30>~<32>のいずれか1項に記載の分散液から得られる光吸収層。
<34>
 次の工程1、工程2及び工程3を含む、ペロブスカイト化合物のマトリクス中に脂肪族アミノ酸を含む量子ドットが分散している光吸収層の製造方法。
(工程1)有機配位子を含む量子ドットの該有機配位子を、脂肪族アミノ酸へ配位子交換して、脂肪族アミノ酸を配位子として含む量子ドット固体を得る工程
(工程2)工程1で得られた量子ドット固体と、ペロブスカイト化合物及びその前駆体から選ばれる1種以上の物質を含む溶液又は混合液とを混合して分散液を得る工程
(工程3)工程2で得られた分散液から光吸収層を得る工程
<35>
 前記脂肪族アミノ酸は、好ましくは炭素数2~10の脂肪族アミノ酸、より好ましくは炭素数3~8の脂肪族アミノ酸、更に好ましくは炭素数3~7の脂肪族アミノ酸である、<34>に記載の光吸収層の製造方法。
<36>
 前記工程1における前記配位子交換は、好ましくは分散液中で行い、より好ましくは有機配位子を含む量子ドットの分散液と、脂肪族アミノ酸を含む溶液とを混合することにより行う、<34>又は<35>に記載の光吸収層の製造方法。
<37>
 配位子交換に使用する脂肪族アミノ酸の混合量は、量子ドット表面の前記有機配位子に対する前記脂肪族アミノ酸のモル比として、好ましくは0.1以上、より好ましくは1以上、更に好ましくは1.5以上であり、好ましくは10以下、より好ましくは8以下、更に好ましくは5以下、更に好ましくは3以下である、<36>に記載の光吸収層の製造方法。
<38>
 配位子交換に使用する溶媒は、量子ドットを分散させる溶媒と前記脂肪族アミノ酸を溶解させる溶媒との混合溶媒であり、前記量子ドットの分散溶媒は、好ましくはトルエン、ヘキサン、及びオクタンから選択される1種以上の非(低)極性有機溶媒、より好ましくはトルエンであり、前記脂肪族アミノ酸の溶解溶媒は、好ましくはN,N-ジメチルホルムアミド、ジメチルスルホキシド、及びγ-ブチロラクトンから選択される1種以上の非プロトン性極性有機溶媒、より好ましくはN,N-ジメチルホルムアミドである、<36>又は<37>に記載の光吸収層の製造方法。
<39>
 配位子交換時に混合する量子ドット分散液中の量子ドット固形分濃度は、好ましくは10mg/mL以上、より好ましくは50mg/mL以上、更に好ましくは80mg/mL以上であり、好ましくは1000mg/mL以下、より好ましくは500mg/mL以下、更に好ましくは200mg/mL以下、更に好ましくは120mg/mL以下である、<36>~<38>のいずれか1項に記載の光吸収層の製造方法。
<40>
 配位子交換時に混合する前記脂肪族アミノ酸溶液中の前記脂肪族アミノ酸濃度は、好ましくは0.01mol/L以上、より好ましくは0.1mol/L以上、更に好ましくは0.2mol/L以上であり、好ましくは1mol/L以下、より好ましくは0.5mol/L以下、更に好ましくは0.3mol/L以下である、<36>~<39>のいずれか1項に記載の光吸収層の製造方法。
<41>
 配位子交換時の量子ドット分散液と前記脂肪族アミノ酸溶液との混合方法は、好ましくは連続法又は滴下法(半連続法)、より好ましくは滴下法である、<36>~<40>のいずれか1項に記載の光吸収層の製造方法。
<42>
 前記連続法は、量子ドット分散液に前記脂肪族アミノ酸溶液を混合する方法であり、混合速度は、好ましくは25μL/秒以下、より好ましくは5μL/秒以下、更に好ましくは3μL/秒以下であり、好ましくは0.2μL/秒以上、より好ましくは0.4μL/秒以上、更に好ましくは1.5μL/秒以上である、<41>に記載の光吸収層の製造方法。
<43>
 前記滴下法は、量子ドット分散液に前記脂肪族アミノ酸溶液を滴下する方法であり、滴下速度は、好ましくは1滴/1秒以下、より好ましくは1滴/5秒以下、更に好ましくは1滴/8秒以下であり、好ましくは1滴/100秒以上、より好ましくは1滴/50秒以上、更に好ましくは1滴/15秒以上である、<41>に記載の光吸収層の製造方法。
<44>
 前記量子ドット分散液と前記脂肪族アミノ酸溶液とを混合後、静置する時間は、好ましくは0.1時間以上、より好ましくは1時間以上、更に好ましくは10時間以上であり、好ましくは100時間以下、より好ましくは48時間以下、更に好ましくは24時間以下である、<36>~<43>のいずれか1項に記載の光吸収層の製造方法。
<45>
 配位子交換後、脂肪族アミノ酸を配位子とする量子ドット固体を得る方法は、前記量子ドット分散液と前記脂肪族アミノ酸溶液との混合分散液に洗浄溶媒を添加し、ろ過して、量子ドット表面に配位していた前記有機配位子、過剰の前記脂肪族アミノ酸、及び溶媒を除去する工程であり、前記洗浄溶媒は、好ましくは配位子交換前後のいずれの量子ドットも分散しにくく、且つ、前記有機配位子、及び前記脂肪族アミノ酸が可溶な有機溶媒、より好ましくはアルコール溶媒、更に好ましくはメタノールである、<36>~<44>のいずれか1項に記載の光吸収層の製造方法。
<46>
 前記洗浄溶媒の量は、前記量子ドット分散液と前記脂肪族アミノ酸溶液との混合分散液の量に対する洗浄溶媒の体積比として、好ましくは0.1以上、より好ましくは0.5以上、更に好ましくは1以上であり、好ましくは10以下、より好ましくは5以下、更に好ましくは2以下である、<45>に記載の光吸収層の製造方法。
<47>
 前記ろ過時のフィルター孔径は、好ましくは0.1μm以上、より好ましくは0.2μm以上であり、好ましくは1μm以下、より好ましくは0.5μm以下であり、フィルター材質は、好ましくは疎水性のもの、より好ましくはポリテトラフルオロエチレン(PTFE)である、<45>又は<46>に記載の光吸収層の製造方法。
<48>
 前記分散液は、溶剤を含有する、<34>~<47>のいずれか1項に記載の光吸収層の製造方法。
<49>
 前記溶剤は、好ましくは極性溶剤、より好ましくはケトン類、アミド系溶剤、及びジメチルスルホキシドから選ばれる少なくとも1種の溶剤、更に好ましくはアミド系溶剤、更に好ましくはN,N-ジメチルホルムアミドである、<48>に記載の光吸収層の製造方法。
<50>
 前記分散液中のペロブスカイト化合物及び/又はその前駆体の金属濃度は、好ましくは0.1mol/L以上、より好ましくは0.2mol/L以上、更に好ましくは0.3mol/L以上であり、好ましくは1.5mol/L以下、より好ましくは1.0mol/L以下、更に好ましくは0.7mol/L以下である、<34>~<49>のいずれか1項に記載の光吸収層の製造方法。
<51>
 前記分散液中の前記量子ドットの固形分濃度は、好ましくは10mg/mL以上、より好ましくは50mg/mL以上、更に好ましくは70mg/mL以上であり、好ましくは400mg/mL以下、より好ましくは300mg/mL以下、更に好ましくは200mg/mL以下、更に好ましくは130mg/mL以下である、<34>~<50>のいずれか1項に記載の光吸収層の製造方法。
<52>
 前記分散液の調製時の混合温度は、好ましくは0℃以上、より好ましくは10℃以上、更に好ましくは20℃以上であり、好ましくは50℃以下、より好ましくは40℃以下、更に好ましくは30℃以下である、<34>~<51>のいずれか1項に記載の光吸収層の製造方法。
<53>
 前記分散液の調製時の混合時間は、好ましくは0時間超、より好ましくは0.1時間以上であり、好ましくは72時間以下、より好ましくは24時間以下、更に好ましくは1時間以下である、<34>~<52>のいずれか1項に記載の光吸収層の製造方法。
<54>
 前記分散液は、粗大粒子を除去するためにろ過されたものであり、ろ過時のフィルター孔径は、好ましくは0.1μm以上、より好ましくは0.2μm以上であり、好ましくは1μm以下、より好ましくは0.5μm以下であり、フィルター材質は、好ましくは疎水性のもの、より好ましくはポリテトラフルオロエチレン(PTFE)である、<34>~<53>のいずれか1項に記載の光吸収層の製造方法。
<55>
 前記工程3は、好ましくはウエットプロセス、より好ましくはスピンコーティング法であり、前記スピンコーティング法におけるスピンコーターの最大回転数は、好ましくは500rpm以上、より好ましくは1000rpm以上、更に好ましくは2000rpm以上であり、好ましくは8000rpm以下、より好ましくは7000rpm以下、更に好ましくは6000rpm以下である、<34>~<54>のいずれか1項に記載の光吸収層の製造方法。
<56>
 前記工程3において、前記分散液を基板上に塗布した後にペロブスカイト化合物の貧溶媒を塗布又は滴下してペロブスカイト化合物の結晶析出速度を向上させる、<34>~<55>のいずれか1項に記載の光吸収層の製造方法。
<57>
 前記貧溶媒は、トルエン、クロロベンゼン、ジクロロメタン、又はこれらの混合溶媒である、<56>に記載の光吸収層の製造方法。
<58>
 前記ウエットプロセスにおける乾燥方法は、好ましくは熱乾燥であり、前記熱乾燥の温度は、好ましくは60℃以上、より好ましくは80℃以上、更に好ましくは90℃以上であり、好ましくは200℃以下、より好ましくは150℃以下、更に好ましくは120℃以下、更に好ましくは110℃以下であり、前記熱乾燥の時間は、好ましくは1分以上、より好ましくは5分以上、更に好ましくは8分以上であり、好ましくは120分以下、より好ましくは60分以下、更に好ましくは20分以下、更に好ましくは12分以下である、<55>~<57>のいずれか1項に記載の光吸収層の製造方法。
<59>
 <1>~<29>及び<33>のいずれか1項に記載の光吸収層を有する光電変換素子。
<60>
 <59>に記載の光電変換素子を有する太陽電池。
 以下、本発明について、実施例に基づき具体的に説明する。また、評価・測定方法は以下のとおりである。なお、特に断らない限り、実施、測定は25℃、常圧の環境で行った。なお、「常圧」とは101.3kPaを示す。
<I-V曲線>
 キセノンランプ白色光を光源(ペクセル・テクノロジーズ社製、PEC-L01)とし、太陽光(AM1.5)相当の光強度(100mW/cm)にて、光照射面積0.0363cm(2mm角)のマスク下、I-V特性計測装置(ペクセル・テクノロジーズ社製、PECK2400-N)を用いて走査速度0.1V/sec(0.01V step)、電圧設定後待ち時間50msec、測定積算時間50msec、開始電圧-0.1V、終了電圧1.1Vの条件でセルのI-V曲線を測定した。なお、シリコンリファレンス(BS-520、0.5714mA)で光強度補正を行った。I-V曲線から開放電圧(V)、及びフィルファクター(FF)を求めた。
<吸収スペクトル>
 光吸収層の吸収スペクトルは、正孔輸送剤を塗布する前の試料において、UV-Vis分光光度計(株式会社島津製作所製、SolidSpec-3700)を用い、スキャンスピード中速、サンプルピッチ1nm、スリット幅20、検出器ユニット積分球の条件で300~1600nmの範囲を測定した。FTO(Fluorine-doped tin oxide)基板(旭硝子ファブリテック株式会社製、25×25×1.8mm)でバックグラウンド測定を行った。 
 PbS量子ドット分散液の吸収スペクトルは、PbS量子ドット固体0.1mg/mL以上1mg/mL以下の濃度の分散液において、1cm角石英セルを用いて、同様に測定した。なお、オレイン酸が配位したPbS量子ドットの場合はヘキサンを分散溶媒とし、アミノ酸が配位したPbS量子ドットの場合はN,N-ジメチルホルムアミド(DMF)を分散溶媒とした。 
 横軸;波長λ、縦軸;吸光度Aの吸収スペクトルを、横軸;エネルギーhν、縦軸;(αhν)1/2(α;吸光係数)のスペクトルに変換し、吸収の立ち上がる部分に直線をフィッティングし、その直線とベースラインとの交点をバンドギャップエネルギーとした。
<PbS量子ドット固体の組成>
 PbS量子ドット固体中のPb濃度は、PbS量子ドット固体を硝酸/過酸化水素混合溶液に完全溶解後、高周波誘導結合プラズマ発光分光(ICP)分析により定量した。 
 PbS量子ドット固体中のオレイン酸濃度は、重トルエン(シグマ アルドリッチ ジャパン合同会社製、99atom%D、TMS0.03vol%含有)溶媒を内部標準物質として用い、プロトン(H)核磁気共鳴(NMR)法により定量した。NMR装置(アジレント社製、VNMRS400)を用い、共鳴周波数400MHz、遅延時間60秒、積算32回の条件で測定した。ジブロモメタン(3.9ppm vs.TMS)の積分値に対するオレイン酸のビニルプロトン(5.5ppm vs.TMS)の積分値の比からPbS量子ドット固体中のオレイン酸濃度を求めた。
<オレイン酸が配位したPbS量子ドットの合成>
 酸化鉛(富士フイルム和光純薬株式会社製)0.45g、オクタデセン(シグマ アルドリッチ ジャパン合同会社製)10g、オレイン酸(シグマ アルドリッチ ジャパン合同会社製)1.34gを50mL三口フラスコに入れ、80℃で2時間撹拌することにより、Pb源溶液を調製した。反応系内を真空ポンプにより脱気し、窒素ガスを導入して大気圧に戻した後、更に110℃で30分間撹拌した。一方、1,1,1,3,3,3-ヘキサメチルジシラチアン(東京化成工業株式会社製)210μLをオクタデセン4mLに溶解し、S源溶液を調製した。110℃、撹拌、窒素ガス雰囲気下、シリンジを用いてS源溶液をPb源溶液に一気に注入し、オレイン酸が配位したPbS量子ドットを生成させた。大過剰のアセトンを添加して反応を停止後、遠心分離(日立工機株式会社製、CR21GIII、R15Aローター、2500rpm、2分)により上澄みを除去、沈殿物を減圧乾燥させることにより、オレイン酸が配位したPbS量子ドット固体を得た。 
 オレイン酸が配位したPbS量子ドット固体中の各濃度は、Pb=66質量%、オレイン酸=22質量%であり、オレイン酸/Pbモル比=0.25であった。X線回折結果より結晶子径2.7nm、吸収スペクトルより吸収端波長1070nm、吸収ピーク波長970nm(固形分濃度1mg/mLヘキサン分散液のピーク吸光度0.501)であった。
<光吸収層の被覆率>
 光吸収層の被覆率は、正孔輸送剤を塗布する前の試料において、電界放射型高分解能走査電子顕微鏡(FE-SEM、株式会社日立製作所製、S-4800)を用いて光吸収層表面のSEM写真(拡大倍率20000倍)を測定し、そのSEM写真を画像解析ソフト(Winroof)を用い、ペンツールで光吸収層を指定し、全面積に対する光吸収層の面積比(面積率)から算出した。
<空隙率の測定>
 初めに、cryoFIB-SEM(FEI社製、Scios DualBeam)を用いて、光吸収層の断面を観察した(図2、3)。表面を保護するために白金パラジウムコートを120秒2回行い、FIB-SEMの装置内で観察部位にカーボンの保護膜を形成した。30kV、0.3nAでFIB断面加工を行い、反射電子でZコントラストを検出し、加速電圧2kV、WD1mm、倍率10万倍で観測した。 
 次に、画像解析ソフト(三谷商事株式会社製、WinROOF2013)を用い、しきい値120で2値化処理を行い、空隙が形成されている部分の割合を算出した(図4は図2に対応、図5は図3に対応)。なお、空隙率は、断面SEM観察を行った光吸収層の断面の全領域について測定した。また、ここでいう空隙率とは、光吸収層(図4、5において破線で囲まれた部分)中における空隙(図4、5において黒色で塗りつぶされた部分)の割合であり、視野内の全ての固体中における平均値である。
実施例1
<3-アミノプロパン酸が配位したPbS量子ドットの合成>
 上記のオレイン酸が配位したPbS量子ドット固体0.20gをトルエン(脱水、富士フイルム和光純薬株式会社製)2mLに分散させ、黒色透明分散液を得た。一方、3-アミノプロパン酸ヨウ化水素酸塩(0.072g、東京化成工業株式会社製)をDMF(脱水、富士フイルム和光純薬株式会社製)0.5mLとトルエン(脱水、富士フイルム和光純薬株式会社製)1mLに溶解させてアミノ酸塩溶液を得た(3-アミノプロパン酸ヨウ化水素酸塩/オレイン酸モル比=2)。室温(25℃)、窒素雰囲気下(グローブボックス内)、無撹拌下、上記アミノ酸塩溶液をPbS量子ドット分散液に1滴/10秒の滴下速度(滴下時間11分)で滴下後、18時間静置した。更にメタノール5mLを添加、混合後、フィルター(孔径0.2μm、材質PTFE)ろ過、乾燥させることにより、3-アミノプロパン酸が配位したPbS量子ドット固体を得た。
 次の(1)~(7)の工程を順に行い、セルを作製した。
(1)FTO基板のエッチング、洗浄
 25mm角のフッ素ドープ酸化スズ(FTO)付ガラス基板(旭硝子ファブリテック株式会社製、25×25×1.8mm、以下、FTO基板という)の一部をZn粉末と2mol/L塩酸水溶液でエッチングした。1質量%中性洗剤、アセトン、2-プロパノール(IPA)、脱イオン水で、この順に各10分間超音波洗浄を行った。
(2)オゾン洗浄
 緻密TiO層形成工程の直前にFTO基板のオゾン洗浄を行った。FTO面を上にして、基板をオゾン発生装置(メイワフォーシス株式会社製、オゾンクリーナー、PC-450UV)に入れ、30分間UV照射した。
(3)緻密TiO層(ブロッキング層)の形成
 エタノール(脱水、富士フイルム和光純薬株式会社製)123.24gにビス(2,4-ペンタンジオナト)ビス(2-プロパノラト)チタニウム(IV)(75%IPA溶液、東京化成工業株式会社製)4.04gを溶解させ、スプレー溶液を調製した。ホットプレート(450℃)上のFTO基板に約30cmの高さから0.3MPaでスプレーした。20cm×8列を2回繰り返して約7gスプレー後、450℃で3分間乾燥した。この操作を更に2回行うことにより合計約21gの溶液をスプレーした。その後、このFTO基板を、塩化チタン(富士フイルム和光純薬株式会社製)水溶液(50mM)に浸漬し、70℃で30分加熱した。水洗、乾燥後、500℃で20分焼成(昇温15分)することにより、緻密TiO(cTiO)層を形成した。
(4)メソポーラスTiO層(多孔質層)の形成
 アナターゼ型TiOペースト(PST-18NR、日揮触媒化成株式会社製)0.404gにエタノール(脱水、富士フイルム和光純薬株式会社製)1.41gを加え、1時間超音波分散を行い、TiOコート液を調製した。ドライルーム内において、上記のcTiO層上にスピンコーター(ミカサ株式会社製、MS-100)を用いてTiOコート液をスピンコートした(5000rpm×30sec)。125℃のホットプレート上で30分間乾燥後、500℃で30分焼成(昇温時間60分)することにより、メソポーラスTiO(mTiO)層を形成した。
(5)光吸収層の形成
 光吸収層および正孔輸送層の形成は、25℃のグローブボックス内にて行った。臭化鉛(PbBr、ペロブスカイト前駆体用、東京化成工業株式会社製)0.183g、メチルアミン臭化水素酸塩(CHNHBr、東京化成工業株式会社製)0.056g、DMF(脱水、富士フイルム和光純薬株式会社製)0.9mLとDMSO(脱水、富士フイルム和光純薬株式会社製)0.1mLを混合、室温撹拌し、0.5mol/Lペロブスカイト(CHNHPbBr)原料のDMF/DMSO溶液(無色透明)を調製した。更に、このDMF/DMSO溶液に上記の3-アミノプロパン酸が配位したPbS量子ドット固体0.18gを加え、15分間撹拌分散後、孔径0.45μmのPTFEフィルターでろ過することにより、PbS量子ドットとペロブスカイト原料との混合分散液(コート液)を得た。 
 上記のmTiO層上にスピンコーター(ミカサ株式会社製、MS-100)を用いて前記コート液をスピンコートした(5000rpm×30sec)。なお、スピン開始5秒後に貧溶媒であるクロロベンゼン(シグマアルドリッチ社製)1mLをスピン中心部に一気に滴下した。スピンコート後すぐに100℃ホットプレート上で10分間乾燥させ、光吸収層を形成した。この光吸収層にはペロブスカイト化合物CHNHPbBr、PbS量子ドット、及び配位子が含まれる。ペロブスカイト化合物が生成していることはX線回折パターン、吸収スペクトル及び電子顕微鏡観察により、また、量子ドットが存在していることは蛍光スペクトル、電子顕微鏡観察から確認した。
(6)正孔輸送層の形成
 ビス(トリフルオロメタンスルホニル)イミドリチウム(LiTFSI、富士フイルム和光純薬株式会社製)9.1mg、[トリス(2-(1H-ピラゾール-1-イル)-4-tert-ブチルピリジン)コバルト(III)トリス(ビス(トリフルオロメチルスルホニル)イミド)](Co(4-tButylpyridyl-2-1H-pyrazole)3.3TFSI、富士フイルム和光純薬株式会社製)8.7mg、2,2’,7,7’-テトラキス[N,N-ジ-p-メトキシフェニルアミノ]-9,9’-スピロビフルオレン(Spiro-OMeTAD、富士フイルム和光純薬株式会社製)72.3mg、クロロベンゼン(シグマアルドリッチ社製)1mL、トリブチルホスフィン(TBP、シグマアルドリッチ製)28.8μLを混合し、室温撹拌して正孔輸送剤(HTM)溶液(黒紫色透明)を調製した。使用直前に、HTM溶液を孔径0.45μmのPTFEフィルターでろ過した。上記の光吸収層上にスピンコーター(ミカサ株式会社製、MS-100)を用いてHTM溶液をスピンコートした(4000rpm×30sec)。スピンコート後すぐに70℃ホットプレート上で30分間乾燥した。乾燥後、γ-ブチロラクトン(富士フイルム和光純薬株式会社製)を浸み込ませた綿棒でFTOとのコンタクト部分および基板裏面全体を拭き取り、更に70℃のホットプレート上で数分間乾燥させ、正孔輸送層を形成した。
(7)金電極の蒸着
 真空蒸着装置(アルバック機工株式会社製、VTR-060M/ERH)を用い、真空下(4~5×10-3Pa)、上記の正孔輸送層上に金を100nm蒸着(蒸着速度1~2Å/sec)して、金電極を形成した。
実施例2
 実施例1において、3-アミノプロパン酸ヨウ化水素酸塩の代わりに4―アミノブタン酸ヨウ化水素酸塩(0.077g、東京化成工業株式会社製)を使用した以外は、実施例1と同様にして光吸収層を形成し、セルを作製した。
実施例3
 実施例1において、3-アミノプロパン酸ヨウ化水素酸塩の代わりに5―アミノヘプタン酸ヨウ化水素酸塩(0.082g、東京化成工業株式会社製)を使用した以外は、実施例1と同様にして光吸収層を形成し、セルを作製した。
比較例1
 実施例1において、3-アミノプロパン酸ヨウ化水素酸塩の代わりにメチルアンモニウムヨウ化水素酸塩(0.053g、東京化成工業株式会社製)を使用した以外は、実施例1と同様にして光吸収層を形成し、セルを作製した。
Figure JPOXMLDOC01-appb-T000001
 本発明の光吸収層及び光電変換素子は、次世代太陽電池の構成部材として好適に使用することができる。
1:光電変換素子
2:透明基板
3:透明導電層
4:ブロッキング層
5:多孔質層
6:光吸収層
7:正孔輸送層
8:電極(正極)
9:電極(負極)
10:光
 

Claims (21)

  1.  ペロブスカイト化合物と、脂肪族アミノ酸を含む量子ドットと、を含有する光吸収層。
  2.  中間バンドを有する請求項1に記載の光吸収層。
  3.  前記量子ドットの含有量は、7.5質量%以上である請求項1又は2に記載の光吸収層。
  4.  前記ペロブスカイト化合物のバンドギャップエネルギーは、1.5eV以上4.0eV以下である請求項1~3のいずれかに記載の光吸収層。
  5.  前記量子ドットのバンドギャップエネルギーは、0.2eV以上かつ前記ペロブスカイト化合物のバンドギャップエネルギー以下である請求項1~4のいずれかに記載の光吸収層。
  6.  空隙率が10%以下である請求項1~5のいずれかに記載の光吸収層。
  7.  前記ペロブスカイト化合物は、下記一般式(1)で表される化合物及び下記一般式(2)で表される化合物から選ばれる1種以上である請求項1~6のいずれかに記載の光吸収層。
     RMX    (1)
    (式中、Rは1価のカチオンであり、Mは2価の金属カチオンであり、Xはハロゲンアニオンである。)
     R n-13n+1    (2)
    (式中、R、R、及びRはそれぞれ独立に1価のカチオンであり、Mは2価の金属カチオンであり、Xはハロゲンアニオンであり、nは1以上10以下の整数である。)
  8.  前記Xは、フッ素アニオン、塩素アニオン、臭素アニオン、又はヨウ素アニオンである請求項7に記載の光吸収層。
  9.  前記Rは、周期表第一族元素のカチオン、及び有機カチオンから選ばれる1種以上である請求項7又は8に記載の光吸収層。
  10.  前記R、R、及びRは、周期表第一族元素のカチオン、及び有機カチオンから選ばれる1種以上である請求項7~9のいずれかに記載の光吸収層。
  11.  前記Mは、Pb2+、Sn2+、又はGe2+である請求項7~10のいずれかに記載の光吸収層。
  12.  前記脂肪族アミノ酸は、直鎖アミノ酸である請求項1~11のいずれかに記載の光吸収層。
  13.  前記脂肪族アミノ酸の炭素数は、2~10である請求項1~12のいずれかに記載の光吸収層。
  14.  前記脂肪族アミノ酸のアミノ基は、第一級炭素と結合している請求項1~13のいずれかに記載の光吸収層。
  15.  ペロブスカイト化合物又はその前駆体と、脂肪族アミノ酸を含む量子ドットと、を含有する分散液。
  16.  前記分散液は、溶剤を含有する請求項15に記載の分散液。
  17.  前記分散液中の前記量子ドットの固形分濃度は、10mg/mL以上400mg/mL以下である請求項15又は16に記載の分散液。
  18.  請求項15~17のいずれかに記載の分散液から得られる光吸収層。
  19.  次の工程1、工程2及び工程3を含む、ペロブスカイト化合物のマトリクス中に脂肪族アミノ酸を含む量子ドットが分散している光吸収層の製造方法。
    (工程1)有機配位子を含む量子ドットの該有機配位子を、脂肪族アミノ酸へ配位子交換して、脂肪族アミノ酸を配位子として含む量子ドット固体を得る工程
    (工程2)工程1で得られた量子ドット固体と、ペロブスカイト化合物及びその前駆体から選ばれる1種以上の物質を含む溶液又は混合液とを混合して分散液を得る工程
    (工程3)工程2で得られた分散液から光吸収層を得る工程
  20.  請求項1~14及び18のいずれかに記載の光吸収層を有する光電変換素子。
  21.  請求項20に記載の光電変換素子を有する太陽電池。
     
PCT/JP2020/044650 2019-12-02 2020-12-01 光吸収層及びその製造方法、分散液、光電変換素子、並びに太陽電池 WO2021112072A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227019796A KR20220107206A (ko) 2019-12-02 2020-12-01 광 흡수층 및 그 제조 방법, 분산액, 광전 변환 소자, 그리고 태양 전지
US17/781,390 US20230006148A1 (en) 2019-12-02 2020-12-01 Light absorption layer, method for manufacturing same, dispersion liquid, photoelectric conversion element, and solar cell
CN202080083493.3A CN114788031A (zh) 2019-12-02 2020-12-01 光吸收层及其制造方法、分散液、光电转换元件和太阳能电池
EP20897175.4A EP4071840A4 (en) 2019-12-02 2020-12-01 LIGHT ABSORPTION LAYER, METHOD OF PRODUCTION, DISPERSION LIQUID, PHOTOELECTRIC CONVERSION ELEMENT AND SOLAR CELL
JP2021562649A JPWO2021112072A1 (ja) 2019-12-02 2020-12-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/047062 WO2021111503A1 (ja) 2019-12-02 2019-12-02 光吸収層及びその製造方法、分散液、光電変換素子、並びに太陽電池
JPPCT/JP2019/047062 2019-12-02

Publications (1)

Publication Number Publication Date
WO2021112072A1 true WO2021112072A1 (ja) 2021-06-10

Family

ID=76221546

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/047062 WO2021111503A1 (ja) 2019-12-02 2019-12-02 光吸収層及びその製造方法、分散液、光電変換素子、並びに太陽電池
PCT/JP2020/044650 WO2021112072A1 (ja) 2019-12-02 2020-12-01 光吸収層及びその製造方法、分散液、光電変換素子、並びに太陽電池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047062 WO2021111503A1 (ja) 2019-12-02 2019-12-02 光吸収層及びその製造方法、分散液、光電変換素子、並びに太陽電池

Country Status (7)

Country Link
US (1) US20230006148A1 (ja)
EP (1) EP4071840A4 (ja)
JP (1) JPWO2021112072A1 (ja)
KR (1) KR20220107206A (ja)
CN (1) CN114788031A (ja)
TW (1) TW202128725A (ja)
WO (2) WO2021111503A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114411089A (zh) * 2022-01-21 2022-04-29 南京邮电大学 一种复合透明导电薄膜及其氨基酸锚定法制备工艺与应用
WO2024171842A1 (ja) * 2023-02-16 2024-08-22 富士フイルム株式会社 PbS量子ドット分散液、半導体膜の製造方法、光検出素子の製造方法、イメージセンサの製造方法およびPbS量子ドット分散液の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145712A1 (ja) * 2022-01-26 2023-08-03 花王株式会社 分散液、光吸収層、光電変換素子、及び太陽電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532824A (ja) * 2001-03-08 2004-10-28 ジ・アドミニストレーターズ・オブ・ザ・ツーレイン・エデュケイショナル・ファンド ソマトスタチンアンタゴニスト
JP2010098975A (ja) * 2008-10-22 2010-05-06 Waseda Univ L−及びd−脂肪族アミノ酸水酸化物の製造方法
CN104465992A (zh) * 2014-11-30 2015-03-25 浙江大学 一种基于自组装单分子层的钙钛矿平面异质结太阳电池
WO2016140063A1 (ja) * 2015-03-04 2016-09-09 栄研化学株式会社 オキシトシンの高感度測定法
WO2018163325A1 (ja) 2017-03-08 2018-09-13 花王株式会社 光吸収層、光電変換素子、及び太陽電池
WO2018163327A1 (ja) 2017-03-08 2018-09-13 花王株式会社 光吸収層、光電変換素子、及び太陽電池
WO2019058448A1 (ja) * 2017-09-20 2019-03-28 花王株式会社 光吸収層とその製造方法、分散液、光電変換素子、及び中間バンド型太陽電池
WO2019198159A1 (ja) * 2018-04-10 2019-10-17 花王株式会社 光吸収層、光電変換素子、及び太陽電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532824A (ja) * 2001-03-08 2004-10-28 ジ・アドミニストレーターズ・オブ・ザ・ツーレイン・エデュケイショナル・ファンド ソマトスタチンアンタゴニスト
JP2010098975A (ja) * 2008-10-22 2010-05-06 Waseda Univ L−及びd−脂肪族アミノ酸水酸化物の製造方法
CN104465992A (zh) * 2014-11-30 2015-03-25 浙江大学 一种基于自组装单分子层的钙钛矿平面异质结太阳电池
WO2016140063A1 (ja) * 2015-03-04 2016-09-09 栄研化学株式会社 オキシトシンの高感度測定法
WO2018163325A1 (ja) 2017-03-08 2018-09-13 花王株式会社 光吸収層、光電変換素子、及び太陽電池
WO2018163327A1 (ja) 2017-03-08 2018-09-13 花王株式会社 光吸収層、光電変換素子、及び太陽電池
WO2019058448A1 (ja) * 2017-09-20 2019-03-28 花王株式会社 光吸収層とその製造方法、分散液、光電変換素子、及び中間バンド型太陽電池
WO2019198159A1 (ja) * 2018-04-10 2019-10-17 花王株式会社 光吸収層、光電変換素子、及び太陽電池

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ACS NANO, vol. 8, 2014, pages 6363 - 6371
CHEMICAL REVIEW, vol. 110, 2010, pages 6595
GUO QIANG, YUAN FANGLONG, ZHANG BING, ZHOU SHIJIE, ZHANG JIN, BAI YIMING, FAN LOUZHEN, HAYAT TASAWAR, ALSAEDI AHMED, TAN ZHAN'AO: "Passivation of the grain boundaries of CH 3NH3PbI3 using carbon quantum dots for highly efficient perovskite solar cells with excellent environmental stability", NANOSCALE, vol. 11, no. 1, 20 November 2018 (2018-11-20), pages 115 - 124, XP055832131, DOI: 10.1039/c8nr08295b *
HINES DOUGLAS A., KAMAT PRASHANT V.: "Quantum Dot Surface Chemistry: Ligand Effects and Electron Transfer Reactions", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 117, no. 27, 13 June 2013 (2013-06-13), pages 14418 - 14426, XP055832125, DOI: 10.1021/jp404031s *
J. AM. CHEM. SOC., vol. 131, 2009, pages 6050 - 6051
NANO LETT., vol. 15, 2015, pages 7539 - 7543
NGO THI TUYEN, MASI SOFIA, MENDEZ PERLA F., KAZES MIRI, ORON DAN, SERÓ IVÁN MORA: "PbS quantum dots as additives in methylammonium halide perovskite solar cells: the effect of quantum dot capping", NANOSCALE ADVANCES, vol. 1, no. 10, 10 September 2019 (2019-09-10), pages 4109 - 4118, XP055832129, DOI: 10.1039/c9na00475k *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114411089A (zh) * 2022-01-21 2022-04-29 南京邮电大学 一种复合透明导电薄膜及其氨基酸锚定法制备工艺与应用
CN114411089B (zh) * 2022-01-21 2024-04-30 南京邮电大学 一种复合透明导电薄膜及其氨基酸锚定法制备工艺与应用
WO2024171842A1 (ja) * 2023-02-16 2024-08-22 富士フイルム株式会社 PbS量子ドット分散液、半導体膜の製造方法、光検出素子の製造方法、イメージセンサの製造方法およびPbS量子ドット分散液の製造方法

Also Published As

Publication number Publication date
TW202128725A (zh) 2021-08-01
JPWO2021112072A1 (ja) 2021-06-10
US20230006148A1 (en) 2023-01-05
CN114788031A (zh) 2022-07-22
WO2021111503A1 (ja) 2021-06-10
EP4071840A4 (en) 2023-01-18
KR20220107206A (ko) 2022-08-02
EP4071840A1 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
TWI676296B (zh) 光吸收層、光電轉換元件、及中間能帶型太陽電池
JP6654250B2 (ja) 光吸収層、光電変換素子、及び太陽電池
JP6317535B1 (ja) 光吸収層、光電変換素子、及び太陽電池
JP6960460B2 (ja) 光吸収層、光電変換素子、及び太陽電池
TWI746738B (zh) 光吸收層、光電轉換元件、及太陽電池
WO2021112072A1 (ja) 光吸収層及びその製造方法、分散液、光電変換素子、並びに太陽電池
WO2021125120A1 (ja) 光吸収層及びその製造方法、コート液、光電変換素子、並びに中間バンド型太陽電池
TW202032806A (zh) 光吸收層、光電轉換元件、及太陽能電池
WO2021002327A1 (ja) 光吸収層及びその製造方法、光電変換素子、並びに中間バンド型太陽電池
WO2023145712A1 (ja) 分散液、光吸収層、光電変換素子、及び太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562649

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227019796

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020897175

Country of ref document: EP

Effective date: 20220704