WO2018161485A1 - 一种复合膜的制备方法 - Google Patents

一种复合膜的制备方法 Download PDF

Info

Publication number
WO2018161485A1
WO2018161485A1 PCT/CN2017/091939 CN2017091939W WO2018161485A1 WO 2018161485 A1 WO2018161485 A1 WO 2018161485A1 CN 2017091939 W CN2017091939 W CN 2017091939W WO 2018161485 A1 WO2018161485 A1 WO 2018161485A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal organic
composite film
preparing
organic skeleton
organosilicon
Prior art date
Application number
PCT/CN2017/091939
Other languages
English (en)
French (fr)
Inventor
陈亮
杜红斌
孔春龙
张秋菊
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2018161485A1 publication Critical patent/WO2018161485A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components

Definitions

  • the invention relates to the field of composite membranes, in particular to a method for preparing an organic-inorganic hybrid composite membrane based on a metal organic framework material, which mainly aims to overcome the difficulty in film formation of a metal organic framework material, improve the bonding force between the membrane layer and the carrier, and the pair thereof. Gas selection permeability.
  • Metal-organic frameworks are a class of porous materials having a specific topology and a regular pore diameter formed by metal centers or clusters of metal and organic ligands in the form of coordinate bonds. Compared with other porous materials, MOFs have a larger specific surface area, and their structure, porosity and pore structure can also be controlled with different metals or ligands, and functional modification can also be performed. These excellent properties It makes MOFs materials have good potential application value in the fields of adsorption and separation, catalysis and sensors.
  • the preparation methods of the MOF film mainly include an in-situ synthesis method and a secondary growth method.
  • the in-situ synthesis method synthesizes the MOF film under solvothermal conditions by placing the carrier directly in the reaction solution. Since the interaction between the MOF and the carrier is weak, it is difficult to nucleate and grow on the surface of the carrier, so it is difficult to prepare a dense MOF.
  • the secondary growth method preliminarily introduces seed crystals on the surface of the carrier, and then synthesizes and prepares the MOF film. This is a method which is currently applied more, and can effectively improve the quality of the prepared film, but the binding force between the film layer and the carrier is still large. problem.
  • a chemical modification method of a carrier has recently been reported.
  • Huang et al. pretreatment of a carrier with dopamine facilitates the binding of the seed crystal to the surface of the carrier by the action of a covalent bond, thereby promoting nucleation and crystal growth.
  • this chemical modification method is cumbersome and is not conducive to the amplification operation.
  • the film forming method directly affects the film forming quality and performance. Therefore, it is very important to develop a simple, efficient and easy to enlarge method for preparing a composite film based on MOF materials.
  • the present invention aims to provide a method for preparing a composite membrane based on MOF, which is simple and easy to manufacture, and the composite membrane layer obtained is dense and stable, has good binding force with the carrier, and has high Molecular screening capacity.
  • the present invention introduces MOF and a silicone precursor on a carrier, and directly synthesizes the MOF-organosilicon composite film by a high temperature baking method.
  • the high flux of the silicone layer and the strong binding force with the carrier can improve the bonding force between the composite film layer and the carrier, and is favorable for forming a stable, high-flux composite film, and the MOF material introduced in the organic silicon layer. It has a high molecular sieve capacity, so the constructed MOF-silicone composite membrane has superior gas separation performance.
  • the technical scheme of the present invention is: a method for preparing a composite membrane, characterized in that a film comprising a metal organic framework material and a silicone precursor material is introduced on a porous carrier, and a metal organic skeleton/organic is obtained by roasting treatment. Silicon composite film.
  • the metal organic framework material is a porous material formed by coordination of metal ions and organic ligands.
  • Metal ions include, but are not limited to, Zn 2+ , Cr 3+ , Al 3+ , and the like.
  • the silicone precursor material is not limited, and may be a silicon-containing monomer, which may be a carbon-containing element and
  • the monomer of silicon element may also be a composite of a monomer containing a carbon element and a silicon element and a monomer containing a silicon element.
  • monomers containing carbon and silicon include, but are not limited to, 1,2-bis(triethoxysilyl)methane (BTESM), 1,2-bis(triethoxysilyl)ethane (BTESE) One or more of 1,2-bis(triethoxysilyl)octane (BTESO) and the like.
  • the porous carrier is not limited and includes a porous ⁇ -Al 2 O 3 hollow ceramic fiber tube or a porous oxide carrier or the like.
  • the structural form of the porous support is not limited and includes a tubular structure or a disc structure.
  • the method of introducing a film comprising a metal organic framework material and a silicone precursor material on a porous support is not limited.
  • the metal organic framework material and the silicone precursor material are formulated into solution A, and then coated, It is introduced into a carrier by a method such as immersion pulling to form a film.
  • the formulation of the solution includes the following process:
  • a process of uniformly dispersing a metal organic skeleton powder into a silicone precursor solution A process of uniformly dispersing a metal organic skeleton powder into a silicone precursor solution.
  • the preparation method of the metal organic skeleton powder is not limited, and includes solvothermal synthesis and the like.
  • the metal organic skeleton powder has a particle diameter of 20 to 1000 nm.
  • the calcination environment may be an air atmosphere, or may be an inert gas atmosphere such as Ar or N 2 .
  • the calcination temperature is from 200 to 500 °C.
  • the drying treatment is first performed before the baking treatment, and the drying treatment temperature is preferably 80 to 170 °C.
  • the mass percentage of the metal organic skeleton material is preferably from 0.3 to 1%.
  • the present invention combines the MOF material with the organosilicon precursor material, and forms the MOF-organosilicon composite film in situ on the surface of the carrier by high-temperature baking, which has the following beneficial effects:
  • the MOF-organosilicon composite film is continuous and compact, integrates the high-flux of silicone, has strong binding force with the carrier, and has the advantages of strong molecular screening ability of MOF material, and solves the compounding based on MOF material.
  • the preparation method is mild, simple and easy to perform, and is easy to enlarge.
  • the prepared MOF-organosilicon composite membrane has good application prospects in the fields of gas separation and purification.
  • Example 1 is a SEM picture of a metal organic skeleton ZIF-8 in Example 1 of the present invention.
  • Example 2a is an SEM picture of the surface of a ZIF-8-organosilicon composite film in Example 1 of the present invention
  • Example 2b is a SEM image of a cross section of a ZIF-8-organosilicon composite film in Example 1 of the present invention
  • Figure 3 is an XRD chart of a ZIF-8-organosilicon composite film in Example 1 of the present invention.
  • Example 4a is a surface EDS diagram of a ZIF-8-organosilicon composite film in Example 1 of the present invention.
  • Figure 4b is an EDS diagram of the Si element of Figure 4a;
  • Figure 4c is an EDS diagram of the Zn element of Figure 4a;
  • Figure 5a is a gas permeation performance of a ZIF-8-organosilicon composite membrane in Example 1 of the present invention at normal temperature.
  • Figure 5b is a schematic view showing the gas permeation performance of the ZIF-8-silicone composite film in Example 1 of the present invention at 150 °C;
  • Figure 6 is a SEM picture of a metal organic skeleton CAU-1 in Example 2 of the present invention.
  • Figure 7a is a SEM picture of the surface of a CAU-1-silicone composite film in Example 2 of the present invention.
  • Figure 7b is a SEM picture of a cross section of a CAU-1-silicone composite film in Example 2 of the present invention.
  • Figure 8 is an XRD chart of a cross section of a CAU-1-silicone composite film in Example 2 of the present invention.
  • Figure 9a is a schematic view showing the gas permeation performance of a CAU-1-silicone composite film in Example 2 of the present invention at normal temperature;
  • Fig. 9b is a schematic view showing the gas permeation performance of the CAU-1-silicone composite film of Example 2 of the present invention at 150 °C.
  • the ZIF-8-organosilicon composite film is constructed based on the metal organic skeleton ZIF-8, and the preparation method is as follows:
  • ZIF-8 The preparation of ZIF-8 is carried out by the reported synthesis method. Specifically, 258 mg of zinc nitrate and 263 mg of dimethylimidazole are separately dissolved in 20 mL of methanol to obtain two solutions; then, the two solutions are mixed and stirred. The milky white solution was obtained in 5 minutes; the milky white solution was allowed to stand for 24 hours, and the obtained product was washed 4 to 5 times with methanol, and finally the product was placed in an oven at 80 degrees for 24 hours to obtain ZIF-8.
  • the SEM image of ZIF-8 prepared above is shown in Fig. 1, and the molecular sieve has an average particle size of about 50 nm.
  • hydrochloric acid solution 0.0206 g of concentrated hydrochloric acid, 2.0394 g of absolute ethanol and 6 g of deionized water were mixed to obtain a hydrochloric acid solution; the hydrochloric acid solution was added to a solution of 2 g of BTESE and 9.84 g of absolute ethanol, and the reaction was stirred for 5 hours at room temperature. A precursor sol was obtained, and the precursor sol was diluted 10 times with absolute ethanol as a silicone precursor solution.
  • a porous ⁇ -Al 2 O 3 hollow ceramic fiber tube was used as a support carrier, which had a diameter of 3.5 mm and an average pore diameter of 1.5 ⁇ m.
  • the support carrier modified by the step (2-1) is placed in a high-temperature tube furnace, and slowly heated to 300 ° C at a heating rate of 5 ° C / min under nitrogen protection conditions, and kept for 0.5 hour, and then It was naturally cooled to room temperature to obtain a ZIF-8-silicone composite film.
  • the ZIF-8-organic composite film is a continuous, complete and dense film layer.
  • the thickness of the film layer is approximately 100 nm.
  • Fig. 3 is an XRD chart of the ZIF-8-organosilicon composite film, and it can be seen from the figure that the ZIF-8-silicone composite film has a ZIF-8 characteristic peak.
  • Fig. 4a is the EDS diagram of the surface of the ZIF-8-silicone composite film
  • Fig. 4b and Fig. 4c are the distribution diagrams of the Si element and the Zn element, respectively.
  • ZIF-8 and the silicone are excellent. mix together.
  • Figures 5a and 5b show the gas permeation performance of the ZIF-8-silicone composite membrane at normal temperature and 150 °C, respectively, wherein the permeation flux of H 2 gas at a temperature of 150 ° C reaches 8.66 ⁇ 10 -7 mol ⁇ m - 2 ⁇ s -1 ⁇ Pa -1 , H 2 /CO 2 , H 2 /N 2 , H 2 /CH 4 have separation coefficients of 4.12, 37.32, and 47.58, respectively.
  • the results show that the prepared ZIF-8-organosilicon composite membrane is a continuous, complete and dense membrane structure with few defects and pinholes in the membrane layer, and has excellent H 2 preferential permeation separation performance, H 2 permeation.
  • the film exhibits a high permeation flux while exhibiting an excellent ideal gas separation coefficient.
  • the CAU-1-organosilicon composite film is constructed based on the metal organic skeleton CAU-1, and the preparation method is as follows:
  • CAU-1 The preparation of CAU-1 is carried out by the reported synthesis method, specifically: adding aluminum trichloride hexahydrate and 0.874 g of aminoterephthalic acid to a 70 mL PTFE-lined kettle, and then adding 60 mL. In methanol, the reaction was carried out at 125 ° C for 5 h, and the obtained product was washed with methanol for 3 to 5 times, and finally dried in a vacuum oven at 150 ° C for 48 h to obtain CAU-1.
  • the SEM image of CAU-1 prepared above is shown in Fig. 6, and the average particle size of CAU-1 is about 50 nm.
  • hydrochloric acid solution 0.0206 g of concentrated hydrochloric acid, 2.0394 g of absolute ethanol and 6 g of deionized water were mixed to obtain a hydrochloric acid solution; the hydrochloric acid solution was added to a solution of 2 g of BTESE and 9.84 g of absolute ethanol, and the reaction was stirred for 5 hours at room temperature. A precursor sol was obtained, and the precursor sol was diluted 10 times with absolute ethanol as a silicone precursor solution.
  • a porous ⁇ -Al 2 O 3 hollow ceramic fiber tube was used as a support carrier, which had a diameter of 3.5 mm and an average pore diameter of 1.5 ⁇ m.
  • the support carrier modified by the step (2-1) is placed in a high temperature tubular furnace.
  • the temperature was slowly raised to 300 ° C at a heating rate of 5 ° C / min under nitrogen atmosphere, and the temperature was kept for 0.5 hour, and then naturally cooled to room temperature to obtain a CAU-1 silicone composite film.
  • FIG. 7a and 7b are SEM images of the surface and cross section of the CAU-1-silicone composite film on the porous support, respectively. It can be seen from the figure that the prepared CAU-1-silicone composite film is a continuous, complete and dense film layer, and the surface morphology of the film layer is similar to that of Example 1, and the defects and pinholes in the film layer are few.
  • Fig. 8 is an XRD chart of the CAU-1-silicone composite film, and it can be seen from the figure that the CAU-1-silicone composite film has a CAU-1 characteristic peak.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种复合膜的制备方法,所述方法在多孔载体上引入一层包含金属有机骨架材料与有机硅前驱体材料的薄膜,通过焙烧处理,得到金属有机骨架/有机硅复合膜。该方法制备得到的复合膜解决了基于金属有机骨架材料构建的复合膜与载体之间的结合力弱的问题,并且表现出较高的分子筛分能力和氢气渗透通量。

Description

一种复合膜的制备方法 技术领域
本发明涉及复合膜领域,尤其涉及基于金属有机骨架材料构建有机-无机杂化复合膜的制备方法,主要在于克服金属有机骨架材料难以成膜,提高膜层与载体之间的结合力以及其对气体选择透过能力。
背景技术
金属有机骨架(MOFs)是一类由金属中心或者金属簇与有机配体以配位键的形式连接形成的具有特定拓扑结构和规则孔径的多孔材料。相比于其他多孔材料,MOFs具有更大的比表面积,其结构、多孔性和孔结构也可随金属或者配体的不同而进行调控,同时还可以进行功能化修饰改性,这些优异的特性使得MOFs材料在吸附与分离、催化和传感器等领域具有良好的潜在应用价值。
MOF膜的制备方法主要有原位合成法和二次生长法。原位合成法通过把载体直接放于反应溶液中,在溶剂热条件下合成MOF膜。由于MOF和载体之间的相互作用较弱,很难在载体表面成核和生长,所以制备致密的MOF很困难。二次生长法通过预先在载体表面引入晶种,然后再合成制备MOF膜,这是目前应用较多的方法,可以有效的改善制备膜的质量,但是膜层与载体的结合力仍是较大问题。另外,近来还报道了载体化学改性方法,Huang等采用多巴胺预先处理载体,通过共价键的作用,有利于将晶种束缚于载体表面,进而促进成核和晶体的生长。但是,这种化学改性方法步骤繁琐、不利于放大操作。
制膜方法直接影响着成膜质量和性能,因此,开发一种简便高效、易于放大的基于MOF材料的复合膜的制备方法非常关键。
发明内容
针对上述技术现状,本发明旨在提供了一种基于MOF构建的复合膜制备方法,该方法简单易行,制得的复合膜层致密、稳定,与载体具有良好的结合力,并且具有高的分子筛分能力。
为了实现上述技术目的,本发明在载体上引入MOF与有机硅前驱体,通过高温焙烧的方法直接合成MOF-有机硅复合膜。其中,有机硅层的高通量以及和载体具有很强的结合力可以提高复合膜层与载体的结合力,有利于形成稳定、高通量的复合膜,而且有机硅层中引入的MOF材料具有很高的分子筛分能力,因此构建的MOF-有机硅复合膜具有优越的气体分离性能。
本发明的技术方案为:一种复合膜的制备方法,其特征是:在多孔载体上引入一层包含金属有机骨架材料与有机硅前驱体材料的薄膜,通过焙烧处理,得到金属有机骨架/有机硅复合膜。
所述的金属有机骨架材料是由金属离子和有机配体配位形成的多孔材料。其中金属离子包括但不限于Zn2+、Cr3+、Al3+等。
所述的有机硅前驱体材料不限,可以是含硅元素的单体,可以是含碳元素和 硅元素的单体,也可以是含碳元素和硅元素的单体与含硅元素的单体的复合。其中,含碳元素和硅元素的单体包括但不限于1,2-二(三乙氧基硅基)甲烷(BTESM)、1,2-二(三乙氧基硅基)乙烷(BTESE)、1,2-二(三乙氧基硅基)辛烷(BTESO)等中的一种或者几种。
所述的多孔载体不限,包括多孔α-Al2O3中空陶瓷纤维管或者多孔氧化物载体等。所述多孔载体的结构形式不限,包括管式结构或者圆片式结构。
在多孔载体上引入包含金属有机骨架材料与有机硅前驱体材料的薄膜的方法不限,作为一种实现方式,将金属有机骨架材料和有机硅前驱体材料配制为溶液A,然后通过涂敷、浸渍提拉等方法将其引入载体上,形成薄膜。
作为一种实现方式,所述的溶液的配制包括如下过程:
制备金属有机骨架粉体的过程;
配置有机硅前驱体溶液的过程;以及
将金属有机骨架粉体均匀分散到有机硅前驱体溶液中的过程。
其中,金属有机骨架粉体的制备方法不限,包括溶剂热法合成等。作为优选,金属有机骨架粉体的粒径为20~1000nm。
所述的焙烧处理中,焙烧环境可以为空气气氛,也可以为Ar、N2等惰性气体保护气氛。作为优选,焙烧温度为200-500℃。
作为优选,在焙烧处理之前,首先进行干燥处理,干燥处理温度优选为80~170℃。
所述的金属有机骨架/有机硅复合膜中,金属有机骨架材料的质量百分含量优选为0.3~1%。
与现有技术相比,本发明将MOF材料与有机硅前驱体材料相结合,通过高温焙烧在载体表面原位形成MOF-有机硅复合膜,具有如下有益效果:
(1)该MOF-有机硅复合膜连续、致密,集成了有机硅的高通量、与载体结合力强的优点,以及MOF材料的分子筛分能力强的优点,解决了基于MOF材料构建的复合膜与载体之间的结合力弱的问题,并且表现出较高较高的分子筛分能力和H2渗透通量。
(2)制备方法条件温和、简便易行、易于放大操作。制得的MOF-有机硅复合膜可应用于气体分离、纯化等领域具有较好的应用前景。
附图说明
图1是本发明实施例1中金属有机骨架ZIF-8的SEM图片;
图2a是本发明实施例1中ZIF-8-有机硅复合膜表面的SEM图片;
图2b是本发明实施例1中ZIF-8-有机硅复合膜截面的SEM图片;
图3是本发明实施例1中ZIF-8-有机硅复合膜的XRD图;
图4a是本发明实施例1中的ZIF-8-有机硅复合膜表面EDS图;
图4b是图4a中Si元素的EDS图;
图4c是图4a中Zn元素的EDS图;
图5a是本发明实施例1中的ZIF-8-有机硅复合膜在常温下的气体渗透性能 示意图;
图5b是本发明实施例1中的ZIF-8-有机硅复合膜在150℃的气体渗透性能示意图;
图6是本发明实施例2中金属有机骨架CAU-1的SEM图片;
图7a是本发明实施例2中CAU-1-有机硅复合膜表面的SEM图片;
图7b是本发明实施例2中CAU-1-有机硅复合膜截面的SEM图片;
图8是本发明实施例2中CAU-1-有机硅复合膜截面的XRD图;
图9a是本发明实施例2中的CAU-1-有机硅复合膜在常温下的气体渗透性能示意图;
图9b是本发明实施例2中的CAU-1-有机硅复合膜在150℃的气体渗透性能示意图。
具体实施方式
以下结合附图及实施例对本发明做进一步说明,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1:
本实施例中,基于金属有机骨架ZIF-8来构建ZIF-8-有机硅复合膜,制备方法具体如下:
(1)ZIF-8-有机硅前驱体溶液的配制
(1-1)ZIF-8的合成
ZIF-8的制备采用已报道的合成方法,具体是:将258mg硝酸锌和263mg的二甲基咪唑分别溶解在20mL的甲醇中,得到两种溶液;然后,将这两种溶液混合,再搅拌5分钟得到乳白色溶液;将该乳白色溶液静置老化24小时,用甲醇清洗所得到的产物4~5次,最后将产物放置在80度烘箱干燥24h,得到ZIF-8。
上述制得的ZIF-8的SEM图如图1所示,分子筛的平均粒径尺寸约为50nm。
(1-2)有机硅前驱体溶液的合成
将0.0206g浓盐酸、2.0394g无水乙醇和6g去离子水混合,得到盐酸溶液;将该盐酸溶液加入到2g BTESE和9.84g无水乙醇混合的溶液中,在室温条件下,搅拌反应5小时,得到前驱体溶胶,将前驱体溶胶用无水乙醇稀释10倍作为有机硅前驱体溶液。
(1-3)ZIF-8-有机硅前驱体溶液的配制
取0.18g上述步骤(1-1)制得的ZIF-8分散于50g上述步骤(1-2)制得的有机硅前驱体溶液中,并用磁力搅拌器在室温下剧烈搅拌7小时,之后超声处理2小时,得到分散均匀的ZIF-8-有机硅前驱体溶液。
(2)管状多孔载体上ZIF-8-有机硅复合膜的制备
采用多孔α-Al2O3中空陶瓷纤维管为支撑载体,其直径为3.5mm,平均孔径为1.5μm。
(2-1)将该支撑载体两端密封,放于140℃烘箱中预热20分钟,随后取出立即竖直浸入到上述步骤(1-3)制得ZIF-8-有机硅前驱体溶液中,保持20秒后 取出,然后放于80℃烘箱中干燥2小时。
(2-2)将经步骤(2-1)修饰过的支撑载体放于高温管式炉中,在氮气保护条件下以5℃/min的升温速率缓慢升温到300℃,保温0.5小时,然后自然冷却到室温,得到ZIF-8-有机硅复合膜。
图2a和2b分别为上述制得ZIF-8-有机硅复合膜表面和截面的SEM图片,从该SEM图片可以看出,该ZIF-8-有机硅复合膜为连续、完整、致密的膜层,膜层的厚度大约为100nm。
图3是该ZIF-8-有机硅复合膜的XRD图,从图中可以看出,该ZIF-8-有机硅复合膜具有ZIF-8特征峰。
图4a是该ZIF-8-有机硅复合膜表面EDS图,图4b、图4c分别是其中Si元素和Zn元素的分布图,从图中可以明显看出,ZIF-8与有机硅很好的融合在一起。
图5a和5b分别是该ZIF-8-有机硅复合膜在常温和150℃条件下的气体渗透性能,其中在150℃条件下H2气体的渗透通量达到8.66×10-7mol·m-2·s-1·Pa-1,H2/CO2、H2/N2、H2/CH4的分离系数分别达到了4.12、37.32、47.58。该结果表明制备得到的ZIF-8-有机硅复合膜是连续、完整、致密的膜层结构,膜层中的缺陷和针孔很少,具有优良的H2优先渗透分离性能,H2透过该膜时表现出较高的渗透通量,同时表现出优良的理想气体分离系数。
实施例2:
本实施例中,基于金属有机骨架CAU-1来构建CAU-1-有机硅复合膜,制备方法具体如下:
(1)CAU-1-有机硅前驱体溶液的配制
(1-1)CAU-1的合成
CAU-1的制备采用已报道的合成方法,具体是:将六水合三氯化铝和0.874g的氨基对苯二甲酸分别加入到70mL的聚四氟乙烯内衬的釜内,然后加入60mL的甲醇中,在125℃下反应5h,所得产物用甲醇冲洗3~5次,最后在150℃真空箱干燥48h,得到CAU-1。
上述制得的CAU-1的SEM图如图6所示,CAU-1的平均粒径尺寸约为50nm。
(1-2)有机硅前驱体溶液的合成
将0.0206g浓盐酸、2.0394g无水乙醇和6g去离子水混合,得到盐酸溶液;将该盐酸溶液加入到2g BTESE和9.84g无水乙醇混合的溶液中,在室温条件下,搅拌反应5小时,得到前驱体溶胶,将前驱体溶胶用无水乙醇稀释10倍作为有机硅前驱体溶液。
(1-3)CAU-1-有机硅前驱体溶液的配制
取0.18g上述步骤(1-1)制得的CAU-1分散于上述步骤(1-2)制得的50g有机硅前驱体溶液中,并用磁力搅拌器在室温下剧烈搅拌7小时,之后超声处理2小时,得到分散均匀的CAU-1-有机硅前驱体溶液。
(2)管状多孔载体上CAU-1-有机硅复合膜的制备
采用多孔α-Al2O3中空陶瓷纤维管为支撑载体,其直径为3.5mm,平均孔径为1.5μm。
(2-1)将该支撑载体两端密封,放于140℃烘箱中预热20分钟,随后取出立即竖直浸入到上述步骤(1-3)制得CAU-1-有机硅前驱体溶液中,保持20秒后取出,然后放于80℃烘箱中干燥2小时。
(2-2)将经步骤(2-1)修饰过的支撑载体放于高温管式炉中。在氮气保护条件下以5℃/min的升温速率缓慢升温到300℃,保温0.5小时,然后自然冷却到室温,得到CAU-1有机硅复合膜。
图7a和7b分别是该多孔载体上CAU-1-有机硅复合膜表面和截面的SEM图。从该图可以看出,制得的CAU-1-有机硅复合膜为连续、完整、致密的膜层,膜层表面形貌同实施例1相似,膜层中的缺陷和针孔很少。
图8是该CAU-1-有机硅复合膜的XRD图,从图中可以看出,该CAU-1-有机硅复合膜具有CAU-1特征峰。
图9a和9b分别是该CAU-1-有机硅复合膜在常温和150℃条件下的气体渗透性能,其中在常温条件下H2气体的渗透通量达到10.6×10-7mol·m-2·s-1·Pa-1,H2/CO2,H2/N2,H2/CH4分离选择性分别达到了1.78,10.64,11.69,该结果表明制备得到的CAU-1-有机硅复合膜是连续、完整、致密的膜层结构,膜层中的缺陷和针孔很少,具有优良的H2优先渗透分离性能,H2透过该膜时表现出较高的渗透通量,同时表现出优良的理想气体分离系数。
以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种复合膜的制备方法,其特征在于:在多孔载体上引入一层包含金属有机骨架材料与有机硅前驱体材料的薄膜,通过焙烧处理,得到金属有机骨架/有机硅复合膜。
  2. 如权利要求1所述的复合膜的制备方法,其特征在于:所述的金属有机骨架材料中,金属离子包括Zn2+、Cr3+、Al3+
  3. 如权利要求1所述的复合膜的制备方法,其特征在于:所述的有机硅前驱体材料是含硅元素的单体,或者是含碳元素和硅元素的单体,或者是含碳元素和硅元素的单体与含硅元素的单体的复合;
    作为优选,所述的含碳元素和硅元素的单体包括1,2-二(三乙氧基硅基)甲烷(BTESM)、1,2-二(三乙氧基硅基)乙烷(BTESE)、1,2-二(三乙氧基硅基)辛烷(BTESO)中的一种或者几种。
  4. 如权利要求1所述的复合膜的制备方法,其特征在于:所述的多孔载体包括多孔α-Al2O3中空陶瓷纤维管,以及多孔氧化物载体。
  5. 如权利要求1所述的复合膜的制备方法,其特征在于:所述的焙烧温度为200-500℃。
  6. 如权利要求1所述的复合膜的制备方法,其特征在于:所述的焙烧处理之前,首先进行干燥处理,干燥处理温度优选为80~170℃。
  7. 如权利要求1至6中任一权利要求所述的复合膜的制备方法,其特征在于:将金属有机骨架材料和有机硅前驱体材料配制为溶液A,然后通过涂敷或者浸渍提拉的方法将其引入载体上,形成薄膜。
  8. 如权利要求7所述的复合膜的制备方法,其特征在于:所述的溶液A的配制包括如下过程:
    制备金属有机骨架粉体的过程;
    配置有机硅前驱体溶液的过程;以及将金属有机骨架粉体均匀分散到有机硅前驱体溶液中的过程。
  9. 如权利要求7所述的复合膜的制备方法,其特征在于:金属有机骨架粉体的粒径为20~1000nm;
    所述的金属有机骨架/有机硅复合膜中,金属有机骨架材料的质量百分含量优选为0.3~1%。
  10. 如权利要求7所述的复合膜的制备方法,其特征在于:所述的复合膜在气体分离、纯化领域的应用。
PCT/CN2017/091939 2017-03-06 2017-07-06 一种复合膜的制备方法 WO2018161485A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710127734.X 2017-03-06
CN201710127734.XA CN108525526B (zh) 2017-03-06 2017-03-06 一种复合膜的制备方法

Publications (1)

Publication Number Publication Date
WO2018161485A1 true WO2018161485A1 (zh) 2018-09-13

Family

ID=63447341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091939 WO2018161485A1 (zh) 2017-03-06 2017-07-06 一种复合膜的制备方法

Country Status (2)

Country Link
CN (1) CN108525526B (zh)
WO (1) WO2018161485A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109173749A (zh) * 2018-09-04 2019-01-11 宁波市电力设计院有限公司 一种亲水性多孔薄膜、其制备方法与应用
CN111298665B (zh) * 2020-02-25 2022-02-11 常州大学 一种uio-66-nh2掺杂的有机硅高盐废水处理膜及其制备方法
CN114602331B (zh) * 2020-12-07 2023-11-17 宁波市电力设计院有限公司 一种聚合物基复合膜的制备方法及其应用
CN114288870A (zh) * 2021-12-31 2022-04-08 武汉智宏思博环保科技有限公司 一种MOFs-有机硅杂化膜的合成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580565A (zh) * 2012-01-19 2012-07-18 大连理工大学 一种面向高性能金属有机框架膜的制备方法
CN102794115A (zh) * 2012-08-01 2012-11-28 大连理工大学 一种金属有机骨架zif-8膜的制备方法
CN103406029A (zh) * 2013-07-25 2013-11-27 大连理工大学 一种耐高温氧化锌纳米棒支撑的三明治结构含锌金属有机骨架膜的制备方法
WO2014115177A2 (en) * 2013-01-28 2014-07-31 Council Of Scientific & Industrial Research A process for the preparation of mofs-porous polymeric membrane composites
CN105797594A (zh) * 2016-05-11 2016-07-27 大连理工大学 一种简单溶剂热生长法制备取向生长的金属有机骨架纳米片式膜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105777206B (zh) * 2016-01-28 2018-05-01 常州大学 一种制备超薄有机硅膜的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580565A (zh) * 2012-01-19 2012-07-18 大连理工大学 一种面向高性能金属有机框架膜的制备方法
CN102794115A (zh) * 2012-08-01 2012-11-28 大连理工大学 一种金属有机骨架zif-8膜的制备方法
WO2014115177A2 (en) * 2013-01-28 2014-07-31 Council Of Scientific & Industrial Research A process for the preparation of mofs-porous polymeric membrane composites
CN103406029A (zh) * 2013-07-25 2013-11-27 大连理工大学 一种耐高温氧化锌纳米棒支撑的三明治结构含锌金属有机骨架膜的制备方法
CN105797594A (zh) * 2016-05-11 2016-07-27 大连理工大学 一种简单溶剂热生长法制备取向生长的金属有机骨架纳米片式膜

Also Published As

Publication number Publication date
CN108525526A (zh) 2018-09-14
CN108525526B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2018161485A1 (zh) 一种复合膜的制备方法
CN102794115B (zh) 一种金属有机骨架zif-8膜的制备方法
Xie et al. Deposition of chemically modified α-Al 2 O 3 particles for high performance ZIF-8 membrane on a macroporous tube
CN108295672B (zh) 一种金属有机骨架zif-8膜的制备方法
Tao et al. A hollow ceramic fiber supported ZIF-8 membrane with enhanced gas separation performance prepared by hot dip-coating seeding
Tao et al. High performance ZIF-8 molecular sieve membrane on hollow ceramic fiber via crystallizing-rubbing seed deposition
JP7303592B2 (ja) 金属有機骨格ガラス膜およびその製造方法
Rong et al. Fabrication of highly CO2/N2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via tertiary solvothermal growth
Hao et al. Synthesis of high-performance polycrystalline metal–organic framework membranes at room temperature in a few minutes
CN108704491B (zh) 蒸气凝胶法制备层状金属有机骨架膜的方法
US10017423B2 (en) Method for preparing support of molecular sieve membrane
CN106215716B (zh) 一种具有高效氢气分离性能的双金属有机骨架膜
Nian et al. Preparation of a pure ZIF-67 membrane by self-conversion of cobalt carbonate hydroxide nanowires for H 2 separation
Fan et al. ZIF-78 membrane derived from amorphous precursors with permselectivity for cyclohexanone/cyclohexanol mixture
Wu et al. ZIF-8/GO sandwich composite membranes through a precursor conversion strategy for H2/CO2 separation
CN112121652B (zh) 一种金属有机框架-陶瓷膜纳滤复合膜的制备方法
CN113648855B (zh) 一种用于分离co2/n2的有机硅膜的制备方法
Sun et al. Self-modified fabrication of inner skin ZIF-8 tubular membranes by a counter diffusion assisted secondary growth method
CN112029104B (zh) 一种蒸气辅助外延生长法制备金属有机骨架膜及其应用
CN108273533B (zh) 一种高比表面积多孔g-C3N4的制备方法
CN110451561B (zh) 一种大孔径介孔双金属氧化物半导体气敏材料的合成方法
CN112705053B (zh) 一种耐酸性沸石分子筛膜的制备方法及应用
CN113289501B (zh) 一种纳米多孔碳陶瓷膜纳滤复合膜的制备方法
Kong et al. Preparation of ZIF-8 membranes supported on macroporous carbon tubes via a dipcoating–rubbing method
Yue et al. Synthesis of metal–organic framework particles and thin films via nanoscopic metal oxide precursors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899309

Country of ref document: EP

Kind code of ref document: A1