WO2018159279A1 - 絶縁電線及びその製造方法並びにコイル - Google Patents

絶縁電線及びその製造方法並びにコイル Download PDF

Info

Publication number
WO2018159279A1
WO2018159279A1 PCT/JP2018/004837 JP2018004837W WO2018159279A1 WO 2018159279 A1 WO2018159279 A1 WO 2018159279A1 JP 2018004837 W JP2018004837 W JP 2018004837W WO 2018159279 A1 WO2018159279 A1 WO 2018159279A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
wire
insulated wire
conductor wire
conductor
Prior art date
Application number
PCT/JP2018/004837
Other languages
English (en)
French (fr)
Inventor
誠 漆原
桜井 英章
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US16/484,592 priority Critical patent/US10984922B2/en
Priority to CN201880010389.4A priority patent/CN110249395A/zh
Priority to EP18760547.2A priority patent/EP3591671A4/en
Publication of WO2018159279A1 publication Critical patent/WO2018159279A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/16Insulating conductors or cables by passing through or dipping in a liquid bath; by spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes

Definitions

  • the present invention relates to an insulated wire for winding processing in which a conductor wire is coated with an insulating film, a method for manufacturing the same, and a coil. More specifically, an insulated wire excellent in adhesion to the conductor wire of the insulating film on the inner side during bending, excellent in flexibility of the insulating film on the outer side of the bending, and excellent in softening resistance of the insulating film, and a method for producing the same And a coil.
  • This application claims priority on Japanese Patent Application No. 2017-038489 filed in Japan on March 1, 2017, the contents of which are incorporated herein by reference.
  • This insulated wire comprises a phenoxy resin insulating varnish containing 80 to 30% by mass of bisphenol A type phenoxy resin and 100 parts by mass of phenoxy resin of 20 to 70% by mass of bisphenol S type phenoxy resin, and 5 to 50 parts by mass of blocked isocyanate. It has a primer layer that is applied and baked on the conductor.
  • the object of the present invention is to solve the above-mentioned problems, have excellent adhesion to the conductor wire of the insulating film on the inner side during bending, excellent flexibility of the insulating film on the outer side of the bending, and softening resistance of the insulating film.
  • An object of the present invention is to provide an excellent insulated wire, a manufacturing method thereof, and a coil.
  • the drying state of the insulating film changes even under the same drying conditions, and the resistance of the insulating film is changed.
  • the softness and adhesion / flexibility of the insulating film to the conductor wires have changed, and each evaluation was necessary.
  • the present inventors pay attention to the fact that the amount of low-boiling components having a boiling point of 300 ° C. under normal pressure in the insulating film affects the softening resistance, adhesion and flexibility of the insulating film. The present invention has been reached.
  • a first aspect of the present invention is an insulated wire in which a conductor wire is covered with an insulating film, and the insulating film contains 5 to 20% by mass of a low boiling point component having a boiling point of less than 300 ° C. under normal pressure. It is characterized by.
  • a second aspect of the present invention is an insulated wire according to the first aspect, wherein the insulating film has a thickness of 40 to 65 ⁇ m.
  • a third aspect of the present invention is an insulated wire according to the first or second aspect, wherein the conductor wire has a rectangular or square cross-sectional shape.
  • a fourth aspect of the present invention is the invention based on the third aspect, wherein the conductor wire has a rectangular cross-sectional shape, and the ratio of the length of the long side to the short side in the cross-section (long) The ratio of side / short side) is 4 to 50, and the conductor wire has an equivalent round wire diameter of 3 to 5 mm.
  • the round wire equivalent diameter refers to the diameter of a perfect circular line having the same cross-sectional area as that of a conductor wire having a cross-sectional shape other than a perfect circle.
  • a fifth aspect of the present invention is an invention based on any one of the first to fourth aspects, wherein the conductor wire is a copper wire, and the material of the insulating film is a polyamide-imide resin or a polyimide resin. It is an insulated wire.
  • a sixth aspect of the present invention is a method of manufacturing an insulated wire according to any one of the first to fifth aspects by electrodepositing an electrodeposition solution on the conductor wire to form the insulating film.
  • a seventh aspect of the present invention is a coil formed by winding the insulated wire of any one of the first to fifth aspects a plurality of times.
  • the eighth aspect of the present invention is a coil formed by winding the insulated wire of the fourth aspect multiple times in an edgewise manner.
  • the insulated wire contains 5% by mass or more of the low boiling point component having a boiling point under atmospheric pressure of less than 300 ° C. with respect to 100% by mass of the insulating coating, It has excellent adhesion to the conductor wire of the insulating film and excellent flexibility of the insulating film on the outside of the bend. Further, since the low-boiling component is a content of 20% by mass or less and is not excessive, the insulation film is excellent in softening resistance.
  • the thickness of the insulating film is 40 ⁇ m or more, it is excellent in high dielectric breakdown voltage and heat resistance. Further, since the thickness of the insulating film is 65 ⁇ m or less, the adhesiveness of the insulating film on the inner side of the bend to the conductor wire is further improved during bending.
  • the insulated wire is wound around the coil in comparison with the conductor wire having a circular cross-sectional shape.
  • the occupation ratio of the cross-sectional area of the conductor wire in the coil cross-sectional area can be increased.
  • the cross-sectional shape of the conductor wire is rectangular, and the ratio of the length of the long side to the short side in the cross-section (ratio of long side / short side) is 4.
  • ratio of long side / short side is 4.
  • the round wire equivalent diameter of a conductor wire is 3 mm or more, it can be used as an insulated wire for large currents. Moreover, since the round wire equivalent diameter is 5 mm or less, this insulated wire is further excellent in adhesion to the conductor wire of the insulating film inside the bend during bending. In addition, when a large current flows through an insulated wire, high insulation by a thick insulating film is required, but when the insulating film is thick, wrinkles and peeling due to bending are likely to occur, and in such a case, the present invention is suitable. is there.
  • the conductor wire is a copper wire
  • the conductivity is excellent.
  • the material of the insulating film is polyamideimide resin or polyimide resin, it is excellent in high dielectric breakdown voltage and heat resistance.
  • the insulating film can be uniformly formed on the surface of the conductor wire by electrodepositing the electrodeposition liquid on the conductor wire to form the insulating film.
  • the insulation film of the insulated wire is not peeled off from the conductor wire or wrinkled, and is not cracked in the insulation film. Also does not happen.
  • the occupation ratio of the cross-sectional area of the conductor wire in the coil cross-sectional area is increased. be able to.
  • the insulated wire of this embodiment is an insulated wire in which a conductor wire is covered with an insulating film.
  • This insulating film contains 5 to 20% by mass, preferably 8 to 17% by mass of a low-boiling component having a boiling point of less than 300 ° C. under normal pressure.
  • the reason why the temperature is 300 ° C. is a temperature at which unnecessary solvents and the like can be quickly removed when the insulated wire is baked, and when the temperature is 400 ° C. or more, the insulating film deteriorates.
  • the low boiling point component having a boiling point of less than 300 ° C. under normal pressure include water and an organic solvent.
  • Organic solvents include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), ⁇ -butyrolactone ( ⁇ BL), anisole, tetramethyl Examples include urea and sulfolane. Of these, NMP is preferred.
  • NMP is preferred.
  • the reason why 5 to 20% by mass of the low boiling point component having a boiling point under atmospheric pressure of less than 300 ° C. is included is that the insulation film is hard when it is less than 5% by mass, and the insulation film inside the bend is bent from the conductor wire during the winding process Peeling or wrinkling occurs, or cracking occurs in the insulating film on the outside of the bend. When it exceeds 20% by mass, the softening resistance is inferior at a high temperature of 200 ° C. or higher during the winding process.
  • the thickness of the insulating film of this embodiment is preferably 40 to 65 ⁇ m.
  • the thickness of the insulating film is less than 40 ⁇ m, since the film thickness is thin, there is a possibility that the insulating performance that can be used with a motor or a reactor cannot be exhibited.
  • the insulating film on the inner side of the bend may be peeled off from the conductor wire or may be wrinkled easily during the winding process.
  • the amount of a solvent that volatilizes increases, so that defects such as bubbles are likely to occur in the film during the baking process.
  • the cross-sectional shape of the conductor wire of the insulated wire of the present embodiment may be circular, but a rectangular shape or a square shape means that the insulated wire is wound compared to a conductor wire having a circular cross-sectional shape.
  • the occupation ratio of the cross-sectional area of the conductor wire in the coil cross-sectional area can be increased, which is preferable.
  • the conductor wire of the insulated wire of this embodiment is a rectangular flat rectangular shape
  • the ratio of the length of the long side to the short side in the rectangular cross section of the conductor wire (ratio of long side / short side) is 4. It is above, and it is preferable that a round wire conversion diameter shall be 3 mm or more. This is because when the insulated wire is formed into a coil, the occupation ratio of the cross-sectional area of the conductor wire in the coil cross-sectional area can be increased. In particular, when the ratio of the long side / short side is 4 or more, the ratio of the long side / short side is high when an insulated wire is used with high frequency alternating current and current flows only on the surface of the conductor due to the skin effect.
  • the region through which current flows can be widened by increasing the size.
  • the ratio of the long side / short side is 50 or less, and the diameter of the round wire when the conductor wire is converted as a round wire is 5 mm or less. This is because, during the bending process, the bending process is facilitated and the adhesiveness of the insulating film on the inner side of the bending with the conductor wire is further improved.
  • the ratio of the long side / short side exceeds 50, the flatness of the flat conductor wire becomes too large, and the conductor wire itself is liable to be twisted or cracked by bending.
  • examples of the material of the conductor wire of the insulated wire of the present embodiment include copper, copper alloy, aluminum, aluminum alloy, stainless steel and the like. Among them, a copper wire is preferable because higher conductivity can be obtained.
  • Insulating film materials include polyimide (hereinafter referred to as PI) resin, polyamideimide (hereinafter referred to as PAI) resin, polyesterimide resin, acrylic resin, epoxy resin, epoxy-acrylic resin, polyurethane resin, polyester resin, and the like. Can be mentioned. Among them, polyamideimide resin or polyimide resin is preferable from the viewpoint of high dielectric breakdown voltage and heat resistance.
  • the insulated wire of this embodiment is manufactured by forming an insulating film on a conductor wire by a dipping method or an electrodeposition method.
  • the thickness of the film that can be applied in one film coating process is 1 to 10 ⁇ m, which is required for use as a motor or reactor for hybrid vehicles and electric vehicles.
  • the drying of the inner layer proceeds more than the outer layer. It is necessary to devise changes and to change the temperature of the baking process every time.
  • the first layer that is in contact with the conductor, which will be subjected to the baking process many times has a high degree of drying, and the coating becomes hard, which causes floating when coiled. It is necessary to devise such as drying at low temperature.
  • an electrodeposition liquid which is an insulating electrodeposition paint is prepared.
  • This electrodeposition liquid contains a polymer and an organic solvent and water as solvents.
  • the polymer include the resins exemplified as the material for the insulating film described above.
  • the organic solvent include the organic solvents exemplified as the low-boiling components described above.
  • a polyamideimide solution in which polyamideimide resin and polyimide resin are dissolved in NMP and DMI as polymers, a neutralizing agent is added to the polyimide solution and stirred to neutralize the polyamideimide and polyimide, Water, which is a poor solvent for polyimide, is added and mixed and stirred to deposit polyamideimide and polyimide to prepare an electrodeposition solution.
  • the electrodeposition coating apparatus 10 shown in FIG. 1 has an electrodeposition tank 18 for storing the electrodeposition liquid 11 and a baking furnace 22.
  • the electrodeposition liquid 11 is a water dispersion type electrodeposition liquid in which a polymer is dispersed in water or a mixed dispersion type electrodeposition liquid in which a polymer is dispersed in a mixed liquid of water and an organic solvent, and has a boiling point under normal pressure.
  • the low-boiling point water of less than 300 ° C. or water / organic solvent is used as a dispersion medium.
  • the concentration of the polymer is 1 to 10% by mass with respect to 100% by mass of the dispersion medium.
  • the dispersion medium is a mixed solvent of water and an organic solvent
  • the organic solvent is preferably 1 to 70% by mass.
  • a conductor wire 13 having a circular cross section wound in a cylindrical shape is electrically connected in advance to a positive electrode of a DC power source 14 via an anode 16 in advance. Then, the conductor wire 13 having a circular cross-sectional shape is pulled up in the direction of the solid line arrow in FIG.
  • a conductor wire 13 having a circular cross-sectional shape is rolled flat by a pair of rolling rollers 17 and 17 to form a rectangular conductor wire 12 having a rectangular cross-sectional shape.
  • the rectangular conductor wire 12 is passed through the electrodeposition liquid 11 stored in the electrodeposition tank 18.
  • a pair of cathodes 19, 19 electrically connected to the negative electrode of the DC power source 14 is inserted into the electrodeposition liquid 11 in the electrodeposition tank 18.
  • the rectangular conductor wire 12 passes between the pair of cathodes 19 and 19.
  • the electrodeposition liquid 11 is preferably maintained at a temperature of 5 to 60 ° C.
  • a DC voltage is applied between the rectangular conductor wire 12 and the cathodes 19, 19 by the DC power source 14.
  • the DC voltage of the DC power supply 14 is preferably 1 to 500 V, and the DC current application time is preferably 0.01 to 60 seconds.
  • negatively charged polymer particles are electrodeposited on the surface of the flat conductor wire 12 in the electrodeposition liquid 11 to form an insulating layer 21a as shown in the partially enlarged view of FIG. Is done.
  • an insulating film is formed on the surface of the rectangular conductor wire 12 as shown in the partially enlarged view of FIG. 1 by subjecting the rectangular conductor wire 12 having the insulating layer 21a electrodeposited thereon to a baking process. 21b is formed.
  • the rectangular conductor wire 12 having the insulating layer 21 a formed on the surface thereof is passed through the baking furnace 22.
  • the above baking treatment may be performed using a near-infrared heating furnace, a hot-air heating furnace, an induction heating furnace, a far-infrared heating furnace, a furnace using an inert gas such as air or nitrogen whose temperature is controlled, alone or in combination. it can. In order to increase the drying speed, it is preferable to perform hot air heating and infrared heating together.
  • the temperature of the furnace is set to 200 to 500 ° C.
  • a gas having a high flow rate is preferably used, and a dry gas is preferably added so that the average flow rate in the furnace is about 1 to 10 m / min.
  • the gas temperature is preferably about 200 to 500 ° C. for the same reason as the furnace temperature.
  • the baking time is preferably in the range of 1 to 10 minutes. If the temperature of the baking treatment is less than 200 ° C., necessary drying cannot be performed, and if it exceeds 500 ° C., defects such as bubbles are formed in the film due to rapid volatilization of a solvent or the like in the initial stage of drying. Moreover, since it is high temperature, resin will thermally decompose.
  • the temperature of the baking process is the temperature at the center of the baking furnace.
  • the baking process is an important process that determines the adhesion of the insulation film on the inner side of the bend to the conductor wire, the flexibility of the insulation film on the outer side of the bend, and the softening resistance of the insulation film when bending the insulated wire described later. . If the baking is performed excessively, the insulation film peels off from the conductor wire inside the bend when the insulated wire is bent due to deterioration of the resin, interface oxidation, etc., wrinkles, or the insulation film is formed outside the bend. It may cause cracks. If the baking is insufficient, the organic solvent is excessively present in the insulating film, so that the softening temperature is lowered. By passing through the baking furnace 22, an insulated wire 23 in which the surface of the flat conductor wire 12 is covered with the insulating film 21b is manufactured.
  • An insulated wire 23 in which a flat rectangular conductor wire 12 is covered with an insulating film 21b is wound into a coil by a coil forming apparatus (not shown).
  • Manufactured into a coil by winding winding you may manufacture an insulated wire to a coil by the winding process of the flatwise bending process which bends the long side (flat surface) which the cross-sectional shape of a conductor wire makes a rectangle.
  • Example 1 A flat rectangular copper wire having a thickness of 1.5 mm and a width of 6.5 mm was prepared as a conductor wire.
  • An electrodeposition tank having a length of 1 m for storing an electrodeposition solution was prepared having a cathode made of a pair of copper plates. Moreover, it was comprised with the electric furnace (far-infrared heating furnace) of length 2.5m, the thermocouple was installed in the furnace wall, and the baking furnace which can set the inside of a furnace to desired temperature was prepared.
  • This baking furnace is provided with a plurality of electric heaters in the direction in which the copper wire advances, and the temperature can be individually set so that baking can be performed only within a desired length range. The output of the heater was set so that baking was possible only in the range.
  • an aqueous dispersion type electrodeposition solution containing 2% by mass of polyamideimide (PAI) was stored in an electrodeposition tank.
  • the temperature of the electrodeposition liquid was maintained at 20 ° C., and a DC voltage of 100 V was applied between the anode copper wire and the cathode copper plate.
  • Electrodeposition was performed by passing the copper wire between a pair of cathodes while adjusting the delivery speed of a copper wire feeder (not shown). Copper wire with an insulating layer electrodeposited on the surface is introduced into a drying / baking furnace, the feeding speed of the feeder is adjusted to 0.4 m / min, and the insulation film after baking has an insulation thickness of 40 ⁇ m on one side. An electric wire was manufactured.
  • Table 1 shows the main components of the electrodeposition liquid of Example 1, the long and short sides of the flat rectangular conductor wire, the round wire equivalent diameter of the flat rectangular conductor wire, and the manufacturing conditions of the insulated wire (delivery speed, applied voltage, drying method) , Drying temperature, furnace heating / hot air length, hot air speed).
  • Examples 2 to 7, Comparative Examples 1 to 4 The main components of the electrodeposition liquid, the long and short sides of the flat rectangular conductor wire, the round wire equivalent diameter of the flat rectangular conductor wire, and the manufacturing conditions of the insulated wire were changed as shown in Table 1; Similarly, insulated wires of Examples 2 to 7 and Comparative Examples 1 to 4 were manufactured.
  • a hot air heating furnace having a length shown in Table 1 was used for the baking treatment. In this hot air heating furnace, a plurality of hot air insertion ports through which hot air can be fed are attached in the direction in which the copper wire travels, and a furnace having a desired length and a mechanism capable of baking with hot air was used.
  • hot air was introduced into the length of the hot air portion of the furnace shown in Table 1, and the baking treatment was performed at the hot air speed shown in Table 1.
  • the hot air velocity is the value at the furnace outlet.
  • Insulation film flexibility / adhesiveness is obtained by cutting an insulated wire into a length of 10 cm, and then cutting the insulated wire into a round bar having a self-diameter (cross section of insulated wire). After bending 90 degrees by edgewise bending to a shape that follows the length of the long side in the case of a rectangular shape, the diameter of the insulating film on the inner side of the bend The presence or absence of peeling and wrinkles (adhesion) and the presence or absence of cracks on the outside of the bend (flexibility) were examined.
  • Softening temperature of insulating film was measured according to JIS (C3216-6: 2011-4, steel ball method).
  • the mass reduction rate of the insulating film was 5 to 20%, so peeling and wrinkles were not observed on the insulating film on the inner side of the insulated wire in the flexibility / adhesion test. In addition, no cracks were found in the insulating film on the outside of the bending process.
  • the softening temperature was in the range of 302 to 322 ° C., and the softening resistance of the insulating film was excellent.
  • the insulated wire of the present invention can be used for coils used in reactors and motors for hybrid vehicles and electric vehicles.
  • Electrodeposition coating apparatus 11 Electrodeposition liquid 12 Flat rectangular conductor wire 13 Conductor wire with a circular cross-sectional shape 21b Insulating film 23 Insulated wire

Landscapes

  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

導体線が絶縁皮膜で被覆されてなる絶縁電線であって、この絶縁皮膜は常圧下での沸点が300℃未満の低沸点成分を5~20質量%含む。この絶縁皮膜の厚さが40~65μmであることが好ましい。また導体線の横断面形状が矩形状又は正方形状であることが好ましい。

Description

絶縁電線及びその製造方法並びにコイル
 本発明は、導体線が絶縁皮膜で被覆されてなる巻線加工用の絶縁電線及びその製造方法並びにコイルに関する。更に詳しくは、曲げ加工時に曲げ内側の絶縁皮膜の導体線との密着性に優れ、曲げ外側の絶縁皮膜の可撓性に優れ、かつ絶縁皮膜の耐軟化性に優れた絶縁電線及びその製造方法並びにコイルに関する。
 本願は、2017年3月1日に日本に出願された特願2017-038489号について優先権を主張し、その内容をここに援用する。
 近年、ハイブリッド車や電気自動車向けに、リアクトルやモーターの高性能化が必要とされている。それに伴い、リアクトルやモーターで使われるコイル用の絶縁電線は、横断面形状が円形状の丸線から横断面形状が矩形状の平角状線へシフトしており、コイル化の際もフラットワイズ曲げ加工からエッジワイズ曲げ加工へシフトしている。このリアクトルやモーターの更なる高性能化では、エッジワイズ曲げ加工時の曲げ半径の減少が求められている。エッジワイズ曲げ加工で、曲げ半径が減少すると、曲げの内側では皮膜が導体から剥離し易く、皮膜にシワが発生する。また曲げの外側では皮膜の割れ、亀裂が起こる。これらの欠陥は絶縁電線として最も重要な絶縁性能の低下を引き起こす。剥離、シワの発生を抑制するためには、曲げ加工においても皮膜が導体から剥がれない高い密着性を有する平角状の絶縁電線が求められている。
 これまで、加熱処理後であっても導体との密着性に優れ、高負荷条件下でも耐軟化性を有する絶縁皮膜を用いた絶縁電線が提案されている(例えば、特許文献1参照。)。この絶縁電線は、ビスフェノールA型フェノキシ樹脂80~30質量%及びビスフェノールS型フェノキシ樹脂20~70質量%のフェノキシ樹脂100質量部、ならびにブロックイソシアネート5~50質量部を含有するフェノキシ樹脂絶縁ワニスを、導体上に塗布、焼付けてなるプライマー層を有する。
日本国特開2010-108758公報(A)(請求項1、請求項3、段落[0007])
 しかし、特許文献1に示される絶縁電線は、プライマー層が必要であるため、絶縁電線の製造工程が複雑になり、製造コストが上昇する問題があった。またこの絶縁電線は、製品の品質を一定に保って製造するのが難しい問題があった。
 本発明の目的は、上記問題を解決し、曲げ加工時に曲げ内側の絶縁皮膜の導体線との密着性に優れ、曲げ外側の絶縁皮膜の可撓性に優れ、かつ絶縁皮膜の耐軟化性に優れた絶縁電線及びその製造方法並びにコイルを提供することにある。
 これまで、導体線の形状や種類を変えた場合や、絶縁皮膜の厚みを変えた場合に、同じ焼付け炉を使っていると、同じ乾燥条件でも絶縁皮膜の乾燥状態が変わり、絶縁皮膜の耐軟化性や絶縁皮膜の導体線に対する密着性・可撓性が変わってしまっていて、それぞれの評価が必要であった。本発明者らは、絶縁皮膜中の常圧下での沸点が300℃の低沸点成分の含有量の多寡が上記絶縁皮膜の耐軟化性、密着性・可撓性に影響を及ぼすことに着目し、本発明に到達した。
 本発明の第1の態様は、導体線が絶縁皮膜で被覆されてなる絶縁電線であって、前記絶縁皮膜が常圧下での沸点が300℃未満の低沸点成分を5~20質量%含むことを特徴とする。
 本発明の第2の態様は、第1の態様に基づく発明であって、前記絶縁皮膜の厚さが40~65μmである絶縁電線である。
 本発明の第3の態様は、第1又は第2の態様に基づく発明であって、前記導体線の横断面形状が矩形状又は正方形状である絶縁電線である。
 本発明の第4の態様は、第3の態様に基づく発明であって、前記導体線の横断面形状が矩形状であって、前記横断面における短辺に対する長辺の長さの比(長辺/短辺の比)が4~50であって、前記導体線の丸線換算径が3~5mmである絶縁電線である。なお、丸線換算径とは、真円以外の横断面形状の導体線の断面積と断面積が同一の真円線の直径のことをいう。
 本発明の第5の態様は、第1ないし第4の態様のいずれかの態様に基づく発明であって、前記導体線が銅線であって、前記絶縁皮膜の材質がポリアミドイミド樹脂又はポリイミド樹脂である絶縁電線である。
 本発明の第6の態様は、前記導体線に電着液を電着して前記絶縁皮膜を形成することにより第1ないし第5の態様のいずれかの絶縁電線を製造する方法である。
 本発明の第7の態様は、第1ないし第5の態様のいずれかの絶縁電線が複数回巻回されてなるコイルである。
 本発明の第8の態様は、第4の態様の絶縁電線がエッジワイズ状に複数回巻回されてなるコイルである。
 本発明の第1の態様に基づく発明では、絶縁電線が常圧下での沸点が300℃未満の低沸点成分を絶縁皮膜100質量%に対して5質量%以上含むため、曲げ加工時に曲げ内側の絶縁皮膜の導体線との密着性に優れ、曲げ外側の絶縁皮膜の可撓性に優れる。また低沸点成分が20質量%以下の含有量であって過剰でないため、絶縁皮膜の耐軟化性に優れる。
 本発明の第2の態様に基づく発明では、絶縁皮膜の厚さが40μm以上であるため、高い絶縁破壊電圧と耐熱性に優れる。また絶縁皮膜の厚さが65μm以下であるため、曲げ加工時に曲げ内側の絶縁皮膜の導体線との密着性により一層優れる。
 本発明の第3の態様に基づく発明では、導体線の横断面形状が矩形状又は正方形状であるため、横断面形状が円形の導体線と比較して、この絶縁電線を巻回してコイルにしたときに、コイル断面積中の導体線の断面積の占有率を大きくすることができる。
 本発明の第4の態様に基づく発明では、導体線の横断面形状が矩形状であって、前記横断面における短辺に対する長辺の長さの比(長辺/短辺の比)が4以上であるため、絶縁電線を高周波の交流で使用して、表皮効果により導体の表面のみに電流が流れたときに、長辺/短辺の比が大きいことで電流が流れる領域を広くすることができる。また、長辺/短辺の比が50以下であるので、曲げ加工が容易であり、曲げ加工時に曲げ内側の絶縁皮膜の導体線との密着性により一層優れる。また、導体線の丸線換算径が3mm以上であるため、大電流向けの絶縁電線として使用できる。また、丸線換算径が5mm以下であるため、この絶縁電線には曲げ加工時に曲げ内側の絶縁皮膜の導体線との密着性により一層優れる。なお、大電流が絶縁電線に流れる場合、厚い絶縁皮膜による高い絶縁性が必要となるが、絶縁皮膜が厚い場合、曲げによるシワ・剥離が起こりやすいので、そのような場合に本発明は好適である。
 本発明の第5の態様に基づく発明では、導体線が銅線であるため、導電性に優れる。また絶縁皮膜の材質がポリアミドイミド樹脂又はポリイミド樹脂であるため、高い絶縁破壊電圧と耐熱性に優れる。
 本発明の第6の態様に基づく発明では、導体線に電着液を電着して絶縁皮膜を形成することにより、均一に絶縁皮膜を導体線表面に形成することができる。
 本発明の第7の態様に基づく絶縁電線が複数回巻回されてなるコイルでは、絶縁電線の絶縁皮膜が導体線から剥離したり、シワが発生したりすることがなく、また絶縁皮膜に割れも起きない。
 本発明の第8の態様に基づく発明では、第4の態様の絶縁電線がエッジワイズ状に複数回巻回されてなるコイルでは、コイル断面積中の導体線の断面積の占有率を大きくすることができる。
本発明の実施形態の絶縁皮膜を導体線の表面に形成するプロセスを示す模式図である。
次に本発明を実施するための形態を説明する。
〔絶縁電線〕
 本実施形態の絶縁電線は、導体線が絶縁皮膜で被覆されてなる絶縁電線である。その特徴ある点は、この絶縁皮膜が、常圧下での沸点が300℃未満の低沸点成分を5~20質量%、好ましくは8~17質量%含むことにある。300℃を基準とするのは、絶縁電線を焼付けるときに不要な溶剤等を素早く取り除くことができる温度であり、また400℃以上を基準とすると、絶縁皮膜が劣化してしまうからである。常圧下での沸点が300℃未満の低沸点成分としては、水又は有機溶媒が挙げられる。有機溶媒としては、N、N-ジメチルホルムアミド(DMF)、N、N-ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、γ-ブチロラクトン(γBL)、アニソール、テトラメチル尿素、スルホラン等が挙げられる。中でもNMPが好ましい。常圧下での沸点が300℃未満の低沸点成分を5~20質量%含む理由は、5質量%未満では、絶縁皮膜が硬く、巻線加工の曲げ加工時に曲げ内側の絶縁皮膜が導体線から剥離したりシワが生じたり、曲げ外側の絶縁皮膜に割れが生じたりする。20質量%を超えると、巻線加工時に絶縁皮膜200℃以上の高温時に耐軟化性に劣る。
 本実施形態の絶縁皮膜の厚さは、40~65μmが好ましい。絶縁皮膜の厚さが40μm未満の場合、膜厚が薄いため、モーターやリアクトルで使用に耐え得る絶縁性能を発揮できない恐れがある。また65μmを超えると、巻線加工の曲げ加工時に曲げ内側の絶縁皮膜が導体線から剥離したりシワが生じ易くなったりする。また電着にて被覆を行った場合に、揮発する溶剤等の量が多くなることで、焼付工程において皮膜に泡のような欠陥が発生しやすくなる。
 また本実施形態の絶縁電線の導体線の横断面形状は、円形状でもよいが、矩形状又は正方形状であることが、横断面形状が円形の導体線と比較して、この絶縁電線を巻回してコイルにしたときに、コイル断面積中の導体線の断面積の占有率を大きくすることができ好ましい。
 また本実施形態の絶縁電線の導体線が矩形状の平角状である場合、導体線の矩形状の横断面における短辺に対する長辺の長さの比(長辺/短辺の比)が4以上であって、丸線換算径が3mm以上にすることが好ましい。これは、この絶縁電線をコイルにしたときにコイル断面積中の導体線の断面積の占有率を大きくすることができるためである。特に、長辺/短辺の比が4以上であると、絶縁電線を高周波の交流で使用して、表皮効果により導体の表面のみに電流が流れたときに、長辺/短辺の比が大きいことで電流が流れる領域を広くすることができる。反対に長辺/短辺の比が50以下であって、導体線を丸線として換算したときの丸線の直径が5mm以下であることが好ましい。これは、曲げ加工時に、曲げ加工が容易になるとともに、曲げ内側の絶縁皮膜の導体線との密着性により一層優れるためである。また、長辺/短辺の比が50を超えると、平角状導体線の扁平度合いが大きくなり過ぎ、導体線自体が曲げ加工によりねじれたり、亀裂が発生し易くなったりする。
 更に本実施形態の絶縁電線の導体線の材質としては、銅、銅合金、アルミニウム、アルミニウム合金、ステンレス等が挙げられる。その中で、銅線がより高い導電性が得られるため、好ましい。また絶縁皮膜の材質は、ポリイミド(以下、PIという。)樹脂、ポリアミドイミド(以下、PAIという。)樹脂、ポリエステルイミド樹脂、アクリル樹脂、エポキシ樹脂、エポキシ-アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂等が挙げられる。その中で、高い絶縁破壊電圧と耐熱性の観点から、ポリアミドイミド樹脂又はポリイミド樹脂であることが好ましい。
〔絶縁電線の製造方法〕
 本実施形態の絶縁電線は、導体線に絶縁皮膜をディッピング法又は電着法で形成することにより製造される。ディッピング法で絶縁皮膜を形成する場合には、1回当たりの皮膜塗布工程で塗布できる皮膜の厚みは1~10μmであり、ハイブリッド車や電気自動車向けのモーターやリアクトルとして用いるために必要とされる絶縁破壊電圧を得るためには、塗布工程と焼付け工程を複数回行う必要がある。この場合は、複数回焼付け工程を行う必要があることから、内層の皮膜の乾燥が外層に比べて進むため、皮膜全体で均一に乾燥程度を均一化するには、塗布工程の塗布用を毎回変える工夫や、焼付け工程の温度を毎回変える工夫などが必要となる。特に何度も焼付け工程を得ることになる導体と接触している1層目は乾燥の程度が高くなり、皮膜が硬くなることでコイル加工した際に浮きの原因となるので、1層目の乾燥は低温で行うなどの工夫が必要である。
 一方、電着法で絶縁皮膜を形成する場合には、一度に1~100μmの皮膜を塗布することが可能で焼付け工程も一度で済むので、絶縁皮膜の質量減少を制御し易く、本発明においては好適である。電着法の場合、先ず、絶縁電着塗料である電着液を調製する。この電着液には、ポリマーと、溶媒として有機溶媒及び水とが含まれる。ポリマーには、前述した絶縁皮膜の材質として例示した樹脂が挙げられる。また有機溶媒には、前述した低沸点成分として例示した有機溶媒が挙げられる。
 本実施形態では、ポリマーとしてポリアミドイミド樹脂とポリイミド樹脂をNMPとDMIに溶解させたポリアミドイミド溶液、ポリイミド溶液に中和剤を添加し撹拌してポリアミドイミド、ポリイミドを中和した後、ポリアミドイミド、ポリイミドの貧溶媒である水を添加し混合・撹拌しポリアミドイミド、ポリイミドを析出させて電着液を調製する。
 以下、図1に基づいて、この電着液を用いて絶縁電線を製造する方法を説明する。図1に示す電着塗装装置10は、電着液11を貯留する電着槽18と焼付け炉22を有する。電着液11は、ポリマーが水に分散する水分散型の電着液又はポリマーが水と有機溶媒との混合液に分散する混合分散型の電着液であって、常圧下での沸点が300℃未満の低沸点成分の水又は水・有機溶媒を分散媒としている。ポリマーの濃度は分散媒100質量%に対して1~10質量%である。分散媒が水と有機溶媒との混合溶媒である場合には、有機溶媒は1~70質量%が好ましい。
 予め、円筒状に巻き取られた横断面形状が円形の導体線13を、直流電源14の正極に陽極16を介して電気的に接続しておく。そして、この横断面形状が円形の導体線13を図1の実線矢印の方向に引上げて次の各工程を経る。
 先ず、第1の工程として、横断面形状が円形の導体線13を一対の圧延ローラ17、17により扁平に圧延して、横断面形状が矩形の平角状の導体線12を形成する。次いで、第2の工程として、電着槽18に貯留された電着液11中に平角状の導体線12を通過させる。電着槽18内の電着液11中には、直流電源14の負極に電気的に接続された一対の陰極19、19が挿入される。平角状の導体線12は一対の陰極19、19の間を通過するようになっている。
 電着液11は、好ましくは5~60℃の温度に維持される。電着槽18内の電着液11中を平角状の導体線12が通過する際には、直流電源14により直流電圧が平角状の導体線12と陰極19、19との間に印加される。このときの直流電源14の直流電圧は1~500Vとするのが好ましく、直流電流の通電時間は0.01~60秒とするのが好ましい。これにより、電着液11中で、マイナスに帯電したポリマー粒子(図示せず)が平角状の導体線12の表面に電着されて図1の部分拡大図に示すように絶縁層21aが形成される。
 次に、表面に絶縁層21aが電着された平角状の導体線12に対し、焼付け処理を施すことにより、平角状の導体線12の表面に図1の部分拡大図に示すように絶縁皮膜21bを形成する。この実施の形態では、表面に絶縁層21aが形成された平角状の導体線12を、焼付け炉22内を通過させることにより行う。上記焼付け処理は、近赤外線加熱炉、熱風加熱炉、誘導加熱炉、遠赤外線加熱炉、温度が管理された空気や窒素等不活性ガスを使った炉を、単独もしくは併用して使用することができる。乾燥速度を上げるために、熱風得加熱と赤外線加熱を併せて行うことが好ましい。熱風加熱の場合、炉の温度は200~500℃とした上で、流速の速いガスを用いるとよく、炉内の平均流速が1~10m/分程度になるように乾燥ガスを入れるとよい。ガスの温度は炉の温度と同じ理由から200~500℃程度が望ましい。また焼付け処理の時間は1~10分間の範囲内であることが好ましい。焼付け処理の温度が200℃未満では、必要な乾燥を行うことができず、500℃を超えると、乾燥初期において溶剤等の急激な揮発によって皮膜に泡のような欠陥ができる。また、高温であるために樹脂が熱分解してしまう。なお、焼付け処理の温度は焼付け炉内の中央部の温度である。
 焼付け処理は、後述する絶縁電線を曲げ加工するときの曲げ内側の絶縁皮膜の導体線との密着性、曲げ外側の絶縁皮膜の可撓性及び絶縁皮膜の耐軟化性を決める重要な処理である。焼付けが過剰に行われると、樹脂が劣化、界面の酸化等により、絶縁電線を曲げ加工するときの曲げ内側で絶縁皮膜が導体線から剥離したり、シワを生じたり、曲げ外側で絶縁皮膜に割れを生じたりする。また焼付けが不十分であると、絶縁皮膜中に有機溶剤が過剰に存在するため、軟化温度が低下する。焼付け炉22を通過することにより、平角状の導体線12の表面を絶縁皮膜21bで被覆した絶縁電線23が製造される。
〔コイルの製造方法〕
 平角状の導体線12が絶縁皮膜21bで被覆されてなる絶縁電線23を、図示しないコイル成形装置により巻線加工を行ってコイルに製造する。本実施形態では、横断面形状が矩形をなす導体線の一方の短辺側(エッジ面)を内径面とし、他方の短辺側(エッジ面)を外径面として、絶縁電線を曲げるエッジワイズ曲げ加工の巻線加工によりコイルに製造する。なお、導体線の横断面形状が矩形をなす長辺側(フラット面)を曲げるフラットワイズ曲げ加工の巻線加工により絶縁電線をコイルに製造してもよい。
 次に本発明の実施例を比較例とともに詳しく説明する。
 <実施例1>
 導体線として厚み1.5mm、幅6.5mmの平角状の銅線を用意した。一対の銅板からなる陰極を有し、電着液を貯留する長さ1mの電着槽を用意した。また長さ2.5mの電気炉(遠赤外線加熱炉)で構成され、熱電対が炉壁に設置してあり、炉内を所望の温度に設定できる焼付け炉を用意した。この焼付け炉は銅線の進む方向に、複数個の電気ヒータが設けられ、所望の長さの範囲でのみ焼付けができるよう個別に温度が設定できるようになっており、長さ1.2mの範囲でのみ焼付けができるようヒータの出力を設定した。
 先ず、電着槽に2質量%のポリアミドイミド(PAI)を含む水分散型の電着液を貯留した。この電着液の温度を20℃に維持し、陽極の銅線と陰極の銅板との間に100Vの直流電圧を印加した。図示しない銅線の送り出し機の送出速度を調整しながら、銅線を一対の陰極の間を通過させて電着を行った。表面に絶縁層が電着された銅線を乾燥・焼付け炉に導入し、送り出し機の送出速度を0.4m/分に調整して、焼付け後の絶縁皮膜が片面で40μmの厚さの絶縁電線を製造した。
 表1に、実施例1の電着液の主成分、平角状導体線の長辺・短辺、平角状導体線の丸線換算径、絶縁電線の製造条件(送出速度、印加電圧、乾燥方式、乾燥温度、炉の加熱部/熱風部の長さ、熱風速度)を示す。
 <実施例2~7、比較例1~4>
 電着液の主成分、平角状導体線の長辺・短辺、平角状導体線の丸線換算径、絶縁電線の製造条件を表1に示すように変更し、それ以外は実施例1と同様にして、実施例2~7、比較例1~4の絶縁電線を製造した。実施例6、7及び比較例4では、焼付け処理に表1に示す長さを有する熱風加熱炉を用いた。この熱風加熱炉は、熱風を送り込める熱風挿入口が銅線の進む方向に複数取り付けられており、所望の長さ、熱風にて焼付けできる機構を有するものを用いた。実施例6、7及び比較例4では、表1に示す炉の熱風部の長さ部分に熱風を導入し、表1に示す熱風速度で焼付け処理を行った。熱風速度は炉の出口での値である。
Figure JPOXMLDOC01-appb-T000001
<比較試験と評価>
 実施例1~7及び比較例1~4で得られた絶縁電線について、次の方法により、絶縁皮膜の膜厚、絶縁皮膜の質量減少、絶縁皮膜の可撓性・密着性及び絶縁皮膜の耐軟化温度を調べた。その結果を表2に示す。
(1)絶縁皮膜の膜厚
 絶縁電線の長辺側をマイクロメーター(MITUTOYO社製)で挟み込み、絶縁電線全体の厚さを測定した後、導体線の厚さ(導体の短辺長さ)を差し引いき、得られた値に1/2を掛けることで得られる値を絶縁皮膜の膜厚とした。
(2)絶縁皮膜の質量減少
 絶縁電線の導体線からカッターナイフを用いて剥離した絶縁皮膜の一部を、熱重量分析装置を用いて、空気流通下、室温から10℃/分の速度で300℃の温度まで加熱した。室温時の絶縁皮膜の質量を測定しておき、300℃に到達したときの絶縁皮膜の質量の差を求めた。この質量減少を絶縁皮膜に含まれる低沸点成分の質量とした。
(3)絶縁皮膜の可撓性・密着性
 絶縁皮膜の可撓性・密着性は、絶縁電線を10cmの長さで切り出し、この絶縁電線を、自己径を有する丸棒(絶縁電線の横断面が矩形状場合の長辺の長さと、直径が等しい丸棒)に添う形状に、エッジワイズ曲げ加工にて90度折り曲げた後、光学顕微鏡で20倍に拡大して、曲げ内側の絶縁皮膜の剥離とシワの有無(密着性)、曲げ外側の割れの有無(可撓性)を調べた。
(4)絶縁皮膜の耐軟化温度
 絶縁皮膜の耐軟化温度は、JIS(C3216-6:2011-4、鋼球法)に従って測定した。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、比較例1及び比較例4では、絶縁皮膜の質量減少率が4%であったため、可撓性・密着性試験で絶縁電線の曲げ加工内側の絶縁皮膜に剥離とシワが見られ、また曲げ加工外側の絶縁皮膜に割れが見られた。また比較例2及び比較例3では、質量減少率が大きい、言い換えると、絶縁皮膜中の低沸点成分の割合が多いため、耐軟化温度がそれぞれ209℃及び211℃と絶縁皮膜の耐軟化性に劣っていた。
 これに対して、実施例1~7では、絶縁皮膜の質量減少率が5~20%であったため、可撓性・密着性試験で絶縁電線の曲げ加工内側の絶縁皮膜に剥離とシワは見られず、また曲げ加工外側の絶縁皮膜に割れも見られなかった。また実施例1~7では、耐軟化温度が302~322℃の範囲にあり絶縁皮膜の耐軟化性に優れていた。
 本発明の絶縁電線は、ハイブリッド車や電気自動車向けのリアクトルやモーターで使われるコイルに利用することができる。
 10  電着塗装装置
 11  電着液
 12  平角状の導体線
 13  横断面形状が円形の導体線
 21b  絶縁皮膜
 23  絶縁電線

Claims (8)

  1.  導体線が絶縁皮膜で被覆されてなる絶縁電線であって、前記絶縁皮膜が常圧下での沸点が300℃未満の低沸点成分を5~20質量%含むことを特徴とする絶縁電線。
  2.  前記絶縁皮膜の厚さが40~65μmである請求項1記載の絶縁電線。
  3.  前記導体線の横断面形状が矩形状又は正方形状である請求項1又は2記載の絶縁電線。
  4.  前記導体線の横断面形状が矩形状であって、前記横断面における短辺に対する長辺の長さの比(長辺/短辺の比)が4~50であって、前記導体線の丸線換算径が3~5mmである請求項3記載の絶縁電線。
  5.  前記導体線が銅線であって、前記絶縁皮膜の材質がポリアミドイミド樹脂又はポリイミド樹脂である請求項1ないし4いずれか1項に記載の絶縁電線。
  6.  前記導体線に電着液を電着して前記絶縁皮膜を形成することにより請求項1ないし5いずれか1項に記載の絶縁電線を製造する方法。
  7.  請求項1ないし5いずれか1項に記載の絶縁電線が複数回巻回されてなるコイル。
  8.  請求項4記載の絶縁電線がエッジワイズ状に複数回巻回されてなるコイル。
PCT/JP2018/004837 2017-03-01 2018-02-13 絶縁電線及びその製造方法並びにコイル WO2018159279A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/484,592 US10984922B2 (en) 2017-03-01 2018-02-13 Insulated electric wire, method for manufacturing same, and coil
CN201880010389.4A CN110249395A (zh) 2017-03-01 2018-02-13 绝缘电线及其制造方法以及线圈
EP18760547.2A EP3591671A4 (en) 2017-03-01 2018-02-13 INSULATED ELECTRIC WIRE, ITS MANUFACTURING PROCESS, AND COIL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017038489A JP2018147582A (ja) 2017-03-01 2017-03-01 絶縁電線及びその製造方法並びにコイル
JP2017-038489 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018159279A1 true WO2018159279A1 (ja) 2018-09-07

Family

ID=63371043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004837 WO2018159279A1 (ja) 2017-03-01 2018-02-13 絶縁電線及びその製造方法並びにコイル

Country Status (6)

Country Link
US (1) US10984922B2 (ja)
EP (1) EP3591671A4 (ja)
JP (1) JP2018147582A (ja)
CN (1) CN110249395A (ja)
TW (1) TW201841985A (ja)
WO (1) WO2018159279A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574615A (zh) * 2019-03-27 2021-10-29 三菱综合材料株式会社 绝缘铜线及电线圈

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023005801A (ja) 2021-06-29 2023-01-18 株式会社ダイセル 絶縁電線、絶縁電線を含むコイル及びケーブル

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104941A (en) * 1980-01-25 1981-08-21 Mitsui Toatsu Chem Inc Polysulfonamide ester and preparation therefor
JP2010108758A (ja) 2008-10-30 2010-05-13 Sumitomo Electric Wintec Inc フェノキシ樹脂絶縁ワニス及びこれを用いた絶縁電線
JP2010251615A (ja) * 2009-04-17 2010-11-04 Daido Electronics Co Ltd 絶縁被膜付き導体コイルの製造方法及び絶縁被膜付き導体コイル
JP2013035997A (ja) * 2011-08-10 2013-02-21 Mitsubishi Cable Ind Ltd 電着塗料組成物及びそれを用いた絶縁部材
JP2017038489A (ja) 2015-08-11 2017-02-16 株式会社日立製作所 電動機冷却装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5924836B2 (ja) * 2011-10-24 2016-05-25 国立研究開発法人理化学研究所 高温超伝導被覆線及びそれを有する高温超伝導コイル
JP6355304B2 (ja) * 2013-06-28 2018-07-11 東京特殊電線株式会社 はんだ付け可能な絶縁電線及びその製造方法
EP3089168B1 (en) * 2013-12-26 2018-06-20 Furukawa Electric Co. Ltd. Insulated wire, coil, electrical/electronic apparatus, and method for manufacturing insulated wire in which coating film separation is prevented
CN105900185B (zh) 2014-01-10 2018-04-20 古河电气工业株式会社 绝缘电线、线圈和电气电子设备以及绝缘电线的防破裂方法
MY178043A (en) 2014-03-12 2020-09-30 Essex Furukawa Magnet Wire Japan Co Ltd Rectangular insulated wire, coil and electrical and electronic device
US10513582B2 (en) * 2014-04-23 2019-12-24 Jxtg Nippon Oil & Energy Corporation Tetracarboxylic dianhydride, polyamic acid, polyimide, methods for producing the same, and polyamic acid solution
JP5994955B1 (ja) 2015-05-25 2016-09-21 三菱マテリアル株式会社 水分散型絶縁皮膜形成用電着液
JP6787147B2 (ja) 2016-02-18 2020-11-18 三菱マテリアル株式会社 電着液及び電着塗装体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104941A (en) * 1980-01-25 1981-08-21 Mitsui Toatsu Chem Inc Polysulfonamide ester and preparation therefor
JP2010108758A (ja) 2008-10-30 2010-05-13 Sumitomo Electric Wintec Inc フェノキシ樹脂絶縁ワニス及びこれを用いた絶縁電線
JP2010251615A (ja) * 2009-04-17 2010-11-04 Daido Electronics Co Ltd 絶縁被膜付き導体コイルの製造方法及び絶縁被膜付き導体コイル
JP2013035997A (ja) * 2011-08-10 2013-02-21 Mitsubishi Cable Ind Ltd 電着塗料組成物及びそれを用いた絶縁部材
JP2017038489A (ja) 2015-08-11 2017-02-16 株式会社日立製作所 電動機冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3591671A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574615A (zh) * 2019-03-27 2021-10-29 三菱综合材料株式会社 绝缘铜线及电线圈
EP3951809A4 (en) * 2019-03-27 2022-12-07 Mitsubishi Materials Corporation INSULATED COPPER WIRE AND ELECTRICAL COIL
CN113574615B (zh) * 2019-03-27 2023-07-25 三菱综合材料株式会社 绝缘铜线及电线圈

Also Published As

Publication number Publication date
CN110249395A (zh) 2019-09-17
US10984922B2 (en) 2021-04-20
JP2018147582A (ja) 2018-09-20
EP3591671A1 (en) 2020-01-08
EP3591671A4 (en) 2021-01-06
TW201841985A (zh) 2018-12-01
US20200043629A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
EP3605558B1 (en) Insulated electric wire, production method therefor, coil and coil production method using same
JP6973576B2 (ja) 水分散型絶縁皮膜形成用電着液
CN109801745B (zh) 一种新能源汽车驱动电机用电磁线及其制备方法
WO2018159279A1 (ja) 絶縁電線及びその製造方法並びにコイル
EP3134906B1 (en) Continuously transposed conductor
CN114270454A (zh) 具有热塑性绝缘部的磁导线
CN110234717A (zh) 电沉积液及使用了该电沉积液的带绝缘覆膜的导体的制造方法
JP2014154511A (ja) 絶縁電線およびその製造方法
US20070221706A1 (en) Methods for making aluminum clad copper wire
JP2014103045A (ja) 絶縁電線及びその製造方法
EP3447172B1 (en) Insulated flat conductive wire having high aspect ratio, method for manufacturing same, and coil
JP7011773B2 (ja) エナメル線およびエナメル線の製造方法
JP6153225B2 (ja) 絶縁電線の製造方法
JP7301930B2 (ja) エナメル線
WO2016129518A1 (ja) 絶縁電線の製造方法
JP2017059335A (ja) 絶縁皮膜
WO2006103903A1 (ja) 真四角絶縁電線、その用途および製造方法
CN108648881A (zh) 超导体电磁线的生产方法
JP6519231B2 (ja) 巻線及びその製造方法
CN106098191A (zh) 一种直焊式漆包铜扁线及其制备方法
EP4123060A1 (en) Insulating film-equipped die-cut product and method for producing same
JP5198790B2 (ja) 絶縁電線
JP2023032642A (ja) 絶縁導体の製造方法、電着装置及び絶縁導体製造装置
WO2017110188A1 (ja) 水分散型絶縁皮膜形成用電着液
JP2008069442A (ja) 電着塗膜の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018760547

Country of ref document: EP

Effective date: 20191001