US20200043629A1 - Insulated electric wire, method for manufacturing same, and coil - Google Patents

Insulated electric wire, method for manufacturing same, and coil Download PDF

Info

Publication number
US20200043629A1
US20200043629A1 US16/484,592 US201816484592A US2020043629A1 US 20200043629 A1 US20200043629 A1 US 20200043629A1 US 201816484592 A US201816484592 A US 201816484592A US 2020043629 A1 US2020043629 A1 US 2020043629A1
Authority
US
United States
Prior art keywords
insulated electric
insulating film
electric wire
conductor wire
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/484,592
Other versions
US10984922B2 (en
Inventor
Makoto Urushihara
Hideaki Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Assigned to MITSUBISHI MATERIALS CORPORATION reassignment MITSUBISHI MATERIALS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAKURAI, HIDEAKI, URUSHIHARA, MAKOTO
Publication of US20200043629A1 publication Critical patent/US20200043629A1/en
Application granted granted Critical
Publication of US10984922B2 publication Critical patent/US10984922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/16Insulating conductors or cables by passing through or dipping in a liquid bath; by spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes

Definitions

  • the present invention relates to an insulated electric wire for winding including a conductor wire coated by an insulating film, a method for manufacturing the same, and a coil. More specifically, the present invention relates to an insulated electric wire in which when bending is performed, the adhesion of an inner side of bending of an insulating film to a conductor wire is excellent, the flexibility of an outer side of bending of the insulating film is excellent, and the softening resistance of the insulating film is excellent; a method for manufacturing the same; and a coil.
  • a hybrid vehicle or an electric vehicle requires a high-performance reactor or a high-performance motor.
  • a rectangular wire having a cross-sectional shape in a rectangular shape becomes more popularly used instead of a round wire having a cross-sectional circular shape, and in the manufacturing of the coil, an edgewise bending process becomes more popularly used instead of a flatwise bending process.
  • a reduction of a bending radius in the edgewise bending process is required.
  • the insulated electric wire has a primer layer obtained by coating a surface of the conductor with a phenoxy resin insulating varnish which contains 100 parts by mass of phenoxy resin which is formed of 80 to 30% by mass of bisphenol-A type phenoxy resin and 20 to 70% by mass of bisphenol-S type phenoxy resin, and which contains 5 to 50 parts by mass of blocked isocyanate, and by baking the coated conductor.
  • the insulated electric wire illustrated in PTL 1 requires a primer layer, there is the problem that a step of manufacturing the insulated electric wire becomes complicate, and manufacturing costs increase. In addition, there is the problem that it is difficult to manufacture the insulated electric wire while maintaining consistent product quality.
  • An object of the present invention is to solve the problems, and to provide an insulated electric wire in which when bending is performed, the adhesion of an inner side of bending of an insulating film to a conductor wire is excellent, the flexibility of an outer side of bending of the insulating film is excellent, and the softening resistance of the insulating film is excellent; a method for manufacturing the same; and a coil.
  • an insulated electric wire including a conductor wire coated by an insulating film, in which the insulating film contains 5 to 20% by mass of a low boiling point component having a boiling point of less than 300° C. under normal pressure.
  • the insulating film has a thickness of 40 to 65 ⁇ m.
  • the conductor wire has a cross-sectional shape in a rectangular shape or a square shape.
  • the conductor wire has a cross-sectional shape in a rectangular shape, a ratio (long side/short side ratio) of a length of a long side to a length of a short side of the cross section is in a range of 4 to 50, and an equivalent round wire diameter of the conductor wire is in a range of 3 to 5 mm.
  • the equivalent round wire diameter represents a diameter of a true circle line, the cross-sectional area of which is the same as the cross-sectional area of a conductor wire having a cross-sectional shape other than a true circle.
  • the conductor wire is a copper wire
  • a material of the insulating film is a polyamide-imide resin or a polyimide resin.
  • a method for manufacturing the insulated electric wire according to any one of the first to fifth aspects, the method including forming the insulating film by electrodepositing an electrodeposition dispersion to the conductor wire.
  • a coil formed by winding the insulated electric wire according to any one of the first to fifth aspects multiple turns.
  • the insulated electric wire contains 5% or greater by mass of the low boiling point component having a boiling point of less than 300° C. under normal pressure in 100% by mass of the insulating film, when bending is performed, the adhesion of an inner side of bending of the insulating film to the conductor wire is excellent, and the flexibility of an outer side of bending of the insulating film is excellent. Because the content of the low boiling point component is less than or equal to 20% by mass and is not excessive, the insulating film has excellent softening resistance.
  • the thickness of the insulating film is greater than or equal to 40 ⁇ m, an insulation breakdown voltage is high and heat resistance is excellent. Because the thickness of the insulating film is less than or equal to 65 ⁇ m, when bending is performed, the adhesion of the inner side of bending of the insulating film to the conductor wire becomes even better.
  • the conductor wire has a cross-sectional shape in a rectangular shape or a square shape
  • the ratio of the occupancy of a cross-sectional area of the conductor wire to a cross-sectional area of the coil is capable of increasing compared to when the conductor wire has a cross-sectional shape in a circular shape.
  • the conductor wire has a cross-sectional shape in a rectangular shape and the ratio (long side/short side ratio) of the length of the long side to the short side of the cross section is greater than or equal to four, when the insulated electric wire carries high-frequency alternating current, and current flows only at a skin of the conductor due to skin effect, a current flowing region is capable of being widened due to the high long side/short side ratio. Because the long side/short side ratio is less than or equal to 50, bending is easily performed, and when bending is performed, the adhesion of the inner side of bending of the insulating film to the conductor wire becomes even better.
  • the insulated electric wire is capable of being used as an insulated electric wire for high current. Because the equivalent round wire diameter is less than or equal to 5 mm, when bending is performed, the adhesion of the inner side of bending of the insulating film to the conductor wire in the insulated electric wire becomes even better. If high current flows through the insulated electric wire, high insulation performance attainable by a thick insulating film is required. On the other hand, if the insulating film is thick, because bending is likely to cause wrinkles and peeling, the present invention is preferable in such case.
  • the conductor wire is a copper wire
  • conductivity is excellent.
  • the material of the insulating film is a polyamide-imide resin or a polyimide resin, the insulation breakdown voltage is high and heat resistance is excellent.
  • the insulating film is formed by electrodepositing the electrodeposition dispersion to the conductor wire, the insulating film is capable of being uniformly formed on a surface of the conductor wire.
  • the insulating film of the insulated electric wire does not wrinkle and peel from the conductor wire, and breaking does not occur in the insulating film.
  • the ratio of the occupancy of the cross-sectional area of the conductor wire to the cross-sectional area of the coil is capable of increasing.
  • FIG. 1 is a schematic diagram illustrating a process of forming an insulating film on a surface of a conductor wire of an embodiment of the present invention.
  • An insulated electric wire of the embodiment is an insulated electric wire obtained by coating a conductor wire with an insulating film.
  • a distinguishing point of the insulated electric wire is that the insulating film contains 5 to 20% by mass of a low boiling point component having a boiling point of less than 300° C. under normal pressure.
  • the insulating film preferably contains 8 to 17% by mass of a low boiling point component having a boiling point of less than 300° C. under normal pressure.
  • the reason a boiling point of 300° C. is used as a reference boiling point is that when the insulated electric wire is baked, an unnecessary solvent is capable of being quickly removed around the temperature, and if a boiling point of 400° C. or higher is used as a reference boiling point, the insulating film deteriorates.
  • Examples of the low boiling point component having a boiling point of less than 300° C. under normal pressure include water and an organic solvent.
  • the organic solvent include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethylsulfoxide (DMSO), N-methylpyrrolidone (NMP), ⁇ -butyrolactone (yBL), anisole, tetramethylurea, and sulfolane.
  • NMP is preferably used as the organic solvent. The reason the insulating film contains 5 to 20% by mass of a low boiling point component having a boiling point of less than 300° C.
  • the insulating film under normal pressure is that if the content of the low boiling point component is less than 5% by mass, the insulating film becomes hardened, and thus, an inner side of bending of the insulating film may wrinkle or peel from the conductor wire or an outer side of bending of the insulating film may break in a bending process which is a winding process. If the content of the low boiling point component exceeds 20% by mass, the insulating film has inferior softening resistance at a high temperature of 200° C. or higher in the winding process.
  • the insulating film of the embodiment preferably has a thickness of 40 to 65 ⁇ m. If the thickness of the insulating film is less than 40 ⁇ m, the film may be too thin to exhibit insulation performance that can be used in motors and reactors. If the thickness of the insulating film exceeds 65 ⁇ m, the inner side of bending of the insulating film is likely to wrinkle or peel from the conductor wire in the bending process which is the winding process. If coating is performed via electrodeposition, because the volatile amount of the solvent increases, defects such as bubbles are likely to occur in the film in a baking step.
  • the conductor wire of the insulated electric wire may have a cross-sectional shape in a circular shape.
  • the conductor wire preferably has a cross-sectional shape in a rectangular shape or a square shape because when the insulated electric wire is wound into a coil, the ratio of the occupancy of a cross-sectional area of the conductor wire to a cross-sectional area of the coil is capable of increasing compared to when the conductor wire has a cross-sectional shape in a circular shape.
  • the conductor wire of the insulated electric wire of the embodiment has a rectangular shape, preferably, the ratio (long side/short side ratio) of a long side to a short side of a rectangular cross section of the conductor wire is greater than or equal to four, and an equivalent round wire diameter is greater than or equal to 3 mm.
  • the ratio of the occupancy of the cross-sectional area of the conductor wire to the cross-sectional area of the coil is capable of increasing.
  • the long side/short side ratio is greater than or equal to four, when the insulated electric wire carries high-frequency alternating current, and when the current flows only on a surface of the conductor due to skin effect, a current flowing region is capable of being widened due to the high long side/short side ratio.
  • the long side/short side ratio is less than or equal to 50, and when the conductor wire is converted to a round wire, the diameter of the round wire is less than or equal to 5 mm. The reason is that when bending is performed, the bending is capable of being easily performed and the adhesion of the inner side of bending of the insulating film to the conductor wire becomes even better. If the long side/short side ratio exceeds 50, the degree of flatness of the rectangular conductor wire becomes excessively large, and the conductor wire is likely to be twisted or to break due to bending.
  • examples of the material of the conductor wire of the insulated electric wire include copper, a copper alloy, aluminum, an aluminum alloy, and a stainless steel.
  • a wire made of copper among the exemplified materials is preferably used because the wire made of copper has a higher conductivity.
  • examples of the material of the insulating film include a polyimide (hereinafter, referred to as PI) resin, a polyamide-imide (hereinafter, referred to as PAI) resin, a polyester imide resin, an acrylic resin, an epoxy resin, an epoxy acrylic resin, a polyurethane resin, and a polyester resin.
  • PI polyimide
  • PAI polyamide-imide
  • the insulated electric wire of the embodiment is manufactured by forming an insulating film on a conductor wire via a dipping method or electrodeposition method. If the insulating film is formed by the dipping method, the thickness of a film applicable per one time in a film coating step is 1 to 10 ⁇ m. It is necessary to perform the coating step and the baking step multiple times in order to obtain an insulation breakdown voltage required for use in a motor or reactor for a hybrid vehicle or an electric vehicle. In this case, because it is necessary to perform the baking step multiple times, the drying of an inner layer of film proceeds further compared to the drying of an outer layer of film.
  • the insulating film is preferably formed by the electrodeposition method.
  • the reason is that a film of 1 to 100 ⁇ m is applicable all at once and the baking step is complete all at once, and thus a mass reduction of the insulating film is easily controlled.
  • the electrodeposition method is used, firstly, an electrodeposition dispersion is prepared which is insulating electrodeposition coating material.
  • the electrodeposition dispersion contains a polymer, and an organic solvent and water which serve as a solvent.
  • Example of the polymer include the resins exemplified as the material of the insulating film.
  • Examples of the organic solvent include the organic solvents exemplified as the low boiling point component.
  • the polyamide-imide and the polyimide are precipitated by adding water (which is a bad solvent for the polyamide-imide and the polyimide) into the mixture, and mixing together and stirring the water and the mixture, and as a result, the electrodeposition dispersion is prepared.
  • an electrodeposition coating apparatus 10 has an electrodeposition bath 18 storing an electrodeposition dispersion 11 , and a baking furnace 22 .
  • the electrodeposition dispersion 11 is a water-based electrodeposition dispersion in which a polymer is dispersed in water, or a mixture-based electrodeposition dispersion in which a polymer is dispersed in a mixture of water and an organic solvent.
  • a dispersing medium of the electrodeposition dispersion 11 is water or water/organic solvent which is a low boiling point component having a boiling point of less than 300° C. under normal pressure.
  • the concentration of the polymer is 1 to 10% by mass in 100% by mass of the dispersing medium. If the dispersing medium is a mixed solvent of water and the organic solvent, the concentration of the organic solvent preferably is 1 to 70% by mass.
  • a conductor wire 13 having a cross-sectional shape in a circular shape which is wound around a cylinder is electrically connected to a positive electrode of a DC power supply 14 via an anode 16 in advance.
  • the conductor wire 13 having a cross-sectional shape in a circular shape is pulled upward in the direction of the solid arrow illustrated in FIG. 1 , and goes through the following each step.
  • a rectangular conductor wire 12 having a rectangular cross-sectional shape is formed by flat rolling the conductor wire 13 having a circular cross-sectional shape via a pair of rolling rollers 17 , 17 .
  • the rectangular conductor wire 12 passes through the electrodeposition dispersion 11 stored in the electrodeposition bath 18 .
  • a pair of cathodes 19 , 19 electrically connected to a negative electrode of the DC power supply 14 is inserted into the electrodeposition dispersion 11 in the electrodeposition bath 18 .
  • the rectangular conductor wire 12 passes between the pair of cathodes 19 , 19 .
  • the temperature of the electrodeposition dispersion 11 is preferably maintained at a temperature of 5 to 60° C.
  • a DC voltage is applied between the rectangular conductor wire 12 and the cathodes 19 , 19 by the DC power supply 14 .
  • the DC voltage from the DC power supply 14 preferably is in a range of 1 to 500 V, and an energization time of a DC current preferably is in a range of 0.01 to 60 seconds. Therefore, negatively charged polymer particles (not illustrated) are electrodeposited onto a surface of the rectangular conductor wire 12 in the electrodeposition dispersion 11 such that an insulating layer 21 a is formed as illustrated in a partially magnified view of FIG. 1 .
  • a baking treatment is performed on the rectangular conductor wire 12 having the surface electrodeposited with the insulating layer 21 a such that an insulating film 21 b is formed on the surface of the rectangular conductor wire 12 as illustrated in a partially magnified view of FIG. 1 .
  • the baking treatment is performed by passing the rectangular conductor wire 12 having the insulating layer 21 a formed on the surface through the baking furnace 22 .
  • the following furnaces individually or in combination may be used: a near-infrared heating furnace, a hot air heating furnace, an induction heating furnace, a far-infrared heating furnace, and a furnace using temperature-controlled air or temperature-controlled inert gas such as nitrogen.
  • Hot air heating and infrared heating are preferably used in combination to speed up drying.
  • high-speed gas may be used, and drying gas may be introduced into the furnace such that an average flow speed of the gas inside the furnace is approximately in a range of 1 to 10 m/min.
  • a gas temperature is set approximately in a range of 200 to 500° C. for the same reason as in the temperature of the furnace.
  • the time of the baking treatment is preferably set in a range of 1 to 10 minutes.
  • the temperature of the baking treatment is less than 200° C., the required drying is not attainable, and if the temperature exceeds 500° C., the rapid volatilization of the solvent at an initial phase of drying is capable of causing defects such as bubbles in a film.
  • the resin may be thermally decomposed due to the high temperature.
  • the temperature of the baking treatment represents the temperature of a central part inside the baking furnace.
  • the baking treatment is a treatment which is important to determine the adhesion of the inner side of bending of the insulating film to the conductor wire and the flexibility of the outer side of bending of the insulating film when the insulated electric wire is bent which will be described, and the softening resistance of the insulating film. If the baking is excessive, when the insulated electric wire is bent, an inner side of bending of the insulating film may wrinkle or peel from the conductor wire, or the outer side of bending of the insulating film may break due to the deterioration of resins and the oxidation of interfaces. If the baking is not sufficient, because the organic solvent becomes excessively present in the insulating film, a softening temperature decreases.
  • An insulated electric wire 23 is manufactured by passing the rectangular conductor wire 12 through the baking furnace 22 , and is configured such that the surface of the rectangular conductor wire 12 is coated with the insulating film 21 b.
  • a coil is manufactured by winding the insulated electric wire 23 formed by coating the rectangular conductor wire 12 with the insulating film 21 b , via a coil forming apparatus (not illustrated).
  • the coil is manufactured by a winding process which is an edgewise bending process of bending the insulated electric wire such that one short side (edge surface) of the conductor wire having a cross-sectional shape in a rectangular shape becomes an inner-diameter surface, and the other short side (edge surface) becomes an outer-diameter surface.
  • the coil may be manufactured from the insulated electric wire by a winding process which is a flatwise bending process of bending long sides (flat surfaces) of the conductor wire having a cross-sectional shape in a rectangular shape.
  • a rectangular copper wire having a thickness of 1.5 mm and a width of 6.5 mm was prepared as a conductor wire.
  • An electrodeposition bath was prepared which had cathodes formed of a pair of copper sheets and a length of 1 m to store an electrodeposition dispersion.
  • a baking furnace was prepared which was an electric furnace (far-infrared heating furnace) having a length of 2.5 m, in which a thermocouple was installed on a furnace wall, and the inner temperature of which was capable of being set to a desired temperature.
  • a plurality of electric heaters were provided in a traveling direction of the copper wire, the temperatures of the electric heaters were capable of being individually set such that only part of the copper wire in a desired range of length was capable of being baked, and an output of each heater was set such that only part of the copper wire in a length of 1.2 m was capable of being baked.
  • Electrodeposition was performed by passing the copper wire between the pair of cathodes while adjusting the feeding speed of the copper wire fed by a feeding machine (not illustrated).
  • the copper wire having a surface electrodeposited with an insulating layer was introduced into the drying/baking furnace, and the feeding speed of the feeding machine was adjusted to 0.4 m/min, and as a result, an insulated electric wire was manufactured to have an insulating film having a thickness of 40 ⁇ m on each single surface of the insulated electric wire.
  • Table 1 illustrates a main component of the electrodeposition dispersion, long and short sides of the rectangular conductor wire, an equivalent round wire diameter of the rectangular conductor wire, and conditions (feeding speed, applied voltage, drying method, drying temperature, length of heating portion/hot air portion of the furnace, and hot air speed) for manufacturing the insulated electric wire in Example 1.
  • Insulated electric wires of Examples 2 to 7 and Comparative Examples 1 to 4 were manufactured under the condition that a main component of each electrodeposition dispersion, long and short sides of each rectangular conductor wire, an equivalent round wire diameter of each rectangular conductor wire, and conditions for manufacturing each insulated electric wire were changed as illustrated in Table 1, and other factors were set as illustrated in Example 1.
  • hot air heating furnaces having the respective lengths illustrated in Table 1 were used for a baking treatment.
  • a plurality of hot air feeding inlets for feeding hot air into the furnace were attached in the traveling direction of the copper wire, and a mechanism for capable of baking part of the copper wire in a desired length by the hot air was provided.
  • hot air was introduced into a longitudinal part of a hot air portion of each furnace illustrated in Table 1, and the baking treatment was performed at each hot air speed illustrated in Table 1.
  • the hot air speed indicates a value at an outlet of each furnace.
  • the value of the film thickness of each insulating film was obtained by measuring the thickness of the entire insulated electric wire in a state where long sides of each insulating film were interposed between a micrometer (manufactured by MITUTOYO corporation), subtracting the thickness (length of a short side of a conductor) of the conductor wire from the measured thickness of the entire insulated electric wire, and then multiplying the obtained value by 1 ⁇ 2.
  • the mass of the insulating film was measured at a room temperature, and then when the temperature reached 300° C., a difference in the mass of the insulating film was obtained. The mass reduction was deemed as the mass of a low boiling point component contained in the insulating film.
  • each insulating film was determined by cutting a 10 cm length piece from each insulated electric wire, bending the piece of the insulated electric wire at 90 degrees via an edgewise bending process to form a shape following the shape of a round bar (round bar having a diameter equal to the length of a long side of a cross-sectional shape in a rectangular shape of the insulated electric wire) having an equivalent diameter, and then examining the existence (adhesion) of wrinkles and peeling of the inner side of bending of the insulating film and the existence (flexibility) of breaking of the outer side of bending by magnifying the bent piece 20 times using an optical microscope.
  • the softening temperature of each insulating film was measured according to JIS (C3216-6:2011-4, steel ball method).
  • Examples 1 to 7 because the mass reduction percentages of the insulating films were in a range of 5 to 20%, in each flexibility and adhesion test, wrinkles and peeling were not observed in the inner side of bending of the insulating film of the insulated electric wire, and breaking was not observed in the outer side of bending of the insulating film.
  • the softening temperatures were in a range of 302 to 322° C., and the insulating films had excellent softening resistance.
  • An insulated electric wire of the present invention is capable of being used as a coil for use in a reactor or motor for a hybrid vehicle or an electric vehicle.

Landscapes

  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

There is provided an insulated electric wire comprising a conductor wire coated by an insulating film, in which the insulating film contains 5 to 20% by mass of a low boiling point component having a boiling point of less than 300° C. under normal pressure. The insulating film preferably has a thickness of 40 to 65 μm. The conductor wire preferably has a cross-sectional shape in a rectangular shape or a square shape.

Description

    TECHNICAL FIELD
  • The present invention relates to an insulated electric wire for winding including a conductor wire coated by an insulating film, a method for manufacturing the same, and a coil. More specifically, the present invention relates to an insulated electric wire in which when bending is performed, the adhesion of an inner side of bending of an insulating film to a conductor wire is excellent, the flexibility of an outer side of bending of the insulating film is excellent, and the softening resistance of the insulating film is excellent; a method for manufacturing the same; and a coil.
  • Priority is claimed on Japanese Patent Application No. 2017-038489, filed on Mar. 1, 2017, the content of which is incorporated herein by reference.
  • BACKGROUND ART
  • In recent years, a hybrid vehicle or an electric vehicle requires a high-performance reactor or a high-performance motor. Accordingly, as an insulated electric wire for a coil used in the reactor or motor, a rectangular wire having a cross-sectional shape in a rectangular shape becomes more popularly used instead of a round wire having a cross-sectional circular shape, and in the manufacturing of the coil, an edgewise bending process becomes more popularly used instead of a flatwise bending process. To further improve the high performance of the reactor or motor, a reduction of a bending radius in the edgewise bending process is required. In the edgewise bending process, if the bending radius is reduced, an inner side of bending of a film is likely to peel from a conductor, and wrinkles are likely to occur in the film. Breaking or a fracture occurs in an outer side of bending of the film. The defects cause a decrease in insulation performance which is the most important factor of the insulated electric wire. In order to prevent the occurrence of peeling and wrinkles, a rectangular insulated electric wire having high adhesion is required in which a film does not peel from a conductor even when bending is performed.
  • There is proposed an insulated electric wire using an insulating film having excellent adhesion to a conductor even after a heating treatment is performed, and having softening resistance even under high load conditions (for example, refer to PTL 1). The insulated electric wire has a primer layer obtained by coating a surface of the conductor with a phenoxy resin insulating varnish which contains 100 parts by mass of phenoxy resin which is formed of 80 to 30% by mass of bisphenol-A type phenoxy resin and 20 to 70% by mass of bisphenol-S type phenoxy resin, and which contains 5 to 50 parts by mass of blocked isocyanate, and by baking the coated conductor.
  • CITATION LIST Patent Literature
  • [PTL 1] Japanese Unexamined Patent Application, First Publication No. 2010-108758 (A) (claim 1, claim 3, and paragraph [0007])
  • SUMMARY OF INVENTION Technical Problem
  • Because the insulated electric wire illustrated in PTL 1 requires a primer layer, there is the problem that a step of manufacturing the insulated electric wire becomes complicate, and manufacturing costs increase. In addition, there is the problem that it is difficult to manufacture the insulated electric wire while maintaining consistent product quality.
  • An object of the present invention is to solve the problems, and to provide an insulated electric wire in which when bending is performed, the adhesion of an inner side of bending of an insulating film to a conductor wire is excellent, the flexibility of an outer side of bending of the insulating film is excellent, and the softening resistance of the insulating film is excellent; a method for manufacturing the same; and a coil.
  • Conventionally, in a case where an identical baking furnace is used for: conductor wires having varying shapes or types; or insulating films having varying thicknesses, it was necessary to evaluate each of: the softening resistance of insulating films; and the adhesion and the flexibility of insulating films with respect to conductor wires, in each case, since dryness states of insulating films differ even if they are baked in the same drying condition. The inventors have reached the present invention based on the views that the percentage of the content of a low boiling point component having a boiling point of 300° C. under normal pressure in an insulating film affects the softening resistance and the adhesion and flexibility of the insulating film.
  • Solution to Problem
  • According to a first aspect of the present invention, there is provided an insulated electric wire including a conductor wire coated by an insulating film, in which the insulating film contains 5 to 20% by mass of a low boiling point component having a boiling point of less than 300° C. under normal pressure.
  • In the insulated electric wire of a second aspect of the present invention according to the first aspect, the insulating film has a thickness of 40 to 65 μm.
  • In the insulated electric wire of a third aspect of the present invention according to the first or second aspect, the conductor wire has a cross-sectional shape in a rectangular shape or a square shape.
  • In the insulated electric wire of a fourth aspect of the present invention according to the third aspect, the conductor wire has a cross-sectional shape in a rectangular shape, a ratio (long side/short side ratio) of a length of a long side to a length of a short side of the cross section is in a range of 4 to 50, and an equivalent round wire diameter of the conductor wire is in a range of 3 to 5 mm. The equivalent round wire diameter represents a diameter of a true circle line, the cross-sectional area of which is the same as the cross-sectional area of a conductor wire having a cross-sectional shape other than a true circle.
  • In the insulated electric wire of a fifth aspect of the present invention according to any one of the first to fourth aspects, the conductor wire is a copper wire, and a material of the insulating film is a polyamide-imide resin or a polyimide resin.
  • According to a sixth aspect of the present invention, there is provided a method for manufacturing the insulated electric wire according to any one of the first to fifth aspects, the method including forming the insulating film by electrodepositing an electrodeposition dispersion to the conductor wire.
  • According to a seventh aspect of the present invention, there is provided a coil formed by winding the insulated electric wire according to any one of the first to fifth aspects multiple turns.
  • According to an eighth aspect of the present invention, there is provided a coil formed by winding the insulated electric wire according to the fourth aspect multiple turns edgewise.
  • Advantageous Effects of Invention
  • In the first aspect of the present invention, because the insulated electric wire contains 5% or greater by mass of the low boiling point component having a boiling point of less than 300° C. under normal pressure in 100% by mass of the insulating film, when bending is performed, the adhesion of an inner side of bending of the insulating film to the conductor wire is excellent, and the flexibility of an outer side of bending of the insulating film is excellent. Because the content of the low boiling point component is less than or equal to 20% by mass and is not excessive, the insulating film has excellent softening resistance.
  • In the second aspect of the present invention, because the thickness of the insulating film is greater than or equal to 40 μm, an insulation breakdown voltage is high and heat resistance is excellent. Because the thickness of the insulating film is less than or equal to 65 μm, when bending is performed, the adhesion of the inner side of bending of the insulating film to the conductor wire becomes even better.
  • In the third aspect of the present invention, because the conductor wire has a cross-sectional shape in a rectangular shape or a square shape, when the insulated electric wire is wound into a coil, the ratio of the occupancy of a cross-sectional area of the conductor wire to a cross-sectional area of the coil is capable of increasing compared to when the conductor wire has a cross-sectional shape in a circular shape.
  • In the fourth aspect of the present invention, because the conductor wire has a cross-sectional shape in a rectangular shape and the ratio (long side/short side ratio) of the length of the long side to the short side of the cross section is greater than or equal to four, when the insulated electric wire carries high-frequency alternating current, and current flows only at a skin of the conductor due to skin effect, a current flowing region is capable of being widened due to the high long side/short side ratio. Because the long side/short side ratio is less than or equal to 50, bending is easily performed, and when bending is performed, the adhesion of the inner side of bending of the insulating film to the conductor wire becomes even better. Because the equivalent round wire diameter of the conductor wire is greater than or equal to 3 mm, the insulated electric wire is capable of being used as an insulated electric wire for high current. Because the equivalent round wire diameter is less than or equal to 5 mm, when bending is performed, the adhesion of the inner side of bending of the insulating film to the conductor wire in the insulated electric wire becomes even better. If high current flows through the insulated electric wire, high insulation performance attainable by a thick insulating film is required. On the other hand, if the insulating film is thick, because bending is likely to cause wrinkles and peeling, the present invention is preferable in such case.
  • In the fifth aspect of the present invention, because the conductor wire is a copper wire, conductivity is excellent. Because the material of the insulating film is a polyamide-imide resin or a polyimide resin, the insulation breakdown voltage is high and heat resistance is excellent.
  • In the sixth aspect of the present invention, because the insulating film is formed by electrodepositing the electrodeposition dispersion to the conductor wire, the insulating film is capable of being uniformly formed on a surface of the conductor wire.
  • In the coil according to the seventh aspect of the present invention which is formed by winding the insulated electric wire multiple turns, the insulating film of the insulated electric wire does not wrinkle and peel from the conductor wire, and breaking does not occur in the insulating film.
  • In the coil according to the eighth aspect of the present invention which is formed by winding the insulated electric wire of the fourth aspect multiple turns edgewise, the ratio of the occupancy of the cross-sectional area of the conductor wire to the cross-sectional area of the coil is capable of increasing.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic diagram illustrating a process of forming an insulating film on a surface of a conductor wire of an embodiment of the present invention.
  • DESCRIPTION OF EMBODIMENTS
  • Subsequently, an embodiment of the present invention will be described.
  • <Insulated Electric Wire>
  • An insulated electric wire of the embodiment is an insulated electric wire obtained by coating a conductor wire with an insulating film. A distinguishing point of the insulated electric wire is that the insulating film contains 5 to 20% by mass of a low boiling point component having a boiling point of less than 300° C. under normal pressure. The insulating film preferably contains 8 to 17% by mass of a low boiling point component having a boiling point of less than 300° C. under normal pressure. The reason a boiling point of 300° C. is used as a reference boiling point is that when the insulated electric wire is baked, an unnecessary solvent is capable of being quickly removed around the temperature, and if a boiling point of 400° C. or higher is used as a reference boiling point, the insulating film deteriorates. Examples of the low boiling point component having a boiling point of less than 300° C. under normal pressure include water and an organic solvent. Examples of the organic solvent include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethylsulfoxide (DMSO), N-methylpyrrolidone (NMP), γ-butyrolactone (yBL), anisole, tetramethylurea, and sulfolane. Among the exemplified organic solvents, NMP is preferably used as the organic solvent. The reason the insulating film contains 5 to 20% by mass of a low boiling point component having a boiling point of less than 300° C. under normal pressure is that if the content of the low boiling point component is less than 5% by mass, the insulating film becomes hardened, and thus, an inner side of bending of the insulating film may wrinkle or peel from the conductor wire or an outer side of bending of the insulating film may break in a bending process which is a winding process. If the content of the low boiling point component exceeds 20% by mass, the insulating film has inferior softening resistance at a high temperature of 200° C. or higher in the winding process.
  • The insulating film of the embodiment preferably has a thickness of 40 to 65 μm. If the thickness of the insulating film is less than 40 μm, the film may be too thin to exhibit insulation performance that can be used in motors and reactors. If the thickness of the insulating film exceeds 65 μm, the inner side of bending of the insulating film is likely to wrinkle or peel from the conductor wire in the bending process which is the winding process. If coating is performed via electrodeposition, because the volatile amount of the solvent increases, defects such as bubbles are likely to occur in the film in a baking step.
  • In the embodiment, the conductor wire of the insulated electric wire may have a cross-sectional shape in a circular shape. The conductor wire preferably has a cross-sectional shape in a rectangular shape or a square shape because when the insulated electric wire is wound into a coil, the ratio of the occupancy of a cross-sectional area of the conductor wire to a cross-sectional area of the coil is capable of increasing compared to when the conductor wire has a cross-sectional shape in a circular shape.
  • If the conductor wire of the insulated electric wire of the embodiment has a rectangular shape, preferably, the ratio (long side/short side ratio) of a long side to a short side of a rectangular cross section of the conductor wire is greater than or equal to four, and an equivalent round wire diameter is greater than or equal to 3 mm. The reason is that when the insulated electric wire is wounded into a coil, the ratio of the occupancy of the cross-sectional area of the conductor wire to the cross-sectional area of the coil is capable of increasing. Particularly, if the long side/short side ratio is greater than or equal to four, when the insulated electric wire carries high-frequency alternating current, and when the current flows only on a surface of the conductor due to skin effect, a current flowing region is capable of being widened due to the high long side/short side ratio. Preferably, the long side/short side ratio is less than or equal to 50, and when the conductor wire is converted to a round wire, the diameter of the round wire is less than or equal to 5 mm. The reason is that when bending is performed, the bending is capable of being easily performed and the adhesion of the inner side of bending of the insulating film to the conductor wire becomes even better. If the long side/short side ratio exceeds 50, the degree of flatness of the rectangular conductor wire becomes excessively large, and the conductor wire is likely to be twisted or to break due to bending.
  • In the embodiment, examples of the material of the conductor wire of the insulated electric wire include copper, a copper alloy, aluminum, an aluminum alloy, and a stainless steel. A wire made of copper among the exemplified materials is preferably used because the wire made of copper has a higher conductivity. Examples of the material of the insulating film include a polyimide (hereinafter, referred to as PI) resin, a polyamide-imide (hereinafter, referred to as PAI) resin, a polyester imide resin, an acrylic resin, an epoxy resin, an epoxy acrylic resin, a polyurethane resin, and a polyester resin. In the viewpoint of a high insulation breakdown voltage and a high heat resistance, a polyamide-imide resin or a polyimide resin among the exemplified materials is preferably used as the material of the insulating film
  • <Method for Manufacturing Insulated Electric Wire>
  • The insulated electric wire of the embodiment is manufactured by forming an insulating film on a conductor wire via a dipping method or electrodeposition method. If the insulating film is formed by the dipping method, the thickness of a film applicable per one time in a film coating step is 1 to 10 μm. It is necessary to perform the coating step and the baking step multiple times in order to obtain an insulation breakdown voltage required for use in a motor or reactor for a hybrid vehicle or an electric vehicle. In this case, because it is necessary to perform the baking step multiple times, the drying of an inner layer of film proceeds further compared to the drying of an outer layer of film. Therefore, it is necessary to implement a scheme to change coating dose each time in repetitions of the coating step or a scheme to change a temperature each time in repetitions of the baking step in order to make the degree of drying uniform over the entire films. Particularly, as the baking step is performed many times, a first layer of film in contact with the conductor reaches a high degree of drying and becomes hardened, thereby causing floating in a coil process. For this reason, it is necessary to implement a scheme to perform the drying of the first layer of film at a low temperature.
  • In the present invention, the insulating film is preferably formed by the electrodeposition method. The reason is that a film of 1 to 100 μm is applicable all at once and the baking step is complete all at once, and thus a mass reduction of the insulating film is easily controlled. If the electrodeposition method is used, firstly, an electrodeposition dispersion is prepared which is insulating electrodeposition coating material. The electrodeposition dispersion contains a polymer, and an organic solvent and water which serve as a solvent. Example of the polymer include the resins exemplified as the material of the insulating film. Examples of the organic solvent include the organic solvents exemplified as the low boiling point component.
  • In the embodiment, after a neutralizing agent is added into a polyamide-imide solution and a polyimide solution in which a polyamide-imide resin and a polyimide resin serving as polymers are dissolved in NMP and DMI, and a mixture of the solutions and the resins is stifled to neutralize polyamide-imide and polyimide, the polyamide-imide and the polyimide are precipitated by adding water (which is a bad solvent for the polyamide-imide and the polyimide) into the mixture, and mixing together and stirring the water and the mixture, and as a result, the electrodeposition dispersion is prepared.
  • Hereinbelow, a method for manufacturing the insulated electric wire using the electrodeposition dispersion will be described with reference to FIG. 1. As illustrated in FIG. 1, an electrodeposition coating apparatus 10 has an electrodeposition bath 18 storing an electrodeposition dispersion 11, and a baking furnace 22. The electrodeposition dispersion 11 is a water-based electrodeposition dispersion in which a polymer is dispersed in water, or a mixture-based electrodeposition dispersion in which a polymer is dispersed in a mixture of water and an organic solvent. A dispersing medium of the electrodeposition dispersion 11 is water or water/organic solvent which is a low boiling point component having a boiling point of less than 300° C. under normal pressure. The concentration of the polymer is 1 to 10% by mass in 100% by mass of the dispersing medium. If the dispersing medium is a mixed solvent of water and the organic solvent, the concentration of the organic solvent preferably is 1 to 70% by mass.
  • A conductor wire 13 having a cross-sectional shape in a circular shape which is wound around a cylinder is electrically connected to a positive electrode of a DC power supply 14 via an anode 16 in advance. The conductor wire 13 having a cross-sectional shape in a circular shape is pulled upward in the direction of the solid arrow illustrated in FIG. 1, and goes through the following each step.
  • Firstly, in a first step, a rectangular conductor wire 12 having a rectangular cross-sectional shape is formed by flat rolling the conductor wire 13 having a circular cross-sectional shape via a pair of rolling rollers 17, 17. Subsequently, in a second step, the rectangular conductor wire 12 passes through the electrodeposition dispersion 11 stored in the electrodeposition bath 18. A pair of cathodes 19, 19 electrically connected to a negative electrode of the DC power supply 14 is inserted into the electrodeposition dispersion 11 in the electrodeposition bath 18. The rectangular conductor wire 12 passes between the pair of cathodes 19, 19.
  • The temperature of the electrodeposition dispersion 11 is preferably maintained at a temperature of 5 to 60° C. When the rectangular conductor wire 12 passes through the electrodeposition dispersion 11 in the electrodeposition bath 18, a DC voltage is applied between the rectangular conductor wire 12 and the cathodes 19, 19 by the DC power supply 14. The DC voltage from the DC power supply 14 preferably is in a range of 1 to 500 V, and an energization time of a DC current preferably is in a range of 0.01 to 60 seconds. Therefore, negatively charged polymer particles (not illustrated) are electrodeposited onto a surface of the rectangular conductor wire 12 in the electrodeposition dispersion 11 such that an insulating layer 21 a is formed as illustrated in a partially magnified view of FIG. 1.
  • Subsequently, a baking treatment is performed on the rectangular conductor wire 12 having the surface electrodeposited with the insulating layer 21 a such that an insulating film 21 b is formed on the surface of the rectangular conductor wire 12 as illustrated in a partially magnified view of FIG. 1. In the embodiment, the baking treatment is performed by passing the rectangular conductor wire 12 having the insulating layer 21 a formed on the surface through the baking furnace 22. In the baking treatment, the following furnaces individually or in combination may be used: a near-infrared heating furnace, a hot air heating furnace, an induction heating furnace, a far-infrared heating furnace, and a furnace using temperature-controlled air or temperature-controlled inert gas such as nitrogen. Hot air heating and infrared heating are preferably used in combination to speed up drying. In the hot air heating, in a state where the temperature of a furnace is set in a range of 200 to 500° C., high-speed gas may be used, and drying gas may be introduced into the furnace such that an average flow speed of the gas inside the furnace is approximately in a range of 1 to 10 m/min. Desirably, a gas temperature is set approximately in a range of 200 to 500° C. for the same reason as in the temperature of the furnace. The time of the baking treatment is preferably set in a range of 1 to 10 minutes. If the temperature of the baking treatment is less than 200° C., the required drying is not attainable, and if the temperature exceeds 500° C., the rapid volatilization of the solvent at an initial phase of drying is capable of causing defects such as bubbles in a film. The resin may be thermally decomposed due to the high temperature. The temperature of the baking treatment represents the temperature of a central part inside the baking furnace.
  • The baking treatment is a treatment which is important to determine the adhesion of the inner side of bending of the insulating film to the conductor wire and the flexibility of the outer side of bending of the insulating film when the insulated electric wire is bent which will be described, and the softening resistance of the insulating film. If the baking is excessive, when the insulated electric wire is bent, an inner side of bending of the insulating film may wrinkle or peel from the conductor wire, or the outer side of bending of the insulating film may break due to the deterioration of resins and the oxidation of interfaces. If the baking is not sufficient, because the organic solvent becomes excessively present in the insulating film, a softening temperature decreases. An insulated electric wire 23 is manufactured by passing the rectangular conductor wire 12 through the baking furnace 22, and is configured such that the surface of the rectangular conductor wire 12 is coated with the insulating film 21 b.
  • <Method for Manufacturing Coil>
  • A coil is manufactured by winding the insulated electric wire 23 formed by coating the rectangular conductor wire 12 with the insulating film 21 b, via a coil forming apparatus (not illustrated). In the embodiment, the coil is manufactured by a winding process which is an edgewise bending process of bending the insulated electric wire such that one short side (edge surface) of the conductor wire having a cross-sectional shape in a rectangular shape becomes an inner-diameter surface, and the other short side (edge surface) becomes an outer-diameter surface. The coil may be manufactured from the insulated electric wire by a winding process which is a flatwise bending process of bending long sides (flat surfaces) of the conductor wire having a cross-sectional shape in a rectangular shape.
  • EXAMPLES
  • Subsequently, examples and comparative examples of the present invention will be described in detail.
  • Example 1
  • A rectangular copper wire having a thickness of 1.5 mm and a width of 6.5 mm was prepared as a conductor wire. An electrodeposition bath was prepared which had cathodes formed of a pair of copper sheets and a length of 1 m to store an electrodeposition dispersion. A baking furnace was prepared which was an electric furnace (far-infrared heating furnace) having a length of 2.5 m, in which a thermocouple was installed on a furnace wall, and the inner temperature of which was capable of being set to a desired temperature. In the baking furnace, a plurality of electric heaters were provided in a traveling direction of the copper wire, the temperatures of the electric heaters were capable of being individually set such that only part of the copper wire in a desired range of length was capable of being baked, and an output of each heater was set such that only part of the copper wire in a length of 1.2 m was capable of being baked.
  • Firstly, a water-based electrodeposition dispersion containing 2% by mass of polyamide-imide (PAI) was stored in the electrodeposition bath. The temperature of the electrodeposition dispersion was maintained at a temperature of 20° C., and a DC voltage of 100 V was applied between the copper wire (anode) and the copper sheets (cathodes). Electrodeposition was performed by passing the copper wire between the pair of cathodes while adjusting the feeding speed of the copper wire fed by a feeding machine (not illustrated). The copper wire having a surface electrodeposited with an insulating layer was introduced into the drying/baking furnace, and the feeding speed of the feeding machine was adjusted to 0.4 m/min, and as a result, an insulated electric wire was manufactured to have an insulating film having a thickness of 40 μm on each single surface of the insulated electric wire.
  • Table 1 illustrates a main component of the electrodeposition dispersion, long and short sides of the rectangular conductor wire, an equivalent round wire diameter of the rectangular conductor wire, and conditions (feeding speed, applied voltage, drying method, drying temperature, length of heating portion/hot air portion of the furnace, and hot air speed) for manufacturing the insulated electric wire in Example 1.
  • Examples 2 to 7 and Comparative Examples 1 to 4
  • Insulated electric wires of Examples 2 to 7 and Comparative Examples 1 to 4 were manufactured under the condition that a main component of each electrodeposition dispersion, long and short sides of each rectangular conductor wire, an equivalent round wire diameter of each rectangular conductor wire, and conditions for manufacturing each insulated electric wire were changed as illustrated in Table 1, and other factors were set as illustrated in Example 1. In Examples 6 and 7 and Comparative Example 4, hot air heating furnaces having the respective lengths illustrated in Table 1 were used for a baking treatment. In each of the hot air heating furnaces used, a plurality of hot air feeding inlets for feeding hot air into the furnace were attached in the traveling direction of the copper wire, and a mechanism for capable of baking part of the copper wire in a desired length by the hot air was provided. In Examples 6 and 7 and Comparative Example 4, hot air was introduced into a longitudinal part of a hot air portion of each furnace illustrated in Table 1, and the baking treatment was performed at each hot air speed illustrated in Table 1. The hot air speed indicates a value at an outlet of each furnace.
  • TABLE 1
    Conditions for Manufacturing Insulated Electric Wire
    Cross Section of Length of
    Rectangular Equivalent Heating
    Conductor Wire Round Portion/Hot
    Material of Long Short Long Wire Feeding Applied Drying Air Portion Hot Air
    Insulating Side Side Side/Short Diameter Speed Voltage Drying Temperature of Furnace Speed
    Film (mm) (mm) Side (mm) (m/min) (V) Method (° C.) (m) (m/min)
    Example 1 PAI 6.5 1.5 4.3 3.5 0.4 100 Infrared 250 1.2
    Example 2 PAI 6.5 1.5 4.3 3.5 0.35 100 Infrared 250 1.7
    Example 3 PAI 6.5 1.5 4.3 3.5 0.3 100 Infrared 300 0.9
    Example 4 PI 6.5 1.5 4.3 3.5 0.4 100 Infrared 250 1.2
    Example 5 PAI 6.5 1.5 4.3 3.5 0.4 500 Infrared 250 1.6
    Example 6 PAI 6.5 1.5 4.3 3.5 0.2 60 Hot Air 200 2.4 6.0
    Example 7 PAI 18 0.4 45 3.0 0.55 100 Hot Air 300 0.5 3.5
    Comparative PAI 6.5 1.5 4.3 3.5 0.25 100 Infrared 300 1.3
    Example 1
    Comparative PAI 6.5 1.5 4.3 3.5 0.5 100 Infrared 200 1.5
    Example 2
    Comparative PI 6.5 1.5 4.3 3.5 0.5 100 Infrared 200 1.5
    Example 3
    Comparative PAI 18 0.4 45 3.0 0.35 100 Hot Air 300 0.7 3.5
    Example 4
  • <Evaluation of Comparison Test>
  • The following elements of each of the insulated electric wires obtained in Examples 1 to 7 and Comparative Examples 1 to 4 were examined by methods described hereinbelow: a film thickness of each insulating film, a mass reduction of each insulating film, the flexibility and adhesion of each insulating film, and a softening temperature of each insulating film. Table 2 illustrates the results.
  • (1) Film Thickness of Insulating Film
  • The value of the film thickness of each insulating film was obtained by measuring the thickness of the entire insulated electric wire in a state where long sides of each insulating film were interposed between a micrometer (manufactured by MITUTOYO corporation), subtracting the thickness (length of a short side of a conductor) of the conductor wire from the measured thickness of the entire insulated electric wire, and then multiplying the obtained value by ½.
  • (2) Mass Reduction of Insulating Film
  • Part of the insulating film, which was peeled from the conductor wire of each insulated electric wire by a cutter knife, was heated under air circulation at a speed of 10° C./min from a room temperature to a temperature of 300° C. by a thermogravimetric analyzer. The mass of the insulating film was measured at a room temperature, and then when the temperature reached 300° C., a difference in the mass of the insulating film was obtained. The mass reduction was deemed as the mass of a low boiling point component contained in the insulating film.
  • (3) Flexibility and Adhesion of Insulating Film
  • The flexibility and adhesion of each insulating film was determined by cutting a 10 cm length piece from each insulated electric wire, bending the piece of the insulated electric wire at 90 degrees via an edgewise bending process to form a shape following the shape of a round bar (round bar having a diameter equal to the length of a long side of a cross-sectional shape in a rectangular shape of the insulated electric wire) having an equivalent diameter, and then examining the existence (adhesion) of wrinkles and peeling of the inner side of bending of the insulating film and the existence (flexibility) of breaking of the outer side of bending by magnifying the bent piece 20 times using an optical microscope.
  • (4) Softening Temperature of Insulating Film
  • The softening temperature of each insulating film was measured according to JIS (C3216-6:2011-4, steel ball method).
  • TABLE 2
    Insulating Film
    Film Mass Peeling/Wrinkle Softening
    Thickness Reduction of Inner Side of Breaking of Outer Temperature
    Material (μm) (%) Bending Side of Bending (° C.)
    Example 1 PAI 40 17 No No 309
    Example 2 PAI 40 11 No No 312
    Example 3 PAI 40 10 No No 310
    Example 4 PI 40 16 No No 322
    Example 5 PAI 65 17 No No 302
    Example 6 PAI 40 8 No No 315
    Example 7 PAI 40 16 No No 307
    Comparative PAI 40 4 Yes Yes 343
    Example 1
    Comparative PAI 40 24 No No 209
    Example 2
    Comparative PI 40 23 No No 211
    Example 3
    Comparative PAI 40 4 Yes Yes 351
    Example 4
  • As is apparent from Table 2, in Comparative Examples 1 and 4, because the mass reduction percentage of each insulating film was 4%, in each flexibility and adhesion test, wrinkles and peeling were observed in the inner side of bending of the insulating film of the insulated electric wire, and breaking was observed in the outer side of bending of the insulating film. In Comparative Examples 2 and 3, because each mass reduction percentage was large, in other words, the percentage of the low boiling point component in each insulating film was high, the softening temperatures were 209° C. and 211° C., respectively, and the insulating films had inferior softening resistance.
  • On the other hand, in Examples 1 to 7, because the mass reduction percentages of the insulating films were in a range of 5 to 20%, in each flexibility and adhesion test, wrinkles and peeling were not observed in the inner side of bending of the insulating film of the insulated electric wire, and breaking was not observed in the outer side of bending of the insulating film. In Examples 1 to 7, the softening temperatures were in a range of 302 to 322° C., and the insulating films had excellent softening resistance.
  • INDUSTRIAL APPLICABILITY
  • An insulated electric wire of the present invention is capable of being used as a coil for use in a reactor or motor for a hybrid vehicle or an electric vehicle.
  • REFERENCE SIGNS LIST
      • 10: electrodeposition coating apparatus
      • 11 electrodeposition dispersion
      • 12: rectangular conductor wire
      • 13: conductor wire having a cross-sectional shape in a circular shape
      • 21 b: insulating film
      • 23: insulated electric wire

Claims (20)

1. An insulated electric wire comprising a conductor wire coated by an insulating film,
wherein the insulating film contains 5 to 20% by mass of a low boiling point component having a boiling point of less than 300° C. under normal pressure.
2. The insulated electric wire according to claim 1,
wherein the insulating film has a thickness of 40 to 65 μm.
3. The insulated electric wire according to claim 1,
wherein the conductor wire has a cross-sectional shape in a rectangular shape or a square shape.
4. The insulated electric wire according to claim 3,
wherein the conductor wire has a cross-sectional shape in a rectangular shape, a ratio (long side/short side ratio) of a length of a long side to a length of a short side of the cross section is in a range of 4 to 50, and an equivalent round wire diameter of the conductor wire is in a range of 3 to 5 mm.
5. The insulated electric wire according to claim 1,
wherein the conductor wire is a copper wire, and a material of the insulating film is a polyamide-imide resin or a polyimide resin.
6. A method for manufacturing the insulated electric wire according to claim 1, the method comprising forming the insulating film by electrodepositing an electrodeposition dispersion on the conductor wire.
7. A coil formed by winding the insulated electric wire according to claim 1 multiple turns.
8. A coil formed by winding the insulated electric wire according to claim 4 multiple turns edgewise.
9. The insulated electric wire according to claim 2,
wherein the conductor wire has a rectangular or square cross-sectional shape.
10. The insulated electric wire according to claim 9,
wherein the conductor wire has a rectangular cross-sectional shape, a ratio (long side/short side ratio) of a length of a long side to a length of a short side of the cross section is in a range of 4 to 50, and an equivalent round wire diameter of the conductor wire is in a range of 3 to 5 mm.
11. The insulated electric wire according to claim 2,
wherein the conductor wire is a copper wire, and a material of the insulating film is a polyamide-imide resin or a polyimide resin.
12. The insulated electric wire according to claim 3,
wherein the conductor wire is a copper wire, and a material of the insulating film is a polyamide-imide resin or a polyimide resin.
13. The insulated electric wire according to claim 9,
wherein the conductor wire is a copper wire, and a material of the insulating film is a polyamide-imide resin or a polyimide resin.
14. A method for manufacturing the insulated electric wire according to claim 2, the method comprising:
forming the insulating film by electrodepositing an electrodeposition dispersion to the conductor wire.
15. A method for manufacturing the insulated electric wire according to claim 3, the method comprising:
forming the insulating film by electrodepositing an electrodeposition dispersion to the conductor wire.
16. A method for manufacturing the insulated electric wire according to claim 4, the method comprising:
forming the insulating film by electrodepositing an electrodeposition dispersion to the conductor wire.
17. A method for manufacturing the insulated electric wire according to claim 5, the method comprising:
forming the insulating film by electrodepositing an electrodeposition dispersion to the conductor wire.
18. A coil formed by winding the insulated electric wire according to claim 2 multiple turns.
19. A coil formed by winding the insulated electric wire according to claim 3 multiple turns.
20. A coil formed by winding the insulated electric wire according to claim 9 multiple turns.
US16/484,592 2017-03-01 2018-02-13 Insulated electric wire, method for manufacturing same, and coil Active US10984922B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP2017-038489 2017-03-01
JP2017038489A JP2018147582A (en) 2017-03-01 2017-03-01 Insulation wire, manufacturing method therefor and coil
JP2017-038489 2017-03-01
PCT/JP2018/004837 WO2018159279A1 (en) 2017-03-01 2018-02-13 Insulated electric wire, method for manufacturing same, and coil

Publications (2)

Publication Number Publication Date
US20200043629A1 true US20200043629A1 (en) 2020-02-06
US10984922B2 US10984922B2 (en) 2021-04-20

Family

ID=63371043

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/484,592 Active US10984922B2 (en) 2017-03-01 2018-02-13 Insulated electric wire, method for manufacturing same, and coil

Country Status (6)

Country Link
US (1) US10984922B2 (en)
EP (1) EP3591671A4 (en)
JP (1) JP2018147582A (en)
CN (1) CN110249395A (en)
TW (1) TW201841985A (en)
WO (1) WO2018159279A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3951809A4 (en) * 2019-03-27 2022-12-07 Mitsubishi Materials Corporation Insulated copper wire and electric coil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023005801A (en) 2021-06-29 2023-01-18 株式会社ダイセル Insulated wire, coil including insulated wire, and cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140066314A1 (en) * 2011-10-24 2014-03-06 Riken Coated high-temperature superconducting wire and high-temperature superconducting coil including the same
US20160307663A1 (en) * 2013-12-26 2016-10-20 Furukawa Electric Co., Ltd. Insulated wire, coil, and electric/electronic equipments as well as method of producing a film delamination-resistant insulated wire
US20160322126A1 (en) * 2014-01-10 2016-11-03 Furukawa Electric Co., Ltd. Insulated wire, coil, and electrical/electronic equipment, and method of preventing cracking of insulated wire

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104941A (en) * 1980-01-25 1981-08-21 Mitsui Toatsu Chem Inc Polysulfonamide ester and preparation therefor
JP2010108758A (en) 2008-10-30 2010-05-13 Sumitomo Electric Wintec Inc Phenoxy resin insulating varnish and insulation wire using it
JP2010251615A (en) * 2009-04-17 2010-11-04 Daido Electronics Co Ltd Method of manufacturing conductor coil with insulating film, and conductor coil with insulating film
JP5706268B2 (en) * 2011-08-10 2015-04-22 三菱電線工業株式会社 Electrodeposition coating composition and insulating member using the same
JP6355304B2 (en) * 2013-06-28 2018-07-11 東京特殊電線株式会社 Solderable insulated wire and manufacturing method thereof
MY178043A (en) * 2014-03-12 2020-09-30 Essex Furukawa Magnet Wire Japan Co Ltd Rectangular insulated wire, coil and electrical and electronic device
JP6506260B2 (en) * 2014-04-23 2019-04-24 Jxtgエネルギー株式会社 Tetracarboxylic acid dianhydride, polyamic acid, polyimide, method for producing them, and polyamic acid solution
JP5994955B1 (en) * 2015-05-25 2016-09-21 三菱マテリアル株式会社 Electrodeposition solution for water-dispersed insulation film formation
JP6622509B2 (en) 2015-08-11 2019-12-18 株式会社日立製作所 Electric motor cooling device
JP6787147B2 (en) * 2016-02-18 2020-11-18 三菱マテリアル株式会社 Electrodeposition liquid and electrodeposition coating body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140066314A1 (en) * 2011-10-24 2014-03-06 Riken Coated high-temperature superconducting wire and high-temperature superconducting coil including the same
US20160307663A1 (en) * 2013-12-26 2016-10-20 Furukawa Electric Co., Ltd. Insulated wire, coil, and electric/electronic equipments as well as method of producing a film delamination-resistant insulated wire
US20160322126A1 (en) * 2014-01-10 2016-11-03 Furukawa Electric Co., Ltd. Insulated wire, coil, and electrical/electronic equipment, and method of preventing cracking of insulated wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3951809A4 (en) * 2019-03-27 2022-12-07 Mitsubishi Materials Corporation Insulated copper wire and electric coil

Also Published As

Publication number Publication date
CN110249395A (en) 2019-09-17
EP3591671A1 (en) 2020-01-08
US10984922B2 (en) 2021-04-20
JP2018147582A (en) 2018-09-20
EP3591671A4 (en) 2021-01-06
TW201841985A (en) 2018-12-01
WO2018159279A1 (en) 2018-09-07

Similar Documents

Publication Publication Date Title
US11581127B2 (en) Insulated electric wire, production method therefor, coil and coil production method using same
JP5441686B2 (en) Insulated wire manufacturing method and apparatus
US9543058B2 (en) Insulated winding wire
EP3093855B1 (en) Insulated electric wire, coil and electric/electronic device, and cracking prevention method for insulated electric wire
CN114270454B (en) Magnet wire with thermoplastic insulation
US10984922B2 (en) Insulated electric wire, method for manufacturing same, and coil
EP3447172B1 (en) Insulated flat conductive wire having high aspect ratio, method for manufacturing same, and coil
CN109564798A (en) Insulated electric conductor, coil and electric/electronic device
US8809684B2 (en) Insulated wire
US10020646B2 (en) Busbar and method of manufacturing the same
US20140216340A1 (en) Method and apparatus for producing insulated wire
US20180012684A1 (en) Method for producing insulated electric wire
JP5198790B2 (en) Insulated wire
JP7301930B2 (en) enamelled wire
JP2017059335A (en) Insulation film
WO2021182418A1 (en) Method for manufacturing insulated electric wire, and apparatus for manufacturing insulated electric wire
US20230105202A1 (en) Insulating film-attached punched workpiece and method for producing same
WO2021020382A1 (en) Insulated superconductive wire, production method for insulated superconductive wire, superconductive coil, and channel for insulated superconductive wire

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI MATERIALS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:URUSHIHARA, MAKOTO;SAKURAI, HIDEAKI;REEL/FRAME:050001/0520

Effective date: 20190801

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4