JP2017059335A - Insulation film - Google Patents

Insulation film Download PDF

Info

Publication number
JP2017059335A
JP2017059335A JP2015181397A JP2015181397A JP2017059335A JP 2017059335 A JP2017059335 A JP 2017059335A JP 2015181397 A JP2015181397 A JP 2015181397A JP 2015181397 A JP2015181397 A JP 2015181397A JP 2017059335 A JP2017059335 A JP 2017059335A
Authority
JP
Japan
Prior art keywords
boron nitride
nitride particles
film
insulating film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015181397A
Other languages
Japanese (ja)
Inventor
史朗 石川
Shiro Ishikawa
史朗 石川
山崎 和彦
Kazuhiko Yamazaki
和彦 山崎
慎太郎 飯田
Shintaro Iida
慎太郎 飯田
桜井 英章
Hideaki Sakurai
英章 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015181397A priority Critical patent/JP2017059335A/en
Publication of JP2017059335A publication Critical patent/JP2017059335A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulation film excellent in thermal conductivity and also excellent in voltage resistance even if film thickness is low or high without depending on the film thickness.SOLUTION: Provided is an insulation film obtained by dispersing boron nitride particles into a resin for film formation, using boron nitride particles with the average particle diameter in which, provided that the value when film thickness is divided with the average particle diameter of the boron nitride particles is defined as A, the A being 5 to 600, and, provided that the variation coefficient of the concentration of the boron nitride particles in the film face vertical to the film thickness is defined as CV, the CV being 50 to 150%. It is preferable that the average particle diameter of the boron nitride particles is 0.05 μm or higher. Further, it is preferable that the volume concentration of the boron nitride particles in the film being 2 to 30 vol.%.SELECTED DRAWING: Figure 1

Description

本発明は、皮膜形成用樹脂中に窒化ホウ素粒子が分散してなる絶縁皮膜に関する。更に詳しくは、膜厚に依存せずに、皮膜厚さが小さくても又は大きくても、熱伝導度に優れかつ耐電圧に優れた絶縁皮膜に関する。   The present invention relates to an insulating film in which boron nitride particles are dispersed in a film-forming resin. More specifically, the present invention relates to an insulating film having excellent thermal conductivity and excellent withstand voltage regardless of the film thickness, regardless of whether the film thickness is small or large.

従来より、絶縁層を形成する樹脂中に窒化ホウ素などの熱伝導性の高い充填材(フィラー)を分散配合するときに、高熱伝導性フィラーの充填率を高めたり、充填材の粒子径のサイズを大きくする場合には、絶縁層の形成過程で絶縁層中に多くの空隙が発生して、耐電圧を低下させてしまうことが知られている(例えば、特許文献1参照。)。   Conventionally, when a highly heat-conductive filler (filler) such as boron nitride is dispersed and blended in the resin forming the insulating layer, the filling rate of the high heat-conductive filler is increased or the particle size of the filler is increased. In the case of increasing the thickness, it is known that many voids are generated in the insulating layer in the process of forming the insulating layer, and the withstand voltage is lowered (for example, see Patent Document 1).

この課題を解決するための熱伝導性積層体が開示されている(例えば、特許文献1参照。)。上記熱伝導性積層体は、ポリイミド樹脂中に熱伝導性フィラーを含有するフィラー含有ポリイミド樹脂層における熱伝導性フィラーの含有割合が35〜80体積%であり、熱伝導性フィラーの最大粒子径が15μm未満であり、上記熱伝導性フィラーが板状フィラーと球状フィラーとを含有し、窒化ホウ素のような板状フィラーの平均長径が0.1〜2.4μmであり、絶縁層の厚み方向での熱伝導率が0.8W/mK以上である。特許文献1には、この熱伝導性積層体は、熱伝導性に優れる他、耐電圧性にも優れていることが記載されている。   A thermally conductive laminate for solving this problem is disclosed (for example, see Patent Document 1). The thermal conductive laminate has a thermal conductive filler content of 35 to 80% by volume in the filler-containing polyimide resin layer containing the thermal conductive filler in the polyimide resin, and the maximum particle size of the thermal conductive filler is Less than 15 μm, the thermally conductive filler contains a plate-like filler and a spherical filler, the average major axis of the plate-like filler such as boron nitride is 0.1 to 2.4 μm, and in the thickness direction of the insulating layer The thermal conductivity is 0.8 W / mK or more. Patent Document 1 describes that this thermally conductive laminate is excellent in heat resistance and voltage resistance.

一方、高耐熱性樹脂と絶縁性熱伝導フィラーと溶媒とを含有する絶縁性熱伝導フィラー分散組成物及びこの組成物を塗布加熱して製造された絶縁性熱伝導樹脂組成物が開示されている(例えば、特許文献2参照。)。上記絶縁性熱伝導フィラーは、窒化ホウ素からなり、比表面積が15〜25m/gであり、上記絶縁性熱伝導フィラーの含有量は、35〜70体積%であり、かつ上記絶縁性熱伝導フィラーは、体積平均粒子径が4.5〜10μm、d10が0.3μm以上及びd90が15μm以下となるように均一に分散されている。特許文献2には、絶縁性熱伝導フィラー分散組成物が熱伝導性と絶縁性とを両立させることが可能であって、この組成物を用いて製造された絶縁性熱伝導樹脂組成物(絶縁層)が高い絶縁破壊電圧を有することが記載されている。 On the other hand, an insulating heat conductive filler dispersion composition containing a high heat resistant resin, an insulating heat conductive filler and a solvent, and an insulating heat conductive resin composition manufactured by applying and heating this composition are disclosed. (For example, refer to Patent Document 2). The insulating heat conductive filler is made of boron nitride, has a specific surface area of 15 to 25 m 2 / g, the content of the insulating heat conductive filler is 35 to 70% by volume, and the insulating heat conductive material. The filler is uniformly dispersed so that the volume average particle diameter is 4.5 to 10 μm, d 10 is 0.3 μm or more, and d 90 is 15 μm or less. Patent Document 2 discloses that an insulating heat conductive filler dispersion composition can achieve both heat conductivity and insulation, and an insulating heat conductive resin composition (insulating) manufactured using this composition. The layer) has a high breakdown voltage.

WO2011/111684A1(請求項1、請求項3、段落[0005])WO2011-111684A1 (Claim 1, Claim 3, Paragraph [0005]) 特開2014−156545号公報(請求項1、請求項7、請求項9、請求項19,段落[0010])JP, 2014-156545, A (claim 1, claim 7, claim 9, claim 19, paragraph [0010])

上記特許文献1の熱伝導性積層体及び特許文献2の絶縁性熱伝導フィラー分散組成物は、熱伝導性フィラーとして所定の範囲内にある平均長径又は平均粒子径を有する窒化ホウ素粒子を含有していれば、絶縁膜の厚さに拘わらず、絶縁膜は熱伝導性と絶縁性(耐電圧性)が両立するとされるが、決められた平均長径又は平均粒子径を有する窒化ホウ素粒子を使用した場合、薄い絶縁層のとき、又は厚い絶縁層のときで、耐電圧性が低下したり、熱伝導性が十分上がらないことがあった。   The heat conductive laminate of Patent Document 1 and the insulating heat conductive filler dispersion composition of Patent Document 2 contain boron nitride particles having an average major axis or an average particle diameter within a predetermined range as the heat conductive filler. If so, regardless of the thickness of the insulating film, the insulating film is said to have both thermal conductivity and insulating properties (voltage resistance), but boron nitride particles having a predetermined average major axis or average particle size are used. In such a case, the withstand voltage may be lowered or the thermal conductivity may not be sufficiently improved when the insulating layer is thin or thick.

本発明の目的は、膜厚に依存せずに、皮膜厚さが小さくても又は大きくても、熱伝導度に優れかつ耐電圧に優れた絶縁皮膜を提供することにある。   An object of the present invention is to provide an insulating film excellent in thermal conductivity and withstand voltage regardless of the film thickness, regardless of whether the film thickness is small or large.

本発明者らは、皮膜厚に対して平均粒径が小さ過ぎずかつ大き過ぎない窒化ホウ素粒子を用いて、膜厚に垂直な皮膜面における窒化ホウ素粒子の濃度の変動係数を所定の数値内にし、絶縁皮膜の膜厚を窒化ホウ素粒子の平均粒径で除した値を所定の数値内にすれば、本発明の目的を達成することを知見し、本発明に到達した。   The present inventors use boron nitride particles whose average particle diameter is not too small and not too large with respect to the film thickness, and the variation coefficient of the concentration of boron nitride particles on the film surface perpendicular to the film thickness is within a predetermined numerical value. Then, the inventors have found that the object of the present invention can be achieved if the value obtained by dividing the thickness of the insulating film by the average particle diameter of the boron nitride particles is within a predetermined value, and the present invention has been achieved.

本発明の第1の観点は、皮膜形成用樹脂中に窒化ホウ素粒子が分散してなり、膜厚を前記窒化ホウ素粒子の平均粒径で除したときの値をAとするとき、Aが5〜600となる平均粒径の窒化ホウ素粒子を用いており、膜厚に垂直な皮膜面における窒化ホウ素粒子の濃度の変動係数をCVとするとき、CVが50〜150%である絶縁皮膜である。   A first aspect of the present invention is that boron nitride particles are dispersed in a film-forming resin, and when A is a value obtained by dividing the film thickness by the average particle diameter of the boron nitride particles, A is 5 Boron nitride particles having an average particle diameter of ˜600 are used, and when the coefficient of variation of the concentration of boron nitride particles on the film surface perpendicular to the film thickness is CV, the insulating film has a CV of 50 to 150%. .

本発明の第2の観点は、第1の観点に基づく発明であって、前記窒化ホウ素粒子の平均粒径が0.05μm以上である絶縁皮膜である。   A second aspect of the present invention is an insulating film according to the first aspect, wherein the boron nitride particles have an average particle size of 0.05 μm or more.

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、前記皮膜中の窒化ホウ素粒子の体積濃度が2〜30体積%である絶縁皮膜である。   A third aspect of the present invention is an insulating film according to the first or second aspect, wherein the volume concentration of boron nitride particles in the film is 2 to 30% by volume.

本発明の第4の観点は、第1ないし第3のいずれかの観点の絶縁皮膜を有するエナメル線である。   A fourth aspect of the present invention is an enameled wire having the insulating film according to any one of the first to third aspects.

本発明の第1の観点の絶縁皮膜は、窒化ホウ素粒子の局所的濃度に関与する値Aが5〜600であるため、皮膜中に窒化ホウ素粒子が程良く均一に分布しており、耐電圧を低下させず、かつ熱伝導度に優れる。また膜厚に垂直な皮膜面における窒化ホウ素粒子の濃度の変動係数CVが150%以下であるため、窒化ホウ素粒子の濃度が局所的に高くなりすぎることがないため、膜厚に依存せずに耐電圧に優れる。また膜厚に垂直な皮膜面における窒化ホウ素粒子の濃度の変動係数CVが50%以上であるため、窒化ホウ素粒子の濃度が均一になりすぎないため、膜厚に依存せずに熱伝導度に優れる。この結果、膜厚が変わっても耐電圧の低下を最小限に抑えながら、熱伝導度を向上させることができる。   Since the insulating film according to the first aspect of the present invention has a value A related to the local concentration of boron nitride particles of 5 to 600, the boron nitride particles are distributed in the film reasonably and uniformly. The thermal conductivity is excellent. Further, since the coefficient of variation CV of the concentration of boron nitride particles on the coating surface perpendicular to the film thickness is 150% or less, the concentration of boron nitride particles does not become too high locally, so it does not depend on the film thickness. Excellent withstand voltage. Further, since the coefficient of variation CV of the concentration of boron nitride particles on the coating surface perpendicular to the film thickness is 50% or more, the concentration of boron nitride particles does not become too uniform, so that the thermal conductivity is not dependent on the film thickness. Excellent. As a result, even if the film thickness changes, the thermal conductivity can be improved while minimizing the decrease in withstand voltage.

本発明の第2の観点の絶縁皮膜は、皮膜形成用樹脂中に分散する窒化ホウ素粒子の平均粒径が0.05μm以上であるため、窒化ホウ素粒子と樹脂間での界面熱抵抗の寄与が小さくなり、全体としての伝熱抵抗が小さく熱伝導度に優れる。   In the insulating film according to the second aspect of the present invention, the average particle diameter of the boron nitride particles dispersed in the film-forming resin is 0.05 μm or more. Therefore, the contribution of the interfacial thermal resistance between the boron nitride particles and the resin The heat transfer resistance as a whole is small and the thermal conductivity is excellent.

本発明の第3の観点の絶縁皮膜は、皮膜中の窒化ホウ素粒子の体積濃度が2体積%以上であるため、皮膜中での窒化ホウ素粒子の占有体積が大きく更に高い熱伝導度を有する。また上記体積濃度が36体積%以下であるため、皮膜がフレキシブルであり可撓性に優れる。   Since the volume concentration of the boron nitride particles in the coating is 2% by volume or more, the insulating coating according to the third aspect of the present invention has a larger occupation volume of the boron nitride particles in the coating and has a higher thermal conductivity. Moreover, since the said volume concentration is 36 volume% or less, a membrane | film | coat is flexible and it is excellent in flexibility.

本発明の第3の観点のエナメル膜は、上記熱伝導度に優れかつ耐電圧に優れた絶縁皮膜を有するため、放熱性に優れかつ長寿命である。   The enamel film according to the third aspect of the present invention has an insulating film with excellent thermal conductivity and withstand voltage, and therefore has excellent heat dissipation and long life.

本発明の実施形態の電着塗装装置を模式的に表した図である。It is the figure which represented typically the electrodeposition coating apparatus of embodiment of this invention.

次に本発明を実施するための形態を説明する。   Next, the form for implementing this invention is demonstrated.

〔絶縁皮膜〕
本発明の絶縁皮膜は、皮膜形成用樹脂中に窒化ホウ素粒子が分散して構成される。本実施の形態の絶縁皮膜は5〜60μmの厚さを有する。皮膜中の窒化ホウ素粒子はその平均粒径が0.05μm以上、好ましくは0.1〜5μmである。0.05μm未満であると、皮膜形成用樹脂と窒化ホウ素間の界面熱抵抗の寄与が大きくなり、伝熱抵抗が大きく熱伝導度に劣る。窒化ホウ素粒子の平均粒径が大きすぎると、皮膜の自由表面における凹凸が大きく、これにより放熱相手部材との接触抵抗が大きくなり、熱伝導性に劣るとともに耐電圧が低下する。ここで、窒化ホウ素粒子の平均粒径は、レーザー回折式粒度分布測定装置(堀場製作所製LA960)を用いて測定したメディアン径D50である。
[Insulating film]
The insulating film of the present invention is constituted by dispersing boron nitride particles in a film forming resin. The insulating film of the present embodiment has a thickness of 5 to 60 μm. The boron nitride particles in the film have an average particle size of 0.05 μm or more, preferably 0.1 to 5 μm. When the thickness is less than 0.05 μm, the contribution of the interfacial thermal resistance between the film-forming resin and boron nitride is large, the heat transfer resistance is large, and the thermal conductivity is poor. If the average particle diameter of the boron nitride particles is too large, the unevenness on the free surface of the coating is large, which increases the contact resistance with the heat radiating partner member, resulting in poor thermal conductivity and reduced withstand voltage. The average particle diameter of the boron nitride particles is a median diameter D 50 measured using a laser diffraction particle size distribution analyzer (manufactured by Horiba, Ltd. LA960).

本発明の絶縁皮膜は、膜厚を窒化ホウ素粒子の平均粒径で除したときの値をAとするとき、Aが5〜600であり、膜厚に垂直な皮膜面における窒化ホウ素粒子の濃度の変動係数をCVとするとき、CVが50〜150%である。ここでAは10〜300であることが好ましく、変動係数CVは60〜110%であることが好ましい。Aが上記範囲にあるときには、窒化ホウ素粒子の濃度が程良く均一になるため、熱伝導度と耐電圧のバランスがよい。また変動係数(CV値、単位:%)は、蛍光X線分析(EDX)装置等によって測定した皮膜中の窒化ホウ素粒子の濃度分布から、式:〔(標準偏差/平均粒径)×100〕により求める。CVが150%を超えると、局所的に窒化ホウ素粒子の濃度が高くなりすぎる部分が多くなり、その部分での絶縁破壊が起きやすくなるため耐電圧が低下する。またCVが50%未満では、窒化ホウ素粒子の濃度が均一になりすぎるため、熱伝導度が低下する。   In the insulating film of the present invention, when A is a value obtained by dividing the film thickness by the average particle diameter of boron nitride particles, A is 5 to 600, and the concentration of boron nitride particles on the film surface perpendicular to the film thickness When the coefficient of variation is CV, the CV is 50 to 150%. Here, A is preferably 10 to 300, and the coefficient of variation CV is preferably 60 to 110%. When A is in the above range, the concentration of boron nitride particles is reasonably uniform, so that the balance between thermal conductivity and withstand voltage is good. The coefficient of variation (CV value, unit:%) is calculated from the concentration distribution of boron nitride particles in the film measured by an X-ray fluorescence analysis (EDX) apparatus or the like: [(standard deviation / average particle size) × 100] Ask for. When the CV exceeds 150%, the portion where the concentration of the boron nitride particles becomes too high locally increases, and the dielectric breakdown tends to occur at that portion, so that the withstand voltage decreases. On the other hand, if the CV is less than 50%, the concentration of boron nitride particles becomes too uniform, resulting in a decrease in thermal conductivity.

上記絶縁皮膜中の窒化ホウ素粒子の濃度は、皮膜を基板から剥がした後に、熱重量測定(TG)によって測定し、700℃までの重量減を樹脂分とすることで算出する。更に上記膜厚に垂直な皮膜面における窒化ホウ素粒子の濃度の変動係数CVは、先ず蛍光X線分析(EDX)装置を用いて膜厚ぎりぎりとなるスケール(Y軸方向)で窒化ホウ素粒子の濃度又はボロン濃度を50箇所測定する。測定結果の画像を画像解析ソフト(ImageJ)を用いてBiaryに変換(二値化変換)する。変換後、窒化ホウ素の部分の面積濃度を画像のX軸に沿って計算し、この値を変動係数CVとする。なお、窒化ホウ素粒子の濃度又はボロン濃度を測定する代わりに、樹脂にのみ含まれる成分を元として樹脂の面積を算出し、全体の面積から差し引くことによって計算してもよい。   The concentration of boron nitride particles in the insulating film is calculated by measuring thermogravimetry (TG) after peeling the film from the substrate and setting the weight loss up to 700 ° C. as the resin component. Further, the coefficient of variation CV of the concentration of boron nitride particles on the film surface perpendicular to the film thickness is determined by first using a fluorescent X-ray analysis (EDX) apparatus on the scale (Y-axis direction) at which the film thickness is at the limit. Or, the boron concentration is measured at 50 points. The measurement result image is converted to Biary (binarization conversion) using image analysis software (ImageJ). After the conversion, the area concentration of the boron nitride portion is calculated along the X axis of the image, and this value is used as the coefficient of variation CV. Instead of measuring the concentration of boron nitride particles or the boron concentration, the area of the resin may be calculated based on the components contained only in the resin and subtracted from the entire area.

窒化ホウ素粒子を結着させて絶縁皮膜を形成するために用いられる樹脂としては、接着力が強く、耐熱性が高く、可撓性が高く、また耐電圧が高い樹脂が好ましい。この樹脂(ポリマー粒子)を例示すれば、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、エポキシ樹脂、エポキシ-アクリル樹脂又はアクリルスチレン樹脂或いはこれらを混合した樹脂などが挙げられる。絶縁皮膜100質量%中、窒化ホウ素粒子は2〜30体積%、皮膜形成用樹脂は70〜98体積%含有することが好ましい。皮膜形成用樹脂の含有量が下限値未満では窒化ホウ素粒子の結着力に乏しくなり、皮膜形成用樹脂の含有量が上限値を超えると、絶縁皮膜の熱伝導度が低下する。   As a resin used for forming an insulating film by binding boron nitride particles, a resin having strong adhesive force, high heat resistance, high flexibility, and high withstand voltage is preferable. Examples of this resin (polymer particles) include polyimide resin, polyamideimide resin, polyesterimide resin, polyester resin, polyurethane resin, acrylic resin, epoxy resin, epoxy-acrylic resin, acrylic styrene resin, or a mixture of these. Can be mentioned. In 100% by mass of the insulating film, boron nitride particles are preferably contained in an amount of 2 to 30% by volume, and the film-forming resin is preferably contained in an amount of 70 to 98% by volume. When the content of the film-forming resin is less than the lower limit, the binding force of the boron nitride particles becomes poor, and when the content of the film-forming resin exceeds the upper limit, the thermal conductivity of the insulating film decreases.

〔絶縁皮膜の製造方法〕
本実施の形態の絶縁皮膜の製造方法について説明する。この方法としては、電着塗料に窒化ホウ素粒子を添加し分散させて、電着塗装法で導体表面に絶縁皮膜を製造する方法の他、ボールミル、ジェットミル、ビーズミルなどを用いて皮膜形成用樹脂と窒化ホウ素粒子と有機溶媒とを均一に分散して絶縁皮膜形成用液組成物を作製し、この液組成物を金属板、ガラス板、金属箔、樹脂フィルムなどの表面に、ナイフコータ、ロールコータ、リバースコータ、ダイコータ、グラビアコータなどの塗布装置で塗布し、塗布膜を加熱処理して絶縁皮膜を製造する方法などが挙げられる。
[Insulating film manufacturing method]
A method for manufacturing the insulating film of the present embodiment will be described. In this method, boron nitride particles are added to and dispersed in the electrodeposition paint, and an insulating film is produced on the conductor surface by the electrodeposition coating method, as well as a film forming resin using a ball mill, jet mill, bead mill, etc. A liquid composition for forming an insulating film is prepared by uniformly dispersing particles, boron nitride particles, and an organic solvent. The liquid composition is applied to the surface of a metal plate, glass plate, metal foil, resin film, or the like on a knife coater or roll coater. And a method of producing an insulating film by coating with a coating apparatus such as a reverse coater, a die coater, or a gravure coater, and heat-treating the coating film.

電着塗装法で導体表面に絶縁皮膜を製造するためには、先ず皮膜形成用樹脂を有機溶媒に溶解させた溶液に、皮膜形成用樹脂の貧溶媒である水を添加混合してこの皮膜形成用樹脂を析出させて樹脂分散液を作製し、次いで窒化ホウ素粒子をこの樹脂分散液に添加混合することにより電着塗料を調製する。上記有機溶媒としては、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N−メチルピロリドン(NMP)、γ−ブチロラクトン(γBL)、アニソール、テトラメチル尿素、及びスルホランから選ばれる1種又は2種以上が挙げられる。電着塗料中の固形分100体積%中、窒化ホウ素粒子を2〜30体積%添加することが好ましい。窒化ホウ素粒子の添加量が下限値未満では、この電着塗料から作られる絶縁皮膜の熱伝導度が向上しにくい。またその添加量が上限値を超えると、窒化ホウ素粒子の膜中濃度が高くなり過ぎて、耐電圧の低下や可撓性が著しく低下する。   In order to produce an insulating film on the conductor surface by the electrodeposition coating method, first, this film is formed by adding water, which is a poor solvent for the film-forming resin, to a solution obtained by dissolving the film-forming resin in an organic solvent. A resin dispersion is prepared by precipitating a resin for coating, and then boron nitride particles are added to and mixed with the resin dispersion to prepare an electrodeposition paint. Examples of the organic solvent include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), γ-butyrolactone (γBL), anisole, tetra 1 type, or 2 or more types chosen from methylurea and sulfolane are mentioned. It is preferable to add 2 to 30% by volume of boron nitride particles in 100% by volume of the solid content in the electrodeposition paint. When the amount of boron nitride particles added is less than the lower limit, the thermal conductivity of the insulating film made from this electrodeposition paint is difficult to improve. On the other hand, if the amount added exceeds the upper limit, the concentration of boron nitride particles in the film becomes too high, and the withstand voltage and flexibility are significantly reduced.

〔絶縁皮膜付きエナメル線の製造方法〕
次に、上記電着塗料を用いた絶縁皮膜付きエナメル線の製造方法を説明する。図1に示すように、電着塗装装置10を用いて上記電着塗料11を電着塗装法により銅線12の表面に電着させて絶縁層(図示せず)を形成する。具体的には、予め、円筒状に巻き込んである横断面円形の円柱状の銅線13を、直流電源14の正極に陽極16を介して電気的に接続しておく。そして、この円柱状の銅線13を図1の実線矢印の方向に引上げて次の各工程を経る。
[Method of manufacturing enameled wire with insulation film]
Next, a method for producing an enameled wire with an insulating film using the electrodeposition paint will be described. As shown in FIG. 1, an electrodeposition coating apparatus 10 is used to electrodeposit the electrodeposition paint 11 on the surface of a copper wire 12 by an electrodeposition coating method to form an insulating layer (not shown). Specifically, a cylindrical copper wire 13 having a circular cross section that is wound in a cylindrical shape is electrically connected to a positive electrode of a DC power source 14 via an anode 16 in advance. Then, the cylindrical copper wire 13 is pulled up in the direction of the solid line arrow in FIG.

先ず、第1の工程として、円柱状の銅線13を一対の圧延ローラ17,17により扁平に圧延して、横断面長方形の平角状の銅線12を形成する。次いで、第2の工程として、電着塗料11を電着槽18に貯えて5〜60℃に維持し、この電着槽18内の電着塗料11中を平角状の銅線12を通過させる。ここで、電着槽18内の電着塗料11中には、通過する平角状の銅線12と間隔を設けて直流電源14の負極に電気的に接続された陰極19が挿入される。電着槽18内の電着塗料11中を平角状の銅線12が通過する際に、直流電源14により1〜300Vの範囲の直流電圧が平角状の銅線12と電着塗料11との間に0.01〜30秒間印加される。これにより、電着塗料11である水分散したポリマー粒子(図示せず)と窒化ホウ素粒子が平角状の銅線12の表面に電着されて絶縁層が形成される。   First, as a first step, a cylindrical copper wire 13 is rolled flat by a pair of rolling rollers 17 and 17 to form a rectangular copper wire 12 having a rectangular cross section. Next, as a second step, the electrodeposition paint 11 is stored in the electrodeposition tank 18 and maintained at 5 to 60 ° C., and the rectangular copper wire 12 is passed through the electrodeposition paint 11 in the electrodeposition tank 18. . Here, a cathode 19 electrically connected to the negative electrode of the DC power supply 14 is inserted into the electrodeposition paint 11 in the electrodeposition tank 18 with a space from the flat rectangular copper wire 12 passing therethrough. When the rectangular copper wire 12 passes through the electrodeposition coating 11 in the electrodeposition tank 18, a DC voltage in the range of 1 to 300 V is applied between the rectangular copper wire 12 and the electrodeposition coating 11 by the DC power source 14. In between, it is applied for 0.01 to 30 seconds. As a result, the water-dispersed polymer particles (not shown) and the boron nitride particles that are the electrodeposition coating material 11 are electrodeposited on the surface of the flat rectangular copper wire 12 to form an insulating layer.

次に、表面に絶縁層が電着された平角状の銅線12に対し、乾燥焼付処理することにより、銅線12の表面に絶縁皮膜(図示せず)を形成する。この実施の形態では、表面に上記絶縁層が形成された銅線12を、焼付炉22内を通過させる。上記乾燥焼付処理は、熱風加熱炉により行われることが好ましい。また乾燥焼付処理の温度は100〜500℃の範囲内であることが好ましく、乾燥焼付処理の時間は1〜10分の範囲内であることが好ましい。ここで、乾燥焼付処理の温度を100〜500℃の範囲内に限定したのは、100℃未満では絶縁層を十分に乾燥硬化できず、500℃を超えるとポリマーが熱分解してしまうからである。また、乾燥焼付処理の時間を1〜10分間の範囲内に限定したのは、1分未満では絶縁層を十分に乾燥硬化できず、10分を超えると樹脂が熱分解してしまうからである。なお、乾燥焼付処理の温度は焼付炉内の中央部の温度である。焼付炉22を通過することにより、銅線12の表面を窒化ホウ素凝集粒子を含む絶縁皮膜で被覆したエナメル線23が製造される。このエナメル線23を巻回することによりコイル(図示せず)が形成される。   Next, an insulating film (not shown) is formed on the surface of the copper wire 12 by subjecting the flat rectangular copper wire 12 having an insulating layer electrodeposited thereon to dry baking. In this embodiment, the copper wire 12 having the insulating layer formed on the surface is passed through the baking furnace 22. The dry baking process is preferably performed in a hot air heating furnace. Moreover, it is preferable that the temperature of a drying baking process exists in the range of 100-500 degreeC, and it is preferable that the time of a drying baking process exists in the range of 1-10 minutes. Here, the reason why the temperature of the drying baking process is limited to the range of 100 to 500 ° C. is that the insulating layer cannot be sufficiently dried and cured at a temperature lower than 100 ° C., and the polymer is thermally decomposed when the temperature exceeds 500 ° C. is there. Moreover, the reason why the time for the drying and baking treatment is limited to the range of 1 to 10 minutes is that the insulating layer cannot be sufficiently dried and cured in less than 1 minute, and if it exceeds 10 minutes, the resin is thermally decomposed. . In addition, the temperature of a drying baking process is the temperature of the center part in a baking furnace. By passing through the baking furnace 22, an enameled wire 23 in which the surface of the copper wire 12 is coated with an insulating film containing boron nitride aggregated particles is manufactured. A coil (not shown) is formed by winding the enameled wire 23.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
先ず、平均粒径が0.05μmの窒化ホウ素粒子を用意する。ポリイミドの水分散液に上記窒化ホウ粒子を、絶縁皮膜中の窒化ホウ素の体積濃度が10体積%となるように、添加し、超音波を与えて窒化ホウ粒子を均一に分散させて、電着塗料を調製した。ここで、ポリイミドの水分散液は、ポリイミドの水分散液100質量%中、ポリイミド樹脂からなるポリマー粒子が7質量%分散したものを用いた。ポリイミドの水分散液は、水分散液100質量%中、N−メチルピロリドン(NMP)50質量%と、1メトキシ―2−プロパノール(1M2P)15質量%と、水25質量%とを含有した。こうして調製した電着塗料を電着塗装法により100Vの直流電圧を印加して厚さ0.3mmで30mm×20mmの銅板の表面に電着させ、絶縁層を形成し、これを大気雰囲気下、250℃で3分間焼付処理をして絶縁皮膜を作製した。
<Example 1>
First, boron nitride particles having an average particle diameter of 0.05 μm are prepared. The boron nitride particles are added to an aqueous dispersion of polyimide so that the volume concentration of boron nitride in the insulating film is 10% by volume, and ultrasonic waves are applied to uniformly disperse the boron nitride particles. A paint was prepared. Here, as the polyimide aqueous dispersion, 7% by mass of polymer particles made of polyimide resin were used in 100% by mass of the polyimide aqueous dispersion. The aqueous dispersion of polyimide contained 50% by mass of N-methylpyrrolidone (NMP), 15% by mass of 1 methoxy-2-propanol (1M2P), and 25% by mass of water in 100% by mass of the aqueous dispersion. The electrodeposition paint thus prepared was electrodeposited on the surface of a copper plate having a thickness of 0.3 mm and a thickness of 30 mm × 20 mm by applying a DC voltage of 100 V by an electrodeposition coating method, and an insulating layer was formed. An insulating film was prepared by baking at 250 ° C. for 3 minutes.

表1に、窒化ホウ素粒子の平均粒径、絶縁皮膜の膜厚、膜厚に垂直な皮膜面における窒化ホウ素粒子の濃度の変動係数(CV)、膜厚を窒化ホウ素粒子の平均粒径で除したときの値(A)及び窒化ホウ素粒子の体積濃度を示す。表1中、「BN」は窒化ホウ素粒子を意味する。   Table 1 shows the average particle diameter of boron nitride particles, the film thickness of the insulating film, the coefficient of variation (CV) of the concentration of boron nitride particles in the film surface perpendicular to the film thickness, and the film thickness divided by the average particle diameter of the boron nitride particles. The value (A) and the volume concentration of boron nitride particles are shown. In Table 1, “BN” means boron nitride particles.

<実施例2〜28、比較例1〜8>
表1に示すように実施例1に記載した窒化ホウ素粒子と異なる平均粒径を有する窒化ホウ素粒子を用い、また表1に示すように絶縁皮膜の電着時に流す電荷量も変更して、絶縁皮膜の膜厚、窒化ホウ素粒子の体積濃度を変更して、実施例2〜28及び比較例1〜8とした。
<Examples 2-28 and Comparative Examples 1-8>
As shown in Table 1, boron nitride particles having an average particle size different from that of the boron nitride particles described in Example 1 were used, and as shown in Table 1, the amount of electric charge flowing during the electrodeposition of the insulating film was also changed. The film thickness of the film and the volume concentration of the boron nitride particles were changed to be Examples 2 to 28 and Comparative Examples 1 to 8.

<比較例9>
実施例1のポリイミドの水分散液に窒化ホウ素粒子を添加することなく電着塗料を調製した。この電着塗料を用いて実施例1と同様に絶縁皮膜を作製した。
<Comparative Example 9>
An electrodeposition paint was prepared without adding boron nitride particles to the aqueous polyimide dispersion of Example 1. An insulating film was produced in the same manner as in Example 1 using this electrodeposition paint.

<比較試験及び評価>
実施例1〜28及び比較例1〜9で作製した絶縁皮膜について、その膜厚、皮膜表面に対して垂直方向の耐電圧及び熱伝導度、並びに絶縁皮膜の可撓性をそれぞれ次の方法により測定した。実施例1〜28及び比較例1〜9のこれらの測定結果を表1及び表2に示す。
<Comparison test and evaluation>
About the insulation film produced in Examples 1-28 and Comparative Examples 1-9, the film thickness, the withstand voltage and the thermal conductivity in the direction perpendicular to the film surface, and the flexibility of the insulation film are respectively determined by the following methods. It was measured. These measurement results of Examples 1 to 28 and Comparative Examples 1 to 9 are shown in Tables 1 and 2.

(1)絶縁皮膜の膜厚
絶縁皮膜の膜厚は、皮膜付き銅板をエポキシ樹脂に埋めた後、これを研磨によって皮膜の断面を出現させ、この断面をレーザ顕微鏡を用いて絶縁皮膜の膜厚を測定した。
(1) Film thickness of the insulation film The film thickness of the insulation film is obtained by embedding a copper plate with a film in an epoxy resin, and then polishing this to cause a cross section of the film to appear. Was measured.

(2)絶縁皮膜の耐電圧
絶縁皮膜の耐電圧は、株式会社計測技研の多機能安全試験器7440を用いて測定した。銅板と絶縁皮膜にそれぞれ電極を接続し、6000Vまで30秒で昇圧し、両電極間に流れる電流が5000μAになった時点の電圧を絶縁皮膜の厚さで除算し、この値を耐電圧とした。
(2) Dielectric withstand voltage of the insulating film The withstand voltage of the insulating film was measured using a multifunctional safety tester 7440 of Keiki Giken Co., Ltd. The electrodes were connected to the copper plate and the insulating film, respectively, boosted to 6000 V in 30 seconds, the voltage when the current flowing between both electrodes reached 5000 μA was divided by the thickness of the insulating film, and this value was taken as the withstand voltage. .

(3)絶縁皮膜の垂直方向の熱伝導度
絶縁皮膜の垂直方向の熱伝導度は、NETZSCH-GeratebauGmbH製のLFA477 Nanoflash を用いたレーザーフラッシュ法で測定した。測定には界面熱抵抗を考慮しない2層モデルを用いた。なお、銅板の厚さは既述したように0.3mm、銅板の熱拡散率は117.2mm/秒を用いた。絶縁皮膜の熱伝導度の計算には、窒化ホウ素の密度2.1g/cm、窒化ホウ素の比熱0.8J/gK、ポリイミド樹脂の密度1.4g/cm、ポリイミド樹脂の比熱1.13J/gKを用いた。
(3) Thermal conductivity in the vertical direction of the insulating film The vertical thermal conductivity of the insulating film was measured by a laser flash method using an LFA477 Nanoflash manufactured by NETZSCH-Geratebau GmbH. A two-layer model that does not consider the interfacial thermal resistance was used for the measurement. As described above, the thickness of the copper plate was 0.3 mm, and the thermal diffusivity of the copper plate was 117.2 mm 2 / sec. For calculating the thermal conductivity of the insulating film, the density of boron nitride was 2.1 g / cm 3 , the specific heat of boron nitride was 0.8 J / gK, the density of polyimide resin was 1.4 g / cm 3 , and the specific heat of polyimide resin was 1.13 J / GK was used.

(4)絶縁皮膜の可撓性
厚さ0.3mmの銅板2枚を重ね、その上に長さ30cmの実施例1〜28及び比較例1〜8の皮膜を置き、2枚の銅板に沿って絶縁皮膜を曲げた。曲げた長さ30cmの皮膜をフェノールフタレイン液中に浸漬し、これらの皮膜を負極として12Vで1分間印加し、紫色の反応生成物や気泡が出るか否か確認した(JIS C3216−5)。紫色の反応生成物や気泡が全く出ないときを「良好」とし、紫色の反応生成物や気泡が1〜2箇所見られたときを「可」と判定した。
(4) Flexibility of insulating coating Two copper plates having a thickness of 0.3 mm are stacked, and the coatings of Examples 1 to 28 and Comparative Examples 1 to 8 having a length of 30 cm are placed thereon, along the two copper plates. And bent the insulation film. The bent 30 cm long film was immersed in a phenolphthalein solution, and these films were applied as negative electrodes for 1 minute at 12 V to confirm whether purple reaction products or bubbles were generated (JIS C3216-5). . When no purple reaction product or bubbles appeared, it was determined as “good”, and when one or two purple reaction products or bubbles were observed, it was determined as “good”.

Figure 2017059335
Figure 2017059335

Figure 2017059335
Figure 2017059335

表1と表2から明らかなように、実施例1〜28と比較例1〜7を比較してみると、CVの値を150%以下に、またAの値を5以上にそれぞれ収めた場合、耐電圧と熱伝導度のバランスの取れた絶縁皮膜を作製できることが判った。また実施例1〜28と比較例8を比較してみると、CVの値を50以上に、またAの値を600以下にそれぞれ収めた場合、耐電圧と熱伝導度のバランスの取れた絶縁皮膜を作製できることが判った。   As is clear from Table 1 and Table 2, when Examples 1-28 and Comparative Examples 1-7 are compared, the value of CV is 150% or less and the value of A is 5 or more. It was found that an insulating film having a good balance between withstand voltage and thermal conductivity can be produced. In addition, when Examples 1 to 28 are compared with Comparative Example 8, when the CV value is 50 or more and the A value is 600 or less, insulation with a balanced withstand voltage and thermal conductivity is achieved. It was found that a film could be produced.

また実施例1、5と、実施例2〜4、6〜9を比較してみると、窒化ホウ素粒子の平均粒径を0.1μm以上にした場合、より耐電圧と熱伝導度のバランスの取れた絶縁皮膜を作製できることが判った。また表1から明らかなように、実施例2、3、6〜8、11〜13、15〜22と実施例4,5,9,10,14,23〜26を比較してみると、CVの値を60〜110%、Aの値を10〜300にした場合、より耐電圧と熱伝導度のバランスの取れた絶縁皮膜を作製できることが判った。   In addition, when Examples 1 and 5 are compared with Examples 2 to 4 and 6 to 9, when the average particle size of the boron nitride particles is 0.1 μm or more, the balance between withstand voltage and thermal conductivity is further improved. It was found that a detached insulating film could be produced. Further, as apparent from Table 1, when Examples 2, 3, 6-8, 11-13, 15-22 and Examples 4, 5, 9, 10, 14, 23-26 are compared, CV It was found that when the value of 60 to 110% and the value of A was 10 to 300, an insulating film with a better balance between withstand voltage and thermal conductivity could be produced.

また実施例1〜26と実施例27を比較してみると、窒化ホウ素粒子の濃度を2体積%以上にした場合、より耐電圧と熱伝導度のバランスの取れた絶縁皮膜を作製できることが判った。また実施例1〜26と実施例28を比較してみると、窒化ホウ素粒子の濃度を45体積%以下にした場合、可撓性のより優れた絶縁皮膜を作製できることが判った。   Further, comparing Examples 1 to 26 and Example 27, it was found that when the concentration of the boron nitride particles was 2% by volume or more, an insulating film with a better balance between withstand voltage and thermal conductivity could be produced. It was. Moreover, when Examples 1-26 and Example 28 were compared, when the density | concentration of the boron nitride particle was 45 volume% or less, it turned out that an insulating film with more flexibility can be produced.

また実施例7と実施例27を比較してみると、窒化ホウ素粒子の体積濃度が1%以上であることが好ましいことが判った。また実施例7と実施例28を比較してみると、窒化ホウ素粒子の体積濃度が40%以下であることが可撓性を良好に保つために好ましいことが判った。更に比較例9では、窒化ホウ素粒子を絶縁皮膜が含まないため、熱伝導度が0.21W/mKと実施例1〜28の熱伝導度が低かった。   Further, comparing Example 7 and Example 27, it was found that the volume concentration of boron nitride particles is preferably 1% or more. Further, comparing Example 7 and Example 28, it was found that the volume concentration of the boron nitride particles is preferably 40% or less in order to keep the flexibility good. Furthermore, in Comparative Example 9, since the boron nitride particles did not contain the insulating film, the thermal conductivity was 0.21 W / mK, which was low in Examples 1 to 28.

本発明の絶縁皮膜は、この絶縁皮膜で被覆されるエナメル線やエナメル線を巻回したコイルに利用される。   The insulating film of the present invention is used for an enameled wire covered with the insulating film and a coil wound with the enameled wire.

Claims (4)

皮膜形成用樹脂中に窒化ホウ素粒子が分散してなり、膜厚を前記窒化ホウ素粒子の平均粒径で除したときの値をAとするとき、Aが5〜600となる平均粒径の窒化ホウ素粒子を用いており、膜厚に垂直な皮膜面における窒化ホウ素粒子の濃度の変動係数をCVとするとき、CVが50〜150%である絶縁皮膜。   Boron nitride particles are dispersed in the film-forming resin, and when the film thickness is divided by the average particle diameter of the boron nitride particles, A is nitriding with an average particle diameter of A from 5 to 600. An insulating film that uses boron particles and has a CV of 50 to 150% when the coefficient of variation of the concentration of boron nitride particles on the film surface perpendicular to the film thickness is CV. 前記窒化ホウ素粒子の平均粒径が0.05μm以上である請求項1に記載の絶縁皮膜。   The insulating film according to claim 1, wherein an average particle diameter of the boron nitride particles is 0.05 μm or more. 前記皮膜中の窒化ホウ素粒子の体積濃度が2〜30体積%である請求項1又は2記載の絶縁皮膜。   The insulating film according to claim 1 or 2, wherein the volume concentration of boron nitride particles in the film is 2 to 30% by volume. 請求項1ないし3のいずれか1項に記載の絶縁皮膜を有するエナメル線。
An enameled wire having the insulating film according to any one of claims 1 to 3.
JP2015181397A 2015-09-15 2015-09-15 Insulation film Pending JP2017059335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015181397A JP2017059335A (en) 2015-09-15 2015-09-15 Insulation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015181397A JP2017059335A (en) 2015-09-15 2015-09-15 Insulation film

Publications (1)

Publication Number Publication Date
JP2017059335A true JP2017059335A (en) 2017-03-23

Family

ID=58390813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015181397A Pending JP2017059335A (en) 2015-09-15 2015-09-15 Insulation film

Country Status (1)

Country Link
JP (1) JP2017059335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012632A (en) * 2017-06-30 2019-01-24 三菱マテリアル株式会社 Insulation film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055185A (en) * 2002-07-17 2004-02-19 Toshiba Aitekku Kk Enameled wire
JP2007219371A (en) * 2006-02-20 2007-08-30 Canon Inc Fixing member
WO2011111684A1 (en) * 2010-03-10 2011-09-15 新日鐵化学株式会社 Thermally conductive polyimide film and thermally conductive laminate produced using same
JP2014156545A (en) * 2013-02-15 2014-08-28 Gunze Ltd Insulating thermoconductive filler dispersion composition
WO2015053374A1 (en) * 2013-10-09 2015-04-16 日立化成株式会社 Prepreg mica tape and coil using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055185A (en) * 2002-07-17 2004-02-19 Toshiba Aitekku Kk Enameled wire
JP2007219371A (en) * 2006-02-20 2007-08-30 Canon Inc Fixing member
WO2011111684A1 (en) * 2010-03-10 2011-09-15 新日鐵化学株式会社 Thermally conductive polyimide film and thermally conductive laminate produced using same
JP2014156545A (en) * 2013-02-15 2014-08-28 Gunze Ltd Insulating thermoconductive filler dispersion composition
WO2015053374A1 (en) * 2013-10-09 2015-04-16 日立化成株式会社 Prepreg mica tape and coil using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012632A (en) * 2017-06-30 2019-01-24 三菱マテリアル株式会社 Insulation film

Similar Documents

Publication Publication Date Title
JP6973576B2 (en) Electrodeposition liquid for forming water-dispersed insulating film
JP7420202B2 (en) Insulated conductor and method for manufacturing insulated conductor
TWI737892B (en) Electrodeposition solution and method of producing conductor with insulating coating formed by using same
JP2017057098A (en) Boron nitride agglomerated particle for forming thin film, insulation coating film, production method of agglomerated particle, production method of insulation electrodeposition paint, enameled wire and coil
JP6787147B2 (en) Electrodeposition liquid and electrodeposition coating body
CN110352463B (en) Insulated wire, method for producing same, method for producing coil using same, and coil
US10395798B2 (en) Heat-resistant insulated wire and electrodeposition liquid used to form insulating layer therefor
JP2017059335A (en) Insulation film
JP2019012632A (en) Insulation film
JP6567797B1 (en) Laminated body of conductor and insulating film, coil, rotating electric machine, insulating paint, and insulating film
JP2017066014A (en) Resin-coated boron nitride powder, and dispersion liquid thereof
TW201841985A (en) Insulated electric wire, method of producing insulated wire, and coil
WO2017141885A1 (en) Electrodeposition liquid and electrodeposition-coated article
WO2016129518A1 (en) Method for producing insulated wire
JP2014173110A (en) Electrodeposition-coated object and method for manufacturing the same
RU2603758C1 (en) Method of enamelled wires making
JP2002298674A (en) Manufacturing method of insulation wire and insulation wire
JP2008276963A (en) Insulated wire
JP2699210B2 (en) Flat rectangular insulated wire
JP2018002843A (en) Resin film and heat radiation sheet
JP2009277369A (en) Insulation wire
JP2017137541A (en) Electrodeposition liquid and method for forming insulation coated film using the same
WO2017110188A1 (en) Aqueous dispersion type electrodeposition liquid for insulating-film formation
JP2023032642A (en) Insulated conductor manufacturing method, electrodeposition device, and insulated conductor manufacturing device
TW201723103A (en) Heat-resistant insulated electric wire and electrodeposition fluid for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190723