JP2017066014A - Resin-coated boron nitride powder, and dispersion liquid thereof - Google Patents

Resin-coated boron nitride powder, and dispersion liquid thereof Download PDF

Info

Publication number
JP2017066014A
JP2017066014A JP2015196508A JP2015196508A JP2017066014A JP 2017066014 A JP2017066014 A JP 2017066014A JP 2015196508 A JP2015196508 A JP 2015196508A JP 2015196508 A JP2015196508 A JP 2015196508A JP 2017066014 A JP2017066014 A JP 2017066014A
Authority
JP
Japan
Prior art keywords
resin
boron nitride
nitride powder
dispersion
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015196508A
Other languages
Japanese (ja)
Inventor
史朗 石川
Shiro Ishikawa
史朗 石川
山崎 和彦
Kazuhiko Yamazaki
和彦 山崎
慎太郎 飯田
Shintaro Iida
慎太郎 飯田
桜井 英章
Hideaki Sakurai
英章 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015196508A priority Critical patent/JP2017066014A/en
Publication of JP2017066014A publication Critical patent/JP2017066014A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin-coated boron nitride powder capable of stably producing an insulation film having high dielectric strength and heat conductivity and containing a boron nitride particle for a long period of time without damaging heat conductivity of boron nitride, and a dispersion liquid of the resin-coated boron nitride powder, in which the dispersed boron nitride hardly coagulates after preparation of the dispersion liquid.SOLUTION: In the resin-coated boron nitride powder of the present invention, a part or an entire part of the surface of a primary particle of boron nitride, or a part or an entire part of the surface of a coagulated particle of the primary particles is coated with a binder resin. The binder resin is preferably a polyimide resin, a polyamide-imide resin, a polyesterimide resin, a polyester resin, or a polyurethane resin, or a mixed resin thereof. In the dispersion liquid of the present invention, the boron nitride powder is dispersed in a dispersion medium such as NMP.SELECTED DRAWING: Figure 1

Description

本発明は、窒化ホウ素の熱伝導度を損なうことなく、窒化ホウ素粒子を含有した耐電圧と熱伝導度が高い絶縁皮膜を長期的に安定して作製できる樹脂コート窒化ホウ素粉末に関する。また分散液を調製後、分散している窒化ホウ素が凝集しにくい樹脂コート窒化ホウ素粉末の分散液に関する。更に詳しくは、絶縁電着塗料の熱伝導性フィラーとして好適な樹脂コート窒化ホウ素粉末に関し、また絶縁電着塗料として好適な分散液に関する。   The present invention relates to a resin-coated boron nitride powder that can stably produce an insulating film containing boron nitride particles and having a high withstand voltage and high thermal conductivity for a long period of time without impairing the thermal conductivity of boron nitride. The present invention also relates to a dispersion of a resin-coated boron nitride powder in which the dispersed boron nitride is less likely to aggregate after the dispersion is prepared. More specifically, the present invention relates to a resin-coated boron nitride powder suitable as a heat conductive filler for an insulating electrodeposition coating, and a dispersion suitable as an insulating electrodeposition coating.

窒化ホウ素粉末を絶縁電着塗料のフィラーとして用いるためには、窒化ホウ素を分散液の形で使用する必要がある。しかしながら窒化ホウ素は時間とともに凝集しやすく、長期的安定性を持った分散液、即ち懸濁液を作製することは難しい問題点があった。   In order to use boron nitride powder as a filler for an insulating electrodeposition coating, it is necessary to use boron nitride in the form of a dispersion. However, boron nitride tends to agglomerate with time, and it has been difficult to prepare a dispersion, ie, a suspension, having long-term stability.

これまで、窒化ホウ素の分散性を良くするためには、六方晶窒化ホウ素粉末をシランカップリング剤で修飾したり(例えば、特許文献1参照。)、或いは窒化ホウ素粉末をポリオキシエチレン系被イオン界面活性剤を分散剤として水に分散している(例えば、特許文献2参照。)か、或いは非イオン性水溶性セルロースエーテルとポリカルボン酸塩系の分散剤を用いて水に分散している(例えば、特許文献3参照。)。   Until now, in order to improve the dispersibility of boron nitride, the hexagonal boron nitride powder has been modified with a silane coupling agent (see, for example, Patent Document 1), or the boron nitride powder has been polyoxyethylene-based ions. A surfactant is dispersed in water as a dispersant (for example, see Patent Document 2), or is dispersed in water using a nonionic water-soluble cellulose ether and a polycarboxylate-based dispersant. (For example, refer to Patent Document 3).

特開2012−056818号公報(請求項1)JP 2012-056818 A (Claim 1) 特開平6−219714号公報(請求項1、段落[0001])JP-A-6-219714 (Claim 1, paragraph [0001]) 特開平8−127793号公報(請求項1、段落[0001])JP-A-8-127793 (Claim 1, paragraph [0001])

しかしながら、シランカップリング剤により窒化ホウ素粉末の表面を修飾した場合、窒化ホウ素はシランカップリング剤と反応できる表面の官能基が少ないため、表面処理の効果が限定的になってしまった。反応性を高めるために表面酸化処理を行うと、粉の熱伝導度が下がってしまう恐れがあった。また分散剤を用いて窒化ホウ素を分散させて窒化ホウ素分散液を得た場合、電着液として使用する際に、溶媒で希釈して使用すると、いわゆるソルベントショックにより分散剤が外れ、窒化ホウ素が凝集する恐れがあった。即ち、上記の方法では、熱伝導度を損なわない方法で分散液を調製後、分散している窒化ホウ素が凝集し易く、経時的に安定した分散液、電着液を得難い問題があった。   However, when the surface of the boron nitride powder is modified with a silane coupling agent, boron nitride has few functional groups on the surface that can react with the silane coupling agent, so that the effect of the surface treatment is limited. When surface oxidation treatment is performed to increase the reactivity, the thermal conductivity of the powder may be lowered. Further, when boron nitride is obtained by dispersing boron nitride using a dispersant, when used as an electrodeposition solution, if diluted with a solvent, the dispersant is removed by a so-called solvent shock, and boron nitride is removed. There was a risk of aggregation. That is, the above-described method has a problem that after the dispersion is prepared by a method that does not impair the thermal conductivity, the dispersed boron nitride tends to aggregate and it is difficult to obtain a stable dispersion and electrodeposition solution over time.

本発明の第1の目的は、上記課題を解決するもので、熱伝導度を損なうことなく、窒化ホウ素粒子を含有した耐電圧と熱伝導度が高い絶縁皮膜を長期的に安定して作製できる樹脂コート窒化ホウ素粉末を提供することにある。本発明の第2の目的は、分散液を調製後、分散している窒化ホウ素粉末が凝集しにくい樹脂コート窒化ホウ素粉末の分散液を提供することにある。   The first object of the present invention is to solve the above-mentioned problems, and an insulating film containing boron nitride particles and having a high withstand voltage and high thermal conductivity can be stably produced over a long period of time without impairing the thermal conductivity. It is to provide a resin-coated boron nitride powder. The second object of the present invention is to provide a dispersion of resin-coated boron nitride powder in which the dispersed boron nitride powder is less likely to aggregate after the dispersion is prepared.

本発明の第1の観点は、窒化ホウ素一次粒子の表面の一部又は全部又は前記窒化ホウ素一次粒子の凝集粒子の表面の一部又は全部がバインダ樹脂により被覆されてなる樹脂コート窒化ホウ素粉末である。   A first aspect of the present invention is a resin-coated boron nitride powder in which part or all of the surface of boron nitride primary particles or part or all of the surface of aggregated particles of the boron nitride primary particles is coated with a binder resin. is there.

本発明の第2の観点は、第1の観点に基づく発明であって、前記バインダ樹脂がポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ポリエステル樹脂又はポリウレタン樹脂或いはこれらを混合した樹脂である樹脂コート窒化ホウ素粉末である。   The second aspect of the present invention is an invention based on the first aspect, wherein the binder resin is a polyimide resin, a polyamideimide resin, a polyesterimide resin, a polyester resin or a polyurethane resin, or a resin obtained by mixing these resins. Boron nitride powder.

本発明の第3の観点は、第1又は第2の観点の樹脂コート窒化ホウ素粉末が分散媒に分散してなる分散液である。   A third aspect of the present invention is a dispersion obtained by dispersing the resin-coated boron nitride powder of the first or second aspect in a dispersion medium.

本発明の第4の観点は、第3の観点に基づく発明であって、前記分散媒がN−メチルピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、1,3ジメチルイミダゾリジノン、ジメチルスルホキシド(DMSO)又はγ−ブチロラクトン(γBL)である。   A fourth aspect of the present invention is the invention based on the third aspect, wherein the dispersion medium is N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc ), 1,3 dimethylimidazolidinone, dimethyl sulfoxide (DMSO) or γ-butyrolactone (γBL).

本発明の第5の観点は、第3又は第4の観点の分散液と、ポリマーを有機溶媒に溶解させた溶液にこのポリマーの貧溶媒を添加混合してこのポリマーを析出させて調製されたポリマー分散液とを混合して絶縁電着塗料を製造する方法である。   The fifth aspect of the present invention was prepared by adding the poor solvent of the polymer to the dispersion of the third or fourth aspect and a solution obtained by dissolving the polymer in an organic solvent, and mixing the mixture to precipitate the polymer. This is a method for producing an insulating electrodeposition paint by mixing a polymer dispersion.

本発明の第6の観点は、第5の観点の方法により製造された絶縁電着塗料を用いて電着方法により銅線の表面に前記樹脂からなる絶縁層を形成した後、焼付処理することにより、前記銅線を前記樹脂からなる絶縁皮膜により被覆してエナメル線を製造する方法である。   According to a sixth aspect of the present invention, after the insulating layer made of the resin is formed on the surface of the copper wire by the electrodeposition method using the insulating electrodeposition paint manufactured by the method of the fifth aspect, the baking treatment is performed. Thus, the copper wire is coated with an insulating film made of the resin to manufacture an enameled wire.

本発明の第7の観点は、第6の観点の方法により製造されたエナメルを巻回してコイルを製造する方法である。   A seventh aspect of the present invention is a method of manufacturing a coil by winding an enamel manufactured by the method of the sixth aspect.

本発明の第1の観点の樹脂コート窒化ホウ素粉末は、窒化ホウ素粒子をバインダ樹脂で被覆しているため、窒化ホウ素の熱伝導性を損なうことなく分散することができる。   The resin-coated boron nitride powder according to the first aspect of the present invention can be dispersed without impairing the thermal conductivity of boron nitride because boron nitride particles are coated with a binder resin.

本発明の第2の観点の樹脂コート窒化ホウ素粉末を形成するバインダ樹脂として、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ポリエステル樹脂又はポリウレタン樹脂或いはこれらを混合した樹脂を用いることにより、この凝集粒子は接着力が強く、耐熱性が高くなる。   By using a polyimide resin, a polyamideimide resin, a polyesterimide resin, a polyester resin, a polyurethane resin, or a resin obtained by mixing these as a binder resin for forming the resin-coated boron nitride powder according to the second aspect of the present invention, the aggregated particles Has strong adhesive strength and high heat resistance.

本発明の第3の観点の分散液は、第1又は第2の観点の樹脂コート窒化ホウ素粉末が分散媒に分散しているため、分散液を調製後、分散している窒化ホウ素粉末が分散液中で凝集しにくい。   In the dispersion according to the third aspect of the present invention, since the resin-coated boron nitride powder according to the first or second aspect is dispersed in the dispersion medium, the dispersed boron nitride powder is dispersed after the dispersion is prepared. It is difficult to aggregate in the liquid.

本発明の第4の観点の分散媒は、N−メチルピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、1,3ジメチルイミダゾリジノン、ジメチルスルホキシド(DMSO)又はγ−ブチロラクトン(γBL)であるため、バインダ樹脂を良く溶解する利点がある。   The dispersion medium according to the fourth aspect of the present invention is N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), 1,3 dimethylimidazolidinone, dimethyl sulfoxide. Since it is (DMSO) or γ-butyrolactone (γBL), there is an advantage that the binder resin is well dissolved.

本発明の第5の観点の絶縁電着塗料の製造方法では、第1又は第2の観点の樹脂コート窒化ホウ素粉末を熱伝導性フィラーとして含むため、この塗料から得られた絶縁皮膜の熱伝導度と耐電圧が長期的に安定して高くすることができる。また、樹脂コート窒化ホウ素粉末を製造する際に用いたバインダ樹脂と同一の樹脂をポリマーとして用いれば、この塗料を用いて得られた絶縁皮膜中に余分な界面を作ることなく、この絶縁皮膜の熱伝導度を高く保つことができ、かつ窒化ホウ素粉末の樹脂マトリックスに対する密着性を向上させる。   In the method for producing an insulating electrodeposition paint according to the fifth aspect of the present invention, since the resin-coated boron nitride powder according to the first or second aspect is included as a heat conductive filler, the heat conduction of the insulating film obtained from this paint is achieved. The degree and withstand voltage can be increased stably over the long term. In addition, if the same resin as the binder resin used in the production of the resin-coated boron nitride powder is used as the polymer, this insulating film can be formed without creating an extra interface in the insulating film obtained using this paint. The thermal conductivity can be kept high, and the adhesion of the boron nitride powder to the resin matrix is improved.

本発明の第6の観点のエナメル線の製造方法では、銅線の絶縁皮膜を形成するための絶縁電着塗料として第5の観点の方法により製造された塗料を用いた電着塗装法であるため、均一に絶縁皮膜を銅線表面にエナメル線を形成することができる。第7の観点で製造されたエナメル線の絶縁皮膜は可撓性があるため、加工後もピンホール等の欠陥がない点で優れる。また高い熱伝導度を有し、耐熱性が高い特長がある。   The enameled wire manufacturing method of the sixth aspect of the present invention is an electrodeposition coating method using the paint manufactured by the method of the fifth aspect as an insulating electrodeposition coating for forming an insulating film of copper wire. Therefore, the enamel wire can be uniformly formed on the surface of the copper wire with the insulating film. The insulating film of the enameled wire manufactured from the seventh viewpoint is flexible, and is excellent in that there are no defects such as pinholes after processing. It also has high heat conductivity and high heat resistance.

本発明の第7の観点のエナメル線の製造方法では、第6の観点で製造されたエナメル線を巻回している形成されるため、放熱性の点で優れる。   The enameled wire manufacturing method according to the seventh aspect of the present invention is formed by winding the enameled wire manufactured according to the sixth aspect, and is excellent in terms of heat dissipation.

本発明の実施形態の電着塗装装置を模式的に表した図である。It is the figure which represented typically the electrodeposition coating apparatus of embodiment of this invention.

次に本発明を実施するための形態を説明する。   Next, the form for implementing this invention is demonstrated.

〔樹脂コート窒化ホウ素粉末〕
本発明の樹脂コート窒化ホウ素粉末は、六方晶窒化ホウ素の一次粒子の表面の一部又は全部がバインダ樹脂により被覆されて形成されるか、或いは六方晶窒化ホウ素の一次粒子の凝集粒子の表面の一部又は全部がバインダ樹脂により被覆されて形成される。このバインダ樹脂としては、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ポリエステル樹脂又はポリウレタン樹脂或いはこれらを混合した樹脂が挙げられる。上記バインダ樹脂は接着力が強く、可撓性が高く、耐電圧が高いという特長がある。この中でポリアミドイミド樹脂が溶解性と耐熱性のバランスが良いため、特に好ましい。本発明の樹脂コート窒化ホウ素粉末は、六方晶窒化ホウ素の一次粒子の表面全部、又はこの一次粒子の凝集粒子の表面全部がバインダ樹脂により被覆される必要はなく、分散性を持たせるために、十分な割合、例えば表面の50面積%以上の割合で被覆されていればよい。
[Resin coated boron nitride powder]
The resin-coated boron nitride powder of the present invention is formed by covering a part or all of the surface of primary particles of hexagonal boron nitride with a binder resin, or the surface of aggregated particles of primary particles of hexagonal boron nitride. Part or all is formed by being coated with a binder resin. Examples of the binder resin include a polyimide resin, a polyamideimide resin, a polyesterimide resin, a polyester resin, a polyurethane resin, or a resin obtained by mixing these. The binder resin is characterized by strong adhesion, high flexibility, and high withstand voltage. Of these, polyamide-imide resin is particularly preferable because it has a good balance between solubility and heat resistance. The resin-coated boron nitride powder of the present invention does not need to be coated with the binder resin on the entire surface of the primary particles of the hexagonal boron nitride, or the entire surface of the aggregated particles of the primary particles. It suffices that the coating is performed at a sufficient ratio, for example, a ratio of 50 area% or more of the surface.

樹脂コート窒化ホウ素粉末100質量%中、六方晶窒化ホウ素の一次粒子又は凝集粒子は80〜99質量%、バインダ樹脂は1〜20質量%含有することが好ましい。バインダ樹脂の含有量が下限値に近いほど、例えば1〜5質量%である場合、六方晶窒化ホウ素の一次粒子表面の一部又は凝集粒子表面の一部がバインダ樹脂により被覆され、上限値に近いほど、例えば15〜20質量%である場合、六方晶窒化ホウ素の一次粒子表面の全部又は凝集粒子表面の全部がバインダ樹脂により被覆される。バインダ樹脂の含有量が下限値未満では窒化ホウ素の一次粒子の結着力に乏しく、凝集が壊れやすくなり、バインダ樹脂の含有量が上限値を超えると、樹脂のみで析出する部分が多くなり、プロセスが効率的でなくなる。   In 100 mass% of the resin-coated boron nitride powder, it is preferable to contain 80 to 99 mass% of primary particles or aggregated particles of hexagonal boron nitride and 1 to 20 mass% of the binder resin. When the content of the binder resin is closer to the lower limit, for example, 1 to 5% by mass, a part of the primary particle surface of the hexagonal boron nitride or a part of the aggregated particle surface is coated with the binder resin, and the upper limit is reached. The closer it is, for example, 15 to 20% by mass, the entire primary particle surface of the hexagonal boron nitride or the entire aggregated particle surface is covered with the binder resin. If the binder resin content is less than the lower limit value, the binding force of the primary particles of boron nitride is poor, and the aggregation tends to break.If the binder resin content exceeds the upper limit value, the portion that precipitates only with the resin increases, and the process Becomes less efficient.

〔樹脂コート窒化ホウ素粉末の製造方法〕
先ず、平均粒子径が1μmを超え10μm以下の範囲にある六方晶窒化ホウ素の一次粒子を用意する。次いでこの一次粒子及び上述したバインダ樹脂を室温の第1溶媒に添加混合して前記バインダ樹脂が溶解しかつ前記一次粒子が分散する分散液を調製する。このとき、第1溶媒に最初に六方晶窒化ホウ素の一次粒子を添加して混合し、この一次粒子を第1溶媒に分散させ、次いでバインダ樹脂を添加して、このバインダ樹脂を第1溶媒に溶解させることが一次粒子を十分分散させられるため好ましい。第1溶媒としては、上記バインダ樹脂が溶解可能なN−メチルピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、1,3ジメチルイミダゾリジノン、ジメチルスルホキシド(DMSO)又はγ−ブチロラクトン(γBL)が挙げられる。分散液中の固体成分100質量%中、六方晶窒化ホウ素の一次粒子が80〜99質量%になるように、またバインダ樹脂が1〜20質量%になるように、一次粒子とバインダ樹脂をそれぞれ添加することが好ましい。上記一次粒子の添加量が下限値未満では樹脂だけで析出する部分が多くなってしまう不具合があり、その上限値を超えると樹脂でコーティングされない六方晶窒化ホウ素粉末の量が多くなってしまう不具合がある。バインダ樹脂の添加量が下限値未満では六方晶窒化ホウ素の一次粒子の表面が十分覆われず、分散効果が限定的になってしまう。その上限値を超えると、樹脂のみで析出する部分が多くなり、プロセスが効率的でなくなる。ここで、六方晶窒化ホウ素の一次粒子の平均粒子径は、レーザー回折式粒度分布測定装置(堀場製作所製LA960)を用いて測定した粒子径である。
[Method for producing resin-coated boron nitride powder]
First, primary particles of hexagonal boron nitride having an average particle diameter of more than 1 μm and not more than 10 μm are prepared. Next, the primary particles and the binder resin described above are added and mixed in a first solvent at room temperature to prepare a dispersion in which the binder resin is dissolved and the primary particles are dispersed. At this time, firstly, primary particles of hexagonal boron nitride are added to and mixed with the first solvent, the primary particles are dispersed in the first solvent, then a binder resin is added, and the binder resin is added to the first solvent. Dissolution is preferable because the primary particles can be sufficiently dispersed. As the first solvent, N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), 1,3 dimethylimidazolidinone, dimethyl, in which the binder resin can be dissolved, are used. Examples include sulfoxide (DMSO) or γ-butyrolactone (γBL). In 100% by mass of the solid component in the dispersion, the primary particles and the binder resin are respectively added so that the primary particles of hexagonal boron nitride are 80 to 99% by mass and the binder resin is 1 to 20% by mass. It is preferable to add. If the amount of the primary particles added is less than the lower limit, there is a problem that the portion that precipitates only with the resin increases, and if the upper limit is exceeded, the amount of hexagonal boron nitride powder that is not coated with the resin increases. is there. If the addition amount of the binder resin is less than the lower limit value, the surface of the primary particles of hexagonal boron nitride is not sufficiently covered, and the dispersion effect is limited. When the upper limit is exceeded, the portion that precipitates only with the resin increases, and the process becomes inefficient. Here, the average particle diameter of the primary particles of hexagonal boron nitride is a particle diameter measured using a laser diffraction particle size distribution analyzer (LA960 manufactured by Horiba, Ltd.).

次に上記分散液を攪拌する。攪拌に際しては、攪拌機を用い、500〜50000rpmの回転速度で室温の分散液を攪拌して、六方晶窒化ホウ素の一次粒子を均一に分散させる。もしくは超音波をかけることで分散を行っても良い。続いて、この攪拌中の分散液に、この分散液に溶解している上記バインダ樹脂を析出させるための第2溶媒を添加する。この第2溶媒としては、上記バインダ樹脂の貧溶媒である水、メタノール及びエタノールが挙げられる。第2溶媒の添加は、バインダ樹脂の析出を均一に生じさせ、一次粒子を均一に凝集させるために、10〜100mL/分の速度で0.1〜1分間滴下することが好ましい。この第2溶媒の貧溶媒の添加により、分散液中でバインダ樹脂が分散液中で分散している窒化ホウ素の一次粒子の表面に析出する。その結果、分散液中で樹脂コート窒化ホウ素粉末が形成される。   Next, the dispersion is stirred. In stirring, the dispersion at room temperature is stirred using a stirrer at a rotational speed of 500 to 50000 rpm to uniformly disperse the primary particles of hexagonal boron nitride. Alternatively, dispersion may be performed by applying ultrasonic waves. Subsequently, a second solvent for precipitating the binder resin dissolved in the dispersion is added to the stirring dispersion. Examples of the second solvent include water, methanol, and ethanol, which are poor solvents for the binder resin. The second solvent is preferably added dropwise at a rate of 10 to 100 mL / min for 0.1 to 1 minute in order to uniformly precipitate the binder resin and to uniformly aggregate the primary particles. By adding the poor solvent of the second solvent, the binder resin is precipitated on the surface of the primary particles of boron nitride in which the binder resin is dispersed in the dispersion. As a result, resin-coated boron nitride powder is formed in the dispersion.

樹脂コート窒化ホウ素粉末を分散液から取り出す場合には、分散液を濾過機、遠心分離機等を用いて固液分離し、固形分を50〜120℃の温度で乾燥することにより、樹脂コート窒化ホウ素粉末を得る。また、後述するように分散液を絶縁電着塗料の原料とする場合には、樹脂コート窒化ホウ素粉末を分散液から取り出す必要がない。   When removing the resin-coated boron nitride powder from the dispersion, the dispersion is solid-liquid separated using a filter, a centrifuge, etc., and the solid content is dried at a temperature of 50 to 120 ° C. Boron powder is obtained. Further, as will be described later, when the dispersion is used as a raw material for the insulating electrodeposition coating, it is not necessary to take out the resin-coated boron nitride powder from the dispersion.

〔絶縁電着塗料の製造方法〕
本発明の絶縁電着塗料は、先ずポリマーを有機溶媒に溶解させた溶液に、このポリマーの貧溶媒である水を添加混合してこのポリマーを析出させてポリマー分散液を作製し、次いで上述した樹脂コート窒化ホウ素粉末をこのポリマー分散液に添加混合することにより調製される。なお、樹脂コート窒化ホウ素粉末を上述した分散液に分散した状態で使用する場合には、ポリマー分散液に樹脂コート窒化ホウ素粉末の分散液を添加混合することにより、絶縁電着塗料が調製される。
[Method of manufacturing insulating electrodeposition paint]
The insulating electrodeposition coating material of the present invention is prepared by first adding water, which is a poor solvent for the polymer, to a solution in which the polymer is dissolved in an organic solvent to precipitate the polymer to prepare a polymer dispersion. The resin-coated boron nitride powder is prepared by adding and mixing to this polymer dispersion. When the resin-coated boron nitride powder is used in the state of being dispersed in the above-described dispersion, an insulating electrodeposition coating is prepared by adding and mixing the dispersion of the resin-coated boron nitride powder to the polymer dispersion. .

上記ポリマーとしては、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、エポキシ樹脂、エポキシ-アクリル樹脂又はアクリルスチレン樹脂或いはこれらを混合した樹脂であることが好ましい。これらの中で、樹脂コート窒化ホウ素粉末を製造する際に用いたバインダ樹脂と同一の樹脂をポリマーとして用いることにより、絶縁電着塗料の密着性を高め、余分な粒子界面を作らないで膜の熱伝導度を高く保つことができ、かつ電着条件を一定にできるという点で、特に好ましい。   The polymer is preferably a polyimide resin, a polyamideimide resin, a polyesterimide resin, a polyester resin, a polyurethane resin, an acrylic resin, an epoxy resin, an epoxy-acrylic resin, an acrylic styrene resin, or a resin obtained by mixing these. Among these, by using the same resin as the binder resin used in the production of the resin-coated boron nitride powder as a polymer, the adhesion of the insulating electrodeposition paint is improved, and an extra particle interface is not created. This is particularly preferable in that the thermal conductivity can be kept high and the electrodeposition conditions can be made constant.

また、上記有機溶媒としては、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N−メチルピロリドン(NMP)、γ−ブチロラクトン(γBL)、アニソール、テトラメチル尿素、及びスルホランから選ばれる1種又は2種以上が挙げられる。   Examples of the organic solvent include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), γ-butyrolactone (γBL), anisole. 1 type (s) or 2 or more types chosen from tetramethylurea and sulfolane.

この実施の形態では、ポリマーとして溶剤可溶性のポリイミド樹脂を用い、有機溶媒としてNMPを用いて、ポリイミドの分散液を調製する。具体的には、先ず、ポリイミド樹脂をNMPに溶解させたポリイミド溶液を調製する。次いでこのポリイミド溶液に中和剤を添加し撹拌してポリイミドを中和した後、ポリイミドの貧溶媒である水を添加し混合・撹拌しポリイミドを析出させて調製する。ここで、中和剤としては、アミノエタノール、トリエチルアミン、トリエタノールアミン、ピリジンなどの塩基性化合物を用いることができる。このように調製されたポリイミドの分散液は、ポリイミド樹脂からなるポリマー粒子が分散した懸濁液となっている。ポリイミドの分散液100質量%中、ポリイミド樹脂からなるポリマー粒子が1〜15質量%分散していることが好ましい。   In this embodiment, a polyimide dispersion is prepared using a solvent-soluble polyimide resin as a polymer and NMP as an organic solvent. Specifically, first, a polyimide solution in which a polyimide resin is dissolved in NMP is prepared. Next, a neutralizing agent is added to the polyimide solution and stirred to neutralize the polyimide, and then water which is a poor solvent for the polyimide is added and mixed and stirred to precipitate the polyimide. Here, basic compounds such as aminoethanol, triethylamine, triethanolamine, and pyridine can be used as the neutralizing agent. The polyimide dispersion thus prepared is a suspension in which polymer particles made of polyimide resin are dispersed. It is preferable that 1 to 15% by mass of polymer particles made of polyimide resin is dispersed in 100% by mass of the polyimide dispersion.

この実施の形態のポリマー粒子の平均粒子径は0.01〜10μmであるのが好ましく、0.05〜1μmがより好ましい。ここで、ポリマー粒子の平均粒子径は、粒度分布測定装置(堀場製作所製LA−950)を用いて測定した粒子径であり、体積基準平均粒子径である。   The average particle size of the polymer particles of this embodiment is preferably 0.01 to 10 μm, more preferably 0.05 to 1 μm. Here, the average particle diameter of the polymer particles is a particle diameter measured using a particle size distribution measuring apparatus (LA-950 manufactured by Horiba, Ltd.), and is a volume-based average particle diameter.

本発明の絶縁電着塗料は、ポリイミドの分散液に上述した樹脂コート窒化ホウ素粉末を添加混合し均一に分散させることにより調製される。絶縁電着塗料中の固形分100質量%中、樹脂コート窒化ホウ素粉末を5〜50質量%添加することが好ましい。樹脂コート窒化ホウ素粉末の添加量が下限値未満では、この絶縁電着塗料から作られる絶縁皮膜の熱伝導度が向上しにくい。またその添加量が上限値を超えると、樹脂コート窒化ホウ素粉末の膜中濃度が高くなり過ぎて、耐電圧の低下や可撓性が著しく低下する。   The insulating electrodeposition paint of the present invention is prepared by adding and mixing the above-mentioned resin-coated boron nitride powder in a polyimide dispersion and uniformly dispersing it. It is preferable to add 5 to 50% by mass of the resin-coated boron nitride powder in 100% by mass of the solid content in the insulating electrodeposition coating. If the addition amount of the resin-coated boron nitride powder is less than the lower limit, the thermal conductivity of the insulating film made from this insulating electrodeposition coating is difficult to improve. On the other hand, if the amount added exceeds the upper limit, the concentration of the resin-coated boron nitride powder in the film becomes too high, and the withstand voltage and flexibility are significantly reduced.

〔絶縁皮膜付きエナメル線の製造方法〕
次に、図面に基づいて上記絶縁電着塗料を用いた絶縁皮膜付きエナメル線の製造方法を説明する。図1に示すように、電着塗装装置10を用いて上記絶縁電着塗料11を電着塗装法により銅線12の表面に電着させて絶縁層(図示せず)を形成する。具体的には、予め、円筒状に巻き込んである横断面円形の円柱状の銅線13を、直流電源14の正極に陽極16を介して電気的に接続しておく。そして、この円柱状の銅線13を図1の実線矢印の方向に引上げて次の各工程を経る。
[Method of manufacturing enameled wire with insulation film]
Next, a method for producing an enameled wire with an insulating film using the above-mentioned insulating electrodeposition paint will be described with reference to the drawings. As shown in FIG. 1, an insulating layer (not shown) is formed by electrodepositing the insulating electrodeposition coating 11 on the surface of a copper wire 12 by an electrodeposition coating method using an electrodeposition coating apparatus 10. Specifically, a cylindrical copper wire 13 having a circular cross section that is wound in a cylindrical shape is electrically connected to a positive electrode of a DC power source 14 via an anode 16 in advance. Then, the cylindrical copper wire 13 is pulled up in the direction of the solid line arrow in FIG.

先ず、第1の工程として、円柱状の銅線13を一対の圧延ローラ17,17により扁平に圧延して、横断面長方形の平角状の銅線12を形成する。次いで、第2の工程として、絶縁電着塗料11を電着槽18に貯えて5〜60℃に維持し、この電着槽18内の絶縁電着塗料11中を平角状の銅線12を通過させる。ここで、電着槽18内の絶縁電着塗料11中には、通過する平角状の銅線12と間隔を設けて直流電源14の負極に電気的に接続された陰極19が挿入される。電着槽18内の絶縁電着塗料11中を平角状の銅線12が通過する際に、直流電源14により1〜300Vの範囲の直流電圧が平角状の銅線12と絶縁電着塗料11との間に0.01〜30秒間印加される。これにより、絶縁電着塗料11である水分散したポリマー粒子(図示せず)と樹脂コート窒化ホウ素粉末が平角状の銅線12の表面に電着されて絶縁層が形成される。   First, as a first step, a cylindrical copper wire 13 is rolled flat by a pair of rolling rollers 17 and 17 to form a rectangular copper wire 12 having a rectangular cross section. Next, as a second step, the insulating electrodeposition paint 11 is stored in the electrodeposition tank 18 and maintained at 5 to 60 ° C., and the rectangular electrodeposited paint wire 11 in the electrodeposition tank 18 is filled with a rectangular copper wire 12. Let it pass. Here, a cathode 19 electrically connected to the negative electrode of the DC power source 14 is inserted into the insulating electrodeposition coating 11 in the electrodeposition tank 18 with a space from the flat rectangular copper wire 12 passing therethrough. When the rectangular copper wire 12 passes through the insulating electrodeposition coating 11 in the electrodeposition tank 18, a DC voltage in the range of 1 to 300 V is applied by the DC power source 14 to the rectangular copper wire 12 and the insulating electrodeposition coating 11. Is applied for 0.01 to 30 seconds. As a result, the water-dispersed polymer particles (not shown) as the insulating electrodeposition coating material 11 and the resin-coated boron nitride powder are electrodeposited on the surface of the flat copper wire 12 to form an insulating layer.

次に、表面に絶縁層が電着された平角状の銅線12に対し、焼付処理することにより、銅線12の表面に絶縁皮膜(図示せず)を形成する。この実施の形態では、表面に上記絶縁層が形成された銅線12を、焼付炉22内を通過させる。上記焼付処理は、熱風加熱炉により行われることが好ましい。また焼付処理の温度は100〜500℃の範囲内であることが好ましく、焼付処理の時間は1〜10分の範囲内であることが好ましい。ここで、焼付処理の温度を100〜500℃の範囲内に限定したのは、100℃未満では絶縁層を十分に乾燥硬化できず、500℃を超えるとポリマーが熱分解してしまうからである。また、焼付処理の時間を1〜10分間の範囲内に限定したのは、1分未満では絶縁層を十分に乾燥硬化できず、10分を超えると樹脂が熱分解してしまうからである。なお、焼付処理の温度は焼付炉内の中央部の温度である。焼付炉22を通過することにより、銅線12の表面を樹脂コート窒化ホウ素粉末を含む絶縁皮膜で被覆したエナメル線23が製造される。このエナメル線23を自動巻線機(例えば、平角線エッジワイズコイル巻線機 HIT-01、日特エンジニアリング株式会社製)を用いてプラスチックボビン等の巻枠の周囲に巻回することによりコイル(図示せず)が形成される。なお、図示しないが、絶縁層の乾燥と焼付処理を200〜250℃の温度で同一の炉で行ってもよい。   Next, an insulating film (not shown) is formed on the surface of the copper wire 12 by baking the rectangular copper wire 12 having an insulating layer electrodeposited on the surface. In this embodiment, the copper wire 12 having the insulating layer formed on the surface is passed through the baking furnace 22. The baking treatment is preferably performed in a hot air heating furnace. Moreover, it is preferable that the temperature of a baking process exists in the range of 100-500 degreeC, and it is preferable that the time of a baking process exists in the range of 1-10 minutes. Here, the reason why the temperature of the baking treatment is limited to the range of 100 to 500 ° C. is that when the temperature is less than 100 ° C., the insulating layer cannot be sufficiently dried and cured, and when the temperature exceeds 500 ° C., the polymer is thermally decomposed. . The reason for limiting the baking time to 1 to 10 minutes is that the insulating layer cannot be sufficiently dried and cured if it is less than 1 minute, and if it exceeds 10 minutes, the resin is thermally decomposed. Note that the temperature of the baking treatment is the temperature of the central portion in the baking furnace. By passing through the baking furnace 22, an enameled wire 23 in which the surface of the copper wire 12 is coated with an insulating film containing a resin-coated boron nitride powder is manufactured. By winding this enamel wire 23 around a winding frame such as a plastic bobbin using an automatic winding machine (for example, a flat wire edgewise coil winding machine HIT-01, manufactured by Nittoku Engineering Co., Ltd.), a coil ( (Not shown) is formed. Although not shown, the insulating layer may be dried and baked at a temperature of 200 to 250 ° C. in the same furnace.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
先ず、平均粒子径が4μmの六方晶窒化ホウ素の一次粒子(SP3:電気化学工業社製)を用意する。この一次粒子をN−メチルピロリドン(NMP)に添加した後、水を添加した。NMP100質量%に対して、上記一次粒子を20質量%、水を10質量%添加し混合した。この混合溶液に超音波をかけ、上記一次粒子を均一に分散させた。次いでNMP100質量%に対して、10質量%の割合で、この分散液にポリアミドイミド樹脂を添加し、10000rpmの回転速度で攪拌し、ポリアミドイミド樹脂をNMPに溶解させた。ポリアミドイミド樹脂が溶解した液を攪拌しながら、この液にポリアミドイミド樹脂の貧溶媒である水を2.5g滴下した。これによりポリアミドイミド樹脂が析出して六方晶窒化ホウ素の一次粒子の表面にポリマー粒子が付着し、攪拌により樹脂コート窒化ホウ素粉末が形成された。液を濾過し、固形分を乾燥して樹脂コート窒化ホウ素粉末を得た。続いてこの樹脂コート窒化ホウ素粉末を濃度5質量%になるように純水30質量%とNMP70質量%の割合のNMP溶液に添加し、超音波をかけて分散液を作製した。この分散液に、ベース樹脂となるポリアミドイミド樹脂からなるポリマー粒子が7質量%分散した別の分散液を、分散液中の固形分のうち、ポリアミドイミド樹脂の割合が80質量%となるように添加して絶縁電着塗料を作製した。
<Example 1>
First, primary particles of hexagonal boron nitride having an average particle diameter of 4 μm (SP3: manufactured by Denki Kagaku Kogyo Co., Ltd.) are prepared. After adding the primary particles to N-methylpyrrolidone (NMP), water was added. 20% by mass of the primary particles and 10% by mass of water were added to and mixed with 100% by mass of NMP. The mixed solution was ultrasonically applied to uniformly disperse the primary particles. Next, a polyamideimide resin was added to the dispersion at a ratio of 10% by mass with respect to 100% by mass of NMP, and the mixture was stirred at a rotational speed of 10,000 rpm to dissolve the polyamideimide resin in NMP. While stirring the solution in which the polyamideimide resin was dissolved, 2.5 g of water, which is a poor solvent for the polyamideimide resin, was added dropwise to this solution. As a result, the polyamideimide resin was precipitated, the polymer particles adhered to the surface of the primary particles of hexagonal boron nitride, and the resin-coated boron nitride powder was formed by stirring. The liquid was filtered, and the solid content was dried to obtain a resin-coated boron nitride powder. Subsequently, this resin-coated boron nitride powder was added to an NMP solution in a ratio of 30% by mass of pure water and 70% by mass of NMP so as to have a concentration of 5% by mass, and an ultrasonic wave was applied to prepare a dispersion. In this dispersion, another dispersion in which 7% by mass of polymer particles made of a polyamideimide resin as a base resin is dispersed is adjusted so that the ratio of the polyamideimide resin is 80% by mass in the solid content of the dispersion. An insulating electrodeposition paint was prepared by addition.

ここで、ポリイミドの分散液は、ポリイミドの分散液100質量%中、NMPが66質量%、水が7質量%、1−メトキシ-2−プロパノールが20質量%、0.1質量%の2−アミノエタノール、ポリイミド樹脂からなるポリマー粒子が7質量%分散したものを用いた。絶縁電着塗料を作製後、電着塗装法により厚さ0.3mmの銅板の表面に電着させ、40μm厚の絶縁層を形成し、これを大気雰囲気下、250℃で3分、乾燥と焼付処理を行って絶縁皮膜を作製した。   Here, the polyimide dispersion is composed of 66% by mass of NMP, 7% by mass of water, 20% by mass of 1-methoxy-2-propanol, and 0.1% by mass of 100% by mass of the polyimide dispersion. What dispersed the polymer particle which consists of aminoethanol and a polyimide resin 7 mass% was used. After producing the insulating electrodeposition paint, it is electrodeposited on the surface of a copper plate having a thickness of 0.3 mm by an electrodeposition coating method to form an insulating layer having a thickness of 40 μm, which is dried at 250 ° C. for 3 minutes in an air atmosphere. An insulating film was produced by baking treatment.

<実施例2>
実施例1の樹脂コート窒化ホウ素粉末を形成するためのポリアミドイミド樹脂の代わりに、ポリイミド樹脂を用いた以外、実施例1と同様にして、樹脂コート窒化ホウ素粉末を得た。
<Example 2>
Resin-coated boron nitride powder was obtained in the same manner as in Example 1, except that a polyimide resin was used instead of the polyamide-imide resin for forming the resin-coated boron nitride powder of Example 1.

<実施例3>
実施例1の樹脂コート窒化ホウ素粉末を形成するためのポリアミドイミド樹脂の代わりに、ポリエステルイミド樹脂を用いた以外、実施例1と同様にして、樹脂コート窒化ホウ素粉末を得た。
<Example 3>
Resin-coated boron nitride powder was obtained in the same manner as in Example 1, except that a polyesterimide resin was used instead of the polyamide-imide resin for forming the resin-coated boron nitride powder of Example 1.

<実施例4>
実施例1の樹脂コート窒化ホウ素粉末を形成するためのポリアミドイミド樹脂の代わりに、ポリエステル樹脂を用いた以外、実施例1と同様にして、樹脂コート窒化ホウ素粉末を得た。
<Example 4>
Resin-coated boron nitride powder was obtained in the same manner as in Example 1, except that a polyester resin was used instead of the polyamide-imide resin for forming the resin-coated boron nitride powder of Example 1.

<実施例5>
実施例1の樹脂コート窒化ホウ素粉末を形成するためのポリアミドイミド樹脂の代わりに、ポリウレタン樹脂を用いた以外、実施例1と同様にして、樹脂コート窒化ホウ素粉末を得た。
<Example 5>
Resin-coated boron nitride powder was obtained in the same manner as in Example 1, except that a polyurethane resin was used instead of the polyamide-imide resin for forming the resin-coated boron nitride powder of Example 1.

<実施例6>
実施例1の六方晶窒化ホウ素の一次粒子の代わりに、平均粒子径が8μmの六方晶窒化ホウ素の一次粒子(GP:電気化学工業社製)を用いた以外、実施例1と同様にして、樹脂コート窒化ホウ素粉末を得た。また実施例1と同様にして、絶縁皮膜を作製した。
<Example 6>
Instead of the primary particles of hexagonal boron nitride in Example 1, primary particles of hexagonal boron nitride having an average particle diameter of 8 μm (GP: manufactured by Denki Kagaku Kogyo Co., Ltd.) were used. A resin-coated boron nitride powder was obtained. Further, an insulating film was produced in the same manner as in Example 1.

<実施例7>
実施例1の六方晶窒化ホウ素の一次粒子の代わりに、平均粒子径が16μmの六方晶窒化ホウ素の一次粒子(PCTP16:Saint Gobain社製)を用いた以外、実施例1と同様にして、樹脂コート窒化ホウ素粉末を得た。また実施例1と同様にして、絶縁皮膜を作製した。
<Example 7>
Resin in the same manner as in Example 1 except that primary particles of hexagonal boron nitride having an average particle diameter of 16 μm (PCTP16: manufactured by Saint Gobain) were used instead of the primary particles of hexagonal boron nitride in Example 1. Coated boron nitride powder was obtained. Further, an insulating film was produced in the same manner as in Example 1.

<比較例1>
実施例1の出発原料である六方晶窒化ホウ素の一次粒子(SP3:電気化学工業社製)を比較例1とした。即ち、上記一次粒子を樹脂コート窒化ホウ素粉末にすることなく、この一次粒子から実施例1と同様にして、絶縁皮膜を作製した。
<Comparative Example 1>
The primary particles of hexagonal boron nitride (SP3: manufactured by Denki Kagaku Kogyo Co., Ltd.), which is the starting material of Example 1, was used as Comparative Example 1. That is, an insulating film was produced from the primary particles in the same manner as in Example 1 without using the primary particles as resin-coated boron nitride powder.

<比較例2>
実施例6の出発原料である六方晶窒化ホウ素の一次粒子(GP:電気化学工業社製)を比較例2とした。即ち、上記一次粒子を樹脂コート窒化ホウ素粉末にすることなく、この一次粒子から実施例1と同様にして、絶縁皮膜を作製した。
<Comparative example 2>
The primary particles of hexagonal boron nitride (GP: manufactured by Denki Kagaku Kogyo Co., Ltd.), which is the starting material of Example 6, was used as Comparative Example 2. That is, an insulating film was produced from the primary particles in the same manner as in Example 1 without using the primary particles as resin-coated boron nitride powder.

<比較例3>
実施例7の出発原料である六方晶窒化ホウ素の一次粒子(PCTP16:Saint Gobain社製)を比較例3とした。即ち、上記一次粒子を樹脂コート窒化ホウ素粉末にすることなく、この一次粒子から実施例1と同様にして、絶縁皮膜を作製した。
<Comparative Example 3>
The primary particles of hexagonal boron nitride (PCTP16: manufactured by Saint Gobain), which is the starting material of Example 7, was used as Comparative Example 3. That is, an insulating film was produced from the primary particles in the same manner as in Example 1 without using the primary particles as resin-coated boron nitride powder.

<比較例4>
実施例1の出発原料である六方晶窒化ホウ素の一次粒子(SP3:電気化学工業社製)を用意する。この一次粒子をエタノール中に5質量%の割合で分散し、この分散液に窒化ホウ素粉末に対して2質量%となるようシランカップリング剤(KBM−603:信越化学工業社製)を添加した。この液を室温で24時間攪拌し、その後反応液を濾過した。更に固形分を120℃で12時間乾燥して、アミノ基で修飾された窒化ホウ素粉末を得た。この窒化ホウ素粉末を樹脂コート窒化ホウ素粉末にすることなく、この窒化ホウ素粉末から実施例1と同様にして、絶縁皮膜を作製した。
<Comparative example 4>
Primary particles of hexagonal boron nitride (SP3: manufactured by Denki Kagaku Kogyo Co., Ltd.), which is the starting material of Example 1, are prepared. The primary particles were dispersed in ethanol at a ratio of 5% by mass, and a silane coupling agent (KBM-603: manufactured by Shin-Etsu Chemical Co., Ltd.) was added to the dispersion to 2% by mass with respect to the boron nitride powder. . This solution was stirred at room temperature for 24 hours, and then the reaction solution was filtered. Further, the solid content was dried at 120 ° C. for 12 hours to obtain a boron nitride powder modified with amino groups. An insulating film was produced from this boron nitride powder in the same manner as in Example 1 without using this boron nitride powder as a resin-coated boron nitride powder.

<比較例5>
実施例1の出発原料である六方晶窒化ホウ素の一次粒子(SP3:電気化学工業社製)を用意する。この一次粒子をコール酸ナトリウムの分散剤(窒化ホウ素に対して2質量%添加)により5質量%になるように水に分散させ、超音波をかけることで窒化ホウ素粉末分散液を得た。この分散液をそのまま使用し、分散剤で処理された窒化ホウ素粉末を得た。この窒化ホウ素粉末を樹脂コート窒化ホウ素粉末にすることなく、この窒化ホウ素粉末から実施例1と同様にして、絶縁皮膜を作製した。
<Comparative Example 5>
Primary particles of hexagonal boron nitride (SP3: manufactured by Denki Kagaku Kogyo Co., Ltd.), which is the starting material of Example 1, are prepared. The primary particles were dispersed in water to a concentration of 5% by mass with a sodium cholate dispersant (2% by mass added to boron nitride), and ultrasonic waves were applied to obtain a boron nitride powder dispersion. This dispersion was used as it was to obtain boron nitride powder treated with a dispersant. An insulating film was produced from this boron nitride powder in the same manner as in Example 1 without using this boron nitride powder as a resin-coated boron nitride powder.

<比較試験及び評価その1>
実施例1〜7及び比較例1〜4で得られた窒化ホウ素粉末又は六方晶窒化ホウ素一次粒子を、濃度1質量%になるように、純水30質量%とNMP70質量%の割合のNMP溶液に添加し、超音波をかけて分散液を調製した。これらの分散液を、 (1)調製直後、(2)調製してから5時間後及び(3)調製してから24時間後に、溶液のまま粒度分布測定装置(堀場製作所製、LA−960)を用いて粒度分布を測定してメジアン径D50を求めた。また比較例5に関しては、比較例5で作製した分散液を窒化ホウ素の濃度1質量%になるように、純水30質量%とNMP70質量%の割合のNMP溶液に添加し、超音波をかけて分散液を作製した。その後、(1)調製直後、(2)調製してから5時間後及び(3)調製してから24時間後に、粒度分布測定装置(堀場製作所製、LA−960)を用いて測定し、メジアン径D50を求めた。なお5時間経過するまで、及び24時間経過するまでの間は、分散液を50rpm程度の回転速度で分散液を攪拌した。その結果を表1に示す。
<Comparative test and evaluation 1>
NMP solution of 30% by mass of pure water and 70% by mass of NMP so that the boron nitride powder or the hexagonal boron nitride primary particles obtained in Examples 1 to 7 and Comparative Examples 1 to 4 have a concentration of 1% by mass. And a dispersion was prepared by applying ultrasonic waves. These dispersions were (1) immediately after preparation, (2) 5 hours after preparation, and (3) 24 hours after preparation, and the particle size distribution measuring device (LA-960, manufactured by Horiba, Ltd.) as a solution. It was determined median diameter D 50 by measuring the particle size distribution using. As for Comparative Example 5, the dispersion prepared in Comparative Example 5 was added to an NMP solution having a ratio of 30% by mass of pure water and 70% by mass of NMP so that the boron nitride concentration was 1% by mass, and ultrasonic waves were applied. A dispersion was prepared. Thereafter, (1) immediately after preparation, (2) 5 hours after preparation, and (3) 24 hours after preparation, measurement was performed using a particle size distribution analyzer (Horiba, LA-960), and the median It was determined diameter D 50. The dispersion was stirred at a rotational speed of about 50 rpm until 5 hours passed and 24 hours passed. The results are shown in Table 1.

Figure 2017066014
Figure 2017066014

表1から明らかなように、比較例1〜3及び比較例4、5の分散液の窒化ホウ素粉末の粒度分布を調べると、分散液の調製から時間が経過するに従って平均粒子径D50が増大した。これに対して、実施例1〜7の分散液の窒化ホウ素粉末の粒度分布を調べると、分散液の調製から時間が経過しても平均粒子径D50は殆ど変化しなかった。 As apparent from Table 1, when examining the particle size distribution of the boron nitride powder of the dispersion of Comparative Examples 1 to 3 and Comparative Examples 4 and 5, the average particle diameter D 50 in accordance with the lapse of time from the preparation of the dispersion increases did. In contrast, examining the particle size distribution of the boron nitride powder of a dispersion of Examples 1-7, the dispersion average particle diameter D 50 over time from the preparation of hardly changed.

<比較試験及び評価その2>
実施例1〜7及び比較例1〜5で得られた窒化ホウ素粉末又は六方晶窒化ホウ素一次粒子の分散液を調製した後の経過時間毎に絶縁皮膜を作製した。具体的には、(1)調製直後の分散液、(2)調製してから5時間後の分散液及び(3)調製してから24時間後の分散液からそれぞれ絶縁皮膜を作製した。これらの絶縁皮膜の熱伝導度及び耐電圧をそれぞれ次の方法により測定した。これらの結果を表2に示す。
<Comparative test and evaluation 2>
Insulating films were prepared every time elapsed after the dispersions of the boron nitride powders or the hexagonal boron nitride primary particles obtained in Examples 1 to 7 and Comparative Examples 1 to 5 were prepared. Specifically, an insulating film was prepared from (1) the dispersion immediately after preparation, (2) the dispersion after 5 hours from the preparation, and (3) the dispersion after 24 hours from the preparation. The thermal conductivity and withstand voltage of these insulating films were measured by the following methods, respectively. These results are shown in Table 2.

Figure 2017066014
Figure 2017066014

(1)絶縁皮膜の熱伝導度
絶縁皮膜の垂直方向の熱伝導度は、NETZSCH-GeratebauGmbH製のLFA477 Nanoflash を用いたレーザーフラッシュ法で測定した。測定には界面熱抵抗を考慮しない2層モデルを用いた。なお、銅板の厚さは既述したように0.3mm、銅板の熱拡散率は117.2mm/秒を用いた。絶縁皮膜の熱伝導度の計算には、窒化ホウ素の密度2.1g/cm、窒化ホウ素の比熱0.8J/gK、ポリイミド樹脂の密度1.4g/cm、ポリイミド樹脂の比熱1.13J/gKを用いた。
(1) Thermal conductivity of insulating film The thermal conductivity in the vertical direction of the insulating film was measured by a laser flash method using an LFA477 Nanoflash manufactured by NETZSCH-Geratebau GmbH. A two-layer model that does not consider the interfacial thermal resistance was used for the measurement. As described above, the thickness of the copper plate was 0.3 mm, and the thermal diffusivity of the copper plate was 117.2 mm 2 / sec. For calculating the thermal conductivity of the insulating film, the density of boron nitride was 2.1 g / cm 3 , the specific heat of boron nitride was 0.8 J / gK, the density of polyimide resin was 1.4 g / cm 3 , and the specific heat of polyimide resin was 1.13 J / GK was used.

(2)絶縁皮膜の耐電圧
絶縁皮膜の耐電圧は、株式会社計測技研の多機能安全試験器7440を用いて測定した。銅板と絶縁皮膜にそれぞれ電極を接続し、6000Vまで30秒で昇圧し、両電極間に流れる電流が5000μAになった時点の電圧を絶縁皮膜の厚さで除算し、この値を耐電圧とした。
(2) Dielectric withstand voltage of the insulating film The withstand voltage of the insulating film was measured using a multifunctional safety tester 7440 of Keiki Giken Co., Ltd. The electrodes were connected to the copper plate and the insulating film, respectively, boosted to 6000 V in 30 seconds, the voltage when the current flowing between both electrodes reached 5000 μA was divided by the thickness of the insulating film, and this value was taken as the withstand voltage. .

表2から明らかなように、実施例1〜7の絶縁皮膜の耐電圧と熱伝導度は、調製直後から5時間経過後及び24時間経過後でも、調製直後に作られた絶縁皮膜の耐電圧と熱伝導度と比較してほぼ変化していない。これに対して比較例1〜3の樹脂コートをしていない窒化ホウ素粉末を含む絶縁電着塗料を調製してから5時間経過後及び24時間経過後に作られた絶縁皮膜の耐電圧及び熱伝導率は、調製直後の比較例1〜3の耐電圧及び熱伝導率と比較して低下する。即ち、樹脂コートしていない窒化ホウ素粉末の絶縁電着塗料は、保存安定性に欠けるのに対して、樹脂コートした実施例1〜7の絶縁電着塗料は保存安定性が良く、長期にわたって安定的に耐電圧と熱伝導度に優れた絶縁皮膜を作製することが分かった。   As is clear from Table 2, the withstand voltage and thermal conductivity of the insulating films of Examples 1 to 7 are the withstand voltages of the insulating films made immediately after the preparation, even after 5 hours and 24 hours from immediately after the preparation. And almost no change compared to thermal conductivity. On the other hand, the withstand voltage and heat conduction of the insulating coatings made after 5 hours and after 24 hours from the preparation of the insulating electrodeposition coating containing the boron nitride powder not coated with the resin of Comparative Examples 1 to 3 A rate falls compared with the withstand voltage and heat conductivity of Comparative Examples 1-3 immediately after preparation. That is, the insulating electrodeposition coating material of boron nitride powder not coated with resin lacks storage stability, whereas the insulating electrodeposition coating materials of Examples 1 to 7 coated with resin have good storage stability and are stable over a long period of time. In particular, it was found that an insulating film excellent in withstand voltage and thermal conductivity was produced.

また比較例4のシランカップリング剤で六方晶窒化ホウ素を処理した窒化ホウ素粉末を含む絶縁電着塗料を調製してから5時間経過後及び24時間経過後に作られた絶縁皮膜の耐電圧及び熱伝導率は、比較例4の調製直後の耐電圧及び熱伝導率と比較して低下する。即ち、比較例4の絶縁電着塗料も保存安定性が十分でない。また比較例5の分散剤で六方晶窒化ホウ素を処理した窒化ホウ素粉末を含む絶縁電着塗料を調製してから5時間経過後及び24時間経過後に作られた絶縁皮膜の耐電圧及び熱伝導率は、比較例5の調製直後の耐電圧及び熱伝導率と比較して低下する。即ち、比較例5の絶縁電着塗料も保存安定性が十分でない。   Further, the withstand voltage and heat of an insulating film produced after 5 hours and 24 hours from the preparation of an insulating electrodeposition coating containing boron nitride powder obtained by treating hexagonal boron nitride with the silane coupling agent of Comparative Example 4 The conductivity is lower than the withstand voltage and thermal conductivity immediately after preparation of Comparative Example 4. That is, the insulating electrodeposition paint of Comparative Example 4 is also not sufficiently stable in storage. Further, the withstand voltage and thermal conductivity of an insulating film formed after 5 hours and 24 hours from the preparation of an insulating electrodeposition coating containing boron nitride powder obtained by treating hexagonal boron nitride with the dispersant of Comparative Example 5 Decreases compared to the withstand voltage and thermal conductivity immediately after preparation of Comparative Example 5. That is, the insulating electrodeposition paint of Comparative Example 5 is also not sufficiently stable in storage.

なお、比較例1〜5の絶縁電着塗料を用いた場合、経時的に皮膜特性が劣化する結果について考察すると、この結果は、耐電圧の低下は窒化ホウ素粉末の凝集に伴って、凝集粒子内部空孔が生じるためと、粒径が大きくなることによって窒化ホウ素濃度が不均一になるため、局所的に窒化ホウ素濃度が高い部分ができ、その部分で絶縁破壊が起きやすくなるためと考えられる。また熱伝導度が僅かに低下するのは、凝集粒子内部に空孔が生じるためと考えられる。これに対して、実施例1〜7の樹脂コートした窒化ホウ素粉末を含む絶縁電着塗料を調製してから5時間経過後及び24時間経過後に作られた絶縁皮膜の耐電圧及び熱伝導率は、実施例1〜7の樹脂コートした窒化ホウ素粉末を含む絶縁電着塗料を調製した直後のそれぞれの耐電圧及び熱伝導率と比較して、殆ど低下しない。これは樹脂コートした窒化ホウ素粉末は凝集しにくいため、凝集粒子由来の空孔が生じないためと、また皮膜中の窒化ホウ素濃度がより均一になるため、局所的な絶縁破壊が起こりにくいためと考えられる。   In addition, when using the insulating electrodeposition paints of Comparative Examples 1 to 5, considering the result that the film characteristics deteriorate with time, this result shows that the decrease in withstand voltage is caused by the aggregation of the boron nitride powder. This is thought to be due to the formation of internal vacancies and the unevenness of boron nitride concentration due to the increase in particle size, resulting in the formation of a locally high portion of boron nitride concentration, which tends to cause dielectric breakdown. . The reason why the thermal conductivity slightly decreases is considered to be that voids are generated inside the aggregated particles. On the other hand, the withstand voltage and the thermal conductivity of the insulating film made after 5 hours and 24 hours from the preparation of the insulating electrodeposition paint containing the resin-coated boron nitride powder of Examples 1 to 7 are As compared with the respective withstand voltages and thermal conductivities immediately after preparing the insulating electrodeposition paints containing the resin-coated boron nitride powders of Examples 1 to 7, there is almost no decrease. This is because the resin-coated boron nitride powder is less likely to agglomerate, so there are no vacancies derived from the agglomerated particles, and the boron nitride concentration in the film is more uniform, so local dielectric breakdown is less likely to occur. Conceivable.

本発明の樹脂コート窒化ホウ素粉末は、絶縁電着塗料のフィラーとして用いられ、この絶縁電着塗料から作られる絶縁皮膜に利用される。更に樹脂コート窒化ホウ素粉末はこの絶縁皮膜で被覆されるエナメル線やエナメル線を巻回したコイルに利用される。樹脂コート窒化ホウ素粉末の分散液は絶縁電着塗料として用いられる。   The resin-coated boron nitride powder of the present invention is used as a filler for an insulating electrodeposition coating, and is used for an insulating film made from this insulating electrodeposition coating. Further, the resin-coated boron nitride powder is used for an enameled wire coated with this insulating film and a coil wound with the enameled wire. A dispersion of resin-coated boron nitride powder is used as an insulating electrodeposition coating.

Claims (7)

窒化ホウ素一次粒子の表面の一部又は全部又は前記窒化ホウ素一次粒子の凝集粒子の表面の一部又は全部がバインダ樹脂により被覆されてなる樹脂コート窒化ホウ素粉末。   A resin-coated boron nitride powder in which a part or all of the surface of the boron nitride primary particles or a part or all of the surface of the aggregated particles of the boron nitride primary particles is coated with a binder resin. 前記バインダ樹脂がポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ポリエステル樹脂又はポリウレタン樹脂或いはこれらを混合した樹脂である請求項1記載の樹脂コート窒化ホウ素粉末。   The resin-coated boron nitride powder according to claim 1, wherein the binder resin is a polyimide resin, a polyamideimide resin, a polyesterimide resin, a polyester resin, a polyurethane resin, or a resin obtained by mixing these. 請求項1又は2記載の樹脂コート窒化ホウ素粉末が分散媒に分散してなる分散液。   A dispersion obtained by dispersing the resin-coated boron nitride powder according to claim 1 or 2 in a dispersion medium. 前記分散媒がN−メチルピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、1,3ジメチルイミダゾリジノン、ジメチルスルホキシド(DMSO)又はγ−ブチロラクトン(γBL)である請求項3記載の分散液。   The dispersion medium is N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), 1,3 dimethylimidazolidinone, dimethyl sulfoxide (DMSO) or γ-butyrolactone ( The dispersion according to claim 3, which is γBL). 請求項3又は4記載の分散液と、ポリマーを有機溶媒に溶解させた溶液にこのポリマーの貧溶媒を添加混合してこのポリマーを析出させて調製されたポリマー分散液とを混合して絶縁電着塗料を製造する方法。   The dispersion according to claim 3 is mixed with a polymer dispersion prepared by adding a poor solvent of the polymer to a solution in which the polymer is dissolved in an organic solvent, and precipitating the polymer, thereby insulating the dielectric. A method of manufacturing a paint. 請求項5記載の方法により製造された絶縁電着塗料を用いて電着方法により銅線の表面に前記樹脂からなる絶縁層を形成した後、焼付処理することにより、前記銅線を前記樹脂からなる絶縁皮膜により被覆してエナメル線を製造する方法。   The insulating layer made of the resin is formed on the surface of the copper wire by the electrodeposition method using the insulating electrodeposition coating produced by the method according to claim 5, and then the baking process is performed to remove the copper wire from the resin. A method for producing an enameled wire by coating with an insulating film. 請求項6記載の方法により製造されたエナメル線を巻回してコイルを製造する方法。   A method of manufacturing a coil by winding an enameled wire manufactured by the method according to claim 6.
JP2015196508A 2015-10-02 2015-10-02 Resin-coated boron nitride powder, and dispersion liquid thereof Pending JP2017066014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015196508A JP2017066014A (en) 2015-10-02 2015-10-02 Resin-coated boron nitride powder, and dispersion liquid thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015196508A JP2017066014A (en) 2015-10-02 2015-10-02 Resin-coated boron nitride powder, and dispersion liquid thereof

Publications (1)

Publication Number Publication Date
JP2017066014A true JP2017066014A (en) 2017-04-06

Family

ID=58493919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015196508A Pending JP2017066014A (en) 2015-10-02 2015-10-02 Resin-coated boron nitride powder, and dispersion liquid thereof

Country Status (1)

Country Link
JP (1) JP2017066014A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110818927A (en) * 2019-10-28 2020-02-21 深圳大学 Heat-conducting gelatin composite film and preparation method thereof
CN115991927A (en) * 2022-11-15 2023-04-21 西安建筑科技大学 Flame-retardant heat-conducting epoxy resin composite material and preparation method thereof
KR102639058B1 (en) * 2022-09-13 2024-02-21 윌코 주식회사 Boron nitride composite and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110818927A (en) * 2019-10-28 2020-02-21 深圳大学 Heat-conducting gelatin composite film and preparation method thereof
KR102639058B1 (en) * 2022-09-13 2024-02-21 윌코 주식회사 Boron nitride composite and manufacturing method thereof
CN115991927A (en) * 2022-11-15 2023-04-21 西安建筑科技大学 Flame-retardant heat-conducting epoxy resin composite material and preparation method thereof
CN115991927B (en) * 2022-11-15 2023-08-11 西安建筑科技大学 Flame-retardant heat-conducting epoxy resin composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6547537B2 (en) Boron nitride agglomerated particles for thin film formation, insulating coating, method of producing the agglomerated particles, method of producing an insulating electrodeposition paint, enameled wire and coil
JP6973576B2 (en) Electrodeposition liquid for forming water-dispersed insulating film
JP7420202B2 (en) Insulated conductor and method for manufacturing insulated conductor
JP5422381B2 (en) Insulating material
JP2017066014A (en) Resin-coated boron nitride powder, and dispersion liquid thereof
TWI737892B (en) Electrodeposition solution and method of producing conductor with insulating coating formed by using same
CN102732146B (en) Insulating varnish composition and use the insulated wire of this insulating varnish composition
JP6787147B2 (en) Electrodeposition liquid and electrodeposition coating body
WO2016190164A1 (en) Water-dispersed electrodeposition liquid for forming insulating coating film
JP5194755B2 (en) Enameled wire
JP4131168B2 (en) Partially discharge resistant insulation paint and insulated wire
KR20120106076A (en) Corona discharge-resistant insulating varnish composition and insulated wire containing insulated layer coated with the same
JP2013234257A (en) Electrodeposition paint composition and electrodeposition method and insulation member
WO2017141885A1 (en) Electrodeposition liquid and electrodeposition-coated article
CN107709632B (en) Electrodeposition liquid for forming water-dispersed insulating coating film
JP2019039024A (en) Insulated flat rectangular conductor with high-aspect-ratio, production method thereof, and coil
JP2019012632A (en) Insulation film
CN111518468A (en) Polyamide-imide varnish, and preparation method and application thereof
JP2017059335A (en) Insulation film
WO2017110188A1 (en) Aqueous dispersion type electrodeposition liquid for insulating-film formation
JP3419243B2 (en) Silica finely dispersed polyimide enameled wire
JPS5825368A (en) Electrically conductive coating composition
JP2002298674A (en) Manufacturing method of insulation wire and insulation wire
WO2017002666A1 (en) Water-dispersed electrodeposition liquid for forming insulating coating film
JP6760236B2 (en) Insulated wire manufacturing method and electrodeposition coating equipment used for it