JP2010251615A - Method of manufacturing conductor coil with insulating film, and conductor coil with insulating film - Google Patents

Method of manufacturing conductor coil with insulating film, and conductor coil with insulating film Download PDF

Info

Publication number
JP2010251615A
JP2010251615A JP2009101264A JP2009101264A JP2010251615A JP 2010251615 A JP2010251615 A JP 2010251615A JP 2009101264 A JP2009101264 A JP 2009101264A JP 2009101264 A JP2009101264 A JP 2009101264A JP 2010251615 A JP2010251615 A JP 2010251615A
Authority
JP
Japan
Prior art keywords
coil
wire
coating
conductor
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009101264A
Other languages
Japanese (ja)
Inventor
Yasuhiro Matsumoto
保浩 松本
Fumiaki Hasegawa
文昭 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Electronics Co Ltd
Original Assignee
Daido Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Electronics Co Ltd filed Critical Daido Electronics Co Ltd
Priority to JP2009101264A priority Critical patent/JP2010251615A/en
Publication of JP2010251615A publication Critical patent/JP2010251615A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulating Of Coils (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a conductor coil with an insulating film that removes restrictions of conventional processing and restrictions on coil design when a linear wire is wound into a coil, solves the problem that an insulating film is damaged by a foreign matter during the processing, and forms the thick insulating film with uniform thickness. <P>SOLUTION: The wire made of an electric conductor is wound into the coil first, a surface of the wire is subjected to electrodeposition painting using an electrodeposition paint liquid containing a thermosetting resin as a resin component, and then the coil 10 is heated while being pressed along the axis to subject a deposited film 20 of paint particles to fusion and curing reaction between wires which are adjacent along the axis of the coil 10, thereby forming the insulating film 22 covering wire surfaces. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、インダクタンス部品であるリアクトル等に用いて好適な絶縁被膜付き導体コイルの製造方法及び絶縁被膜付き導体コイルに関する。   The present invention relates to a method for manufacturing a conductor coil with an insulating coating and a conductor coil with an insulating coating that are suitable for use in a reactor or the like that is an inductance component.

インダクタンス部品であるリアクトル等に用いられる導体コイルは、従来、先ず電気導体である直線状の線材(素線材)の表面を被覆する状態に絶縁被膜を形成し、その後に所定形状のコイルに巻き加工して製造していた。   Conventionally, a conductor coil used for a reactor or the like that is an inductance component is conventionally formed by first forming an insulating film so as to cover the surface of a linear wire (elementary wire) that is an electric conductor, and then winding the coil into a predetermined shape. And manufactured.

その際の絶縁被膜の形成方法としては、絶縁性の樹脂(例えばポリアミドイミド)を溶剤に溶かして所定粘性とした液(ワニス)を上記の直線状の線材の表面に塗布し、その後これを乾燥及び硬化反応させて被膜形成する方法が一般に用いられていた。   In this case, the insulating film is formed by applying a liquid (varnish) having a predetermined viscosity by dissolving an insulating resin (for example, polyamideimide) in a solvent, and then drying it. In general, a method of forming a film by a curing reaction has been used.

しかしながらこのように予め絶縁被膜を施した状態の直線状の線材を成形加工機にて所定形状のコイルに巻き加工する場合、以下のような様々な問題が生ずる。
第1に、巻き加工によって線材表面の絶縁被膜が、コイルの内径側では圧縮の力を、外径側では引張の力を受けて絶縁被膜に無理な力が加わり、これによって絶縁被膜に歪みが発生し、場合によって絶縁被膜が破断したり亀裂発生したりしてしまう問題が生ずる。
However, when a linear wire with an insulating film applied in advance is wound around a coil having a predetermined shape by a molding machine, the following various problems arise.
First, the insulation coating on the surface of the wire material is subjected to a compressive force on the inner diameter side of the coil and a tensile force on the outer diameter side due to the winding process, and an unreasonable force is applied to the insulation coating, thereby distorting the insulation coating. In some cases, the insulating coating breaks or cracks occur.

またこうした不具合を回避するため、巻き加工に際して曲げの曲率を大きくすることが難しく(きつい曲げRで曲げを行うことができず)、曲げの半径を大きくせざるを得ないこととなって、曲げ部の曲げ加工の仕方に(コイルの曲げ部のRの付け方に)制約が生じてしまうといった問題があった。
またこれに伴ってコイル形状の設計の自由度も自ずと制約されてしまうといった問題が生じていた。
Also, in order to avoid such problems, it is difficult to increase the curvature of bending during winding (because bending cannot be performed with tight bending R), and the bending radius must be increased. There is a problem that there is a restriction on the way of bending the part (how to apply the R of the bent part of the coil).
Along with this, there has been a problem that the degree of freedom in designing the coil shape is naturally limited.

その他に、線材を成形加工機にて曲げ加工する際に、ゴミその他の異物が絶縁被膜に付着し且つこれに食い込んでしまうといったことも生じ、この場合その異物にて絶縁被膜が傷付いたり穴開きしたりし、何れも絶縁被膜付き導体コイルの絶縁性能の信頼性を損なう要因となる。   In addition, when bending the wire with a molding machine, dust and other foreign matters may adhere to the insulating coating and bite into the insulating coating. Any of these may be a factor that impairs the reliability of the insulation performance of the conductor coil with an insulation coating.

また上記のように線材に対して絶縁性の樹脂のワニスを塗布し、硬化させることによって絶縁被膜を形成する従来の方法の場合、絶縁被膜を厚膜に形成することが難しく(膜厚は25μm程度である)、そのことが絶縁被膜付き導体コイルに高電圧をかけたときの耐電圧性(絶縁破壊電圧)を十分に高くすることを困難化する原因となっていた。   In addition, in the case of the conventional method of forming an insulating film by applying and curing an insulating resin varnish to the wire as described above, it is difficult to form the insulating film into a thick film (film thickness is 25 μm). This is a cause that makes it difficult to sufficiently increase the voltage resistance (dielectric breakdown voltage) when a high voltage is applied to the conductor coil with an insulating coating.

以上の外、上記の方法にて製造した絶縁被膜付き導体コイルの場合、あたかもアコーディオンのようにコイル自体が伸びたり変形したりし易く、その後のハンドリングに際しても次のような問題が生じていた。   In addition to the above, in the case of a conductor coil with an insulating coating manufactured by the above method, the coil itself is easily stretched and deformed as if it were an accordion, and the following problems have arisen during subsequent handling.

例えば上記のリアクトルとして軟磁性粉と熱硬化性樹脂との混合材料にてコアを成形し、その成形体の内部に絶縁被膜付きコイルを埋込状態に一体化した形態のものが知られており、その製造方法として、外ケースないし容器の内部に導体コイルをセットした状態で、熱硬化性樹脂の液に軟磁性粉を分散状態に混合したものを、外ケースないし容器の内部に注入し、その後これを所定温度に加熱し且つ所定時間かけて樹脂を硬化反応させて、コアを成形すると同時にコイルと一体化させる方法が提案されている(例えば下記特許文献1)。   For example, a reactor is known in which a core is molded with a mixed material of soft magnetic powder and a thermosetting resin, and a coil with an insulating coating is integrated in an embedded state inside the molded body. As the manufacturing method, with the conductor coil set inside the outer case or container, a mixture of soft magnetic powder dispersed in a thermosetting resin liquid is injected into the outer case or container, Thereafter, a method has been proposed in which this is heated to a predetermined temperature and a resin is cured and reacted for a predetermined time to form a core and at the same time be integrated with a coil (for example, Patent Document 1 below).

またその他の製造方法として、絶縁被膜付き導体コイルを成形型のキャビティ内にセットし、その状態で軟磁性粉と熱可塑性樹脂との混合材料を射出成形機にてキャビティ内に射出し、コアを成形(射出成形)すると同時に、その内部にコイルを一体化するといった方法も考えられている。   As another manufacturing method, a conductor coil with an insulating coating is set in a cavity of a molding die, and in that state, a mixed material of soft magnetic powder and thermoplastic resin is injected into the cavity by an injection molding machine, and the core is At the same time as molding (injection molding), a method of integrating a coil therein is also considered.

前者の場合には、軟磁性粉と樹脂との混合材料を外ケースないし容器内に流し込み流動させたときに、コイルに対してその流動圧が作用することによって、また後者の場合には、キャビティ内に混合材料を強い圧力で射出しキャビティ内で流動させたときに、その流動の圧力がコイルに作用し、これによってコイルが全体的に変形を生じたり或いは部分的な位置ずれによる変形を生じたりし易い。   In the former case, when the mixed material of soft magnetic powder and resin is poured into the outer case or container and flowed, the fluid pressure acts on the coil, and in the latter case, the cavity When the mixed material is injected into the cavity with a strong pressure and flowed in the cavity, the pressure of the flow acts on the coil, which causes the coil to be deformed as a whole or due to partial displacement. It is easy to do.

この場合、コイルが正規の形状から変形することによって、リアクトルとしての性能が損なわれてしまう。
特に後者の射出成形にてコアを成形する場合、キャビティ内のコイルに対しては強い射出圧力と混合材料の流動の圧力が作用し、コイルを変形防止することは非常に困難となる。
In this case, when the coil is deformed from the regular shape, the performance as the reactor is impaired.
In particular, when the core is formed by the latter injection molding, a strong injection pressure and a flow pressure of the mixed material act on the coil in the cavity, and it is very difficult to prevent the coil from being deformed.

尚、本発明に対する先行技術として下記特許文献2,特許文献3に開示されたものがある。
特許文献2には、導体線の表面に電着塗装により絶縁の被覆層を形成する点が開示されているが、このものは直線状の導体線そのものに対して絶縁の被覆層を電着塗装するものであり、本発明と異なっている。
In addition, there exist some which were disclosed by following patent document 2 and patent document 3 as prior art with respect to this invention.
Patent Document 2 discloses that an insulating coating layer is formed on the surface of a conductor wire by electrodeposition coating. This is an electrodeposition coating of an insulating coating layer on a linear conductor wire itself. This is different from the present invention.

また特許文献3には、同じく導体の外周に電着塗装により絶縁の被覆層を形成する点が開示されているが、このものもまた直線状の導体に対して絶縁の被覆層を形成するものであって、本発明とは異なったものである。   Patent Document 3 also discloses that an insulating coating layer is formed on the outer periphery of the conductor by electrodeposition coating. This also forms an insulating coating layer on a linear conductor. However, it is different from the present invention.

特開2007−27185号公報JP 2007-27185 A 特開2007−227241号公報JP 2007-227241 A 特開2006−252942号公報JP 2006-252942 A

本発明は以上のような事情を背景とし、直線状の線材をコイルに巻き加工するに際しての従来の加工上の制約を取り除き、加工上及びコイルの設計上の自由度を著しく高め得るとともに、加工に際して異物が絶縁被膜に付着して絶縁被膜に傷を生ぜしめたり穴開きを生ぜしめたりする問題を解決できるとともに、絶縁被膜を均等な厚みで且つ厚膜に形成することのできる、絶縁被膜付き導体コイルの製造方法を提供することを目的としてなされたものである。
また第2の目的は、絶縁被膜付き導体コイルを変形し難いものとする絶縁被膜付きコイルの製造方法及び絶縁被膜付き導体コイルを提供することを目的とする。
The present invention is based on the above circumstances, removes the conventional processing restrictions when winding a linear wire around a coil, and can significantly increase the degree of freedom in processing and coil design. At the same time, it is possible to solve the problem of foreign matter adhering to the insulating coating and causing scratches or perforations in the insulating coating, and the insulating coating can be formed into a thick film with a uniform thickness. It is made for the purpose of providing the manufacturing method of a conductor coil.
Another object of the present invention is to provide a method for manufacturing a coil with an insulating coating and a conductor coil with an insulating coating that make the conductor coil with an insulating coating difficult to deform.

而して請求項1は絶縁被膜付き導体コイルの製造方法に関するもので、電気導体から成る線材を先ずコイルに巻き加工し、しかる後に熱硬化性樹脂を樹脂成分として含有した電着塗料を用いて該線材の表面に電着塗装を施し、塗料粒子の析出被膜を硬化反応させて線材表面を被覆する状態に絶縁被膜を形成することを特徴とする。   Thus, claim 1 relates to a method of manufacturing a conductor coil with an insulating coating, in which a wire made of an electric conductor is first wound around the coil, and then an electrodeposition paint containing a thermosetting resin as a resin component is used. Electrodeposition coating is performed on the surface of the wire, and the insulating film is formed so as to coat the surface of the wire by curing reaction of the coating film of the paint particles.

請求項2のものは、請求項1において、前記線材を巻き加工して成るコイルを、該コイルの軸線方向に引張してコイル全体を弾性変形により軸線方向に伸ばし、該軸線方向に隣接する線材間に隙間形成し若しくは隙間を拡大して線材表面に前記電着塗装を施すことを特徴とする。   According to a second aspect of the present invention, in the first aspect, the coil formed by winding the wire is pulled in the axial direction of the coil so that the entire coil is stretched in the axial direction by elastic deformation, and the adjacent wire in the axial direction. A gap is formed between them or the gap is enlarged, and the electrodeposition coating is applied to the surface of the wire.

請求項3のものは、請求項1,2の何れかにおいて、前記電着塗装後に、前記コイルを前記軸線方向に加圧して該軸線方向に隣接する線材同士を、該線材を被覆する前記析出被膜を介して密着させ、該密着状態で該析出被膜を硬化反応させることで、隣接する線材同士を前記絶縁被膜を介して一体に接着結合することを特徴とする。   A third aspect of the present invention is the deposition according to any one of the first and second aspects, wherein, after the electrodeposition coating, the coil is pressed in the axial direction to coat adjacent wires in the axial direction with the wire. Adjacent wires are bonded and bonded together via the insulating coating by causing the coating to adhere through the coating and curing reaction of the deposited coating in the contact state.

請求項4のものは、請求項3において、前記析出被膜を加熱により軟化させて、前記軸線方向に隣接する線材間の該析出被膜同士を融着させた状態で前記硬化反応を行わせることを特徴とする。   According to a fourth aspect of the present invention, in the third aspect, the precipitation coating is softened by heating, and the curing reaction is performed in a state where the precipitation coatings between adjacent wires in the axial direction are fused. Features.

請求項5のものは、請求項1〜4の何れかにおいて、前記導体コイルが平角線材を幅方向に巻いて成るエッジワイズコイルであることを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the conductor coil is an edgewise coil formed by winding a rectangular wire in the width direction.

請求項6は絶縁被膜付き導体コイルに関するもので、電気導体から成る線材をコイルに巻き加工して成り、該線材には表面を被覆する状態に絶縁被膜が形成されているとともに、コイルの軸線方向に隣接した線材同士が該絶縁被膜にてコイルの軸線方向に接着固定されていることを特徴とする。   The present invention relates to a conductor coil with an insulating coating, which is formed by winding a wire made of an electric conductor around the coil, the insulating coating being formed on the wire so as to cover the surface, and the axial direction of the coil Wires adjacent to each other are bonded and fixed in the axial direction of the coil by the insulating coating.

請求項7のものは、請求項6において、前記導体コイルが平角線材を幅方向に巻いて成るエッジワイズコイルであることを特徴とする。   According to a seventh aspect of the present invention, in the sixth aspect, the conductor coil is an edgewise coil formed by winding a rectangular wire in the width direction.

発明の作用・効果Effects and effects of the invention

以上のように本発明の製造方法は、電気導体から成る線材を先ずコイルに巻き加工し、しかる後に熱硬化性樹脂を樹脂成分として含有した電着塗料を用いて線材の表面に電着塗装を施し、そして塗料粒子の析出被膜を硬化反応させて線材表面を被覆する状態に絶縁被膜を形成するものである。   As described above, in the manufacturing method of the present invention, a wire made of an electric conductor is first wound into a coil, and then the electrodeposition coating is applied to the surface of the wire using an electrodeposition paint containing a thermosetting resin as a resin component. Then, the coating film is subjected to a curing reaction to form the insulating film in a state of covering the surface of the wire.

即ち従来の製造方法にあっては、線材に対して先ず絶縁被膜を施し、しかる後に絶縁被膜付きの線材をコイルに巻き加工していたのを、本発明ではその順序を逆にして、先ず線材をコイルに巻き加工し、しかる後に絶縁被膜をコイルを構成する線材表面に形成する。   That is, in the conventional manufacturing method, an insulating film is first applied to the wire, and then the wire with the insulating film is wound around the coil. Is wound around the coil, and then an insulating coating is formed on the surface of the wire constituting the coil.

かかる本発明の製造方法によれば、線材を巻き加工するに際して、その表面には絶縁被膜が未だ形成されていないため、線材の巻き加工によって絶縁被膜に無理な力が加わり、これによって絶縁被膜に歪みが発生して、場合により絶縁被膜が破断したり亀裂発生したりしてしまう問題を解消することができる。   According to the manufacturing method of the present invention, when a wire is wound, an insulating film is not yet formed on the surface thereof, so that an unreasonable force is applied to the insulating film by the winding of the wire. It is possible to solve the problem that distortion occurs and the insulating coating breaks or cracks in some cases.

また絶縁被膜に無理な歪みが加わらないようにするための、線材の巻き加工に際しての制約が解消され、線材の巻き加工自体も容易となり、またこれに伴ってコイル形状の設計の自由度も自ずと高めることができる。   In addition, the restrictions on the winding process of the wire rod are eliminated to prevent excessive strain on the insulating coating, and the winding process of the wire rod itself is facilitated. Can be increased.

加えて線材を成形加工機にて曲げ加工する際に、ゴミその他の異物が絶縁被膜に付着し且つこれに食い込んで絶縁被膜を傷付けたり、穴開きさせたりしてしまう不具合も解消することができる。   In addition, when bending the wire with a molding machine, it is possible to eliminate the problem that dust or other foreign matter adheres to the insulating film and bites into the insulating film, causing the insulating film to be damaged or perforated. .

本発明はまた、線材表面の絶縁被膜を電着塗装にて形成する点を他の大きな特徴としている。
電着塗装(ここではカチオン電着塗装の場合について述べる)は、樹脂成分(ここでは熱硬化性樹脂)を含有した電着塗料液中に被塗物(導体コイル)を浸漬し、これを陰極として陽極との間に電圧印加し直流電流を流すことによって、塗料液中の陽電荷を帯びた塗料粒子を陰極側に泳動させ、導体コイル表面に塗料粒子を析出させて被膜形成する。
Another major feature of the present invention is that the insulating coating on the surface of the wire is formed by electrodeposition coating.
Electrodeposition coating (here, the case of cationic electrodeposition coating) is performed by immersing an object to be coated (conductor coil) in an electrodeposition coating liquid containing a resin component (here, thermosetting resin), and using this as a cathode. By applying a voltage between the positive electrode and the direct current, the positively charged paint particles in the paint liquid migrate to the cathode side, and the paint particles are deposited on the surface of the conductor coil to form a film.

この電着塗装では、導体コイル表面への塗料粒子の析出により生じた被膜は、その後膜成長して膜厚を漸次増大して行き、これに伴って析出被膜自体の有する電気抵抗も増大して行く。
この結果被膜の膜厚の薄いところに優先して塗料粒子が析出し、全体の被膜が形成されて行く。
尚、アニオン電着塗装の場合には導体コイルが陽極に接続され、塗料液中の陰電荷を帯びた塗料粒子が陽極側の導体コイル側に泳動して膜形成する。
In this electrodeposition coating, the film formed by the deposition of paint particles on the surface of the conductor coil then grows and gradually increases the film thickness, which increases the electrical resistance of the deposited film itself. go.
As a result, the paint particles are deposited in preference to the place where the film thickness is thin, and the entire film is formed.
In the case of anionic electrodeposition coating, the conductor coil is connected to the anode, and the negatively charged paint particles in the paint liquid migrate to the conductor coil side on the anode side to form a film.

このような電着塗装では、線材表面に析出被膜が均等な膜厚で形成され、且つその膜厚も従来の塗装方法に比べて厚くすることが可能である。
しかもこの電着塗装では、線材をコイルに曲げ加工した後においても、良好に均等な膜厚で被膜形成することができる。
In such electrodeposition coating, the deposited film is formed with a uniform film thickness on the surface of the wire, and the film thickness can also be increased as compared with the conventional coating method.
Moreover, in this electrodeposition coating, a film can be formed with a uniform film thickness even after the wire is bent into a coil.

例えば塗料を吹付け塗装した場合には、コイルの軸線方向に隣接した線材と線材との間の部分と、コイルの内周側の面或いは外周側の面とで均等に塗料を吹付け塗布するといったことは極めて困難であるが、電着塗装の場合には塗料粒子を電気泳動させてコイル表面で析出させ膜形成するものであるため、場所の如何を問わず全体に亘って均等な厚みで膜形成することが可能である。
その結果として、導体コイルに対し高い耐電圧性を付与することが可能となる。
For example, when paint is applied by spraying, the paint is applied by spraying evenly on the portion between the wire adjacent to the axial direction of the coil and the inner peripheral surface or outer peripheral surface of the coil. However, in the case of electrodeposition coating, coating particles are electrophoresed and deposited on the surface of the coil to form a film, so that the entire thickness is uniform regardless of the location. A film can be formed.
As a result, it is possible to impart high voltage resistance to the conductor coil.

この場合において、線材を巻き加工して成るコイルを、コイルの軸線方向に引張してコイル全体を弾性変形により軸線方向に伸ばし、軸線方向に隣接する線材間に隙間形成し若しくは隙間を拡大し、その状態で線材表面に電着塗装を施すのが好適である(請求項2)。   In this case, the coil formed by winding the wire is pulled in the axial direction of the coil to stretch the entire coil in the axial direction by elastic deformation, forming a gap between the adjacent wires in the axial direction or expanding the gap, In this state, it is preferable to perform electrodeposition coating on the surface of the wire (Claim 2).

このようにすることで、コイルの軸線方向に隣接した線材と線材との間の部分、詳しくは軸線方向に対向した面に対しても、より容易にコイルの外径側の面及び内径側の面と均等な膜厚で被膜形成することができる。   By doing in this way, the outer diameter side surface and the inner diameter side of the coil can be more easily applied to the portion between the wire rods adjacent to each other in the axial direction of the coil, more specifically to the surface facing the axial direction. A film can be formed with a film thickness equal to the surface.

尚ここで線材間に隙間形成し若しくは隙間を拡大しとあるのは、線材をコイルに巻き加工し成形した段階で、コイルの軸線方向に隣接した線材と線材とが接触している場合には、それらの間に隙間を形成し、また成形加工状態で線材と線材との間に予め隙間がある場合には、その隙間を更に一層拡大することを意味する。   In this case, the gap is formed between the wires or the gap is enlarged when the wire is wound around the coil and formed, and the wire adjacent to the coil in the axial direction is in contact with the wire. When a gap is formed between them, and there is a gap in advance between the wire and the wire in the forming state, it means that the gap is further expanded.

次に請求項3は、電着塗装後にコイルを軸線方向に加圧して、軸線方向に隣接する線材同士を上記の析出被膜を介して密着させ、その密着状態で析出被膜を硬化反応させることで、隣接する線材同士を絶縁被膜を介して一体に接着結合し固定化するもので、この請求項3の製造方法によれば、コイル(巻回してある部分)全体を一体に固定状態とでき、その後の被膜付き導体コイルのハンドリングの際に従来生じていた問題を解決することができる。   Next, the third aspect of the present invention is to pressurize the coil in the axial direction after electrodeposition coating to bring the adjacent wires in the axial direction into close contact with each other through the deposited film, and to cure the deposited film in the adhered state. The adjacent wires are integrally bonded and fixed together via an insulating coating, and according to the manufacturing method of claim 3, the entire coil (the portion that is wound) can be fixed in an integrated state, It is possible to solve the problems that have arisen in the past in handling of the coated conductor coil.

詳しくは、例えば絶縁被膜付き導体コイルを用いてリアクトルを構成するに際し、軟磁性粉と樹脂との混合材料を外ケースないし容器内に流し込んでコアを成形する際に、或いはキャビティ内に絶縁被膜付き導体コイルをセットした状態で、キャビティ内に軟磁性粉と樹脂との混合材を射出してコアを成形する際に、混合材の流し込み或いは射出の圧力や流動の圧力でコイルが全体的に変形してしまったり部分的に位置ずれしてしまうのを有効に抑制することができ、このことによってリアクトルとしての性能を高めることが可能となる。   Specifically, for example, when forming a reactor using a conductor coil with an insulating coating, when a core is formed by pouring a mixed material of soft magnetic powder and resin into an outer case or container, or with an insulating coating in the cavity When the core is formed by injecting a mixed material of soft magnetic powder and resin into the cavity with the conductor coil set, the coil is deformed as a whole by the pouring or injection pressure or flow pressure of the mixed material. It is possible to effectively suppress the partial displacement and partial displacement, and this makes it possible to improve the performance as a reactor.

この場合において、電着塗装した析出被膜を加熱により軟化させて、軸線方向に隣接する線材間の析出被膜同士を互いに融着させた上で、硬化反応を行わせるようになすことができる(請求項4)。   In this case, the electrodeposition-coated deposited film can be softened by heating, and the deposited films between the adjacent wires in the axial direction can be fused to each other, and then a curing reaction can be performed (claims). Item 4).

このようにすれば、線材間の絶縁被膜同士の接着力をより一層高めることができ、ひいてはコイル全体の機械的強度をより一層高めることができ、混合材料の流動の圧力等によってコイルの全体的な変形及び部分的な位置ずれによる変形をより一層効果的に抑制することが可能となる。   In this way, the adhesive strength between the insulating coatings between the wires can be further increased, and consequently the mechanical strength of the entire coil can be further increased. Therefore, it is possible to further effectively suppress the deformation due to the simple deformation and the partial displacement.

請求項6は絶縁被膜付き導体コイルに関するもので、この導体コイルは、コイルの軸線方向に隣接した線材同士を絶縁被膜にてコイルの軸線方向に接着固定して成るもので、この請求項6の絶縁被膜付き導体コイルにあっては、その後のハンドリングの際に導体コイルが全体的に或いは部分的に変形を生じるのを有効に抑制することが可能となる。   A sixth aspect of the present invention relates to a conductor coil with an insulating coating, which is formed by bonding and fixing wires adjacent to each other in the axial direction of the coil with an insulating coating in the axial direction of the coil. In the conductor coil with an insulating coating, it is possible to effectively suppress deformation of the conductor coil entirely or partially during subsequent handling.

本発明は横断面形状が円形,楕円形,正4角形,平角形等様々な横断面形状をなす線材を用いたコイルに適用することが可能であるが、特に導体コイルが平角線材を幅方向に巻き、コイルの軸線方向に積み重ねて成る形態のエッジワイズコイルである場合に適用して好適である(請求項5,請求項7)。   The present invention can be applied to a coil using a wire having various cross-sectional shapes such as a circular shape, an elliptical shape, a regular quadrangular shape, and a rectangular shape. It is suitable to be applied to the case of an edgewise coil having a configuration in which the coil is wound around the coil and stacked in the axial direction of the coil (claims 5 and 7).

本発明の一実施形態である(導体)コイルを絶縁被膜形成前の状態で示す斜視図である。It is a perspective view which shows the (conductor) coil which is one Embodiment of this invention in the state before insulating film formation. コイルの変形の一例を示した図である。It is the figure which showed an example of the deformation | transformation of a coil. コイルの図2とは異なる変形の一例を示した図である。It is the figure which showed an example of the deformation | transformation different from FIG. 2 of a coil. 同実施形態のコイルの電着塗装の方法を模式的に示した図である。It is the figure which showed typically the method of the electrodeposition coating of the coil of the embodiment. 同実施形態のコイルを軸線方向に引張した状態を示した図である。It is the figure which showed the state which pulled the coil of the same embodiment to the axial direction. 同実施形態における絶縁被膜形成の工程を示した断面図である。It is sectional drawing which showed the process of the insulating film formation in the embodiment. 同実施形態の方法に用いる加圧治具によるコイルの加圧状態を示した図である。It is the figure which showed the pressurization state of the coil by the pressurization jig used for the method of the embodiment.

次に本発明の実施形態を図面に基づいて詳しく説明する。
図1において、10は導体コイルの一例として、インダクタンス部品としてのリアクトルに用いられるエッジワイズコイル(以下単にコイルとする)を、絶縁被膜形成する前の状態で示している。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
In FIG. 1, reference numeral 10 denotes an example of a conductor coil, which is an edgewise coil (hereinafter simply referred to as a coil) used for a reactor as an inductance component in a state before an insulating film is formed.

このコイル10は、平角線材を幅方向に巻き、線材の厚み方向(縦方向)に積み重ねてコイル形状となしたもので、巻き加工し成形した自由形状状態で、コイル10の軸線方向に隣接する線材同士が互いに接触状態に重なっている。
尚、図中14はコイル10におけるコイル端子を表している。
The coil 10 is formed by winding a rectangular wire in the width direction and stacking it in the thickness direction (longitudinal direction) of the wire to form a coil shape, and is adjacent to the axial direction of the coil 10 in a free-form state that is wound and formed. Wires are in contact with each other.
In the figure, reference numeral 14 denotes a coil terminal in the coil 10.

単に電気導体の線材を巻き加工しコイル形状に成形しただけの図1のコイル10は、力を加えると図2に示しているようにあたかもアコーディオンのように容易に伸張変形したり、また図3に示しているように容易に捻れ変形したりする。
尚このコイル10の材質としては銅,アルミニウム,銅合金,アルミニウム合金等種々の材質のものを使用することができる。
The coil 10 shown in FIG. 1 simply formed by winding an electric conductor wire into a coil shape is easily stretched and deformed as if it were an accordion as shown in FIG. As shown in Fig. 4, it is easily twisted and deformed.
The coil 10 may be made of various materials such as copper, aluminum, copper alloy, and aluminum alloy.

本実施形態では、このようにして直線状の導体線材を巻き加工し、成形したコイル10に対して電着塗装を施し、線材表面を被覆する状態に絶縁被膜22(図6参照)を形成する。
詳しくは、熱硬化性樹脂を樹脂成分として含有した電着塗料を用いて線材表面にカチオン電着塗装を施し、線材の表面に塗料粒子を膜状に析出させる。
ここで熱硬化性樹脂としてはエポキシ樹脂,ウレタン樹脂等を好適に用いることができる。
尚、場合によってアニオン電着によって線材表面に塗料粒子を膜状に析出させるといったことも可能である。
In the present embodiment, the linear conductor wire is wound in this manner, electrodeposition is applied to the formed coil 10, and the insulating coating 22 (see FIG. 6) is formed so as to cover the surface of the wire. .
Specifically, cationic electrodeposition is applied to the surface of the wire using an electrodeposition paint containing a thermosetting resin as a resin component, and the paint particles are deposited in the form of a film on the surface of the wire.
Here, an epoxy resin, a urethane resin, or the like can be suitably used as the thermosetting resin.
In some cases, coating particles may be deposited on the surface of the wire by anion electrodeposition.

図4に、カチオン電着にて電着塗装を行う場合の方法が模式的に表してある。
図において16は電着槽、18は電着塗料液で、この電着塗料液18には、上記樹脂成分としての熱硬化性樹脂が硬化剤とともに含有させてある。
尚この電着塗料液には他に硬化触媒,界面活性剤その他の成分を合せて含有させておくことができる。
FIG. 4 schematically shows a method for performing electrodeposition coating by cationic electrodeposition.
In the figure, 16 is an electrodeposition tank, 18 is an electrodeposition coating liquid, and the electrodeposition coating liquid 18 contains a thermosetting resin as the resin component together with a curing agent.
In addition, the electrodeposition coating liquid may contain a curing catalyst, a surfactant and other components.

この電着塗装では、電着塗料液18中に上記のコイル10を浸漬し、これを陰極として同じく電着塗料液18中に浸漬させた陽極19との間に電圧印加し、直流電流を流すことによって、電着塗料液18中の陽電荷を帯びた塗料粒子を陰極側のコイル10に向けて泳動させ、コイル10表面に塗料粒子を析出させて析出被膜20(図6参照)を形成する。   In this electrodeposition coating, the coil 10 is immersed in the electrodeposition coating liquid 18, and a voltage is applied between the coil 10 and the anode 19 that is also immersed in the electrodeposition coating liquid 18 as a cathode, and a direct current flows. As a result, the positively charged paint particles in the electrodeposition paint liquid 18 are migrated toward the coil 10 on the cathode side, and the paint particles are deposited on the surface of the coil 10 to form the deposited film 20 (see FIG. 6). .

その際、図5に示しているようにコイル10をその軸線方向に引張して、コイル10全体を弾性変形により軸線方向に伸ばし、軸線方向に隣接する線材間に間隙Sを形成し、その状態にて電着塗装を施す。
尚この実施形態では、コイル10を横向きに寝かせた状態で電着塗料液18中に浸漬しておく。
ここで軸線方向に隣接する線材と線材との間の間隙Sは3〜10mm程度としておくことが望ましい。
At that time, as shown in FIG. 5, the coil 10 is pulled in the axial direction, the entire coil 10 is stretched in the axial direction by elastic deformation, and a gap S is formed between the adjacent wires in the axial direction. Apply electrodeposition coating at
In this embodiment, the coil 10 is immersed in the electrodeposition coating liquid 18 in a state where it is laid sideways.
Here, the gap S between the wires adjacent to each other in the axial direction is preferably about 3 to 10 mm.

図6(I)は、このようにして隣接する線材間に間隙S形成した状態を模式的に表してある。
尚この図6は、コイル10における線材を断面形状で表している。
また図6(II)は、その状態で電着塗装を施し、線材表面に塗料粒子を析出させて析出被膜20を形成した状態を表している。
FIG. 6I schematically shows a state in which the gap S is formed between the adjacent wires in this way.
In addition, this FIG. 6 represents the wire in the coil 10 with a cross-sectional shape.
FIG. 6 (II) shows a state in which the deposited film 20 is formed by applying electrodeposition coating in this state to deposit coating particles on the surface of the wire.

以上のようにして析出被膜20を形成したら、次にこれを洗浄後に加熱して析出被膜20を硬化反応させ、線材表面を被覆する状態に絶縁被膜22形成することができる。
その場合の絶縁被膜22の膜厚は、上記電着層16内での印加電圧,印加時間,電着塗料の組成等によって異なるが、好適には絶縁被膜22の膜厚を15〜100μmとする。
理由は、膜厚を15μm以上とすることで絶縁被膜付きのコイル10に十分な耐電圧(絶縁破壊電圧)を付与することができ、また一方、100μmを超えて膜厚を厚くすることは製造上困難であることによる。
After forming the deposited film 20 as described above, the insulating film 22 can be formed so as to cover the surface of the wire by heating and heating the deposited film 20 to cause a curing reaction.
In this case, the thickness of the insulating coating 22 varies depending on the applied voltage, the application time, the composition of the electrodeposition coating, etc. in the electrodeposition layer 16, but preferably the thickness of the insulating coating 22 is 15 to 100 μm. .
The reason is that a sufficient withstand voltage (dielectric breakdown voltage) can be imparted to the coil 10 with an insulating coating by setting the film thickness to 15 μm or more. On the other hand, increasing the film thickness beyond 100 μm is a manufacturing process. Because it is difficult.

但しここでは電着塗装後に、例えば図7に示す加圧治具24を用いてコイル10を軸線方向に加圧し、図6(III)に示すように軸線方向に隣接する線材同士を析出被膜20を介して密着させ、その状態で析出被膜20のガラス転位温度以上に加熱して先ず析出被膜同士を融着させ、更に引続いて析出被膜20の硬化温度以上の温度でこれを硬化反応させる。   However, here, after electrodeposition coating, the coil 10 is pressed in the axial direction using, for example, a pressurizing jig 24 shown in FIG. 7, and the wires adjacent in the axial direction as shown in FIG. In this state, the film is heated to a temperature higher than the glass transition temperature of the deposited film 20 so that the deposited films are first fused to each other, and subsequently cured at a temperature equal to or higher than the curing temperature of the deposited film 20.

具体的には、図7の加圧治具24にて電着塗装後のコイル10を軸線方向に加圧した状態で加熱炉に挿入し、その加熱炉内での加熱により、析出被膜20同士の融着と、これに続く硬化反応とを連続して行わせる。   Specifically, the coil 10 after electrodeposition coating is inserted into the heating furnace in a state where the coil 10 after electrodeposition coating is pressed in the axial direction by the pressurizing jig 24 of FIG. And the subsequent curing reaction are continuously performed.

上記コイル10は、図1に示しているように平面形状が長円形状、具体的には平面視において左右両端側の半円形状部26と、それらを左右方向に繋ぐ直線形状部28とを有する長円形状をなしており、これに対して図7に示す加圧治具24は、コイル10の平面形状に対応した長円形状の図中上下一対の挟圧部材30と、それらをねじ結合している中心のボルト、更に一対の挟圧部材30のそれぞれの周方向に沿った複数個所(ここでは4個所)に、互いに図中上下に対向して設けられた押え34とを備えた構造をなしている。   As shown in FIG. 1, the coil 10 has an elliptical shape in plan view, specifically, a semicircular shape portion 26 on both left and right ends in a plan view, and a linear shape portion 28 that connects them in the left-right direction. On the other hand, the pressurizing jig 24 shown in FIG. 7 has a pair of upper and lower pressing members 30 in the oval shape corresponding to the planar shape of the coil 10 and screws them together. The center bolts connected to each other, and the pressers 34 provided at a plurality of locations (here, 4 locations) along the circumferential direction of the pair of clamping members 30 so as to face each other in the vertical direction in the figure. It has a structure.

この加圧治具24では、ボルト32を締め込んで行くことで突起形状の押え34にてコイル10を軸線方向の両端で押え、以てコイル10を軸線方向に加圧する。
尚各押え34はねじにて構成されており、ねじ操作によって突出量を調節可能となしてある。
In the pressurizing jig 24, the bolts 32 are tightened to hold the coil 10 at both ends in the axial direction with the projection-shaped pressers 34, thereby pressing the coil 10 in the axial direction.
Each presser 34 is constituted by a screw, and the protrusion amount can be adjusted by screw operation.

以上のようにして加圧状態で析出被膜20を各線材間において互いに融着させ且つその後硬化させることで、図6(IV)に示すように軸線方向に隣接した線材同士が、硬化した被膜即ち絶縁被膜22を介して接着結合され、コイル10全体(但しコイル端子14を除いた部分)が一体化した絶縁被膜22付きのコイル10が得られる。   As described above, the deposited coating 20 is fused between the wires in the pressurized state and then cured, so that the wires adjacent in the axial direction are cured as shown in FIG. 6 (IV). The coil 10 with the insulating coating 22 in which the entire coil 10 (however, excluding the coil terminal 14) is integrated is obtained by adhesive bonding through the insulating coating 22.

尚、電着塗装後において先ずコイル10を軸線方向に加圧しない状態で析出被膜20を硬化させ、その後に熱硬化性樹脂塗料を吹き付けて、その後に上記の加圧治具24を用いてコイル10を軸線方向に圧縮し、その状態で吹き付けた樹脂塗料を融着させ且つ硬化反応させるようになしても良い。
このようにすれば、絶縁被膜厚みを更に一層厚くすることができ、耐電圧を更に高めることも可能となる。
In addition, after electrodeposition coating, first, the deposited film 20 is cured in a state where the coil 10 is not pressurized in the axial direction, and then a thermosetting resin paint is sprayed thereon, and then the coil is formed using the above-described pressure jig 24. 10 may be compressed in the axial direction, and the resin paint sprayed in that state may be fused and cured.
By doing so, the thickness of the insulating coating can be further increased, and the withstand voltage can be further increased.

この場合の吹付用の樹脂塗料としては、下地の析出被膜20と同材料か又は密着性の良好な材質のものを用いることが好ましい。
例えば析出被膜20がエポキシ樹脂被膜である場合には、吹付用の樹脂塗料としてもエポキシ系樹脂を用いることが好ましい。
In this case, as the resin coating for spraying, it is preferable to use a material that is the same material as the deposited film 20 of the base or a material having good adhesion.
For example, when the deposited film 20 is an epoxy resin film, it is preferable to use an epoxy resin as a resin coating for spraying.

以上のような本実施形態によれば、線材をコイルに巻き加工するに際して、その表面には絶縁被膜22が未だ形成されていないため、線材の巻き加工によって絶縁被膜22に無理な力が加わり、これによって絶縁被膜22に歪みが発生して、場合により絶縁被膜22が破断したり亀裂発生したりしてしまう問題を解消することができる。   According to the present embodiment as described above, when the wire is wound around the coil, since the insulating coating 22 is not yet formed on the surface thereof, an unreasonable force is applied to the insulating coating 22 by the winding of the wire, This can solve the problem that the insulating coating 22 is distorted and the insulating coating 22 is broken or cracked in some cases.

また絶縁被膜22に無理な歪みが加わらないようにするための、線材の巻き加工に際しての制約が解消され、線材の巻き加工自体も容易となり、またこれに伴ってコイル形状の設計の自由度も自ずと高めることができる。   In addition, the restriction on the winding process of the wire rod so as to prevent excessive strain on the insulating coating 22 is eliminated, the winding process of the wire rod itself is facilitated, and the degree of freedom in designing the coil shape is also associated with this. It can be raised naturally.

加えて線材を成形加工機にて曲げ加工する際に、ゴミその他の異物が絶縁被膜22に付着し且つこれに食い込んで絶縁被膜22を傷付けたり、穴開きさせたりしてしまう不具合も解消することができる。   In addition, when the wire is bent by a molding machine, dust and other foreign matters adhere to the insulating coating 22, and the problem that the insulating coating 22 is damaged or perforated is eliminated. Can do.

本実施形態はまた、線材表面の絶縁被膜22を電着塗装にて形成するため、線材表面に均等な膜厚で絶縁被膜22を形成でき、且つその膜厚も従来の塗装方法に比べて厚くすることが可能である。
しかもこの電着塗装では、線材をコイルに曲げ加工した後においても、良好に均等な膜厚で被膜形成することができる。
その結果として、コイル10に対し高い耐電圧(絶縁破壊電圧)を付与することが可能となる。
In this embodiment, since the insulating coating 22 on the surface of the wire is formed by electrodeposition coating, the insulating coating 22 can be formed with a uniform thickness on the surface of the wire, and the thickness is also thicker than that of the conventional coating method. Is possible.
Moreover, in this electrodeposition coating, a film can be formed with a uniform film thickness even after the wire is bent into a coil.
As a result, a high withstand voltage (dielectric breakdown voltage) can be applied to the coil 10.

また本実施形態では、電着塗装後にコイル10を軸線方向に加圧して、軸線方向に隣接する線材同士を析出被膜20を介して密着させ、その密着状態で析出被膜20同士を加熱により互いに融着させ且つ硬化反応させることで、隣接する線材同士を絶縁被膜22を介して一体に接着結合し固定化するため、コイル10(巻回してある部分)全体を一体に固定状態とでき、その後のコイル10のハンドリングの際に従来生じていた問題を解決することができる。   Moreover, in this embodiment, after the electrodeposition coating, the coil 10 is pressed in the axial direction, the wires adjacent in the axial direction are brought into close contact with each other through the deposited coating 20, and the deposited coatings 20 are fused to each other by heating in the contacted state. By adhering and curing, the adjacent wires are integrally bonded and fixed together via the insulating coating 22, so that the entire coil 10 (the wound portion) can be fixed in an integrated state. The problems that have conventionally occurred when handling the coil 10 can be solved.

日立電線(株)社製のJIS C3104準拠した幅8mm,厚み1mmの平角銅線材を用いて巻き加工し成形した図1に示すコイル10(ターン数は25)に対して、日本ペイント(株)社製の「パワートップU-CP-70」のカチオン電着塗料を用いて電着塗装を行った。
この電着塗料は、ビスフェノールA型エポキシ樹脂とジエタノールアミンを反応して得た樹脂液に、エチレングリコールモノ2-エチルヘキシルエーテルでブロックしたジフェニルメタンジイソシアネートを硬化剤として所定比で混合したものである。
Nippon Paint Co., Ltd. is applied to the coil 10 shown in FIG. 1 (number of turns is 25) wound and molded using a flat copper wire of 8 mm width and 1 mm thickness according to JIS C3104 manufactured by Hitachi Cable, Ltd. Electrodeposition coating was performed using a cationic power electrodeposition paint of “Power Top U-CP-70” manufactured by the company.
This electrodeposition coating is obtained by mixing a resin liquid obtained by reacting a bisphenol A type epoxy resin and diethanolamine with diphenylmethane diisocyanate blocked with ethylene glycol mono-2-ethylhexyl ether in a predetermined ratio.

この電着塗料を脱イオン水で樹脂固形分濃度15%に希釈して電着塗料液18とし、これを浴温度30℃に調整し、上記のコイル10のコイル端子14を陰極に固定して電着塗料液18中に浸漬し、電圧を印加した。印加開始後5秒間で300Vまで電圧を昇圧し、その後175秒間300Vを維持することにより電着塗装を行った。   The electrodeposition paint is diluted with deionized water to a resin solid content concentration of 15% to obtain an electrodeposition paint liquid 18, which is adjusted to a bath temperature of 30 ° C., and the coil terminal 14 of the coil 10 is fixed to the cathode. It was immersed in the electrodeposition coating liquid 18 and a voltage was applied. The voltage was increased to 300 V in 5 seconds after the start of application, and then electrodeposition coating was performed by maintaining 300 V for 175 seconds.

電着塗装後水洗いし、図7に示した加圧治具24でコイル10を軸線方向に加圧し、その状態でこれを150℃の加熱炉に挿入して1時間保持した後、180℃で20分間焼付け(硬化)処理し、その後空冷し、コイル10における線材表面に膜厚80μmで絶縁被膜22を形成するとともに、その絶縁被膜22を介して軸線方向に隣接した線材同士を接着結合し、コイル10全体を一体に固定状態とした。
尚、析出被膜20のガラス転位温度はDSCで測定した結果130℃であり、また硬化温度は174℃であった。
After electrodeposition coating, it was washed with water, and the coil 10 was pressurized in the axial direction with the pressurizing jig 24 shown in FIG. 7. In this state, this was inserted into a 150 ° C. heating furnace and held for 1 hour, and then at 180 ° C. Baking (curing) treatment for 20 minutes, then air cooling, forming an insulating film 22 with a film thickness of 80 μm on the surface of the wire in the coil 10, and adhesively bonding wires adjacent in the axial direction through the insulating film 22, The entire coil 10 was integrally fixed.
The glass transition temperature of the deposited coating 20 was 130 ° C. as measured by DSC, and the curing temperature was 174 ° C.

このようにして得たコイル10の絶縁破壊電圧を測定したところ1500Vであった。
尚、絶縁被膜の体積固有抵抗は5×1014Ωcmであった。
ここで絶縁破壊電圧の測定は、株式会社安田精機製作所製絶縁破壊耐電圧試験機を用いてJIS C2110に準じて行った。
また体積固有抵抗の測定はTAKEDA RIKEN TR-8601 HIGH MEGOHM METERを用いてJIS C2151に準じて行った。
The dielectric breakdown voltage of the coil 10 thus obtained was measured and found to be 1500V.
The volume resistivity of the insulating coating was 5 × 10 14 Ωcm.
Here, the dielectric breakdown voltage was measured according to JIS C2110 using a dielectric breakdown voltage tester manufactured by Yasuda Seiki Seisakusho.
The volume resistivity was measured according to JIS C2151 using TAKEDA RIKEN TR-8601 HIGH MEGOHM METER.

以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様・形態で実施・構成可能である。   Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented and configured in various forms and forms without departing from the spirit of the present invention.

10 コイル
18 電着塗料液
20 析出被膜
22 絶縁被膜
24 加圧治具
DESCRIPTION OF SYMBOLS 10 Coil 18 Electrodeposition coating liquid 20 Deposited film 22 Insulating film 24 Pressure jig

Claims (7)

電気導体から成る線材を先ずコイルに巻き加工し、しかる後に熱硬化性樹脂を樹脂成分として含有した電着塗料を用いて該線材の表面に電着塗装を施し、塗料粒子の析出被膜を硬化反応させて線材表面を被覆する状態に絶縁被膜を形成することを特徴とする絶縁被膜付き導体コイルの製造方法。   A wire made of an electric conductor is first wound into a coil, and then electrodeposition is applied to the surface of the wire using an electrodeposition paint containing a thermosetting resin as a resin component, and the coating film of paint particles is cured. A method for producing a conductor coil with an insulating coating, comprising: forming an insulating coating so as to cover the surface of the wire. 請求項1において、前記線材を巻き加工して成るコイルを、該コイルの軸線方向に引張してコイル全体を弾性変形により軸線方向に伸ばし、該軸線方向に隣接する線材間に隙間形成し若しくは隙間を拡大して線材表面に前記電着塗装を施すことを特徴とする絶縁被膜付き導体コイルの製造方法。   In Claim 1, the coil formed by winding the wire rod is pulled in the axial direction of the coil, the entire coil is stretched in the axial direction by elastic deformation, and a gap is formed between adjacent wire rods in the axial direction or gaps are formed. A method of manufacturing a conductor coil with an insulating coating, wherein the electrodeposition coating is applied to the surface of the wire by enlarging. 請求項1,2の何れかにおいて、前記電着塗装後に、前記コイルを前記軸線方向に加圧して該軸線方向に隣接する線材同士を、該線材を被覆する前記析出被膜を介して密着させ、該密着状態で該析出被膜を硬化反応させることで、隣接する線材同士を前記絶縁被膜を介して一体に接着結合することを特徴とする絶縁被膜付き導体コイルの製造方法。   In any one of Claims 1 and 2, after the electrodeposition coating, the coil is pressed in the axial direction so that the wires adjacent in the axial direction are brought into close contact with each other through the deposited film covering the wire, A method of manufacturing a conductor coil with an insulating coating, wherein the deposited coating is cured and reacted in the contact state, whereby adjacent wires are integrally bonded and bonded via the insulating coating. 請求項3において、前記析出被膜を加熱により軟化させて、前記軸線方向に隣接する線材間の該析出被膜同士を融着させた状態で前記硬化反応を行わせることを特徴とする絶縁被膜付き導体コイルの製造方法。   The conductor with an insulation coating according to claim 3, wherein the precipitation coating is softened by heating, and the curing reaction is performed in a state in which the precipitation coatings between adjacent wires in the axial direction are fused. Coil manufacturing method. 請求項1〜4の何れかにおいて、前記導体コイルが平角線材を幅方向に巻いて成るエッジワイズコイルであることを特徴とする絶縁被膜付き導体コイルの製造方法。   5. The method for producing a conductor coil with an insulating coating according to claim 1, wherein the conductor coil is an edgewise coil formed by winding a rectangular wire in the width direction. 電気導体から成る線材をコイルに巻き加工して成り、該線材には表面を被覆する状態に絶縁被膜が形成されているとともに、コイルの軸線方向に隣接した線材同士が該絶縁被膜にてコイルの軸線方向に接着固定されていることを特徴とする絶縁被膜付き導体コイル。   The wire is formed by winding a wire made of an electric conductor around a coil, and the wire is covered with an insulating film so as to cover the surface. Wires adjacent to each other in the axial direction of the coil are covered with the insulating film. A conductor coil with an insulating coating, characterized by being bonded and fixed in the axial direction. 請求項6において、前記導体コイルが平角線材を幅方向に巻いて成るエッジワイズコイルであることを特徴とする絶縁被膜付き導体コイル。   7. The conductor coil with an insulating coating according to claim 6, wherein the conductor coil is an edgewise coil formed by winding a rectangular wire in the width direction.
JP2009101264A 2009-04-17 2009-04-17 Method of manufacturing conductor coil with insulating film, and conductor coil with insulating film Pending JP2010251615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101264A JP2010251615A (en) 2009-04-17 2009-04-17 Method of manufacturing conductor coil with insulating film, and conductor coil with insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101264A JP2010251615A (en) 2009-04-17 2009-04-17 Method of manufacturing conductor coil with insulating film, and conductor coil with insulating film

Publications (1)

Publication Number Publication Date
JP2010251615A true JP2010251615A (en) 2010-11-04

Family

ID=43313609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101264A Pending JP2010251615A (en) 2009-04-17 2009-04-17 Method of manufacturing conductor coil with insulating film, and conductor coil with insulating film

Country Status (1)

Country Link
JP (1) JP2010251615A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120828A (en) * 2011-12-07 2013-06-17 Suncall Corp Coil manufacturing method
WO2015098356A1 (en) * 2013-12-27 2015-07-02 東光株式会社 Method for producing electronic component, and electronic component
JP2015122484A (en) * 2013-11-22 2015-07-02 株式会社タムラ製作所 Coil, manufacturing method thereof, and reactor
WO2017104852A1 (en) * 2015-12-18 2017-06-22 三菱マテリアル株式会社 Method of manufacturing coil with insulation coating
JP2017115242A (en) * 2015-12-18 2017-06-29 三菱マテリアル株式会社 Method for producing coil with insulating coating film
KR20180025592A (en) * 2016-09-01 2018-03-09 삼성전기주식회사 Coil component
WO2018159279A1 (en) * 2017-03-01 2018-09-07 三菱マテリアル株式会社 Insulated electric wire, method for manufacturing same, and coil

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120828A (en) * 2011-12-07 2013-06-17 Suncall Corp Coil manufacturing method
JP2015122484A (en) * 2013-11-22 2015-07-02 株式会社タムラ製作所 Coil, manufacturing method thereof, and reactor
WO2015098356A1 (en) * 2013-12-27 2015-07-02 東光株式会社 Method for producing electronic component, and electronic component
CN108368635A (en) * 2015-12-18 2018-08-03 三菱综合材料株式会社 The manufacturing method of the coil of tape insulation envelope
JP2017115242A (en) * 2015-12-18 2017-06-29 三菱マテリアル株式会社 Method for producing coil with insulating coating film
WO2017104852A1 (en) * 2015-12-18 2017-06-22 三菱マテリアル株式会社 Method of manufacturing coil with insulation coating
CN108368635B (en) * 2015-12-18 2021-06-01 三菱综合材料株式会社 Method for manufacturing coil with insulating coating
KR20180025592A (en) * 2016-09-01 2018-03-09 삼성전기주식회사 Coil component
KR102632366B1 (en) * 2016-09-01 2024-02-02 삼성전기주식회사 Coil component
WO2018159279A1 (en) * 2017-03-01 2018-09-07 三菱マテリアル株式会社 Insulated electric wire, method for manufacturing same, and coil
JP2018147582A (en) * 2017-03-01 2018-09-20 三菱マテリアル株式会社 Insulation wire, manufacturing method therefor and coil
CN110249395A (en) * 2017-03-01 2019-09-17 三菱综合材料株式会社 Insulated electric conductor and its manufacturing method and coil
US10984922B2 (en) 2017-03-01 2021-04-20 Mitsubishi Materials Corporation Insulated electric wire, method for manufacturing same, and coil

Similar Documents

Publication Publication Date Title
JP2010251615A (en) Method of manufacturing conductor coil with insulating film, and conductor coil with insulating film
US10369628B2 (en) Methods for stator bar shape tooling
US20140360756A1 (en) Electrically insulated wire
CN103050224A (en) Power inductor and manufacturing method thereof
WO2007097189A1 (en) Aggregate conductor, and its manufacturing method
JP2011066987A (en) Method of manufacturing laminated core, laminated core, and rotary electric machine
US20200086536A1 (en) Transfer-molded inductor and manufacturing method thereof
KR102052783B1 (en) Coil component and method of manufacturing the same
CN102097200A (en) Core column component of winding type pasted electronic element and manufacturing method thereof
JP2012120302A (en) Method of manufacturing coil
US20230250234A1 (en) Resin composition, self-fusing insulated electric wire and wire bundle
JP4778081B2 (en) Method for manufacturing wound-integrated mold coil
JP2020053461A (en) Reactor and manufacturing method thereof
TW318246B (en)
JP2018026249A (en) Insulated wire, rotary electric machine, and method for manufacturing insulated wire
US20070090494A1 (en) Insulation-coated conductor and manufacturing method thereof
JP2936194B2 (en) Core insulation method for rotating electrical machines
JP2000021669A (en) Method and device for manufacturing electromagnetic coil
CN113858539A (en) Forming process of outdoor epoxy resin composite material product
JP2017037891A (en) Electronic component
JP2002315249A (en) Stator coil of rotary machine
JP2009021127A (en) Cluster conductor
CN116959844A (en) Surface-mounted inductor and manufacturing method thereof
CN1154129C (en) Transformer, coil, winding and its producing method
JP2002334813A (en) Coil assembly method of manufacturing the same, and chip bead inductor