WO2018159209A1 - パワー半導体装置 - Google Patents

パワー半導体装置 Download PDF

Info

Publication number
WO2018159209A1
WO2018159209A1 PCT/JP2018/003566 JP2018003566W WO2018159209A1 WO 2018159209 A1 WO2018159209 A1 WO 2018159209A1 JP 2018003566 W JP2018003566 W JP 2018003566W WO 2018159209 A1 WO2018159209 A1 WO 2018159209A1
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
semiconductor device
base
circuit body
case
Prior art date
Application number
PCT/JP2018/003566
Other languages
English (en)
French (fr)
Inventor
円丈 露野
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018159209A1 publication Critical patent/WO2018159209A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L2224/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a power semiconductor device equipped with a power semiconductor element, and more particularly to a power semiconductor device used in a power conversion device.
  • Power converters based on power semiconductor element switching have high conversion efficiency, and are therefore widely used in consumer, in-vehicle, railway, and substation facilities. Since this power semiconductor element generates heat when energized, high heat dissipation is required.
  • Patent Document 1 discloses a structure in which the coolant channel is formed by submerging the power semiconductor device.
  • the power semiconductor device described in Patent Document 1 stores a sealing body in which a semiconductor element is sealed in a case having a thin portion surrounding a heat sink, and an insulating sheet is inserted between the sealing body and the case. ing.
  • An object of the present invention is to improve the reliability of a power semiconductor device.
  • a power semiconductor device includes a circuit body having a power semiconductor element, a case for housing the circuit body, and an insulating member disposed between the circuit body and the case.
  • a first base portion facing the circuit body; a frame portion; and a connection portion that connects the frame portion and the first base and is formed thinner than the first base. Includes a first fin base having fins, and a first intermediate base that is thinner than the first fin base and thicker than the connection portion and is connected to the connection portion.
  • the reliability of the power semiconductor device can be improved.
  • FIG. 4 is a plan view of a manufacturing process centering on a lead frame of a power semiconductor device 300.
  • FIG. FIG. 11 is a plan view of a lead body 910 that is manufactured in the manufacturing process of the power semiconductor device 300.
  • FIG. 6 is a plan view of a circuit body 900 manufactured in the manufacturing process of the power semiconductor device 300 and a cross-sectional view cut along the AA ′ plane.
  • 10 is a schematic cross-sectional view of a manufacturing process until a circuit body 900 is inserted into a case 950.
  • FIG. 1 is a perspective view showing an external appearance of a power conversion device 200.
  • FIG. 1 is a schematic diagram showing a cross-sectional structure of a power conversion device 200.
  • FIG. It is sectional drawing of the power converter device 200 in the cross section A of FIG.
  • a power semiconductor element as a heat generator, an Al base plate or fin as a heat sink thermally connected to the heat generator, and the heat generator and the heat sink
  • a sealing resin as a resin material for fixing the substrate
  • FIG. 1 is a plan view of a power semiconductor device 300 according to this embodiment and a cross-sectional view taken along the plane AA ′.
  • the power semiconductor device 300 includes a sealing resin 907, DC terminals 315B and 319B, an AC terminal 320B, and signal terminals 325U and 325L.
  • the circuit body 900 is a structure in which a power semiconductor element mounted on a lead frame is sealed.
  • the signal terminal 325L, the AC terminal 320B, and the signal terminal 325U protrude from one surface of the power semiconductor device 300 and are arranged in a line.
  • the DC terminal 315B and the DC terminal 319B protrude from the other surface of the power semiconductor device 300 and are arranged in a line.
  • the DC terminal 315B and the DC terminal 319B are adjacent to each other, so that there is an effect of reducing input and output currents and reducing inductance.
  • the circuit body 900 is in close contact with the case 950 via the insulating sheet 906, and transfers the heat of the power semiconductor element to the cooling medium.
  • the case 950 prevents the cooling medium from contacting the circuit body 900 and the sealing resin 907 forming the circuit body 900 from absorbing moisture or swelling.
  • the insulating sheet 906 may have an insulating layer formed in a film shape instead of a sheet shape, and may be any insulating member having an insulating function.
  • the case 950 includes a seal portion 980 that ensures the liquid-tightness of the cooling refrigerant by a member such as an O-ring, a frame portion 960 that provides mechanical strength, and heat of the power semiconductor element built in the circuit body 900 as a cooling medium. And a connection portion 970 that connects the frame portion 960 and the first base 951 and is formed thinner than the first base 951.
  • the first base portion 951 includes a first fin base 952 having fins, a first intermediate base 953 formed thinner than the first fin base 952 and thicker than the connection portion 970, and further connected to the connection portion 970. Have.
  • the first intermediate base 953 is formed thinner than the first fin base 952, the first intermediate base 953 has an effect of reducing stress and ensuring adhesion. Since the first intermediate base 953 having low stress surrounds the first fin base 952, it is possible to prevent the insulating sheet 906 from being peeled off from the outer periphery and to improve the reliability. Further, as an additional effect, there is an effect that the potting resin between the circuit body 900 and the case 950 can be omitted to increase productivity.
  • the end portion of the insulating sheet 906 when the end portion of the insulating sheet 906 is disposed between the first intermediate base 951 and the case 950, the end portion of the insulating sheet 906, which is the starting point of peeling, is pressed by the first intermediate base 951, and the peeling effect is achieved. Can be increased.
  • the second base portion 955 may be provided on the opposite surface of the first base portion 951 with the circuit body 950 interposed therebetween.
  • a second fin base 956 and a second intermediate base 957 having functions similar to those of the first fin base 952 and the first intermediate base 953 may be formed in the second base portion 955.
  • the case 950 is not particularly limited as long as it is a waterproof material, but a metal material is preferred for facilitating the deformation of the connecting portion 970. Even a metal material is preferably a material mainly composed of aluminum in terms of weight and cost.
  • FIG. 2 is a plan view of the manufacturing process centering on the lead frame of the power semiconductor device 300.
  • the upper arm side IGBT 155, the upper arm side diode 156, the lower arm side IGBT 157, and the lower arm side diode 158, which are power semiconductor elements described later, are solder-connected to the collector side lead frame 901.
  • the IGBT is an abbreviation for an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor).
  • the collector-side lead frame 901 has a tie bar 912 to prevent the resin from flowing out to the terminal portion during transfer molding.
  • the collector-side lead frame 901 and other lead frames described later are preferably made of a metal material having both electrical conductivity and heat dissipation.
  • metal materials a material mainly composed of copper or aluminum is preferable.
  • a material mainly composed of copper is preferable from the viewpoint of electrical conductivity.
  • FIG. 3 is a plan view of the lead body 910 manufactured in the manufacturing process of the power semiconductor device 300.
  • Emitter side lead frames 902 and 903 are soldered to the emitter side of the power semiconductor element. Thereafter, the Al gate 905 electrically connects the IGBT gate pad and the lead frame. In this way, the lead body 910 before transfer molding is manufactured.
  • FIG. 4 is a plan view of a circuit body 900 manufactured in the manufacturing process of the power semiconductor device 300 and a cross-sectional view cut along the AA ′ plane.
  • the sealing resin 907 is not particularly limited as long as it is a resin material, but a material close to the thermal expansion coefficient of the lead frame is desirable in order to reduce thermal stress.
  • FIG. 5 is a schematic cross-sectional view of the manufacturing process until the circuit body 900 is inserted into the case 950.
  • the upper insulating sheet 906 is connected to the circuit body 900 so as to cover at least the emitter-side lead frames 902 and 903 exposed from the sealing resin 907.
  • the lower insulating sheet 906 is connected to the circuit body 900 so as to cover at least the collector-side lead frame 901 exposed from the sealing resin 907.
  • the insulating sheet 906 and the circuit body 900 are connected by temporary fixing such as adhesion. Then, the circuit body 900 connected with the insulating sheet 906 is inserted into the case 950.
  • FIG. 6 is a schematic cross-sectional view of the manufacturing process of the power semiconductor device 300 with the insulating sheet 906 as the center.
  • the circuit body 900 in which the insulating sheet 906 is temporarily fixed on both sides and inserted into the case 950 is heat-pressed using a vacuum press.
  • the tip of the fin of the case 950 and the first intermediate base portion 953 are pressurized using the crimping jig A992 and the crimping jig B993 attached to the press hot plate 990 using the cushion material 991.
  • the connecting portion 970 is deformed, and the insulating sheet 906 is in close contact with the first fin base 952, the second fin base 956, the first intermediate base 953, and the second intermediate base 957.
  • the insulating sheet 906 is cured at a predetermined temperature and time while the close contact state is maintained, and the circuit body 900 and the case 950 are bonded to each other by the insulating sheet 906. In this way, the power semiconductor device 300 is obtained.
  • FIG. 7 shows a schematic diagram for explaining a structure which is a modification of the power semiconductor device of the present embodiment.
  • the first intermediate base portion 953 has convex portions 958 having the same height as the fins formed on the first fin base 952.
  • FIG. 8 is a schematic cross-sectional view of the manufacturing process of the power semiconductor device 300 around the insulating sheet 906 according to the modification.
  • the circuit body 900 in which the insulating sheet 906 is temporarily fixed on both sides and inserted into the case 950 is heat-pressed using a vacuum press.
  • the tip of the fin of the case 950 is pressurized using a crimping jig A992 attached to the press hot plate 990 using a cushioning material 991. Since the convex portion 958 having the same height as the fin is formed on the first intermediate base portion 953, there is an effect that the first intermediate base portion 953 can be pressurized even if the crimping jig is simplified.
  • the connecting portion 970 is deformed by the pressure bonding, and the insulating sheet 906 is in close contact with the first fin base 952, the second fin base 956, the first intermediate base 953, and the second intermediate base 957. While maintaining this tight contact state, the insulating sheet is cured at a predetermined temperature and time, and the circuit body 900 and the case 950 are bonded together by the insulating sheet. In this way, the power semiconductor device 300 is obtained.
  • FIG. 9 shows a thermal stress analysis model of the power semiconductor device 300 and a stress analysis result at point C.
  • T1 indicates the thickness of each of the first fin base portion 952 and the second fin base 956, and T2 indicates the thickness of each of the first intermediate base portion 953 and the second intermediate base 957.
  • the case 950 was made of an Al material
  • the lead frame was made of a copper material
  • the sealing resin 907 was calculated with the same thermal expansion coefficient as that of the copper material.
  • the maximum principal stress at ⁇ 40 ° C. was determined with the operating temperature of 150 ° C. as zero stress.
  • T2 was 2.5 mm.
  • T1 T2
  • FIG. 10 is a circuit diagram of the power semiconductor device 300 of this embodiment.
  • the terminal 315B outputs from the collector side of the upper arm circuit, and is connected to the positive side of the battery or capacitor.
  • the terminal 325U outputs from the gate and emitter sense of the IGBT 155 of the upper arm circuit.
  • the terminal 319B outputs from the emitter side of the lower arm circuit, and is connected to the negative side of the battery or capacitor, or to GND.
  • the terminal 325L outputs from the gate and emitter sense of the IGBT 157 of the lower arm circuit.
  • the terminal 320B outputs from the collector side of the lower arm circuit and is connected to the motor. In the case of neutral point grounding, the lower arm circuit is connected to the negative electrode side of the capacitor instead of GND.
  • the power semiconductor device has a 2-in-1 structure in which two arm circuits of an upper arm circuit and a lower arm circuit are integrated into one module.
  • a 2-in-1 structure in which two arm circuits of an upper arm circuit and a lower arm circuit are integrated into one module.
  • the number of output terminals from the power semiconductor device can be reduced and the size can be reduced.
  • FIG. 11 is a circuit diagram of a power conversion device 200 using the power semiconductor device 300 of the present embodiment.
  • the power conversion device 200 includes inverter circuit units 140 and 142, an auxiliary inverter circuit unit 43, and a capacitor module 500.
  • the inverter circuit units 140 and 142 include a plurality of power semiconductor devices 300, and constitute a three-phase bridge circuit by connecting them.
  • the power semiconductor device 300 is further connected in parallel, and the parallel connection is performed corresponding to each phase of the three-phase inverter circuit, so that an increase in the current capacity can be dealt with. Further, it is possible to cope with an increase in current capacity by connecting power semiconductor elements built in the power semiconductor device 300 in parallel.
  • the inverter circuit unit 140 and the inverter circuit unit 142 have the same basic circuit configuration and basically the same control method and operation. Since the outline of the circuit operation of the inverter circuit unit 140 and the like is well known, detailed description thereof is omitted here.
  • the upper arm circuit includes the upper arm IGBT 155 and the upper arm diode 156 as power semiconductor elements for switching
  • the lower arm circuit includes the lower arm IGBT 157 and the lower arm diode 158.
  • the IGBTs 155 and 157 perform a switching operation in response to a drive signal output from one or the other of the two driver circuits constituting the driver circuit 174, and convert DC power supplied from the battery 136 into three-phase AC power.
  • the upper arm IGBT 155 and the lower arm IGBT 157 include a collector electrode, an emitter electrode (signal emitter electrode terminal), and a gate electrode (gate electrode terminal).
  • the upper arm diode 156 and the lower arm diode 158 include two electrodes, a cathode electrode and an anode electrode.
  • the cathode electrodes of the diodes 156 and 158 are the collector electrodes of the IGBTs 155 and 157
  • the anode electrodes are the emitters of the IGBTs 155 and 157 so that the direction from the emitter electrode to the collector electrode of the upper arm IGBT 155 and the lower arm IGBT 157 is the forward direction.
  • Each is electrically connected to the electrode.
  • a MOSFET metal oxide semiconductor field effect transistor
  • the upper arm diode 156 and the lower arm diode 158 are not necessary.
  • Temperature information of the upper and lower arm series circuit is input to the microcomputer from a temperature sensor (not shown) provided in the upper and lower arm series circuit. Further, voltage information on the DC positive side of the upper and lower arm series circuit is input to the microcomputer. The microcomputer performs over temperature detection and over voltage detection based on the information, and when an over temperature or over voltage is detected, the switching operation of all the upper arm IGBT 155 and the lower arm IGBT 157 is stopped, and the upper and lower arms are connected in series. Protect the circuit from over temperature or over voltage.
  • FIG. 12 is a perspective view showing an external appearance of the power conversion device 200.
  • the external appearance of the power change device 200 according to the present embodiment is as follows.
  • the housing 12 has a substantially rectangular top or bottom surface, the upper case 10 provided on one of the outer circumferences on the short side of the housing 12, and the housing 12.
  • the lower case 16 for closing the lower opening is fixed and formed.
  • FIG. 13 is a schematic diagram showing a cross-sectional structure of the power conversion device 200.
  • the power semiconductor device 300 is installed in the flow path forming body 1000. After inserting the power semiconductor device 300 into the flow path forming body, the laminated wiring board 501 on which the mounting components are mounted is assembled, and the signal terminals and the laminated wiring board 501 are electrically connected. Furthermore, a terminal through which a large current flows is welded to a terminal protruding from a plate 1200 in which bus bar wirings are multilayered. By stacking the laminated wiring board 501 and the plate 1200 in three dimensions, the power conversion device can be reduced in size.
  • the flow path forming body 1000 forms a coolant flow path through which a coolant that cools the power semiconductor device 300 flows.
  • the flow path forming body 1000 forms a flow path through which the refrigerant flows in the heat dissipation portion of the power semiconductor device 300.
  • the seal portion 980 of the power semiconductor device 300 is provided with an elastic body such as an O-ring.
  • FIG. 14 is a cross-sectional view taken along a cross-section A in FIG.
  • the housing 12 forms a flow path forming body 1000.
  • the refrigerant flowing into the water channel 19 from the cooling water inlet 13 flows through the water channel 19 as indicated by an arrow, and is discharged from the cooling water outlet 14.
  • six power semiconductor devices 300 are arranged in the water channel 19 along the flow of the cooling water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本発明の目的は、パワー半導体装置の信頼性を向上させることである。 本発明に係るパワー半導体装置は、パワー半導体素子を有する回路体と、前記回路体を収納するケースと、前記回路体と前記ケースに間に配置される絶縁部材と、を備え、前記ケースは、前記回路体と対向する第1ベース部と、枠部と、当該枠部と当該第1ベースを接続するとともに当該第1ベースよりも薄く形成される接続部と、を有し、前記第1ベースは、フィンを有する第1フィンベースと、当該第1フィンベースよりも薄くかつ前記接続部よりも厚く形成されさらに当該接続部と接続される第1中間ベースと、を有する。

Description

パワー半導体装置
 本発明は、パワー半導体素子を搭載したパワー半導体装置に関し、特に電力変換装置に用いられるパワー半導体装置に関する。
 パワー半導体素子のスイッチングによる電力変換装置は、変換効率が高いため、民生用、車載用、鉄道用、変電設備等に幅広く利用されている。このパワー半導体素子は通電により発熱するため、高い放熱性が求められる。
 特に車載用途においては、小型、軽量化のため水冷を用いた高効率な冷却システムが採用されている。水冷による冷却システムは冷媒流路の形成する必要があり複雑な構造となる。この冷媒流路の形成を用意にする技術として、特許文献1には、パワー半導体装置を水没する事で冷媒流路を形成する構造が開示されている。
 特許文献1に記載されたパワー半導体装置は、放熱板を囲む薄肉部を有するケースに半導体素子を封止した封止体を収納し、封止体とケースとの間には絶縁シートが挿入されている。
 しかしながら、この絶縁シートが封止体またはケースから剥離することによる信頼性の低下に対策が必要になった。
特開2011-233606号公報
 本発明の課題は、パワー半導体装置の信頼性を向上させることである。
 本発明に係るパワー半導体装置は、パワー半導体素子を有する回路体と、前記回路体を収納するケースと、前記回路体と前記ケースに間に配置される絶縁部材と、を備え、前記ケースは、前記回路体と対向する第1ベース部と、枠部と、当該枠部と当該第1ベースを接続するとともに当該第1ベースよりも薄く形成される接続部と、を有し、前記第1ベースは、フィンを有する第1フィンベースと、当該第1フィンベースよりも薄くかつ前記接続部よりも厚く形成されさらに当該接続部と接続される第1中間ベースと、を有する。
 本発明により、パワー半導体装置の信頼性を向上させることができる。
本実施形態のパワー半導体装置300の平面図及びA-A‘面で切断した断面図である。 パワー半導体装置300のリードフレームを中心にした製造工程の平面図である。 パワー半導体装置300の製造工程で作製するリード体910の平面図である。 パワー半導体装置300の製造工程で作製する回路体900の平面図及びA-A‘面で切断した断面図である。 回路体900をケース950に挿入するまでの製造工程の断面模式図である。 絶縁シート906を中心にしたパワー半導体装置300の製造工程の断面模式図である。 本実施形態のパワー半導体装置の変形例である構造を説明する模式図である。 変形例に係る、絶縁シート906を中心にしたパワー半導体装置300の製造工程の断面模式図である。 パワー半導体装置300の熱応力解析モデル及びポイントCの応力解析結果を示す。 本実施形態のパワー半導体装置300の回路図である。 本実施形態のパワー半導体装置300を用いた電力変換装置200の回路図である。 電力変換装置200の外観を示す斜視図である。 電力変換装置200の断面構造を示す概略図である。 図12の断面Aにおける電力変換装置200の断面図である。
 以下、本発明に係る構造体の実施の形態として、車両搭載用の電力変換装置に用いられるパワー半導体装置について説明する。
 以下に説明するパワー半導体装置の実施形態においては、発熱体としてのパワー半導体素子、当該発熱体と熱的に接続される放熱板としてのAlベース板やフィン部、及び当該発熱体と当該放熱板を固定する樹脂材としての封止樹脂等の各構成要素について、図面を参照して説明する。なお、各図において同一要素については同一の符号を記し、重複する説明は省略する。
 図1は、本実施形態のパワー半導体装置300の平面図及びA-A‘面で切断した断面図である。
 パワー半導体装置300は、封止樹脂907と、直流端子315B及び319Bと、交流端子320Bと、信号端子325U及び325Lを有する。
 回路体900は、リードフレームに搭載したパワー半導体素子を封止した構造体である。信号端子325L、交流端子320B、信号端子325Uは、パワー半導体装置300の一面から突出し、一列に並べられる。また、直流端子315B及び直流端子319Bは、パワー半導体装置300の他方の一面から突出し、一列に並べられる。直流端子315B及び直流端子319Bが隣接することで、入出力の電流を近接させインダクタンスを低減する効果がある。
 回路体900は、ケース950に絶縁シート906を介して密着し、パワー半導体素子の熱を冷却媒体に伝達している。ケース950は、冷却媒体が回路体900に接触したり、回路体900を形成する封止樹脂907が吸湿又は膨潤したりするのを防止している。なお、絶縁シート906は、シート状でなく膜状に絶縁層を形成してもよく、絶縁機能を有する絶縁部材であればよい。
 ケース950は、Oリング等の部材により冷却冷媒の液密性を確保するシール部980と、機械的強度を持たせる枠部960と、回路体900に内蔵されるパワー半導体素子の熱を冷却媒体に伝達する第1ベース951と、枠部960と第1ベース951を接続するとともに第1ベース951よりも薄く形成される接続部970と、を有する。
 また、第1ベース部951は、フィンを有する第1フィンベース952と、第1フィンベース952よりも薄くかつ接続部970よりも厚く形成されさらに接続部970と接続される第1中間ベース953と、を有する。
 第1中間ベース953は、第1フィンベース952より薄く形成されるため低応力となり密着性を担保する効果がある。低応力となる第1中間ベース953が第1フィンベース952を囲っているため、絶縁シート906が外周から剥離するのを防止し、信頼性を向上する効果がある。さらに追加の効果として、回路体900とケース950との間のポッティング樹脂を省略して生産性を高めることできる効果もある。
 特に、絶縁シート906の端部が第1中間ベース951とケース950の間に配置されると、剥離の始点となる絶縁シート906の端部を第1中間ベース951により押さえ、剥離をする効果を高めることができる。
 本実施形態のように、第1ベース部951の回路体950を挟んだ反対面に第2ベース部955を設けてもよい。第2ベース部955に、第1フィンベース952及び第1中間ベース953と同様の機能を有する第2フィンベース956及び第2中間ベース957を形成してもよい。
 ケース950は、防水性を有する材料であれば、特に制約されないが、接続部970の変形を容易にするため金属材料が好まれる。金属材料でも、重量及びコストの点からアルミニウムを主成分とする材料が好ましい。
 本実施例のパワー半導体装置300の製造手順について、図2から図6を用いて説明する。
 図2は、パワー半導体装置300のリードフレームを中心にした製造工程の平面図である。
 コレクタ側リードフレーム901に、後述するパワー半導体素子である上アーム側IGBT155、上アーム側ダイオード156、下アーム側IGBT157、下アーム側ダイオード158がはんだ接続される。ここで、IGBTとは、絶縁ゲート型バイポーラトランジスタ(Insulated Gate Bipolar Transistor)の略である。
 コレクタ側リードフレーム901は、トランスファーモールド時に端子部に樹脂が流出するのを防止するためにタイバー912を有する。コレクタ側リードフレーム901や後述するその他のリードフレームは、電気伝導性と放熱性を兼ね備える金属材料が望ましい。金属材料の中でも、銅またはアルミニウムを主成分とする材料が好ましい。その中でも特に銅を主成分とする材料が電気伝導性の点から望ましい。
 図3は、パワー半導体装置300の製造工程で作製するリード体910の平面図である。
 パワー半導体素子のエミッタ側にエミッタ側リードフレーム902及び903がはんだ接続される。この後、Alワイヤ905により、IGBTゲートパットとリードフレームを電気的に接続する。このようにして、トランスファーモールド前のリード体910が作製される。
 図4は、パワー半導体装置300の製造工程で作製する回路体900の平面図及びA-A‘面で切断した断面図である。
 リード体910を封止樹脂907としてトランスファーモールドにて封止した後、タイバー912をカットして回路体900が作製される。封止樹脂907は、樹脂材料であれば特に制約されないが、熱応力を低減するためリードフレームの熱膨張率に近い材料が望ましい。
 図5は、回路体900をケース950に挿入するまでの製造工程の断面模式図である。
 上側の絶縁シート906は、封止樹脂907から露出したエミッタ側リードフレーム902及び903を少なくとも覆うように回路体900に接続される。下側の絶縁シート906は、封止樹脂907から露出したコレクタ側リードフレーム901を少なくとも覆うように回路体900に接続される。絶縁シート906と回路体900との接続は、接着等の仮固定によって為される。そして、絶縁シート906を接続した回路体900を、ケース950に挿入する。
 図6は、絶縁シート906を中心にしたパワー半導体装置300の製造工程の断面模式図である。
 両面に絶縁シート906を仮固定しケース950に挿入した回路体900は、真空プレス機を用いて加熱圧着される。プレス熱板990にクッション材991を用いて取り付けられた圧着治具A992及び圧着治具B993を用いて、ケース950のフィン先端及び第1中間ベース部953を加圧する。
 これにより接続部970が変形し、絶縁シート906が第1フィンベース952、第2フィンベース956、第1中間ベース953及び第2中間ベース957と密着する。この密着状態を保持したまま、所定の温度、時間で絶縁シート906を硬化させて、回路体900とケース950を絶縁シート906により接着させる。このようにしてパワー半導体装置300が得られる。
 図7に本実施形態のパワー半導体装置の変形例である構造を説明する模式図を示す。図1ないし図6で説明された実施形態と異なる点は、第1中間ベース部953に、第1フィンベース952に形成されたフィンと同じ高さの凸部958を有する。
 図8は、変形例に係る、絶縁シート906を中心にしたパワー半導体装置300の製造工程の断面模式図である。
 両面に絶縁シート906を仮固定しケース950に挿入した回路体900は、真空プレス機を用いて加熱圧着される。プレス熱板990にクッション材991を用いて取り付けられた圧着治具A992を用いて、ケース950のフィン先端を加圧する。第1中間ベース部953にフィンと同じ高さの凸部958が形成されているため、圧着治具を簡略化しても、第1中間ベース部953を加圧できる効果がある。圧着により接続部970が変形し、絶縁シート906が第1フィンベース952、第2フィンベース956、第1中間ベース953及び第2中間ベース957と密着する。この密着状態を保持したまま、所定の温度、時間で絶縁シートを硬化させて、回路体900とケース950を絶縁シートにより接着させる。このようにしてパワー半導体装置300が得られる。
 図9は、パワー半導体装置300の熱応力解析モデル及びポイントCの応力解析結果を示す。
 T1は第1フィンベース部952と第2フィンベース956のそれぞれの厚さ、T2は第1中間ベース部953と第2中間ベース957のそれぞれの厚さを示す。ケース950の材料はAl材、リードフレームは銅材とし封止樹脂907は銅材と同じ熱膨張率で計算した。また解析は、動作温度である150℃を応力0として、-40℃における最大主応力を求めた。また、T2は2.5mmとした。
 T1=T2の最大主応力を1として、これに対する比を相対応力とした。第1中間ベース部953と第2中間ベース957が薄くなるにともない応力が低減する効果が確認できた。特に相対厚さが0.4以下になると傾きが大きくなり応力低減の効果が大きいことが確認できた。
 絶縁シート906の端部が剥離すると、その剥離は内部に進展する。ケース950と回路体900にはパワー半導体素子の動作により高電圧加わる。端部からの剥離が回路体900のリードフレーム露出に達すると、高電圧が加わるリードフレームとケース950の間に空気層ができ、絶縁性が低下する。絶縁シート906の端部の応力を低減するとこのような剥離を抑制できるため信頼性寿命が向上できる効果がある。
 図10は、本実施形態のパワー半導体装置300の回路図である。端子315Bは、上アーム回路のコレクタ側から出力しており、バッテリー又はコンデンサの正極側に接続される。端子325Uは、上アーム回路のIGBT155のゲート及びエミッタセンスから出力している。端子319Bは、下アーム回路のエミッタ側から出力しており、バッテリー若しくはコンデンサの負極側、又はGNDに接続される。端子325Lは、下アーム回路のIGBT157のゲート及びエミッタセンスから出力している。端子320Bは、下アーム回路のコレクタ側から出力しており、モータに接続される。中性点接地をする場合は、下アーム回路は、GNDでなくコンデンサの負極側に接続する。
 本実施例のパワー半導体装置は、上アーム回路及び下アーム回路の2つのアーム回路を、1つのモジュールに一体化した構造である2in1構造である。2in1構造の他にも、3in1構造、4in1構造、6in1構造等を用いた場合、パワー半導体装置からの出力端子の数を低減し小型化することができる。
 図11は、本実施形態のパワー半導体装置300を用いた電力変換装置200の回路図である。電力変換装置200は、インバータ回路部140、142と、補機用のインバータ回路部43と、コンデンサモジュール500と、を備えている。インバータ回路部140及び142は、パワー半導体装置300を複数備えており、それらを接続することにより3相ブリッジ回路を構成している。電流容量が大きい場合には、更にパワー半導体装置300を並列接続し、これら並列接続を3相インバータ回路の各相に対応して行うことにより、電流容量の増大に対応できる。また、パワー半導体装置300に内蔵しているパワー半導体素子を並列接続することでも電流容量の増大に対応できる。
 インバータ回路部140とインバータ回路部142とは、基本的な回路構成は同じであり、制御方法や動作も基本的には同じである。インバータ回路部140等の回路的な動作の概要は周知であるため、ここでは詳細な説明を省略する。
 上述のように、上アーム回路は、スイッチング用のパワー半導体素子として上アーム用IGBT155と上アーム用ダイオード156とを備えており、下アーム回路は、下アーム用IGBT157と下アーム用ダイオード158とを備えている。IGBT155及び157は、ドライバ回路174を構成する2つのドライバ回路の一方あるいは他方から出力された駆動信号を受けてスイッチング動作し、バッテリー136から供給された直流電力を三相交流電力に変換する。
 上アーム用IGBT155や下アーム用IGBT157は、コレクタ電極、エミッタ電極(信号用エミッタ電極端子)、ゲート電極(ゲート電極端子)を備えている。上アーム
用ダイオード156や下アーム用ダイオード158は、カソード電極およびアノード電極の2つの電極を備えている。上アーム用IGBT155や下アーム用IGBT157のエミッタ電極からコレクタ電極に向かう方向が順方向となるように、ダイオード156、158のカソード電極がIGBT155、157のコレクタ電極に、アノード電極がIGBT155、157のエミッタ電極にそれぞれ電気的に接続されている。なお、パワー半導体素子としてはMOSFET(金属酸化物半導体型電界効果トランジスタ)を用いても良く、この場合は上アーム用ダイオード156、下アーム用ダイオード158は不要となる。
 上下アーム直列回路に設けられた温度センサ(不図示)からは、上下アーム直列回路の温度情報がマイコンに入力される。また、マイコンには上下アーム直列回路の直流正極側の電圧情報が入力される。マイコンは、それらの情報に基づいて過温度検知および過電圧検知を行い、過温度或いは過電圧が検知された場合には全ての上アーム用IGBT155、下アーム用IGBT157のスイッチング動作を停止させ、上下アーム直列回路を過温度或いは過電圧から保護する。
 図12は、電力変換装置200の外観を示す斜視図である。本実施の形態に係る電力変化装置200の外観は、上面あるいは底面が略長方形の筐体12と、筐体12の短辺側の外周の一つに設けられた上部ケース10と、筐体12の下部開口を塞ぐための下部ケース16とを固定して形成されたものである。筐体12の底面図あるいは上面図の形状を略長方形としたことで、車両への取付けが容易となり、また生産しやすい。
 図13は、電力変換装置200の断面構造を示す概略図である。パワー半導体装置300は、流路形成体1000に設置される。パワー半導体装置300を流路形成体に挿入した後、実装部品を搭載した積層配線板501を組み付け、信号端子と積層配線板501を電気的に接続する。さらに、大電流が流れる端子はバスバー配線を多層積層したプレート1200から突出した端子と溶接する。積層配線板501とプレート1200を立体積層することで、電力変換装置を小型化することができる。
 流路形成体1000は、パワー半導体装置300を冷却する冷媒を流す冷媒流路を形成する。流路形成体1000は、パワー半導体装置300の放熱部に、冷媒が流れる流路を形成する。パワー半導体装置300のシール部980には、Oリング等の弾性体が設けられる。
 図14は、図12の断面Aにおける断面図である。筐体12は、流路形成体1000を形成する。冷却水入口13から水路19内に流入した冷媒は、水路19を矢印で示すように流れ、冷却水出口14から排出される。本実施形態においては、水路19内に、6つのパワー半導体装置300が冷却水の流れに沿って配置されている。
10…上部ケース、12…筺体、13…冷却水入口、 14…冷却水出口、 16…下部ケース、 18…交流ターミナル、 19…流路、 20…水路構造体、 21…コネクタ、 43…インバータ回路、136…バッテリ、140…インバータ回路、142…インバータ回路、155…上アーム用IGBT、156…上アーム用ダイオード、157…下アーム用IGBT、158…下アーム用ダイオード、174…ドライバ回路、192…モータジェネレータ、194…モータジェネレータ、200…電力変換装置、300…パワー半導体装置、315B…直流端子、319B…直流端子、320B…交流端子、325U…信号端子、325L…信号端子、500…コンデンサモジュール、501…積層配線板、900…回路体、901…コレクタ側リードフレーム、902…エミッタ側リードフレーム、903…エミッタ側リードフレーム、904…パワー半導体素子、905…Alワイヤ、906…絶縁シート、907…封止樹脂、910…リード体、912…タイバー、950…ケース、951…第1ベース部、952…第1フィンベース、953…第1中間ベース、955…第2ベース部、956…第2フィンベース、957…第2中間ベース、958…凸部、960…枠部、970…接続部、980…シール部、990…プレス熱板、991…クッション材、992…圧着治具A、993…圧着治具B、1000…流路形成体、1200…プレート

Claims (8)

  1.  パワー半導体素子を有する回路体と、
     前記回路体を収納するケースと、
     前記回路体と前記ケースに間に配置される絶縁部材と、を備え、
     前記ケースは、前記回路体と対向する第1ベース部と、枠部と、当該枠部と当該第1ベースを接続するとともに当該第1ベースよりも薄く形成される接続部と、を有し、
     前記第1ベースは、フィンを有する第1フィンベースと、当該第1フィンベースよりも薄くかつ前記接続部よりも厚く形成されさらに当該接続部と接続される第1中間ベースと、を有するパワー半導体装置。
  2.  請求項1に記載のパワー半導体装置であって、
     前記回路体を挟んで前記第1ベース部と対向する第2ベース部を備え、
     前記枠部の前記接続部は、前記第1ベース部と前記第2ベース部を接続するとともに当該第1ベース及び当該第2ベースよりも薄く形成されるパワー半導体装置。
  3.  請求項1または2に記載のパワー半導体装置であって、
     前記絶縁部材の端部は、前記第1中間ベースと前記ケースの間に配置されるパワー半導体装置。
  4.  請求項1ないし3に記載のパワー半導体装置であって、
     前記第1中間ベースは、前記フィンの先端よりも高くまたは当該フィンの先端と同じ高さとなるように形成される突起部を有するパワー半導体装置。
  5.  請求項1乃至4のいずれかに記載のパワー半導体装置であって、
     前記第1中間ベースに第1フィンベースのフィンと同一平面で接する突起を備えるパワー半導体装置。
  6.  請求項1乃至5のいずれかに記載のパワー半導体装置であって、
     前記第1中間ベースの厚さは、前記第1フィンベースの厚さを1とした場合、0.4以下であるパワー半導体装置。
  7.  請求項1乃至6のいずれかに記載のパワー半導体装置であって、
     前記ケースは、アルミニウムを含む材料により構成され、
     前記回路体は、銅を含む材料により構成されるリードフレームを導電部材として用いるパワー半導体装置。
  8.  請求項1乃至7のいずれかに記載のパワー半導体装置であって、
     前記第1ベース部を挟んで前記回路体と対向するとともに冷媒を流す流路を形成する流路形成体を備えるパワー半導体装置。
PCT/JP2018/003566 2017-02-28 2018-02-02 パワー半導体装置 WO2018159209A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017035669A JP6767898B2 (ja) 2017-02-28 2017-02-28 パワー半導体装置
JP2017-035669 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159209A1 true WO2018159209A1 (ja) 2018-09-07

Family

ID=63370074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003566 WO2018159209A1 (ja) 2017-02-28 2018-02-02 パワー半導体装置

Country Status (2)

Country Link
JP (1) JP6767898B2 (ja)
WO (1) WO2018159209A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123870A1 (ja) * 2020-12-10 2022-06-16 日立Astemo株式会社 電気回路体、電力変換装置、および電気回路体の製造方法
WO2022137701A1 (ja) * 2020-12-22 2022-06-30 日立Astemo株式会社 電気回路体および電力変換装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6771502B2 (ja) * 2018-03-16 2020-10-21 三菱電機株式会社 樹脂封止型半導体装置
JP7428679B2 (ja) 2021-03-24 2024-02-06 株式会社日立製作所 パワー半導体装置および電力変換装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233606A (ja) * 2010-04-26 2011-11-17 Hitachi Automotive Systems Ltd パワーモジュール
JP2013143439A (ja) * 2012-01-10 2013-07-22 Hitachi Automotive Systems Ltd パワー半導体モジュール、パワーモジュールおよびパワーモジュールの製造方法
JP2016092266A (ja) * 2014-11-06 2016-05-23 トヨタ自動車株式会社 半導体装置
JP2016131196A (ja) * 2015-01-13 2016-07-21 トヨタ自動車株式会社 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233606A (ja) * 2010-04-26 2011-11-17 Hitachi Automotive Systems Ltd パワーモジュール
JP2013143439A (ja) * 2012-01-10 2013-07-22 Hitachi Automotive Systems Ltd パワー半導体モジュール、パワーモジュールおよびパワーモジュールの製造方法
JP2016092266A (ja) * 2014-11-06 2016-05-23 トヨタ自動車株式会社 半導体装置
JP2016131196A (ja) * 2015-01-13 2016-07-21 トヨタ自動車株式会社 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123870A1 (ja) * 2020-12-10 2022-06-16 日立Astemo株式会社 電気回路体、電力変換装置、および電気回路体の製造方法
WO2022137701A1 (ja) * 2020-12-22 2022-06-30 日立Astemo株式会社 電気回路体および電力変換装置

Also Published As

Publication number Publication date
JP2018142620A (ja) 2018-09-13
JP6767898B2 (ja) 2020-10-14

Similar Documents

Publication Publication Date Title
JP6979864B2 (ja) パワー半導体装置及びその製造方法
JP6302803B2 (ja) パワー半導体モジュール及びその製造方法、電力変換装置
CN107924885B (zh) 构造体
WO2018159209A1 (ja) パワー半導体装置
JP5486990B2 (ja) パワーモジュール及びそれを用いた電力変換装置
JP2000164800A (ja) 半導体モジュール
JP7491707B2 (ja) 電気回路体、電力変換装置、および電気回路体の製造方法
US20210391236A1 (en) Semiconductor module, power conversion device, and manufacturing method of semiconductor module
WO2022123870A1 (ja) 電気回路体、電力変換装置、および電気回路体の製造方法
US11367671B2 (en) Power semiconductor device
JP7444711B2 (ja) パワーモジュール及びこれを用いた電力変換装置
JP7171516B2 (ja) パワー半導体モジュール、電力変換装置およびパワー半導体モジュールの製造方法
CN113261095A (zh) 半导体装置、半导体装置的制造方法及电力转换装置
WO2023112997A1 (ja) 半導体装置及び電力変換装置
WO2024009613A1 (ja) 電気回路体および電力変換装置
WO2022137701A1 (ja) 電気回路体および電力変換装置
WO2022137692A1 (ja) 電気回路体および電力変換装置
WO2022137704A1 (ja) パワーモジュールおよび電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761974

Country of ref document: EP

Kind code of ref document: A1