WO2022137692A1 - 電気回路体および電力変換装置 - Google Patents

電気回路体および電力変換装置 Download PDF

Info

Publication number
WO2022137692A1
WO2022137692A1 PCT/JP2021/035416 JP2021035416W WO2022137692A1 WO 2022137692 A1 WO2022137692 A1 WO 2022137692A1 JP 2021035416 W JP2021035416 W JP 2021035416W WO 2022137692 A1 WO2022137692 A1 WO 2022137692A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor plate
electric circuit
fin base
circuit body
fin
Prior art date
Application number
PCT/JP2021/035416
Other languages
English (en)
French (fr)
Inventor
円丈 露野
英一 井出
裕二朗 金子
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2022137692A1 publication Critical patent/WO2022137692A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L2224/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an electric circuit body and a power conversion device.
  • the cooling member includes a fin base and a plurality of fins erected on the fin base, and cools the power semiconductor element by circulating a refrigerant between the fins.
  • Patent Document 1 in a semiconductor device in which a sealing member is sealed in a transfer molding process, a slit penetrating in the thickness direction of the fin is formed, and in the molding die, a strut portion is provided at a position corresponding to the slit. Disclosed is a technique for suppressing deformation of the fin base at the strut portion with respect to the pressure at the time of molding.
  • Patent Document 1 has a problem that heat dissipation is lowered because fins cannot be formed in the slit portion of the fin base.
  • the electric circuit body includes a power semiconductor element, a conductor plate bonded to the power semiconductor element, a cooling member arranged so as to face the power semiconductor element with the conductor plate interposed therebetween, and the conductor plate.
  • the cooling member includes a fin base having a predetermined thickness whose one surface is exposed from the sealing member, a plurality of fins erected on the one surface of the fin base, and the above-mentioned electric circuit body.
  • the outer periphery of the fin base is provided with an end portion covered with the sealing member, and is arranged in the outer peripheral region in a conductor plate region facing the conductor plate of the fin base and an outer peripheral region of the outer periphery of the conductor plate region.
  • the distance between the fins is not more than twice the thickness of the fin base.
  • the present invention it is possible to prevent the fin base from being occupied by slits other than the fins, and to suppress deformation of the fin base without deteriorating heat dissipation.
  • FIG. 1 is a plan view of the electric circuit body 400
  • FIG. 2 is a cross-sectional view taken along the line XX shown in FIG. 1 of the electric circuit body 400.
  • FIG. 3 is a cross-sectional view taken along the line YY shown in FIG. 1 of the electric circuit body 400.
  • the electric circuit body 400 includes three power modules 300 and a cooling member 340.
  • the power module 300 has a function of converting a direct current and an alternating current by using a power semiconductor element, and generates heat when energized. Therefore, the structure is such that the refrigerant flows through the cooling member 340 to cool the cooling member.
  • water or an antifreeze solution in which ethylene glycol is mixed with water is used as the refrigerant.
  • the cooling member 340 a plurality of pin-shaped fins are erected on the fin base of the cooling member 340.
  • the cooling member 340 is preferably made of aluminum, which has high thermal conductivity and is lightweight.
  • the cooling member 340 is manufactured by extrusion molding, forging, brazing, or the like.
  • the power module 300 is provided with a positive electrode side terminal 315B and a negative electrode side terminal 319B connected to the capacitor module 500 of the DC circuit (see FIG. 15 described later) on one side.
  • a power terminal through which a large current flows such as an AC side terminal 320B connected to the motor generators 192 and 194 of the AC circuit (see FIG. 15 described later)
  • the other side is provided with a signal terminal used for controlling a power module 300 such as a lower arm gate signal terminal 325L, a mirror emitter signal terminal 325M, a Kelvin emitter signal terminal 325K, and an upper arm gate signal terminal 325U.
  • an active element 155 and a diode 156 are provided as a first power semiconductor element forming an upper arm circuit.
  • the semiconductor material constituting the active element 155 for example, Si, SiC, GaN, GaO, C or the like can be used.
  • the diode 156 may be omitted.
  • the collector side of the active element 155 and the cathode side of the diode 156 are bonded to the second conductor plate 431.
  • a first conductor plate 430 is bonded to the emitter side of the active element 155 and the anode side of the diode 156. Solder may be used for these joinings, or sintered metal may be used.
  • the first conductor plate 430 and the second conductor plate 431 are not particularly limited as long as they are materials having high electrical conductivity and thermal conductivity, but copper-based or aluminum-based materials are preferable. These may be used alone, or may be plated with Ni, Ag, or the like in order to improve the bondability with solder or sintered metal.
  • the cooling member 340 is brought into close contact with the first conductor plate 430 via the first sheet member 440.
  • the first sheet member 440 is configured by laminating a resin insulating layer and a metal foil.
  • a heat conductive member (not shown) is provided between the first sheet member 440 and the cooling member 340, and the metal leaf side of the first sheet member 440 is brought into close contact with the heat conductive member.
  • the heat conductive member is not particularly limited as long as it is a material having high thermal conductivity, but it is preferable to use a high heat conductive material such as a metal, ceramics, or a carbon-based material in combination with a resin material.
  • the cooling member 340 is brought into close contact with the second conductor plate 431 via the second sheet member 441.
  • the second sheet member 441 is configured by laminating a resin insulating layer and a metal foil.
  • a heat conductive member is provided between the second sheet member 441 and the cooling member 340, and the metal leaf side of the second sheet member 441 is brought into close contact with the heat conductive member. From the viewpoint of heat dissipation, it is desirable that the width of the cooling member 340 is wider than the width of the seat members 440 and 441.
  • the sheet members 440 and 441 are sandwiched between the conductor plates 430 and 431 and the cooling member 340 and adhered or joined to the conductor plates 430 and 431.
  • the power semiconductor element 155, 156, the conductor plate 430, 431, the sheet member 440, 441, and the cooling member 340 are integrally sealed by the sealing member 360 by the transfer molding process to form the electric circuit body 400.
  • the cooling member 340 is arranged so as to face the power semiconductor elements 155 and 156 with the conductor plates 430 and 431 interposed therebetween.
  • the cooling member 340 includes a fin base 371 having a predetermined thickness whose one surface is exposed from the sealing member 360, and a plurality of fins 370 erected on one surface of the fin base 371.
  • the end of the fin base 371 is covered with a sealing member 360 on the outer circumference of the fin base 371.
  • the first conductor plate 430, the second conductor plate 431, the third conductor plate 432, and the fourth conductor plate 433 have a role of energizing a current, as well as a first power semiconductor element 155, 156. It plays a role as a heat transfer member that transfers heat generated by the second power semiconductor element 157 and 158 to the cooling member 340. Since the potentials of the conductor plates 430, 431, 432, 433 and the cooling member 340 are different, as shown in FIG. 2, the sheet member 440, between the conductor plates 430, 431, 432, 433 and the cooling member 340, Via 441.
  • the first power semiconductor element 155, 156 and the second power semiconductor element 157, 158 may be simply referred to as a power semiconductor element 159.
  • the sheet members 440 and 441 are not particularly limited as long as they have adhesiveness to the cooling member 340 and the conductor plates 430, 431, 432, and 433, but an epoxy resin-based resin insulating layer in which a powdered inorganic filler is dispersed may be used. desirable. This is because the adhesiveness and the heat dissipation are well-balanced.
  • the conductor plates 430, 431, 432, and 433 are preferably made of a material having high electric conductivity and high thermal conductivity, and are preferably a metal-based material such as copper or aluminum, or a metal-based material and high thermal conductivity diamond, carbon, ceramic, or the like. It is also possible to use the composite material of.
  • FIG. 4 is a cross-sectional perspective view of the power module 300 in the XX line shown in FIG.
  • the end of the first sheet member 440 and the end of the fin base 371 are covered by the sealing member 360.
  • the first sheet member 440 that overlaps the surface of the first conductor plate 430 is a heat dissipation surface.
  • the cooling member 340 is brought into close contact with the heat radiating surface of the first sheet member 440 to ensure the close contact with the cooling member 340 so that the heat radiating property is not impaired.
  • the cooling member 340 is made of lightweight aluminum with high thermal conductivity. Manufactured by extrusion, forging, brazing, etc.
  • the cooling member 340 forms an adhesive and watertight structure via a seal member (not shown) on the fin base 371.
  • the outer peripheral portion of the fin base 371 has a thin-walled portion 374 that prevents resin leakage from the transfer mold, and this portion is deformed during transfer mold molding to absorb thickness variations and prevent resin leakage from the transfer mold. is doing.
  • FIGS. 6 (d) to 6 (f) are cross-sectional views showing a method of manufacturing the electric circuit body 400.
  • 5 (a) to 5 (c) and 6 (d) are cross-sectional views of one power module on the YY line shown in FIG. 1, and
  • FIGS. 6 (e) to 6 (f) are X shown in FIG. -The cross-sectional view for one power module in X-ray is shown.
  • FIG. 5A is a diagram showing a solder connection process and a wire bonding process.
  • the collector side of the active element 155 which is the first power semiconductor element, is connected to the second conductor plate 431.
  • the emitter side of the active element 155 is connected to the first conductor plate 430.
  • the collector side of the active element 157 which is the second power semiconductor element, is connected to the fourth conductor plate 433.
  • the emitter side of the active element 157 is connected to the third conductor plate 432. In this way, the circuit body 310 is formed.
  • a fin base 371 having a first sheet member 440 and fins 370 on one surface of the circuit body 310 is provided, and a fin base 371 having a second sheet member 441 and fins 370 on the other surface of the circuit body 310. Is arranged to provide the assembly 311.
  • the transfer molding device 601 includes a spring mechanism 602.
  • the vacuum degassing mechanism for vacuum-adsorbing the sheet members 440, 441 and the like to the mold is not shown.
  • the assembled body 311 preheated to 175 ° C. is installed in the mold in the mold preheated to a constant temperature of 175 ° C.
  • the mold is closed and the sealing member 360 is injected into the mold cavity.
  • the thin portion 374 provided on the outer periphery of the fin base 371 is deformed by the mold to absorb the variation in the thickness of the assembly 311 and prevent the sealing member 360 from flowing into the fin 370 side. It becomes a lid.
  • the tip of the fin 370 is pressed by the spring mechanism 602, and this pressure is larger than the injection pressure of the sealing member 360 at the time of transfer mold molding.
  • the curing reaction of the sheet members 440 and 441 proceeds, and the sheet members 440 and 441 are attached to the fin base 371 and the conductor plates 430, 431, 432 and 433. Glue.
  • the fin base 371 may be deformed by the injection pressure of the sealing member 360 at the time of transfer mold molding. In this embodiment, as will be described later, the deformation of the fin base 371 is suppressed.
  • FIG. 6 (d) is a diagram showing a curing process.
  • the power module 300 sealed by the sealing member 360 is taken out from the transfer mold device 601, cooled at room temperature, and cured for 2 hours or more.
  • FIG. 6 (e) is a diagram showing an installation process of the cooling member 340.
  • a seal member 372 is arranged around the fin base 371, and the lid 373 is adhered to the fin base 371 to form a cooling member 340.
  • FIG. 6 (f) is a diagram showing an electric circuit body 400 manufactured by the above steps.
  • the cooling members 340 are installed on both sides of the power module 300 to manufacture the electric circuit body 400.
  • FIG. 7 is an enlarged view of the dotted line portion H in FIG. 5 (c) in the transfer molding process.
  • FIG. 7A shows the present embodiment
  • FIG. 7B shows a comparative example to which the present embodiment is not applied.
  • FIG. 7A shows a transfer molding process in which the mold is closed and the pressing force P by the spring mechanism 602 is applied. Then, the pressing force P is also applied to the tip of the fin 370 by the spring mechanism 602. Further, in the state where the sealing member 360 is injected, the injection pressure Q is applied to the fin base 371 and the conductor plate 432 as hydrostatic pressure. Since the pressing force P by the spring mechanism 602 is set to be larger than the injection pressure Q, the seat member 440 is heated, pressurized and adhered between the fin base 371 and the conductor plate 432.
  • the fins 370 arranged in the outer peripheral region S2 are connected to each other.
  • the spacing should be no more than twice the thickness of the fin base 371. This suppresses the deformation of the fin base 371.
  • the injection pressure Q causes deformation R of the fin base 371 between the fins 370 and the fins 370.
  • the fin base 371 is separated from the sheet member 440 at the end of the conductor plate 432, the adhesion of the sheet member 440 becomes poor.
  • the sealing member 360 penetrates into the portion where the deformation R of the fin base 371 occurs, but the sealing member 360 does not penetrate into the gap of 20 ⁇ m or less in order to suppress the resin burr to the mold.
  • the amount of deformation of the fin base 371 may cause peeling of the sheet member 440 at the end of the conductor plate 432 with an air layer, and in this case, the insulation and heat dissipation of the electric circuit body 400 are deteriorated.
  • FIG. 8 (a) and 8 (b) are diagrams illustrating the relationship between the distance between the fins 370 and the thickness of the fin base 371.
  • the distance (distance) between the fins 370 and the fins 370 is D
  • the thickness of the fin base 371 between the fins 370 and the fins 370 is T.
  • FIG. 8A shows the case of D ⁇ 2T.
  • the pressing force P by the spring mechanism 602 is first applied to the tip of the fin 370.
  • This pressing force P spreads at an angle of about 45 degrees as shown by the dotted line t showing the thickness T of the fin base 371.
  • the entire back surface of the fin base 371 becomes a region P1 in which the surface pressure is high due to the applied pressure P of the spring mechanism 602.
  • FIG. 8B shows the case where D> 2T.
  • the thickness T of the fin base 371 is spread at an angle of about 45 degrees as shown by the dotted line t by the pressing force P by the spring mechanism 602.
  • a region P1 having a high surface pressure and a region P2 having a low surface pressure are formed.
  • the fin base 371 is deformed because the injection pressure Q in the transfer molding process cannot be countered.
  • FIG. 9 is a plan view of the fin base 371 in which the fins 370 are erected.
  • the case where the cross-sectional shape of the fin 370 is rectangular will be described as an example.
  • the distance (interval) D of the fins 370 and the thickness T of the fin base 371 do not have to satisfy the relationship of D ⁇ 2T, and the power semiconductor element 159
  • the fins 370 required for heat dissipation may be appropriately arranged.
  • the injection pressure Q in the transfer molding process is applied to the fin base 371 via the sealing member 360 in the outer peripheral region S2 on the outer periphery of the conductor plate region S1.
  • the distance d1 between the fins 370 arranged in the outer peripheral region S2 is set to be twice or less the thickness of the fin base 371 so as to satisfy the relationship of D ⁇ 2T.
  • the distance d2 between the fin 370 arranged in the conductor plate region S1 and the fin 370 arranged in the outer peripheral region S2 adjacent to the fin 370 is not more than twice the thickness T of the fin base 371.
  • the fins 370 arranged in the conductor plate region S1 may be arranged on the boundary between the conductor plate region S1 and the outer peripheral region S2.
  • the deformation of the fin base 371 can be further suppressed.
  • the distance d3 between the fins 370 arranged on the boundary between the conductor plate region S1 and the outer peripheral region S2 is not more than twice the thickness of the fin base 371.
  • the distance d3 between the fins arranged on the boundary between the conductor plate region S1 and the outer peripheral region S2 may be narrower than the distance d4 between the fins arranged in the conductor plate region S1.
  • the distance d5 between the fins 370 arranged on the boundary between the conductor plate region S1 and the outer peripheral region S2 and the fins 370 arranged in the outer peripheral region S2 is not more than twice the thickness of the fin base 371.
  • the distance d1 of the fins 370 arranged parallel to the flow F of the refrigerant flowing through the cooling member is narrower than the distance d3 of the fins 370 arranged perpendicular to the flow F of the refrigerant.
  • FIG. 10 is a plan view of the fin base 371 in which the fins 370 are erected.
  • the case where the cross-sectional shape of the fin 370 is circular will be described as an example.
  • the distance (interval) D of the fins 370 and the thickness T of the fin base 371 do not have to satisfy the relationship of D ⁇ 2T, and the power semiconductor element 159
  • the fins 370 required for heat dissipation may be appropriately arranged.
  • the injection pressure Q in the transfer molding process is applied to the fin base 371 via the sealing member 360 in the outer peripheral region S2 on the outer periphery of the conductor plate region S1.
  • the distance d1 between the fins 370 arranged in the outer peripheral region S2 is set to be twice or less the thickness of the fin base 371 so as to satisfy the relationship of D ⁇ 2T.
  • the distance d2 between the fin 370 arranged in the conductor plate region S1 and the fin 370 arranged in the outer peripheral region S2 adjacent to the fin 370 is not more than twice the thickness T of the fin base 371.
  • the fins 370 arranged in the conductor plate region S1 may be arranged on the boundary between the conductor plate region S1 and the outer peripheral region S2.
  • the deformation of the fin base 371 can be further suppressed.
  • the distance d1 of the fins 370 arranged parallel to the flow F of the refrigerant flowing through the cooling member is narrower than the distance d3 of the fins 370 arranged perpendicular to the flow F of the refrigerant.
  • FIG. 11 is a plan view of the fin base 371 in which the fins 370 are erected.
  • the cross-sectional shape of the fin 370 is circular and the fin 370 is arranged on the boundary between the conductor plate region S1 and the outer peripheral region S2 will be described as an example.
  • the distances d1 and d3 between the fins 370 arranged on the boundary between the conductor plate region S1 and the outer peripheral region S2 are set to be twice or less the thickness of the fin base 371.
  • the distances d1 and d3 between the fins 370 arranged on the boundary between the conductor plate region S1 and the outer peripheral region S2 are arranged narrower than the distance d4 between the fins arranged in the conductor plate region S1. good.
  • the distance d5 between the fins 370 arranged on the boundary between the conductor plate region S1 and the outer peripheral region S2 and the fins 370 arranged in the outer peripheral region S2 is not more than twice the thickness of the fin base 371.
  • the distance d1 of the fins 370 arranged parallel to the flow F of the refrigerant flowing through the cooling member is narrower than the distance d3 of the fins 370 arranged perpendicular to the flow F of the refrigerant.
  • FIG. 12 is a partially enlarged view of the plan view of the fin base 371 in which the fins 370 are erected.
  • Dv be the distance between fins in the direction parallel to the flow F of the refrigerant
  • Dp be the distance between fins in the direction perpendicular to the flow F of the refrigerant.
  • the deformation of the fin base 371 due to the transfer mold molding can be suppressed, the sheet member 440 can be prevented from peeling off at the end of the conductor plate 432, and the insulation and heat dissipation of the electric circuit body 400 are good. Can be kept in.
  • FIG. 13 is a semi-transmissive plan view of the power module 300 in this embodiment.
  • FIG. 14 is a circuit diagram of the power module 300 in this embodiment.
  • the positive electrode side terminal 315B outputs from the collector side of the upper arm circuit and is connected to the positive electrode side of the battery or the capacitor.
  • the upper arm gate signal terminal 325U outputs from the gate and emitter sense of the active element 155 of the upper arm circuit.
  • the negative electrode side terminal 319B outputs from the emitter side of the lower arm circuit, and is connected to the negative electrode side of the battery or the capacitor, or GND.
  • the lower arm gate signal terminal 325L outputs from the gate and emitter sense of the active element 157 of the lower arm circuit.
  • the AC side terminal 320B outputs from the collector side of the lower arm circuit and is connected to the motor. When grounding to the neutral point, the lower arm circuit is connected to the negative electrode side of the capacitor instead of GND.
  • first conductor plate (upper arm circuit emitter side) 430 and the second conductor plate (upper arm circuit collector side) 431 are arranged above and below the active element 155 and the diode 156 of the first power semiconductor element (upper arm circuit).
  • a third conductor plate (lower arm circuit emitter side) 432 and a fourth conductor plate (lower arm circuit collector side) 433 are arranged above and below the active element 157 and the diode 158 of the second power semiconductor element (lower arm circuit).
  • the power module 300 of this embodiment has a 2in1 structure in which two arm circuits, an upper arm circuit and a lower arm circuit, are integrated into one module.
  • a structure in which a plurality of upper arm circuits and lower arm circuits are integrated into one module may be used. In this case, the number of output terminals from the power module 300 can be reduced to reduce the size.
  • FIG. 15 is a circuit diagram of a power conversion device 200 using the electric circuit body 400.
  • the power conversion device 200 includes inverter circuits 140 and 142, an inverter circuit 43 for auxiliary equipment, and a capacitor module 500.
  • the inverter circuits 140 and 142 are composed of an electric circuit body 400 (not shown) including a plurality of power modules 300, and a three-phase bridge circuit is formed by connecting them.
  • the power modules 300 are further connected in parallel, and these parallel connections are made corresponding to each phase of the three-phase inverter circuit to cope with the increase in the current capacity.
  • the increase in current capacity can be coped with by connecting the active elements 155, 157 and the diodes 156, 158, which are power semiconductor elements built in the power module 300, in parallel.
  • the inverter circuit 140 and the inverter circuit 142 have the same basic circuit configuration, and the control method and operation are also basically the same. Since the outline of the circuit-like operation of the inverter circuit 140 and the like is well known, detailed description thereof will be omitted here.
  • the upper arm circuit includes an active element 155 for the upper arm and a diode 156 for the upper arm as a power semiconductor element for switching
  • the lower arm circuit is a lower power semiconductor element for switching. It includes an active element 157 for the arm and a diode 158 for the lower arm.
  • the active elements 155 and 157 receive a drive signal output from one or the other of the two driver circuits constituting the driver circuit 174 and perform switching operation to convert the DC power supplied from the battery 136 into three-phase AC power. ..
  • the active element 155 for the upper arm and the active element 157 for the lower arm include a collector electrode, an emitter electrode, and a gate electrode.
  • the diode 156 for the upper arm and the diode 158 for the lower arm include two electrodes, a cathode electrode and an anode electrode. As shown in FIG. 13, the cathode electrode of the diode 156 and 158 is electrically connected to the collector electrode of the active element 155 and 157, and the anode electrode is electrically connected to the emitter electrode of the active element 155 and 157. As a result, the current flow from the emitter electrode of the active element 155 for the upper arm and the active element 157 for the lower arm to the collector electrode is in the forward direction.
  • a MOSFET metal oxide semiconductor type field effect transistor
  • the diode 156 for the upper arm and the diode 158 for the lower arm are unnecessary.
  • the positive electrode side terminal 315B and the negative electrode side terminal 319B of each of the upper and lower arm series circuits are connected to the DC terminals 362A and 362B for connecting the capacitors of the capacitor module 500, respectively.
  • AC power is generated at the connection between the upper arm circuit and the lower arm circuit, respectively, and the connection between the upper arm circuit and the lower arm circuit of each upper / lower arm series circuit is connected to the AC side terminal 320B of each power module 300.
  • the AC side terminal 320B of each power module 300 of each phase is connected to the AC output terminal of the power converter 200, and the generated AC power is supplied to the stator winding of the motor generator 192 or 194.
  • the control circuit 172 is for controlling the switching timing of the active element 155 for the upper arm and the active element 157 of the lower arm based on the input information from the control device or the sensor (for example, the current sensor 180) on the vehicle side. Generate a timing signal.
  • the driver circuit 174 generates a drive signal for switching the active element 155 for the upper arm and the active element 157 for the lower arm based on the timing signal output from the control circuit 172.
  • 181 and 182, 188 are connectors.
  • the upper / lower arm series circuit includes a temperature sensor (not shown), and the temperature information of the upper / lower arm series circuit is input to the control circuit 172. Further, voltage information on the DC positive electrode side of the upper / lower arm series circuit is input to the control circuit 172.
  • the control circuit 172 performs overtemperature detection and overvoltage detection based on the information, and when overtemperature or overvoltage is detected, switching of all the active elements 155 for the upper arm and the active element 157 for the lower arm. Stop the operation and protect the upper / lower arm series circuit from overtemperature or overvoltage.
  • FIG. 16 is an external perspective view of the power conversion device 200 shown in FIG. 15, and FIG. 17 is a cross-sectional perspective view of the power conversion device 200 shown in FIG. 16 taken along the line XV-XV.
  • the power conversion device 200 is composed of a lower case 11 and an upper case 10, and includes a housing 12 formed in a substantially rectangular parallelepiped shape.
  • An electric circuit body 400, a capacitor module 500, and the like are housed inside the housing 12.
  • the electric circuit body 400 has a cooling flow path, and a cooling water inflow pipe 13 and a cooling water outflow pipe 14 communicating with the cooling flow path project from one side surface of the housing 12.
  • the lower case 11 is opened on the upper side (Z direction), and the upper case 10 is attached to the lower case 11 by closing the opening of the lower case 11.
  • the upper case 10 and the lower case 11 are formed of an aluminum alloy or the like, and are sealed and fixed to the outside.
  • the upper case 10 and the lower case 11 may be integrated and configured. Since the housing 12 has a simple rectangular parallelepiped shape, it can be easily attached to a vehicle or the like, and productivity is also improved.
  • a connector 17 is attached to one side surface of the housing 12 in the longitudinal direction, and an AC terminal 18 is connected to this connector 17. Further, a connector 21 is provided on the surface from which the cooling water inflow pipe 13 and the cooling water outflow pipe 14 are led out.
  • the electric circuit body 400 is housed in the housing 12.
  • a control circuit 172 and a driver circuit 174 are arranged above the electric circuit body 400, and a capacitor module 500 is housed on the DC terminal side of the electric circuit body 400.
  • the AC side terminal 320B of the electric circuit body 400 penetrates the current sensor 180 and is joined to the bus bar.
  • the positive electrode side terminal 315B and the negative electrode side terminal 319B which are the DC terminals of the electric circuit body 400, are joined to the positive and negative electrode terminals (DC terminals 362A and 362B in FIG. 13) of the capacitor module 500, respectively.
  • the electric circuit body 400 sandwiches a power semiconductor element 159, a conductor plate 430, 431, 432, 433 joined to the power semiconductor element 159, and a conductor plate 430, 431, 432, 433, and the power semiconductor element 159.
  • the sheet member 440 is sandwiched between the conductor plate 430, 431, 432, 433 and the cooling member 340, and is bonded or bonded to the conductor plate 430, 431, 432, 433. 441, and an electric circuit body 400 including a power semiconductor element 159, a conductor plate 430, 431, 432, 433, a sheet member 440, 441, and a sealing member 360 for sealing the cooling member 340.
  • the cooling member 340 includes a fin base 371 having a predetermined thickness whose one surface is exposed from the sealing member 360, a plurality of fins 370 standing on one surface of the fin base 371, and a sealing member on the outer periphery of the fin base 371.
  • the end portion covered with 360 is provided, and is arranged in the outer peripheral region S2 in the outer peripheral region S2 of the outer peripheral region S1 of the conductor plate region S1 facing the conductor plates 430, 431, 432, and 433 of the fin base 371 and the conductor plate region S1.
  • the distance between the fins 370 is less than twice the thickness of the fin base 371. As a result, it is possible to prevent the fin base from being occupied by slits other than the fins, and to suppress deformation of the fin base without deteriorating heat dissipation.
  • the present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiment and a plurality of examples.
  • condenser Module 601 ... Transfer mold device, 602 ... Spring mechanism, D ... Fin spacing, P ... Pressurization by spring mechanism, Q ... Sealing member injection pressure, S1 ... Conductor plate region, S2 ... outer peripheral region, T ... fin base thickness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

パワー半導体素子と、前記パワー半導体素子と接合される導体板と、前記導体板を挟んで前記パワー半導体素子と対向して配置される冷却部材と、前記導体板と前記冷却部材との間に挟まれて前記導体板に接着又は接合されるシート部材と、前記パワー半導体素子と前記導体板と前記シート部材と前記冷却部材とを封止する封止部材と、を備えた電気回路体であって、前記冷却部材は、一方面が前記封止部材から露出する所定厚さのフィンベースと、前記フィンベースの前記一方面上において立設する複数のフィンと、前記フィンベースの外周において前記封止部材に覆われる端部と、を備え、前記フィンベースの前記導体板と対向する導体板領域と前記導体板領域の外周の外周領域において、前記外周領域に配置されたフィン同士の間隔は、前記フィンベースの厚さの2倍以下である。

Description

電気回路体および電力変換装置
 本発明は、電気回路体および電力変換装置に関する。
 パワー半導体素子のスイッチングによる電力変換装置は、変換効率が高いため、民生用、車載用、鉄道用、変電設備等に幅広く利用されている。パワー半導体素子は通電により発熱するため、パワー半導体素子を内蔵した装置には冷却部材が設けられている。冷却部材は、フィンベースと、このフィンベースに立設された複数のフィンと、を備え、フィンの間に冷媒を流通することによってパワー半導体素子を冷却する。
 特許文献1には、トランスファーモールド工程で封止部材が封止される半導体装置において、フィンの厚さ方向に貫通するスリットを形成し、成形金型には、スリットに対応する位置に衝立部を設けて、成形時の圧力に対して衝立部でフィンベースの変形を抑える技術が開示されている。
国際公開WO2013/114647号公報
 特許文献1に記載された装置は、フィンベースのスリット部分にはフィンが形成できないため、放熱性が低下する課題があった。
 本発明による電気回路体は、パワー半導体素子と、前記パワー半導体素子と接合される導体板と、前記導体板を挟んで前記パワー半導体素子と対向して配置される冷却部材と、前記導体板と前記冷却部材との間に挟まれて前記導体板に接着又は接合されるシート部材と、前記パワー半導体素子と前記導体板と前記シート部材と前記冷却部材とを封止する封止部材と、を備えた電気回路体であって、前記冷却部材は、一方面が前記封止部材から露出する所定厚さのフィンベースと、前記フィンベースの前記一方面上において立設する複数のフィンと、前記フィンベースの外周において前記封止部材に覆われる端部と、を備え、前記フィンベースの前記導体板と対向する導体板領域と前記導体板領域の外周の外周領域において、前記外周領域に配置されたフィン同士の間隔は、前記フィンベースの厚さの2倍以下である。
 本発明によれば、フィンベースがフィン以外のスリットなどに占有されることを回避し、放熱性が低下することなくフィンベースの変形を抑えることができる。
電気回路体の平面図である。 電気回路体のX-X線の断面図である。 電気回路体のY-Y線の断面図である。 パワーモジュールの断面斜視図である。 (a)~(c)電気回路体の製造方法を示す断面図である。 (d)~(f)電気回路体の製造方法を示す断面図である。 (a)(b)トランスファーモールド工程における拡大図である。 (a)(b)フィンの間隔とフィンベースの厚さとの関係を説明する図である。 断面形状が長方形のフィンが立設されたフィンベースの平面図である。 断面形状が円形のフィンが立設されたフィンベースの平面図である。 断面形状が円形のフィンが境界上に立設されたフィンベースの平面図である。 フィンが立設されたフィンベースの平面図を部分拡大した図である。 パワーモジュールの半透過平面図である。 パワーモジュールの回路図である。 電気回路体を用いた電力変換装置の回路図である。 電力変換装置の外観斜視図である。 電力変換装置の断面斜視図である。
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
 図1は、電気回路体400の平面図、図2は、電気回路体400の図1に示すX-X線の断面図である。図3は、電気回路体400の図1に示すY-Y線の断面図である。
 図1に示すように、電気回路体400は、3個のパワーモジュール300と冷却部材340よりなる。パワーモジュール300は、パワー半導体素子を用い直流電流と交流電流とを変換する機能があり、通電により発熱する。このため、冷却部材340の中に冷媒を流通して冷却する構造としている。冷媒には、水や水にエチレングリコールを混入した不凍液等を用いる。なお、冷却部材340は、ピン状の複数のフィンが冷却部材340のフィンベースに立設されている。冷却部材340は、熱伝導率が高く軽量なアルミ系が望ましい。冷却部材340は、押し出し成型や、鍛造、ろう付け等で作製する。
 パワーモジュール300は、一方側に、直流回路のコンデンサモジュール500(後述の図15参照)に連結する正極側端子315Bおよび負極側端子319Bを備えている。正極側端子315Bおよび負極側端子319Bの他方側には、交流回路のモータジェネレータ192、194(後述の図15参照)に連結する交流側端子320B等の大電流が流れるパワー端子を備えている。また、他方側には、下アームゲート信号端子325L、ミラーエミッタ信号端子325M、ケルビンエミッタ信号端子325K、上アームゲート信号端子325U等のパワーモジュール300の制御に用いる信号端子等を備えている。
 図2に示すように、上アーム回路を形成する第1パワー半導体素子として、能動素子155、ダイオード156を備える。能動素子155を構成する半導体材料としては、例えばSi、SiC、GaN、GaO、C等を用いることができる。能動素子155のボディダイオードを用いる場合は、ダイオード156を省略してもよい。能動素子155のコレクタ側およびダイオード156のカソード側は、第2導体板431に接合されている。能動素子155のエミッタ側およびダイオード156のアノード側には第1導体板430が接合されている。これらの接合には、はんだを用いてもよいし、焼結金属を用いてもよい。また、第1導体板430、第2導体板431は、電気伝導性と熱伝導率が高い材料であれば特に限定されないが、銅系又はアルミ系材料が望ましい。これらは、単独で用いてもよいが、はんだや、焼結金属との接合性を高めるためNiやAg等のめっきを施してもよい。
 第1導体板430には、第1シート部材440を介して冷却部材340が密着される。第1シート部材440は、樹脂絶縁層と金属箔とを積層して構成される。第1シート部材440と冷却部材340との間には図示省略した熱伝導部材を設け、第1シート部材440の金属箔側が熱伝導部材に密着される。熱伝導部材は、熱伝導率が高い材料であれば特に限定されないが、金属、セラミックス、炭素系材料等の高熱伝導材料を樹脂材料と組み合わせて用いることが好ましい。
 第2導体板431には、第2シート部材441を介して冷却部材340が密着される。第2シート部材441は、樹脂絶縁層と金属箔とを積層して構成される。第2シート部材441と冷却部材340との間には熱伝導部材を設け、第2シート部材441の金属箔側が熱伝導部材に密着される。なお、放熱性の観点から、冷却部材340の幅はシート部材440、441の幅より広いことが望ましい。
 シート部材440、441は、導体板430、431と冷却部材340との間に挟まれて導体板430、431に接着又は接合される。パワー半導体素子155、156と導体板430、431とシート部材440、441と冷却部材340は一体的にトランスファーモールド工程により封止部材360で封止されて電気回路体400を構成する。
 冷却部材340は、導体板430、431を挟んでパワー半導体素子155、156と対向して配置される。冷却部材340は、一方面が封止部材360から露出する所定厚さのフィンベース371と、フィンベース371の一方面上において立設する複数のフィン370とを備える。フィンベース371の端部は、フィンベース371の外周において封止部材360に覆われる。詳細は後述するが、冷却部材340の導体板430、431と対向する導体板領域S1(図7(a)参照)と導体板領域S1の外周の外周領域S2(図7(a)参照)において、外周領域S2に配置されたフィン370同士の間隔は、フィンベース371の厚さの2倍以下である。
 図3に示すように、第1導体板430、第2導体板431、第3導体板432、第4導体板433は、電流を通電する役割の他に、第1パワー半導体素子155、156、第2パワー半導体素子157、158が発する熱を冷却部材340に伝熱する伝熱部材としての役割を果たしている。各導体板430、431、432、433と冷却部材340とは電位が異なるため、図2に示すように、各導体板430、431、432、433と冷却部材340との間にシート部材440、441を介する。なお、第1パワー半導体素子155、156、第2パワー半導体素子157、158を単にパワー半導体素子159と称する場合がある。
 シート部材440、441は、冷却部材340及び導体板430、431、432、433と接着性を有するものであれば特に限定されないが、粉末状の無機充填剤を分散したエポキシ樹脂系樹脂絶縁層が望ましい。これは、接着性と放熱性のバランスが良いためである。
 導体板430、431、432、433は、電気伝導性が高く、熱伝導率が高い材料が望ましく、銅やアルミ等の金属系材料や、金属系材料と高熱伝導率のダイヤモンド、カーボンやセラミック等の複合材料等を用いることもできる。
 図4は、図1に示すX-X線におけるパワーモジュール300の断面斜視図である。図4に示すように、第1シート部材440の端部およびフィンベース371の端部は、封止部材360によって覆われている。第1導体板430の表面と重なる第1シート部材440は放熱面である。第1シート部材440の放熱面上に冷却部材340を密着して、冷却部材340との間の密着性を確保し、放熱性が損なわれないようにする。
 冷却部材340は、熱伝導率が高く軽量なアルミ系が望ましい。押し出し成型や、鍛造、ろう付け等で作製する。冷却部材340はフィンベース371に図示していないシール部材を介して接着及び水密構造を形成している。フィンベース371の外周部には、トランスファーモールドの樹脂漏れを防止する薄肉部374を有し、ここがトランスファーモールド成型時に変形することで、厚さばらつきを吸収しつつ、トランスファーモールドの樹脂漏れを防止している。
 図5(a)~(c)、図6(d)~(f)は、電気回路体400の製造方法を示す断面図である。図5(a)~(c)、図6(d)は、図1に示すY-Y線における1パワーモジュール分の断面図、図6(e)~(f)は、図1に示すX-X線における1パワーモジュール分の断面図を示す。
 図5(a)は、はんだ接続工程及びワイヤボンディング工程を示す図である。第2導体板431に、第1パワー半導体素子である能動素子155のコレクタ側を接続する。第1導体板430に能動素子155のエミッタ側を接続する。同様に、第4導体板433に、第2パワー半導体素子である能動素子157のコレクタ側を接続する。第3導体板432に能動素子157のエミッタ側を接続する。このようにして、回路体310を形成する。そして、回路体310の一方の面に、第1シート部材440、フィン370を備えたフィンベース371を、回路体310の他方の面に、第2シート部材441、フィン370を備えたフィンベース371を配置して、組み立て体311を設ける。
 図5(b)~図5(c)は、トランスファーモールド工程を示す図である。
 図5(b)に示すように、トランスファーモールド装置601は、バネ機構602を備える。シート部材440、441等を金型に真空吸着するための真空脱気機構等は図示省略している。予め175℃の恒温状態に加熱した金型内に、あらかじめ175℃に予熱した組み立て体311を金型内に設置する。
 次に、図5(c)に示すように、金型を閉じて、封止部材360を金型キャビティに注入する。この時、フィンベース371の外周に設けた薄肉部374が金型で変形し、組み立て体311の厚さのばらつきを吸収し、また、封止部材360がフィン370側に流入するのを防止する蓋となる。また、金型を閉じた際に、フィン370の先端はバネ機構602により加圧され、この加圧はトランスファーモールド成型時における封止部材360の注入圧力より大きい。金型内の加熱に、バネ機構602による加圧力が加わることで、シート部材440、441は硬化反応が進行し、シート部材440、441はフィンベース371と導体板430、431、432、433に接着する。しかし、トランスファーモールド成型時における封止部材360の注入圧力でフィンベース371が変形する可能性がある。本実施形態では、後述するように、フィンベース371の変形を抑制する。
 図6(d)は、硬化工程を示す図である。トランスファーモールド装置601から封止部材360で封止したパワーモジュール300を取り出し、常温で冷却し、2時間以上の硬化を行う。
 図6(e)は、冷却部材340の設置工程を示す図である。フィンベース371の周囲にシール部材372を配置し、蓋373をフィンベース371に接着して冷却部材340とする。
 図6(f)は、以上の工程により製造された電気回路体400を示す図である。このようにして、パワーモジュール300の両面に冷却部材340が設置されて電気回路体400が製造される。
 図7は、トランスファーモールド工程における図5(c)の点線部分Hの拡大図である。図7(a)は、本実施形態を示し、図7(b)は、本実施形態を適用しない比較例を示す。
 図7(a)は、トランスファーモールド工程であり、金型を閉じてバネ機構602による加圧力Pが加わっている。そして、バネ機構602によりフィン370先端にも加圧力Pが加わる。また、封止部材360が注入されている状態では、注入圧力Qが静水圧としてフィンベース371と導体板432に加わる。バネ機構602による加圧力Pの方が注入圧力Qより大きくなるよう設定しているため、シート部材440は、フィンベース371と導体板432の間で加熱、加圧され接着する。本実施形態では、詳細は後述するように、フィンベース371の導体板432と対向する導体板領域S1と導体板領域S1の外周の外周領域S2において、外周領域S2に配置されたフィン370同士の間隔は、フィンベース371の厚さの2倍以下にする。これにより、フィンベース371の変形を抑制する。
 図7(b)に示す比較例では、フィン370の間隔が大きく、フィンベース371の厚さが薄い場合、注入圧力Qによりフィン370とフィン370との間でフィンベース371の変形Rが生じる。この場合、導体板432の端部で、フィンベース371がシート部材440から離れるため、シート部材440の接着が不良になる。フィンベース371の変形Rが生じた部位には、封止部材360が侵入するが、封止部材360は、金型への樹脂バリを抑制するため20μm以下の隙間には侵入しない。その結果、フィンベース371の変形量により導体板432の端部でシート部材440に空気層を持つ剥離が生じる場合があり、この場合は電気回路体400の絶縁性・放熱性が低下する。
 図8(a)、図8(b)は、フィン370の間隔とフィンベース371の厚さとの関係を説明する図である。フィン370とフィン370との間の距離(間隔)をD、フィン370とフィン370との間のフィンベース371の厚さをTとする。
 図8(a)は、D≦2Tの場合を示す。バネ機構602による加圧力Pは、まず、フィン370の先端に加わる。この加圧力Pは、フィンベース371の厚さTを点線tで示すようにおよそ45度の角度で広がる。D≦2Tの関係を満足する場合、フィンベース371の裏面の全域は、バネ機構602の加圧力Pにより面圧が高い領域P1となる。
 図8(b)は、D>2Tの場合を示す。フィンベース371の裏面には、バネ機構602による加圧力Pによりフィンベース371の厚さTを点線tで示すようにおよそ45度の角度で広がる。この結果、フィンベース371の厚さTが薄い場合や、間隔Dが大きい場合は、面圧が高い領域P1と、面圧が低い領域P2が形成される。面圧が低い領域P2では、トランスファーモールド工程での注入圧力Qに対抗できないため、フィンベース371に変形が生じる。このような原理から、トランスファーモールド工程において、フィン370の先端を金型で支持する場合、フィンベース371の変形を抑制するには、D≦2Tの関係を満足する必要があることが解明された。なお、この関係は、フィン370を設けた全ての領域で満たす必要はない。
 図9は、フィン370が立設されたフィンベース371の平面図である。この図では、フィン370の断面形状が長方形の場合を例に説明する。
 フィンベース371の導体板と対向する導体板領域S1では、フィン370の距離(間隔)Dとフィンベース371の厚さTは、D≦2Tの関係を満足しなくてもよく、パワー半導体素子159の放熱に必要なフィン370を適宜配列すればよい。一方、導体板領域S1の外周の外周領域S2には、トランスファーモールド工程の注入圧力Qが封止部材360を介してフィンベース371に加わる。このため、D≦2Tの関係を満たすように、すなわち、外周領域S2に配置されたフィン370同士の間隔d1は、フィンベース371の厚さの2倍以下にする。これにより、フィンベース371の変形を抑制することにより、シート部材440の剥離を防止し、電気回路体400の絶縁性・放熱性を良好に保っている。
 また、導体板領域S1に配置されたフィン370と、このフィン370に隣接して外周領域S2に配置されたフィン370との間隔d2は、フィンベース371の厚さTの2倍以下である。ここで、導体板領域S1に配置されたフィン370は、導体板領域S1と外周領域S2との境界上に配置されてもよい。フィン370が、導体板領域S1と外周領域S2との境界上にある方が、フィンベース371の変形をより抑制できる。
 また、導体板領域S1と外周領域S2との境界上に配置されたフィン370同士の間隔d3は、フィンベース371の厚さの2倍以下である。ここで、導体板領域S1と外周領域S2との境界上に配置されたフィン370同士の間隔d3は、導体板領域S1内に配置されたフィン同士の間隔d4よりも狭く配置されてもよい。
 また、導体板領域S1と外周領域S2との境界上に配置されたフィン370と外周領域S2に配置されたフィン370との間隔d5は、フィンベース371の厚さの2倍以下である。
 冷却部材を流れる冷媒の流れFに平行に配置されたフィン370の間隔d1は冷媒の流れFに垂直に配置されたフィン370の間隔d3よりも狭い。
 図10は、フィン370が立設されたフィンベース371の平面図である。この図では、フィン370の断面形状が円形の場合を例に説明する。
 フィンベース371の導体板と対向する導体板領域S1では、フィン370の距離(間隔)Dとフィンベース371の厚さTは、D≦2Tの関係を満足しなくてもよく、パワー半導体素子159の放熱に必要なフィン370を適宜配列すればよい。一方、導体板領域S1の外周の外周領域S2には、トランスファーモールド工程での注入圧力Qが封止部材360を介してフィンベース371に加わる。このため、D≦2Tの関係を満たすように、すなわち、外周領域S2に配置されたフィン370同士の間隔d1は、フィンベース371の厚さの2倍以下にする。これにより、フィンベース371の変形を抑制することにより、シート部材440の剥離を防止し、電気回路体400の絶縁性・放熱性を良好に保っている。
 また、導体板領域S1に配置されたフィン370と、このフィン370に隣接して外周領域S2に配置されたフィン370との間隔d2は、フィンベース371の厚さTの2倍以下である。ここで、導体板領域S1に配置されたフィン370は、導体板領域S1と外周領域S2との境界上に配置されてもよい。フィン370が、導体板領域S1と外周領域S2との境界上にある方が、フィンベース371の変形をより抑制できる。
 冷却部材を流れる冷媒の流れFに平行に配置されたフィン370の間隔d1は冷媒の流れFに垂直に配置されたフィン370の間隔d3よりも狭い。
 図11は、フィン370が立設されたフィンベース371の平面図である。この図では、フィン370の断面形状が円形の場合であり、フィン370が導体板領域S1と外周領域S2との境界上に配置されている場合を例に説明する。
 導体板領域S1と外周領域S2との境界上に配置されたフィン370同士の間隔d1、d3は、フィンベース371の厚さの2倍以下にする。これにより、フィンベース371の変形を抑制することにより、シート部材440の剥離を防止し、電気回路体400の絶縁性・放熱性を良好に保つ。
 ここで、導体板領域S1と外周領域S2との境界上に配置されたフィン370同士の間隔d1、d3は、導体板領域S1内に配置されたフィン同士の間隔d4よりも狭く配置されてもよい。
 また、導体板領域S1と外周領域S2との境界上に配置されたフィン370と外周領域S2に配置されたフィン370との間隔d5は、フィンベース371の厚さの2倍以下である。
 冷却部材を流れる冷媒の流れFに平行に配置されたフィン370の間隔d1は冷媒の流れFに垂直に配置されたフィン370の間隔d3よりも狭い。
 図12は、フィン370が立設されたフィンベース371の平面図を部分拡大した図である。
 冷媒の流れFに平行な方向のフィン間距離をDv、冷媒の流れFに垂直な方向のフィン間距離をDpとする。Dpが小さいと、冷媒が流れにくく水路の圧損が高くなり、冷媒を流すのにポンプの出力を高くする必要が生じる。一方、Dvを小さくしても、水路の圧損は上がらない。このため、Dp>Dvとすることで、水路の圧損の低下を抑制する。その上で、外周領域S2のフィン370の間隔Dp、d1を小さくし、D≦2Tを満足させることができる。
 本実施形態によれば、トランスファーモールド成型によるフィンベース371の変形を抑制し、導体板432の端部でシート部材440が剥離することを防止でき、電気回路体400の絶縁性・放熱性を良好に保つことができる。
 図13は、本実施形態におけるパワーモジュール300の半透過平面図である。図14は、本実施形態におけるパワーモジュール300の回路図である。
 図13、図14に示すように、正極側端子315Bは、上アーム回路のコレクタ側から出力しており、バッテリ又はコンデンサの正極側に接続される。上アームゲート信号端子325Uは、上アーム回路の能動素子155のゲート及びエミッタセンスから出力している。負極側端子319Bは、下アーム回路のエミッタ側から出力しており、バッテリ若しくはコンデンサの負極側、又はGNDに接続される。下アームゲート信号端子325Lは、下アーム回路の能動素子157のゲート及びエミッタセンスから出力している。交流側端子320Bは、下アーム回路のコレクタ側から出力しており、モータに接続される。中性点接地をする場合は、下アーム回路は、GNDでなくコンデンサの負極側に接続する。
 また、第1パワー半導体素子(上アーム回路)の能動素子155およびダイオード156の上下に第1導体板(上アーム回路エミッタ側)430、第2導体板(上アーム回路コレクタ側)431が配置される。第2パワー半導体素子(下アーム回路)の能動素子157およびダイオード158の上下に第3導体板(下アーム回路エミッタ側)432、第4導体板(下アーム回路コレクタ側)433が配置される。
 本実施形態のパワーモジュール300は、上アーム回路及び下アーム回路の2つのアーム回路を、1つのモジュールに一体化した構造である2in1構造である。この他に、複数の上アーム回路及び下アーム回路を、1つのモジュールに一体化した構造を用いてもよい。この場合は、パワーモジュール300からの出力端子の数を低減し小型化することができる。
 図15は、電気回路体400を用いた電力変換装置200の回路図である。
 電力変換装置200は、インバータ回路140、142と、補機用のインバータ回路43と、コンデンサモジュール500とを備えている。インバータ回路140及び142は、パワーモジュール300を複数個備えた電気回路体400(図示省略)により構成されており、それらを接続することにより三相ブリッジ回路を構成している。電流容量が大きい場合には、更にパワーモジュール300を並列接続し、これら並列接続を三相インバータ回路の各相に対応して行うことにより、電流容量の増大に対応できる。また、パワーモジュール300に内蔵しているパワー半導体素子である能動素子155、157やダイオード156、158を並列接続することでも電流容量の増大に対応できる。
 インバータ回路140とインバータ回路142とは、基本的な回路構成は同じであり、制御方法や動作も基本的には同じである。インバータ回路140等の回路的な動作の概要は周知であるため、ここでは詳細な説明を省略する。
 上述のように、上アーム回路は、スイッチング用のパワー半導体素子として上アーム用の能動素子155と上アーム用のダイオード156とを備えており、下アーム回路は、スイッチング用のパワー半導体素子として下アーム用の能動素子157と下アーム用のダイオード158とを備えている。能動素子155、157は、ドライバ回路174を構成する2つのドライバ回路の一方あるいは他方から出力された駆動信号を受けてスイッチング動作し、バッテリ136から供給された直流電力を三相交流電力に変換する。
 上述したように、上アーム用の能動素子155および下アーム用の能動素子157は、コレクタ電極、エミッタ電極、ゲート電極を備えている。上アーム用のダイオード156および下アーム用のダイオード158は、カソード電極およびアノード電極の2つの電極を備えている。図13に示すように、ダイオード156、158のカソード電極が能動素子155、157のコレクタ電極に、アノード電極が能動素子155、157のエミッタ電極にそれぞれ電気的に接続されている。これにより、上アーム用の能動素子155および下アーム用の能動素子157のエミッタ電極からコレクタ電極に向かう電流の流れが順方向となっている。
 なお、能動素子としてはMOSFET(金属酸化物半導体型電界効果トランジスタ)を用いても良く、この場合は、上アーム用のダイオード156、下アーム用のダイオード158は不要となる。
 各上・下アーム直列回路の正極側端子315Bと負極側端子319Bとはコンデンサモジュール500のコンデンサ接続用の直流端子362A、362Bにそれぞれ接続されている。上アーム回路と下アーム回路の接続部にはそれぞれ交流電力が発生し、各上・下アーム直列回路の上アーム回路と下アーム回路の接続部は各パワーモジュール300の交流側端子320Bに接続されている。各相の各パワーモジュール300の交流側端子320Bはそれぞれ電力変換装置200の交流出力端子に接続され、発生した交流電力はモータジェネレータ192または194の固定子巻線に供給される。
 制御回路172は、車両側の制御装置やセンサ(例えば、電流センサ180)などからの入力情報に基づいて、上アーム用の能動素子155、下アームの能動素子157のスイッチングタイミングを制御するためのタイミング信号を生成する。ドライバ回路174は、制御回路172から出力されたタイミング信号に基づいて、上アーム用の能動素子155、下アーム用の能動素子157をスイッチング動作させるための駆動信号を生成する。なお、181、182、188はコネクタである。
 上・下アーム直列回路は、不図示の温度センサを含み、上・下アーム直列回路の温度情報が制御回路172に入力される。また、制御回路172には上・下アーム直列回路の直流正極側の電圧情報が入力される。制御回路172は、それらの情報に基づいて過温度検知および過電圧検知を行い、過温度或いは過電圧が検知された場合には全ての上アーム用の能動素子155、下アーム用の能動素子157のスイッチング動作を停止させ、上・下アーム直列回路を過温度或いは過電圧から保護する。
 図16は、図15に示す電力変換装置200の外観斜視図であり、図17は、図16に示す電力変換装置200のXV-XV線の断面斜視図である。
 図16に示すように、電力変換装置200は、下部ケース11および上部ケース10により構成され、ほぼ直方体形状に形成された筐体12を備えている。筐体12の内部には、電気回路体400、コンデンサモジュール500等が収容されている。電気回路体400は冷却流路を有しており、筐体12の一側面からは、冷却流路に連通する冷却水流入管13および冷却水流出管14が突出している。下部ケース11は、上部側(Z方向)が開口され、上部ケース10は、下部ケース11の開口を塞いで下部ケース11に取り付けられている。上部ケース10と下部ケース11とは、アルミニウム合金等により形成され、外部に対して密封して固定される。上部ケース10と下部ケース11とを一体化して構成してもよい。筐体12を、単純な直方体形状としたことで、車両等への取り付けが容易となり、また、生産性も向上する。
 筐体12の長手方向の一側面に、コネクタ17が取り付けられており、このコネクタ17には、交流ターミナル18が接続されている。また、冷却水流入管13および冷却水流出管14が導出された面には、コネクタ21が設けられている。
 図17に示すように、筐体12内には、電気回路体400が収容されている。電気回路体400の上方には、制御回路172およびドライバ回路174が配置され、電気回路体400の直流端子側には、コンデンサモジュール500が収容されている。コンデンサモジュールを電気回路体400と同一高さに配置することで、電力変換装置200を薄型化でき、車両への設置自由度が向上する。電気回路体400の交流側端子320Bは、電流センサ180を貫通してバスバーに接合されている。また、電気回路体400の直流端子である正極側端子315Bおよび負極側端子319Bは、それぞれ、コンデンサモジュール500の正・負極端子(図13の直流端子362A、362B)に接合される。
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)電気回路体400は、パワー半導体素子159と、パワー半導体素子159と接合される導体板430、431、432、433と、導体板430、431、432、433を挟んでパワー半導体素子159と対向して配置される冷却部材340と、導体板430、431、432、433と冷却部材340との間に挟まれて導体板430、431、432、433に接着又は接合されるシート部材440、441と、パワー半導体素子159と導体板430、431、432、433とシート部材440、441と冷却部材340とを封止する封止部材360と、を備えた電気回路体400であって、冷却部材340は、一方面が封止部材360から露出する所定厚さのフィンベース371と、フィンベース371の一方面上において立設する複数のフィン370と、フィンベース371の外周において封止部材360に覆われる端部と、を備え、フィンベース371の導体板430、431、432、433と対向する導体板領域S1と導体板領域S1の外周の外周領域S2において、外周領域S2に配置されたフィン370同士の間隔は、フィンベース371の厚さの2倍以下である。これにより、フィンベースがフィン以外のスリットなどに占有されることを回避し、放熱性が低下することなくフィンベースの変形を抑えることができる。
 本発明は、上述の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と複数の例を組み合わせた構成としてもよい。
 155・・・第1パワー半導体素子(上アーム回路能動素子)、156・・・第1パワー半導体素子(上アーム回路ダイオード)、157・・・第2パワー半導体素子(下アーム回路能動素子)、158・・・第2パワー半導体素子(下アーム回路ダイオード)、159・・・パワー半導体素子、172・・・制御回路、174・・・ドライバ回路、180・・・電流センサ、181、182、188・・・コネクタ、192、194・・・モータジェネレータ、200・・・電力変換装置、300・・・パワーモジュール、310・・・回路体、311・・・組み立て体、315B・・・正極側端子、319B・・・負極側端子、320B・・・交流側端子、325・・・信号端子、325K・・・ケルビンエミッタ信号端子、325L・・・下アームゲート信号端子、325M・・・ミラーエミッタ信号端子、325U・・・上アームゲート信号端子、340・・・冷却部材、360・・・封止部材、370・・・フィン、371・・・フィンベース、372・・・シール部材、400・・・電気回路体、430・・・第1導体板(上アーム回路エミッタ側)、431・・・第2導体板(上アーム回路コレクタ側)、432・・・第3導体板(下アーム回路エミッタ側)、433・・・第4導体板(下アーム回路コレクタ側)、440・・・第1シート部材(エミッタ側)、441・・・第2シート部材(コレクタ側)、500・・・コンデンサモジュール、601・・・トランスファーモールド装置、602・・・バネ機構、D・・・フィンの間隔、P・・・バネ機構による加圧力、Q・・・封止部材の注入圧力、S1・・・導体板領域、S2・・・外周領域、T・・・フィンベースの厚さ。

Claims (8)

  1.  パワー半導体素子と、前記パワー半導体素子と接合される導体板と、前記導体板を挟んで前記パワー半導体素子と対向して配置される冷却部材と、前記導体板と前記冷却部材との間に挟まれて前記導体板に接着又は接合されるシート部材と、前記パワー半導体素子と前記導体板と前記シート部材と前記冷却部材とを封止する封止部材と、を備えた電気回路体であって、
     前記冷却部材は、一方面が前記封止部材から露出する所定厚さのフィンベースと、前記フィンベースの前記一方面上において立設する複数のフィンと、前記フィンベースの外周において前記封止部材に覆われる端部と、を備え、前記フィンベースの前記導体板と対向する導体板領域と前記導体板領域の外周の外周領域において、前記外周領域に配置されたフィン同士の間隔は、前記フィンベースの厚さの2倍以下である電気回路体。
  2.  請求項1に記載の電気回路体において、
     前記導体板領域に配置された第1フィンと前記第1フィンに隣接して前記外周領域に配置された第2フィンとの間隔は、前記フィンベースの厚さの2倍以下である電気回路体。
  3.  請求項2に記載の電気回路体において、
     前記第1フィンは、前記導体板領域と前記外周領域との境界上に配置される電気回路体。
  4.  請求項1に記載の電気回路体において、
     前記導体板領域と前記外周領域との境界上に配置された第1フィン同士の間隔は、前記フィンベースの厚さの2倍以下である電気回路体。
  5.  請求項4に記載の電気回路体において、
     前記導体板領域と前記外周領域との境界上に配置された前記第1フィン同士の間隔は、前記導体板領域内に配置された前記フィン同士の間隔よりも狭い電気回路体。
  6.  請求項1に記載の電気回路体において、
     前記冷却部材を流れる冷媒の流れに平行に配置された前記フィンの間隔は冷媒の流れに垂直に配置された前記フィンの間隔よりも狭い電気回路体。
  7.  請求項1から請求項6までのいずれか一項に記載の電気回路体において、
     前記導体板は、前記パワー半導体素子の両面に配置されて、前記配置された前記各導体板の一方面は前記パワー半導体素子に接合され、
     前記シート部材は、前記各導体板の他方面にそれぞれ接着又は接合され、
     前記冷却部材は、前記各シート部材を介して接着される電気回路体。
  8.  請求項1から請求項6までのいずれか一項に記載の電気回路体を備え、直流電力を交流電力に変換する電力変換装置。
PCT/JP2021/035416 2020-12-22 2021-09-27 電気回路体および電力変換装置 WO2022137692A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020212046A JP2022098583A (ja) 2020-12-22 2020-12-22 電気回路体および電力変換装置
JP2020-212046 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022137692A1 true WO2022137692A1 (ja) 2022-06-30

Family

ID=82157525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035416 WO2022137692A1 (ja) 2020-12-22 2021-09-27 電気回路体および電力変換装置

Country Status (2)

Country Link
JP (1) JP2022098583A (ja)
WO (1) WO2022137692A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006717A (ja) * 2002-04-10 2004-01-08 Mitsubishi Electric Corp パワー半導体装置
JP2011166122A (ja) * 2010-01-12 2011-08-25 Nippon Light Metal Co Ltd フィン一体型基板およびフィン一体型基板の製造方法
WO2013065427A1 (ja) * 2011-11-04 2013-05-10 アイシン・エィ・ダブリュ株式会社 半導体モジュール及びその製造方法
JP2019102561A (ja) * 2017-11-30 2019-06-24 日立オートモティブシステムズ株式会社 パワー半導体装置及びその製造方法
JP2020009865A (ja) * 2018-07-05 2020-01-16 日立オートモティブシステムズ株式会社 パワーモジュール
JP2020061509A (ja) * 2018-10-12 2020-04-16 株式会社Uacj ヒートシンク、その製造方法及び熱交換器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006717A (ja) * 2002-04-10 2004-01-08 Mitsubishi Electric Corp パワー半導体装置
JP2011166122A (ja) * 2010-01-12 2011-08-25 Nippon Light Metal Co Ltd フィン一体型基板およびフィン一体型基板の製造方法
WO2013065427A1 (ja) * 2011-11-04 2013-05-10 アイシン・エィ・ダブリュ株式会社 半導体モジュール及びその製造方法
JP2019102561A (ja) * 2017-11-30 2019-06-24 日立オートモティブシステムズ株式会社 パワー半導体装置及びその製造方法
JP2020009865A (ja) * 2018-07-05 2020-01-16 日立オートモティブシステムズ株式会社 パワーモジュール
JP2020061509A (ja) * 2018-10-12 2020-04-16 株式会社Uacj ヒートシンク、その製造方法及び熱交換器

Also Published As

Publication number Publication date
JP2022098583A (ja) 2022-07-04

Similar Documents

Publication Publication Date Title
JP6979864B2 (ja) パワー半導体装置及びその製造方法
WO2021054008A1 (ja) 電気回路体、電力変換装置、および電気回路体の製造方法
WO2021181831A1 (ja) 電気回路体、電力変換装置、および電気回路体の製造方法
JP2000164800A (ja) 半導体モジュール
WO2020105463A1 (ja) 半導体モジュール、電力変換装置および半導体モジュールの製造方法
WO2022123870A1 (ja) 電気回路体、電力変換装置、および電気回路体の製造方法
WO2018159209A1 (ja) パワー半導体装置
JP5948106B2 (ja) パワー半導体モジュール及びそれを用いた電力変換装置
JP7094447B2 (ja) パワーモジュール及び電力変換装置
WO2022137692A1 (ja) 電気回路体および電力変換装置
WO2022137701A1 (ja) 電気回路体および電力変換装置
WO2022137704A1 (ja) パワーモジュールおよび電力変換装置
WO2022270022A1 (ja) 電気回路体および電力変換装置
WO2024009613A1 (ja) 電気回路体および電力変換装置
WO2024106072A1 (ja) 電気回路体および電力変換装置
WO2024009617A1 (ja) 電気回路体および電力変換装置
WO2023112997A1 (ja) 半導体装置及び電力変換装置
JP7171516B2 (ja) パワー半導体モジュール、電力変換装置およびパワー半導体モジュールの製造方法
WO2023162475A1 (ja) 半導体装置及び電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909850

Country of ref document: EP

Kind code of ref document: A1