WO2022123870A1 - 電気回路体、電力変換装置、および電気回路体の製造方法 - Google Patents

電気回路体、電力変換装置、および電気回路体の製造方法 Download PDF

Info

Publication number
WO2022123870A1
WO2022123870A1 PCT/JP2021/036023 JP2021036023W WO2022123870A1 WO 2022123870 A1 WO2022123870 A1 WO 2022123870A1 JP 2021036023 W JP2021036023 W JP 2021036023W WO 2022123870 A1 WO2022123870 A1 WO 2022123870A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit body
electric circuit
sheet member
conductor plate
sheet
Prior art date
Application number
PCT/JP2021/036023
Other languages
English (en)
French (fr)
Inventor
寧 湯
円丈 露野
裕二朗 金子
英一 井出
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to US18/039,896 priority Critical patent/US20240038611A1/en
Priority to DE112021005358.2T priority patent/DE112021005358T5/de
Priority to CN202180081821.0A priority patent/CN116636000A/zh
Publication of WO2022123870A1 publication Critical patent/WO2022123870A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/115Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • H01L21/566Release layers for moulds, e.g. release layers, layers against residue during moulding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/37124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/3754Coating
    • H01L2224/37599Material
    • H01L2224/376Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/3754Coating
    • H01L2224/37599Material
    • H01L2224/376Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40101Connecting bonding areas at the same height, e.g. horizontal bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L2224/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an electric circuit body, a power conversion device, and a method for manufacturing an electric circuit body.
  • Power conversion devices that use switching of power semiconductor elements are widely used for consumer, in-vehicle, railway, substation equipment, etc. because of their high conversion efficiency. Since a power semiconductor element generates heat when energized, a device having a built-in power semiconductor element is provided with a cooling member via a heat conduction member.
  • the heat conductive member is a fluid material that reduces the contact thermal resistance and reduces the contact thermal resistance between the heat conductive member and the cooling member, but the heat conductive member contains a material having low insulating property. For example, for in-vehicle use, a compact and lightweight device is adopted, and high reliability in insulation is required.
  • Patent Document 1 a conductor is connected to a semiconductor element, and a sheet member in which an electrically insulating insulating layer and a conductive conductor layer are laminated is connected and sealed with a mold resin to heat the viscous body.
  • a semiconductor device that comes into contact with a cooling means via a conductive member is disclosed.
  • the electric circuit body according to the present invention joins a power semiconductor element bonded to one surface of a conductor plate, a sheet member including an insulating layer bonded to the other surface of the conductor plate, and the conductor plate of the sheet member.
  • a sealing member that integrally seals the sheet member, the conductor plate, and the power semiconductor element with the surface opposite to the surface to be exposed exposed, and the opposite surface of the sheet member and the heat conductive member.
  • An electric circuit body comprising a cooling member bonded via the above, wherein the sheet member is exposed on the surface of the sealing member on the outer peripheral side of the sheet member and on the outer edge of the sheet member. A recess is formed along.
  • the method for manufacturing an electric circuit body according to the present invention includes a power semiconductor element bonded to one surface of a conductor plate, a sheet member including an insulating layer bonded to the other surface of the conductor plate, and the conductor of the sheet member.
  • a sealing member that integrally seals the sheet member, the conductor plate, and the power semiconductor element with the surface opposite to the surface to be joined to the plate exposed, and the opposite surface of the sheet member.
  • a method for manufacturing an electric circuit body including a cooling member bonded via a heat conductive member, wherein the sheet member is held by a mold having a convex portion formed corresponding to the outer peripheral side of the sheet member. And the step of pressurizing the mold, joining the sheet member to the other surface of the conductor plate, sealing with the sealing member, and the sealing member corresponding to the convex portion of the mold. It is provided with a step of forming a recess.
  • the heat conductive member is prevented from protruding, insulation is ensured, and the reliability of the device is improved.
  • FIG. It is sectional drawing of the XX line of the electric circuit body in the modification 1.
  • FIG. It is sectional drawing of the XX line of the electric circuit body in the modification 2.
  • FIG. It is a plan sectional view of the power module of the ZZ line in the modification 3.
  • FIG. It is sectional drawing of the XX line of the electric circuit body in the modification 4.
  • FIG. It is a semi-transmissive plan view of the power module in this embodiment.
  • It is an external perspective view of a power conversion device.
  • It is sectional drawing of the XV-XV line of a power conversion apparatus.
  • FIG. 1 is a plan view of the electric circuit body 400
  • FIG. 2 is a cross-sectional view taken along the line XX shown in FIG. 1 of the electric circuit body 400.
  • FIG. 3 is a cross-sectional view taken along the line YY shown in FIG. 1 of the electric circuit body 400.
  • the electric circuit body 400 includes three power modules 300 and a cooling member 340.
  • the power module 300 has a function of converting a direct current and an alternating current by using a power semiconductor element, and generates heat when energized. Therefore, the structure is such that the refrigerant flows through the cooling member 340 to cool the cooling member.
  • water or an antifreeze solution in which ethylene glycol is mixed with water is used as the refrigerant.
  • the cooling member 340 may have a structure in which pin-shaped fins are erected on the base plate of the cooling member 340.
  • the cooling member 340 is preferably made of aluminum, which has high thermal conductivity and is lightweight.
  • the cooling member 340 is manufactured by extrusion molding, forging, brazing, or the like.
  • the power module 300 is provided with a positive electrode side terminal 315B and a negative electrode side terminal 319B connected to the capacitor module 500 of the DC circuit (see FIG. 15 described later) on one side.
  • a power terminal through which a large current flows such as an AC side terminal 320B connected to the motor generators 192 and 194 of the AC circuit (see FIG. 15 described later)
  • the other side is provided with a signal terminal used for controlling a power module 300 such as a lower arm gate signal terminal 325L, a mirror emitter signal terminal 325M, a Kelvin emitter signal terminal 325K, and an upper arm gate signal terminal 325U.
  • an active element 155 and a diode 156 are provided as a first power semiconductor element forming an upper arm circuit.
  • the semiconductor material constituting the active element 155 for example, Si, SiC, GaN, GaO, C or the like can be used.
  • the diode 156 may be omitted.
  • the collector side of the active element 155 and the cathode side of the diode 156 are bonded to the second conductor plate 431.
  • a first conductor plate 430 is bonded to the emitter side of the active element 155 and the anode side of the diode 156. Solder may be used for these joinings, or sintered metal may be used.
  • the first conductor plate 430 and the second conductor plate 431 are not particularly limited as long as they are materials having high electrical conductivity and thermal conductivity, but copper-based or aluminum-based materials are preferable. These may be used alone, or may be plated with Ni, Ag, or the like in order to improve the bondability with solder or sintered metal.
  • a cooling member 340 is brought into close contact with the first conductor plate 430 via a first sheet member 440 and a heat conductive member 453.
  • the first sheet member 440 is configured by laminating the first resin insulating layer 442 and the metal foil 444, and the metal foil 444 side is in close contact with the heat conductive member 453.
  • a cooling member 340 is brought into close contact with the second conductor plate 431 via a second sheet member 441 and a heat conductive member 453.
  • the second sheet member 441 is configured by laminating the second resin insulating layer 443 and the metal foil 444, and the metal foil 444 side is in close contact with the heat conductive member 453. From the viewpoint of heat dissipation, it is desirable that the width of the cooling member 340 is wider than the width of the seat members 440 and 441.
  • an active element 157 and a diode 158 are provided as the second power semiconductor element forming the lower arm circuit.
  • the diode 158 is arranged behind the active element 157 in the X-axis direction.
  • the collector side of the active element 157 and the cathode side of the diode 158 are bonded to the fourth conductor plate 433.
  • a third conductor plate 432 is bonded to the emitter side of the active element 157 and the anode side of the diode 158.
  • the first conductor plate 430, the second conductor plate 431, the third conductor plate 432, and the fourth conductor plate 433 have a role of energizing a current, as well as a first power semiconductor element 155, 156. It plays a role as a heat transfer member that transfers heat generated by the second power semiconductor element 157 and 158 to the cooling member 340.
  • the conductor plates 430, 431, 432, and 433 are preferably made of a material having high electric conductivity and high thermal conductivity, and are preferably a metal-based material such as copper or aluminum, or a metal-based material and high thermal conductivity diamond, carbon, ceramic, or the like. It is also possible to use the composite material of.
  • the first resin insulation is provided between the conductor plates 430, 431, 432, 433 and the cooling member 340.
  • a heat conductive member 453 is provided between the sheet members 440 and 441 and the cooling member 340 in order to reduce the contact thermal resistance.
  • the heat conductive member 453 is not particularly limited as long as it is a material having high thermal conductivity, but it is preferable to use a high heat conductive material such as a metal, ceramics, or carbon-based material in combination with a resin material. This is because the resin material fills the space between the heat conductive member 453 and the cooling member 340 and between the heat conductive member 453 and the sheet members 440 and 441 to reduce the contact thermal resistance. Further, in order to suppress the fluidity of the heat conductive member 453, it is desirable that the viscosity of the heat conductive member 453 is 50 Pa ⁇ s or more.
  • the first power semiconductor element 155, 156, the second power semiconductor element 157, 158, each conductor plate 430, 431, 432, 433, and each sheet member 440, 441 are sealed by a sealing member 360 by transfer mold molding.
  • the first resin insulating layer 442 and the second resin insulating layer 443 of the sheet members 440 and 441 are not particularly limited as long as they have adhesiveness to the conductor plates 430, 431, 432, and 433, but are in the form of powder.
  • An epoxy resin-based resin insulating layer in which an inorganic filler is dispersed is desirable. This is because the adhesiveness and the heat dissipation are well-balanced.
  • the sheet members 440 and 441 may be a single resin insulating layer, but it is desirable to provide the metal foil 444 on the side in contact with the heat conductive member 453.
  • the contact surface between the sheet members 440 and 441 and the mold may be a release sheet or a mold.
  • a metal foil 444 is provided. Since the release sheet has poor thermal conductivity, a step of peeling off after transfer molding is required, but in the case of metal leaf 444, it is possible to transfer by selecting a copper-based or aluminum-based metal with high thermal conductivity. It can be used without peeling after molding.
  • transfer molding including the sheet members 440 and 441 the ends of the sheet members 440 and 441 are covered with the sealing member 360, which has the effect of improving the reliability of the product.
  • the outer periphery of the sealing member 360 on which the sheet members 440 and 441 are exposed is larger than the outer periphery of the sheet members 440 and 441.
  • a recess 454 is formed on the side along the outer edge of the sheet members 440 and 441.
  • the concave portion 454 of the sealing member 360 will be described in detail later, but is formed by a transfer mold using a mold in which a convex portion is formed corresponding to the outer peripheral side of the sheet members 440 and 441. It is desirable that the shape of the recess 454 has a bottom width shorter than the opening width. This is because the side surface of the convex portion formed on the mold is slanted, so that the convex portion can be easily provided and subsequent processing is not required. Further, as shown in FIG. 2, it is desirable that the height h1 on the sheet member 440 and 441 sides of the recess 454 is higher than the height h2 on the end side of the sealing member 360.
  • FIG. 5 is a plan sectional view of the power module 300 on the ZZ line shown in FIG. 2. A state in which the cooling member 340 and the heat conductive member 453 are removed from the electric circuit body 400 shown in FIG. 2 is shown.
  • the first sheet member 440 is provided so as to cover the first conductor plate 430 and the third conductor plate 432, and is sealed by the sealing member 360.
  • a recess 454 is formed around the outer peripheral side of the first sheet member 440 along the outer edge of the first sheet member 440.
  • the first sheet member 440 is located between the recess 454 of the sealing member 360 and the conductor plates 430 and 432. It is desirable that both the horizontal width and the vertical width of the first sheet member 440 are wider than the horizontal width and the vertical width of the conductor plate region 434 including the first conductor plate 430 and the third conductor plate 432. Specifically, it is desirable that the insulating distance between the end of the first sheet member 440 and the ends of the first conductor plate 430 and the third conductor plate 432 is 2 mm or more.
  • the insulation distance between the end portion of the first sheet member 440 and the end portions of the first conductor plate 430 and the third conductor plate 432 is secured, in other words, the first sheet member.
  • the 440 is made wider than the first conductor plate 430 and the third conductor plate 432. As a result, even if the end portion of the first sheet member 440 is peeled off, the distance from the first conductor plate 430 and the third conductor plate 432 can be separated, which has the effect of improving the insulating property.
  • the end of the first sheet member 440 and the first conductor plate are not secured without ensuring the insulation distance between the end of the first sheet member 440 and the ends of the first conductor plate 430 and the third conductor plate 432.
  • the ends of the 430 and the third conductor plate 432 overlap with each other.
  • the adhesiveness with the sealing member 360 is weakened, and the first sheet member 440 is likely to be peeled off.
  • the end portion of the first sheet member 440 overlaps with the end portions of the first conductor plate 430 and the third conductor plate 432, so that the first sheet member 440 is covered.
  • the probability that the heat conductive member 453 comes into contact with the ends of the first conductor plate 430 and the third conductor plate 432 increases. Since the heat conductive member 453 contains a material having low insulating property, the insulating property is lowered when the heat conductive member 453 hangs down on the ends of the first conductor plate 430 and the third conductor plate 432.
  • the heat conductive member 453 covers at least the first sheet member 440 exposed from the surface of the sealing member 360, and at least covers the recess 454 of the sealing member 360. A part of it collects inside. As a result, it is possible to prevent the heat conductive member 453 from sticking out, ensure the insulating property of the device, and improve the reliability.
  • 6 (a) to 6 (d) and 7 (e) to 7 (g) are cross-sectional views showing a method of manufacturing the electric circuit body 400.
  • the left side of each figure shows a cross-sectional view of one power module on the XX line shown in FIG. 1, and the right side shows a cross-sectional view of one power module on the YY line shown in FIG.
  • FIG. 6A is a diagram showing a solder connection process and a wire bonding process.
  • the collector side of the active element 155 which is the first power semiconductor element, and the cathode side of the diode 156 are connected to the second conductor plate 431, and the gate electrode of the active element 155 is connected by wire bonding.
  • the emitter side of the active element 155 and the anode side of the diode 156 are connected to the first conductor plate 430.
  • the collector side of the active element 157 which is the second power semiconductor element, and the cathode side of the diode 158 are connected to the fourth conductor plate 433, and the gate electrode of the active element 157 is connected by wire bonding.
  • the emitter side of the active element 157 and the anode side of the diode 158 are connected to the third conductor plate 432. In this way, the circuit body 310 is formed.
  • FIG. 6B is a diagram showing a mold installation process.
  • the circuit body 310 and the seat members 440 and 441 are installed in the mold in the transfer mold device 601. That is, the sheet members 440 and 441 are held by the mold in which the convex portion 603 is formed corresponding to the outer peripheral side of the sheet members 440 and 441.
  • the seat members 440 and 441 can be easily aligned.
  • the ends of the sheet members 440 and 441 may come into contact with the convex portions 603, but between the convex portions 603 at both ends provided on the mold so that the ends of the sheet members 440 and 441 do not peel off during molding. It is desirable that the distance is wider than the width of the seat members 440 and 441 within a range that does not hinder the positioning of the seat members 440 and 441.
  • FIG. 6 (c) is a diagram showing a transfer molding process.
  • the transfer mold device 601 includes a mechanism for vacuum suctioning the spring 602 and the seat members 440 and 441 to the mold, and a vacuum degassing mechanism.
  • the transfer mold device 601 holds the sheet members 440 and 441 aligned by the convex portion 603 of the mold in the mold previously heated to a constant temperature of 175 ° C. by vacuum suction.
  • the peripheral ends of the sheet members 440 and 441 are slightly bent in the direction in which the circuit body 310 is installed according to the shape of the mold. Then, the circuit body 310 preheated to 175 ° C. is arranged at a position away from the seat members 440 and 441.
  • the upper and lower molds are brought close to each other at positions where the seat members 440 and 441 and the circuit body 310 do not come into contact with each other, and only the packings installed in the upper and lower molds (not shown) are brought into contact with each other.
  • FIG. 6 (d) is a diagram showing a pressurizing process.
  • the mold is pressed, and the sheet members 440 and 441 are bonded to the other surface of the conductor plates 430, 431, 432, and 433 (the power semiconductor element is bonded to one surface of the conductor plates 430, 431, 432, and 433).
  • the sealing member 360 is sealed, and a concave portion 454 is formed in the sealing member 360 corresponding to the convex portion 603 of the mold.
  • the upper and lower molds are brought close to each other, and only the packings installed around the upper and lower molds (not shown) are brought into contact with each other.
  • the mold cavity is evacuated.
  • the vacuum exhaust is completed so that the pressure drops below the predetermined pressure, the packing is further crushed and the upper and lower molds are completely clamped.
  • the seat members 440 and 441 come into contact with the circuit body 310.
  • the seat members 440 and 441 come into contact with the circuit body 310 and are brought into close contact with each other by the pressure applied by the spring 602, so that the voids can be brought into close contact with each other without being involved.
  • the sealing member 360 is injected into the mold cavity. Since the mold is provided with the convex portion 603, the concave portion 454 is formed in the sealing member 360.
  • FIG. 7 (e) is a diagram showing a curing process.
  • the power module 300 sealed by the sealing member 360 is taken out from the transfer mold device 601, cooled at room temperature, and cured for 2 hours or more.
  • FIG. 7 (f) is a diagram showing an installation process of the cooling member 340.
  • the heat conductive member 453 covers the sheet members 440 and 441 exposed from the surface of the sealing member 360, and the cooling member 340 is adhered to the heat conductive member 453.
  • the heat conductive member 453 is pressed and a part of the heat conductive member 453 is stored in the recess 454 formed in the sealing member 360.
  • the cooling member 340 is brought into close contact with the first sheet member 440 and the second sheet member 441 via the heat conductive member 453.
  • FIG. 7 (g) is a diagram showing an electric circuit body 400 manufactured by the above steps.
  • the heat conductive member 453 is pressed and the portion protruding in the lateral direction is accumulated in the recess 454.
  • the cooling members 340 are installed on both sides of the power module 300 to manufacture the electric circuit body 400.
  • FIG. 8A is a cross-sectional view of a main part of the electric circuit body 400 shown in FIG. 1, and FIG. 8B is a cross-sectional view of the main part of the comparative example. In each case, the state of the heat conductive member 453 on the first conductor plate 430 side is illustrated. It was
  • the sealing member 360 has a recess 454 at the end thereof.
  • the cooling member 340 uses a mechanism that sandwiches the power module 300 and tightens it from both sides with screws to fix it. By tightening the screw with a constant torque number, the heat conductive member 453 interposed between the cooling member 340 and the power module 300 receives a constant surface pressure. The heat conductive member 453 is compressed by this surface pressure, and from the viewpoint of improving heat dissipation, the thinner the heat conductive member 453 is compressed, the lower the thermal resistance of the entire electric circuit body 400 is.
  • the compressed heat conductive member 453 protrudes in the lateral direction, and the protruding heat conductive member 453 accumulates in the recess 454 of the sealing member 360, so that it does not easily flow out to the outside of the electric circuit body 400, and the terminal. It is possible to prevent it from dripping on 315B and 325M. As a result, the heat conductive member 453 is prevented from protruding, the insulating property is ensured, and the reliability of the device is improved.
  • the sealing member 360 has no recess.
  • the heat conductive member 453 may protrude laterally and flow out along the sealing member 360. Since the heat conductive member 453 contains a material having low insulating property, if the heat conductive member 453 hangs down on the terminals 315B and 325M, the insulating property cannot be ensured and the reliability of the device is lowered.
  • FIG. 9 is a cross-sectional view taken along the line XX shown in FIG. 1 of the electric circuit body 400 in the first modification.
  • the concave portion 455 of the sealing member 360 has a stepped shape in which the bottom surface thereof is deeper on the outer peripheral side than the sheet member 440. Then, the end portion of the seat member 440 is loaded in the shallow portion of the bottom surface of the recess 455, and the heat conductive member 453 is accumulated in the deep portion of the bottom surface of the recess 455.
  • the manufacturing method of the sealing member 360 is omitted, the mold is provided with another step inside the protrusion, and the sheet member 440 is temporarily placed on the step of the protrusion to align the sheet member 440. do.
  • the heat conductive member 453 has a wider width and a vertical width of the seat member 440. This has the effect of ensuring the insulation distance from the conductor plates 430 and 431. Further, since the end portion of the sheet member 440 is loaded into the recess 455 of the sealing member 360, the heat conductive member 453 comes into contact with the sheet member 440, which has the effect of improving the heat dissipation of the entire electric circuit body 400.
  • FIG. 10 is a cross-sectional view taken along the line XX shown in FIG. 1 of the electric circuit body 400 in the second modification.
  • the recess 455 of the sealing member 360 is provided with a plurality of recesses including the first recess 456 and the second recess 457 on the outer peripheral side of the sheet member 440.
  • an example of two recesses 455 is shown.
  • the heat conductive member 453 is accumulated in the first recess 456 and the second recess 457.
  • the mold is provided with a plurality of protrusions, and the sheet member 440 is temporarily placed on the protrusions on the innermost peripheral side to align the sheet members 440.
  • the first recess 456 may be configured such that the end portion of the seat member 440 is loaded and the heat conductive member 453 is accumulated.
  • the present modification 2 when the heat conductive member 453 protrudes, the first recess 456 is completely filled and then the second recess 457 is filled, so that the effect of preventing the protrusion is increased. Further, in the electric circuit body 400, three power modules 300 are lined up (see FIG. 1), and there is little space for accepting the heat conductive member 453 protruding in the lined up direction (X direction) of the power modules 300, so that the heat conductive member 453 easily protrudes in the terminal direction (Y direction).
  • the sealing member 360 with a plurality of recesses, the portion of the heat conductive member 453 increased in the Y direction can be received by the plurality of recesses in the Y direction, and the heat conductive member 453 can be formed. It has the effect of preventing it from flowing out to the outside of the electric circuit body 400.
  • FIG. 11 is a diagram corresponding to a plan sectional view of the power module 300 of the ZZ line shown in FIG. 2 in the modified example 3. A state in which the cooling member 340 and the heat conductive member 453 are removed from the electric circuit body 400 shown in FIG. 2 is shown.
  • the first sheet member 440 is provided so as to cover the first conductor plate 430 and the third conductor plate 432, and is sealed by the sealing member 360.
  • a recess 454 is formed around the outer peripheral side of the first sheet member 440 along the outer edge of the first sheet member 440.
  • the first sheet member 440 is located between the recess 454 of the sealing member 360 and the conductor plates 430 and 432. It is desirable that both the horizontal width and the vertical width of the first sheet member 440 are wider than the horizontal width and the vertical width of the conductor plate region 434 including the first conductor plate 430 and the third conductor plate 432.
  • a pool region 458 in which the heat conductive member 453 is collected is formed in the corner of the recess 454 formed along the outer edge of the first sheet member 440.
  • the capacity of the pool region 458 is larger than the capacity of the corner of the recess 454 when the pool region 458 is not formed.
  • the shape of the pool area 458 may be circular, square, or the like. In the example shown in FIG. 11, the pool region 458 has a circular shape, is provided at the four corners of the recess 454, and has a structure that protrudes outward from the outer periphery of the recess 454.
  • the heat conductive member 453 protrudes when the heat conductive member 453 protrudes, the capacity for receiving the heat conductive member 453 increases, and the effect of preventing the heat conductive member 453 from protruding increases. Further, as mentioned in the second modification, the heat conductive member 453 protruding in the line-up direction of the power module 300 tends to concentrate in the corner of the recess 454 when the heat conductive member 453 protrudes further in the terminal direction. By increasing the capacity of the corners, the effect of preventing protrusion increases.
  • FIG. 12 is a diagram corresponding to a cross-sectional view taken along the line XX shown in FIG. 1 of the electric circuit body 400 in the modified example 4.
  • the cooling member 340 has a recess 459 formed on the outer peripheral side of the seat members 440 and 441 along the outer edge of the seat members 440 and 441.
  • the recess 459 faces the recess 454 formed in the sealing member 360.
  • the protruding heat conductive member 453 accumulates in the recess 459.
  • a pooling region in which the heat conductive member 453 collects may be formed in the corner of the recess 459 formed in the cooling member 340.
  • the heat conductive member 453 when the heat conductive member 453 protrudes, it accumulates in the concave portion 454 and the concave portion 459, so that the capacity for receiving the heat conductive member 453 increases, and the effect of preventing the heat conductive member 453 from protruding increases.
  • FIG. 13 is a semi-transmissive plan view of the power module 300 in this embodiment.
  • FIG. 14 is a circuit diagram of the power module 300 in this embodiment.
  • the positive electrode side terminal 315B outputs from the collector side of the upper arm circuit and is connected to the positive electrode side of the battery or the capacitor.
  • the upper arm gate signal terminal 325U outputs from the gate and emitter sense of the active element 155 of the upper arm circuit.
  • the negative electrode side terminal 319B outputs from the emitter side of the lower arm circuit, and is connected to the negative electrode side of the battery or the capacitor, or GND.
  • the lower arm gate signal terminal 325L outputs from the gate and emitter sense of the active element 157 of the lower arm circuit.
  • the AC side terminal 320B outputs from the collector side of the lower arm circuit and is connected to the motor. When grounding to the neutral point, the lower arm circuit is connected to the negative electrode side of the capacitor instead of GND.
  • first conductor plate (upper arm circuit emitter side) 430 and the second conductor plate (upper arm circuit collector side) 431 are arranged above and below the active element 155 and the diode 156 of the first power semiconductor element (upper arm circuit).
  • a third conductor plate (lower arm circuit emitter side) 432 and a fourth conductor plate (lower arm circuit collector side) 433 are arranged above and below the active element 157 and the diode 158 of the second power semiconductor element (lower arm circuit).
  • a recess 454 is formed around the outer peripheral side of the first sheet member 440 (not shown) along the outer edge of the first sheet member 440.
  • the power module 300 of this embodiment has a 2in1 structure in which two arm circuits, an upper arm circuit and a lower arm circuit, are integrated into one module.
  • a structure in which a plurality of upper arm circuits and lower arm circuits are integrated into one module may be used. In this case, the number of output terminals from the power module 300 can be reduced to reduce the size.
  • FIG. 15 is a circuit diagram of a power conversion device 200 using the electric circuit body 400.
  • the power conversion device 200 includes inverter circuits 140 and 142, an inverter circuit 43 for auxiliary equipment, and a capacitor module 500.
  • the inverter circuits 140 and 142 are composed of an electric circuit body 400 (not shown) including a plurality of power modules 300, and a three-phase bridge circuit is formed by connecting them.
  • the power modules 300 are further connected in parallel, and these parallel connections are made corresponding to each phase of the three-phase inverter circuit to cope with the increase in the current capacity.
  • the increase in current capacity can be coped with by connecting the active elements 155, 157 and the diodes 156, 158, which are power semiconductor elements built in the power module 300, in parallel.
  • the inverter circuit 140 and the inverter circuit 142 have the same basic circuit configuration, and the control method and operation are also basically the same. Since the outline of the circuit-like operation of the inverter circuit 140 and the like is well known, detailed description thereof will be omitted here.
  • the upper arm circuit includes an active element 155 for the upper arm and a diode 156 for the upper arm as a power semiconductor element for switching
  • the lower arm circuit is a lower power semiconductor element for switching. It includes an active element 157 for the arm and a diode 158 for the lower arm.
  • the active elements 155 and 157 receive a drive signal output from one or the other of the two driver circuits constituting the driver circuit 174 and perform switching operation to convert the DC power supplied from the battery 136 into three-phase AC power. ..
  • the active element 155 for the upper arm and the active element 157 for the lower arm include a collector electrode, an emitter electrode, and a gate electrode.
  • the diode 156 for the upper arm and the diode 158 for the lower arm include two electrodes, a cathode electrode and an anode electrode. As shown in FIG. 13, the cathode electrode of the diode 156 and 158 is electrically connected to the collector electrode of the active element 155 and 157, and the anode electrode is electrically connected to the emitter electrode of the active element 155 and 157. As a result, the current flow from the emitter electrode of the active element 155 for the upper arm and the active element 157 for the lower arm to the collector electrode is in the forward direction.
  • a MOSFET metal oxide semiconductor type field effect transistor
  • the diode 156 for the upper arm and the diode 158 for the lower arm are unnecessary.
  • the positive electrode side terminal 315B and the negative electrode side terminal 319B of each of the upper and lower arm series circuits are connected to the DC terminals 362A and 362B for connecting the capacitors of the capacitor module 500, respectively.
  • AC power is generated at the connection between the upper arm circuit and the lower arm circuit, respectively, and the connection between the upper arm circuit and the lower arm circuit of each upper / lower arm series circuit is connected to the AC side terminal 320B of each power module 300.
  • the AC side terminal 320B of each power module 300 of each phase is connected to the AC output terminal of the power converter 200, and the generated AC power is supplied to the stator winding of the motor generator 192 or 194.
  • the control circuit 172 is for controlling the switching timing of the active element 155 for the upper arm and the active element 157 of the lower arm based on the input information from the control device or the sensor (for example, the current sensor 180) on the vehicle side. Generate a timing signal.
  • the driver circuit 174 generates a drive signal for switching the active element 155 for the upper arm and the active element 157 for the lower arm based on the timing signal output from the control circuit 172.
  • 181 and 182, 188 are connectors.
  • the upper / lower arm series circuit includes a temperature sensor (not shown), and the temperature information of the upper / lower arm series circuit is input to the control circuit 172. Further, voltage information on the DC positive electrode side of the upper / lower arm series circuit is input to the control circuit 172.
  • the control circuit 172 performs overtemperature detection and overvoltage detection based on the information, and when overtemperature or overvoltage is detected, switching of all the active elements 155 for the upper arm and the active element 157 for the lower arm. Stop the operation and protect the upper / lower arm series circuit from overtemperature or overvoltage.
  • FIG. 16 is an external perspective view of the power conversion device 200 shown in FIG. 15, and FIG. 17 is a cross-sectional perspective view of the power conversion device 200 shown in FIG. 16 taken along the line XV-XV.
  • the power conversion device 200 is composed of a lower case 11 and an upper case 10, and includes a housing 12 formed in a substantially rectangular parallelepiped shape.
  • An electric circuit body 400, a capacitor module 500, and the like are housed inside the housing 12.
  • the electric circuit body 400 has a cooling flow path, and a cooling water inflow pipe 13 and a cooling water outflow pipe 14 communicating with the cooling flow path project from one side surface of the housing 12.
  • the lower case 11 is opened on the upper side (Z direction), and the upper case 10 is attached to the lower case 11 by closing the opening of the lower case 11.
  • the upper case 10 and the lower case 11 are formed of an aluminum alloy or the like, and are sealed and fixed to the outside.
  • the upper case 10 and the lower case 11 may be integrated and configured. Since the housing 12 has a simple rectangular parallelepiped shape, it can be easily attached to a vehicle or the like, and productivity is also improved.
  • a connector 17 is attached to one side surface of the housing 12 in the longitudinal direction, and an AC terminal 18 is connected to this connector 17. Further, a connector 21 is provided on the surface from which the cooling water inflow pipe 13 and the cooling water outflow pipe 14 are led out.
  • the electric circuit body 400 is housed in the housing 12.
  • a control circuit 172 and a driver circuit 174 are arranged above the electric circuit body 400, and a capacitor module 500 is housed on the DC terminal side of the electric circuit body 400.
  • the AC side terminal 320B of the electric circuit body 400 penetrates the current sensor 180 and is joined to the bus bar.
  • the positive electrode side terminal 315B and the negative electrode side terminal 319B which are the DC terminals of the electric circuit body 400, are joined to the positive and negative electrode terminals (DC terminals 362A and 362B in FIG. 13) of the capacitor module 500, respectively.
  • the electric circuit body 400 is formed on the power semiconductor elements 155, 156, 157, 158 bonded to one surface of the conductor plates 430, 431, 432, and 433, and on the other surface of the conductor plates 430, 431, 432, and 433.
  • the sheet members 440 and 441 including the insulating layer to be joined and the surface opposite to the surface to be joined to the conductor plates 430 and 431, 432 and 433 of the sheet members 440 and 441 are exposed.
  • the sealing member 360 that integrally seals the conductor plates 430, 431, 432, 433 and the power semiconductor elements 155, 156, 157, and 158, and the opposite surfaces of the sheet members 440 and 441 and the heat conductive member 453.
  • An electric circuit body 400 including a cooling member 340 bonded via the sheet, and a sheet is provided on the surface of the sealing member 360 on which the sheet members 440 and 441 are exposed, on the outer peripheral side of the sheet members 440 and 441.
  • Recesses 454 and 455 are formed along the outer edges of the members 440 and 441. This prevents the heat conductive member from sticking out, ensures insulation, and improves the reliability of the device.
  • the electric circuit body 400 includes a power semiconductor element 155, 156, 157, 158 bonded to one surface of a conductor plate 430, 431, 432, 433, and a conductor plate 430.
  • the surfaces of the sheet members 440 and 441 including the insulating layer bonded to the other surface of the sheet members 431 and 432 and 433 and the surfaces opposite to the surfaces bonded to the conductor plates 430, 431, 432 and 433 of the sheet members 440 and 441 are formed.
  • the sheet members 440 and 441 are joined to the other surface of the conductor plates 430, 431, 432 and 433, and the sealing member 360 is used.
  • a step of sealing and forming recesses 454 and 455 in the sealing member 360 corresponding to the convex portion 603 of the mold is provided. This prevents the heat conductive member from sticking out, ensures insulation, and improves the reliability of the device.
  • the present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiment and a plurality of modified examples.
  • Power module 310 ... Circuit Body, 315B ... Positive side terminal, 319B ... Negative side terminal, 320B ... AC side terminal, 325 ... Signal terminal, 325K ... Kelvin emitter signal terminal, 325L ... Lower arm gate signal Terminal, 325M ... Mirror emitter signal terminal, 325U ... Upper arm gate signal terminal, 340 ... Cooling member, 360 ... Sealing member, 400 ... Electric circuit body, 430 ... First Conductor plate (upper arm circuit emitter side), 431 ... 2nd conductor plate (upper arm circuit collector side), 432 ... 3rd conductor plate (lower arm circuit emitter side), 433 ... 4th conductor plate (Lower arm circuit collector side) 440 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

導体板の一方面に接合されるパワー半導体素子と、前記導体板の他方面に接合される絶縁層を含んだシート部材と、前記シート部材の前記導体板と接合される面とは反対の面が露出した状態で前記シート部材と前記導体板と前記パワー半導体素子とを一体的に封止する封止部材と、前記シート部材の前記反対の面と熱伝導部材を介して接着される冷却部材と、を備えた電気回路体であって、前記シート部材が露出する前記封止部材の表面には、前記シート部材よりも外周側に、前記シート部材の外縁に沿って凹部が形成される電気回路体。

Description

電気回路体、電力変換装置、および電気回路体の製造方法
 本発明は、電気回路体、電力変換装置、および電気回路体の製造方法に関する。
 パワー半導体素子のスイッチングを用いた電力変換装置は、変換効率が高いため、民生用、車載用、鉄道用、変電設備等に幅広く利用されている。パワー半導体素子は通電により発熱するため、パワー半導体素子を内蔵した装置は、熱伝導部材を介して冷却部材が設けられている。熱伝導部材は接触熱抵抗を低減する流動性の材料であり、冷却部材との間の接触熱抵抗を低減するが、熱伝導部材には絶縁性の低い材料が含まれている。例えば、車載用においては、小型、軽量化した装置が採用され、絶縁性に高い信頼性が求められる。
 特許文献1には、半導体素子に導電体を接続し、さらに電気絶縁性の絶縁層と導電性の導体層が積層されたシート部材を接続したものをモールド樹脂により封止し、粘性体の熱伝導部材を介して冷却手段に接触する半導体装置が開示されている。
日本国特開2012-033872号公報
 特許文献1に記載の装置では、熱伝導部材がはみ出した場合に、絶縁性を確保できず、装置の信頼性が低下する。
 本発明による電気回路体は、導体板の一方面に接合されるパワー半導体素子と、前記導体板の他方面に接合される絶縁層を含んだシート部材と、前記シート部材の前記導体板と接合される面とは反対の面が露出した状態で前記シート部材と前記導体板と前記パワー半導体素子とを一体的に封止する封止部材と、前記シート部材の前記反対の面と熱伝導部材を介して接着される冷却部材と、を備えた電気回路体であって、前記シート部材が露出する前記封止部材の表面には、前記シート部材よりも外周側に、前記シート部材の外縁に沿って凹部が形成される。
 本発明による電気回路体の製造方法は、導体板の一方面に接合されるパワー半導体素子と、前記導体板の他方面に接合される絶縁層を含んだシート部材と、前記シート部材の前記導体板と接合される面とは反対の面が露出した状態で前記シート部材と前記導体板と前記パワー半導体素子とを一体的に封止する封止部材と、前記シート部材の前記反対の面と熱伝導部材を介して接着される冷却部材と、を備えた電気回路体の製造方法であって、前記シート部材の外周側に対応して凸部が形成された金型により前記シート部材を保持する工程と、前記金型を加圧して、前記シート部材を前記導体板の他方面に接合し、前記封止部材で封止し、前記金型の前記凸部に対応して前記封止部材に凹部を形成する工程とを備える。
 本発明によれば、熱伝導部材がはみ出すのを防止して、絶縁性を確保し、装置の信頼性が向上する。
電気回路体の平面図である。 電気回路体のX-X線の断面図である。 電気回路体のY-Y線の断面図である。 X-X線におけるパワーモジュールの断面斜視図である。 Z-Z線におけるパワーモジュールの平断面図である。 (a)~(d)電気回路体の製造方法を示す断面図である。 (e)~(g)電気回路体の製造方法を示す断面図である。 (a)(b)電気回路体のX-X線の要部断面図および比較例における要部断面図である。 変形例1における電気回路体のX-X線の断面図である。 変形例2における電気回路体のX-X線の断面図である。 変形例3におけるZ-Z線のパワーモジュールの平断面図である。 変形例4における電気回路体のX-X線の断面図である。 本実施形態におけるパワーモジュールの半透過平面図である。 本実施形態におけるパワーモジュールの回路図である。 電気回路体を用いた電力変換装置の回路図である。 電力変換装置の外観斜視図である。 電力変換装置のXV-XV線の断面斜視図である。
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
 同一あるいは同様な機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。
 図1は、電気回路体400の平面図、図2は、電気回路体400の図1に示すX-X線の断面図である。図3は、電気回路体400の図1に示すY-Y線の断面図である。
 図1に示すように、電気回路体400は、3個のパワーモジュール300と冷却部材340よりなる。パワーモジュール300は、パワー半導体素子を用い直流電流と交流電流とを変換する機能があり、通電により発熱する。このため、冷却部材340の中に冷媒を流通して冷却する構造としている。冷媒には、水や水にエチレングリコールを混入した不凍液等を用いる。なお、冷却部材340は、ピン状のフィンが冷却部材340のベース板に立設された構成であってもよい。冷却部材340は、熱伝導率が高く軽量なアルミ系が望ましい。冷却部材340は、押し出し成型や、鍛造、ろう付け等で作製する。
 パワーモジュール300は、一方側に、直流回路のコンデンサモジュール500(後述の図15参照)に連結する正極側端子315Bおよび負極側端子319Bを備えている。正極側端子315Bおよび負極側端子319Bの他方側には、交流回路のモータジェネレータ192、194(後述の図15参照)に連結する交流側端子320B等の大電流が流れるパワー端子を備えている。また、他方側には、下アームゲート信号端子325L、ミラーエミッタ信号端子325M、ケルビンエミッタ信号端子325K、上アームゲート信号端子325U等のパワーモジュール300の制御に用いる信号端子等を備えている。
 図2に示すように、上アーム回路を形成する第1パワー半導体素子として、能動素子155、ダイオード156を備える。能動素子155を構成する半導体材料としては、例えばSi、SiC、GaN、GaO、C等を用いることができる。能動素子155のボディダイオードを用いる場合は、ダイオード156を省略してもよい。能動素子155のコレクタ側およびダイオード156のカソード側は、第2導体板431に接合されている。能動素子155のエミッタ側およびダイオード156のアノード側には第1導体板430が接合されている。これらの接合には、はんだを用いてもよいし、焼結金属を用いてもよい。また、第1導体板430、第2導体板431は、電気伝導性と熱伝導率が高い材料であれば特に限定されないが、銅系又はアルミ系材料が望ましい。これらは、単独で用いてもよいが、はんだや、焼結金属との接合性を高めるためNiやAg等のめっきを施してもよい。
 第1導体板430には、第1シート部材440、さらに熱伝導部材453を介して冷却部材340が密着される。第1シート部材440は、第1樹脂絶縁層442と金属箔444とを積層して構成され、金属箔444側が熱伝導部材453に密着される。
 第2導体板431には、第2シート部材441、さらに熱伝導部材453を介して冷却部材340が密着される。第2シート部材441は、第2樹脂絶縁層443と金属箔444とを積層して構成され、金属箔444側が熱伝導部材453に密着される。なお、放熱性の観点から、冷却部材340の幅はシート部材440、441の幅より広いことが望ましい。
 図3に示すように、下アーム回路を形成する第2パワー半導体素子として、能動素子157、ダイオード158(後述の図13、図14参照)を備える。なお、図3において、ダイオード158はX軸方向で能動素子157の奥側に配置されている。能動素子157のコレクタ側およびダイオード158のカソード側は、第4導体板433に接合されている。能動素子157のエミッタ側およびダイオード158のアノード側には第3導体板432が接合されている。
 図3に示すように、第1導体板430、第2導体板431、第3導体板432、第4導体板433は、電流を通電する役割の他に、第1パワー半導体素子155、156、第2パワー半導体素子157、158が発する熱を冷却部材340に伝熱する伝熱部材としての役割を果たしている。導体板430、431、432、433は、電気伝導性が高く、熱伝導率が高い材料が望ましく、銅やアルミ等の金属系材料や、金属系材料と高熱伝導率のダイヤモンド、カーボンやセラミック等の複合材料等を用いることもできる。各導体板430、431、432、433と冷却部材340とは電位が異なるため、図2に示すように、各導体板430、431、432、433と冷却部材340との間に第1樹脂絶縁層442を有する第1シート部材440を介し、また第2樹脂絶縁層443を有する第2シート部材441を介する。各シート部材440、441と冷却部材340との間には、接触熱抵抗を低減するため熱伝導部材453を有する。
 熱伝導部材453は、熱伝導率が高い材料であれば特に限定されないが、金属、セラミックス、炭素系材料等の高熱伝導材料を樹脂材料と組み合わせて用いることが好ましい。これは、熱伝導部材453と冷却部材340との間、熱伝導部材453と各シート部材440、441との間を樹脂材料が補填し、接触熱抵抗が低減するためである。また、熱伝導部材453の流動性を抑えるために、熱伝導部材453の粘度は50Pa・s以上であることが望ましい。
 第1パワー半導体素子155、156、第2パワー半導体素子157、158、各導体板430、431、432、433、各シート部材440、441は、トランスファーモールド成型により封止部材360で封止されている。各シート部材440、441の第1樹脂絶縁層442、第2樹脂絶縁層443は、各導体板430、431、432、433との接着性を有するものであれば特に限定されないが、粉末状の無機充填剤を分散したエポキシ樹脂系樹脂絶縁層が望ましい。これは、接着性と放熱性のバランスが良いためである。各シート部材440、441は、樹脂絶縁層単体でもよいが、熱伝導部材453と接する側に金属箔444を設けることが望ましい。
 トランスファーモールド成型工程において、各シート部材440、441を金型に搭載する際、金型への接着を防ぐため、各シート部材440、441と金型との接触面には、離型シート又は、金属箔444を設ける。離型シートは、熱伝導率が悪いためトランスファーモールド後に剥離する工程が必要となるが、金属箔444の場合は、銅系や、アルミ系の熱伝導率の高い金属を選択することで、トランスファーモールド後に剥離することなく使用することができる。各シート部材440、441を含めてトランスファーモールドすることにより、各シート部材440、441の端部が封止部材360で被覆され、製品の信頼性が向上する効果がある。
 図2、図3に示すように、熱伝導部材453と冷却部材340とを接合する前において、シート部材440、441が露出する封止部材360の表面には、シート部材440、441よりも外周側に、シート部材440、441の外縁に沿って凹部454が形成されている。そして、その後、熱伝導部材453は、封止部材360の表面から露出しているシート部材440、441を少なくとも覆うとともに、封止部材360の凹部454の中に一部が溜まる。
 封止部材360の凹部454は、詳細は後述するが、シート部材440、441の外周側に対応して凸部が形成された金型を用いたトランスファーモールドにより形成される。凹部454の形状は、その底面幅が開口幅より短いことが望ましい。これは、金型に形成する凸部の側面が斜めになるため、凸部を設けやすく、その後の加工などが必要ではないためである。また、図2に示すように、凹部454におけるシート部材440、441側の高さh1は、封止部材360の端部側の高さh2より高いことが望ましい。これは、冷却部材340の幅を放熱性の向上のために長くする場合や、製品の動作時に封止部材360の端部が冷却部材340の方向に反る場合に、封止部材360の端部が冷却部材340とぶつからず、信頼性が高い構造になるためである。
 図4は、図1に示すX-X線におけるパワーモジュール300の断面斜視図であり、電気回路体400から冷却部材340を取り除いた状態を示す。図4に示すように、第1シート部材440の端部は、封止部材360によって覆われている。第1導体板430の表面と重なる第1シート部材440は放熱面となる。第1シート部材440の放熱面上に冷却部材340を密着し、放熱性が損なわれないようにする。
 図5は、図2に示すZ-Z線におけるパワーモジュール300の平断面図である。図2に示す電気回路体400から、冷却部材340と熱伝導部材453とを取り除いた状態を示す。
 図5に示すように、第1導体板430と第3導体板432とを覆うように第1シート部材440が設けられ、封止部材360で封止されている。封止部材360の表面には、第1シート部材440よりも外周側に、第1シート部材440の外縁に沿って凹部454が一周形成される。第1シート部材440は封止部材360の凹部454と導体板430、432との間に位置している。第1シート部材440の横幅と縦幅のいずれも、第1導体板430と第3導体板432が含まれる導体板領域434の横幅と縦幅より広くすることが望ましい。具体的には、第1シート部材440の端部と第1導体板430、第3導体板432の端部との間の絶縁距離は2mm以上であることが望ましい。
 このように、本実施形態では、第1シート部材440の端部と第1導体板430、第3導体板432の端部との間の絶縁距離を担保する、換言すれば、第1シート部材440を第1導体板430、第3導体板432より広くする。これにより、第1シート部材440の端部が剥離しても第1導体板430、第3導体板432との距離を離すことができ、絶縁性を向上させる効果がある。
 仮に、第1シート部材440の端部と第1導体板430、第3導体板432の端部との間の絶縁距離を確保せずに、第1シート部材440の端部と第1導体板430、第3導体板432の端部とが重なる場合を考察する。この場合は、製造時の摩擦力や製品として動作時の熱応力などにより、封止部材360との接着性が弱くなり、第1シート部材440に剥離が生じやすくなる。第1シート部材440に剥離が生じると、第1シート部材440の端部と第1導体板430、第3導体板432の端部とが重なっているので、第1シート部材440を覆っている熱伝導部材453が第1導体板430、第3導体板432の端部に接触する確率が高くなる。熱伝導部材453には絶縁性の低い材料が含まれているので、熱伝導部材453が第1導体板430、第3導体板432の端部に垂れると絶縁性が低下する。
 さらに、本実施形態では、図2に示したように、熱伝導部材453は、封止部材360の表面から露出している第1シート部材440を少なくとも覆うとともに、封止部材360の凹部454の中に一部が溜まる。これにより、熱伝導部材453のはみ出しを防止して、装置の絶縁性を確保し、信頼性を向上できる。
 図6(a)~(d)、図7(e)~(g)は、電気回路体400の製造方法を示す断面図である。各図の左側に図1に示すX-X線における1パワーモジュール分の断面図を、右側に図1に示すY-Y線における1パワーモジュール分の断面図を示す。
 図6(a)は、はんだ接続工程及びワイヤボンディング工程を示す図である。第2導体板431に、第1パワー半導体素子である能動素子155のコレクタ側およびダイオード156のカソード側を接続し、能動素子155のゲート電極をワイヤボンディングで接続する。第1導体板430に能動素子155のエミッタ側およびダイオード156のアノード側を接続する。同様に、第4導体板433に、第2パワー半導体素子である能動素子157のコレクタ側およびダイオード158のカソード側を接続し、能動素子157のゲート電極をワイヤボンディングで接続する。第3導体板432に能動素子157のエミッタ側およびダイオード158のアノード側を接続する。このようにして、回路体310を形成する。
 図6(b)は、金型設置工程を示す図である。トランスファーモールド装置601内の金型に、回路体310およびシート部材440、441を設置する。すなわち、シート部材440、441の外周側に対応して凸部603が形成された金型によりシート部材440、441を保持する。
 ここで、金型に凸部603を設けることで、シート部材440、441の位置合わせをしやすい効果がある。シート部材440、441の端部は凸部603と接触してもよいが、モールド時にシート部材440、441の端部に剥離が発生しないように、金型に設けた両端の凸部603の間の距離がシート部材440、441の位置決めに支障がない範囲でシート部材440、441の幅より広いことが望ましい。このように、シート部材440、441は金型の凸部603で位置合わせされているので、シート部材440、441がずれることによって生じる導体板430、431、432、433と熱伝導部材453との絶縁性の低下を防止できる。すなわち、シート部材440、441が導体板430、431、432、433に対して位置ずれするのを防止でき、信頼性が向上する。
 図6(c)は、トランスファーモールド工程を示す図である。トランスファーモールド装置601は、スプリング602とシート部材440、441を金型に真空吸着する機構及び、真空脱気機構を備える。トランスファーモールド装置601は、予め175℃の恒温状態に加熱した金型内に、金型の凸部603で位置合わせされたシート部材440、441を真空吸着にて保持する。シート部材440、441の周端部は、金型の形状に合わせて回路体310が設置されている方向に若干折れ曲がる。そして、予め175℃に予熱した回路体310をシート部材440、441から離れた位置に配置する。次に、シート部材440、441と回路体310が接しない位置で、上下の金型を近接し、図示していない上下金型に設置したパッキンのみ接触させる。
 図6(d)は、加圧工程を示す図である。この工程では、金型を加圧して、シート部材440、441を導体板430、431、432、433の他方面(導体板430、431、432、433の一方面にはパワー半導体素子が接合される)に接合し、封止部材360を封止し、金型の凸部603に対応して封止部材360に凹部454を形成する。
 まず、シート部材440、441と回路体310とが離間した状態から、上下の金型を近接し、図示していない上下金型の周囲に設置したパッキンのみ接触させる。次に、金型キャビティを真空排気する。所定の気圧以下になるよう真空排気が完了すると、パッキンをさらに押しつぶし、上下の金型を完全にクランプする。この時、シート部材440、441と回路体310は接触する。真空状態で、シート部材440、441と回路体310が接触し、スプリング602による加圧力で密着するため、ボイドを巻き込まず密着することができる。そして、封止部材360を金型キャビティに注入する。金型には凸部603が設けられているので、封止部材360に凹部454が形成される。
 図7(e)は、硬化工程を示す図である。トランスファーモールド装置601から封止部材360で封止したパワーモジュール300を取り出し、常温で冷却し、2時間以上の硬化を行う。
 図7(f)は、冷却部材340の設置工程を示す図である。この工程で、熱伝導部材453で封止部材360の表面から露出しているシート部材440、441を覆い、熱伝導部材453に冷却部材340を接着する。
 熱伝導部材453に冷却部材340を接着する際に、熱伝導部材453が押圧されて封止部材360に形成された凹部454に熱伝導部材453の一部が溜められる。そして、冷却部材340は、熱伝導部材453を介して第1シート部材440、第2シート部材441に密着される。
 図7(g)は、以上の工程により製造された電気回路体400を示す図である。熱伝導部材453は押圧され横方向にはみ出した分は凹部454に溜まる。このようにして、パワーモジュール300の両面に冷却部材340が設置されて電気回路体400が製造される。
 図8(a)は、電気回路体400の図1に示すX-X線の要部断面図であり、図8(b)は、比較例における要部断面図である。いずれも、第1導体板430側の熱伝導部材453の状態を図示した。   
 図8(a)に示すように、本実施形態では、封止部材360の端部に凹部454を有する。冷却部材340はパワーモジュール300を挟んでネジで両側から締め付けて固定する機構が用いられる。ネジに一定のトルク数で締め付けることにより、冷却部材340とパワーモジュール300の間に介在する熱伝導部材453は一定の面圧を受けることになる。この面圧により、熱伝導部材453は圧縮され、また放熱性をよくする観点で、熱伝導部材453が薄く圧縮されるほど電気回路体400全体の熱抵抗が低くなる。圧縮された熱伝導部材453は横方向にはみ出すことになり、はみ出した分の熱伝導部材453は封止部材360の凹部454に溜まることで、電気回路体400の外側に流出しにくくなり、端子315B、325Mに垂れることを防げる。これにより、熱伝導部材453のはみ出しを防止して、絶縁性を確保し、装置の信頼性が向上する。
 一方、本実施形態を適用しない図8(b)に示す比較例では、封止部材360に凹部がない構成である。この場合、冷却部材340とパワーモジュール300とを固定する際に、熱伝導部材453が横方向にはみ出して封止部材360に沿って流出する虞がある。熱伝導部材453には絶縁性の低い材料が含まれているので、熱伝導部材453が端子315B、325Mに垂れると絶縁性が確保できず、装置の信頼性が低下する。
 図9は、変形例1における電気回路体400の図1に示すX-X線の断面図である。
 本変形例1では、封止部材360の凹部455は、その底面がシート部材440よりも外周側に深くなる段差形状である。そして、凹部455の底面の浅い部分には、シート部材440の端部が装填され、凹部455の底面の深い部分には、熱伝導部材453が溜まる。この封止部材360の製造方法は省略するが、金型には突起部の内側にもう一段の段差を設け、この突起部の段差にシート部材440を仮置きしてシート部材440の位置合わせをする。熱伝導部材453は、シート部材440の横幅と縦幅のいずれもより広くする。これにより、導体板430、431との絶縁距離を担保できる効果がある。また、シート部材440の端部が封止部材360の凹部455に装填されることで、熱伝導部材453がシート部材440に接するので、電気回路体400全体の放熱性がよくなる効果がある。
 図10は、変形例2における電気回路体400の図1に示すX-X線の断面図である。
 本変形例2では、封止部材360の凹部455は、シート部材440よりも外周側に第1凹部456、第2凹部457よりなる複数個の凹部を備える。図10の例では凹部455が2個の例を示す。そして、第1凹部456、第2凹部457には、熱伝導部材453が溜まる。この封止部材360の製造方法は省略するが、金型には複数個の突起部を設け、最も内周側の突起部にシート部材440を仮置きしてシート部材440の位置合わせをする。なお、第1凹部456に、変形例1に示したように、シート部材440の端部が装填され、且つ熱伝導部材453が溜まる構成にしてもよい。
 本変形例2によれば、熱伝導部材453がはみ出す時に、第1凹部456を全部埋めてから次に第2凹部457を埋めるので、はみ出しを防ぐ効果が増加する。また、電気回路体400において、三つのパワーモジュール300が並んでおり(図1参照)、パワーモジュール300の並ぶ方向(X方向)にはみ出す熱伝導部材453を受け入れられる空間が少ないため、熱伝導部材453は端子方向(Y方向)にはみ出しやすい。変形例2に示すように、封止部材360に複数個の凹部を設けることで、Y方向に増えた熱伝導部材453の分をY方向の複数個の凹部で受け入れられ、熱伝導部材453を電気回路体400の外側に流出させない効果がある。
 図11は、変形例3における図2に示すZ-Z線のパワーモジュール300の平断面図に相当する図である。図2に示す電気回路体400から、冷却部材340と熱伝導部材453とを取り除いた状態を示す。
 図11に示すように、第1導体板430と第3導体板432を覆うように第1シート部材440が設けられ、封止部材360で封止されている。封止部材360の表面には、第1シート部材440よりも外周側に、第1シート部材440の外縁に沿って凹部454が一周形成される。第1シート部材440は封止部材360の凹部454と導体板430、432との間に位置している。第1シート部材440の横幅と縦幅のいずれも、第1導体板430と第3導体板432が含まれる導体板領域434の横幅と縦幅より広くすることが望ましい。
 変形例3では、第1シート部材440の外縁に沿って形成された凹部454の隅には熱伝導部材453が溜まる溜り領域458が形成される。溜り領域458の容量は、溜り領域458を形成しなかった場合の凹部454の隅の容量に比べて大きい。溜り領域458の形状は、円形状、四角形状などその形状を問わない。図11に示す例では、溜り領域458は円形状であり、凹部454の四隅に設けられ、凹部454の外周より外側にはみ出す構造である。
 変形例3によれば、熱伝導部材453がはみ出す場合に、熱伝導部材453を受け入れる容量が大きくなり、熱伝導部材453のはみ出しを防ぐ効果が増加する。また、変形例2で言及したように、パワーモジュール300の並ぶ方向にはみ出す熱伝導部材453は、端子方向にさらにはみ出す場合には、凹部454の隅に集中する傾向があるために、凹部454の隅の容量を増やすことで、はみ出しの防ぐ効果が増加する。
 図12は、変形例4における電気回路体400の図1に示すX-X線の断面図に相当する図である。図2に示す断面図と同一箇所には同一の符号を付してその説明を省略する。
 変形例4では、冷却部材340は、シート部材440、441よりも外周側に、シート部材440、441の外縁に沿って凹部459が形成される。凹部459は、封止部材360に形成された凹部454と対向している。そして、凹部459には、はみ出した熱伝導部材453が溜まる。冷却部材340に形成された凹部459の隅に熱伝導部材453が溜まる溜り領域を形成してもよい。
 本変形例4によれば、熱伝導部材453がはみ出す場合に、凹部454および凹部459に溜まるので熱伝導部材453を受け入れる容量が大きくなり、はみだしを防ぐ効果が増加する。
 図13は、本実施形態におけるパワーモジュール300の半透過平面図である。図14は、本実施形態におけるパワーモジュール300の回路図である。
 図13、図14に示すように、正極側端子315Bは、上アーム回路のコレクタ側から出力しており、バッテリ又はコンデンサの正極側に接続される。上アームゲート信号端子325Uは、上アーム回路の能動素子155のゲート及びエミッタセンスから出力している。負極側端子319Bは、下アーム回路のエミッタ側から出力しており、バッテリ若しくはコンデンサの負極側、又はGNDに接続される。下アームゲート信号端子325Lは、下アーム回路の能動素子157のゲート及びエミッタセンスから出力している。交流側端子320Bは、下アーム回路のコレクタ側から出力しており、モータに接続される。中性点接地をする場合は、下アーム回路は、GNDでなくコンデンサの負極側に接続する。
 また、第1パワー半導体素子(上アーム回路)の能動素子155およびダイオード156の上下に第1導体板(上アーム回路エミッタ側)430、第2導体板(上アーム回路コレクタ側)431が配置される。第2パワー半導体素子(下アーム回路)の能動素子157およびダイオード158の上下に第3導体板(下アーム回路エミッタ側)432、第4導体板(下アーム回路コレクタ側)433が配置される。
 封止部材360の表面には、図示省略した第1シート部材440よりも外周側に、第1シート部材440の外縁に沿って凹部454が一周形成されている。
 本実施形態のパワーモジュール300は、上アーム回路及び下アーム回路の2つのアーム回路を、1つのモジュールに一体化した構造である2in1構造である。この他に、複数の上アーム回路及び下アーム回路を、1つのモジュールに一体化した構造を用いてもよい。この場合は、パワーモジュール300からの出力端子の数を低減し小型化することができる。
 図15は、電気回路体400を用いた電力変換装置200の回路図である。
 電力変換装置200は、インバータ回路140、142と、補機用のインバータ回路43と、コンデンサモジュール500とを備えている。インバータ回路140及び142は、パワーモジュール300を複数個備えた電気回路体400(図示省略)により構成されており、それらを接続することにより三相ブリッジ回路を構成している。電流容量が大きい場合には、更にパワーモジュール300を並列接続し、これら並列接続を三相インバータ回路の各相に対応して行うことにより、電流容量の増大に対応できる。また、パワーモジュール300に内蔵しているパワー半導体素子である能動素子155、157やダイオード156、158を並列接続することでも電流容量の増大に対応できる。
 インバータ回路140とインバータ回路142とは、基本的な回路構成は同じであり、制御方法や動作も基本的には同じである。インバータ回路140等の回路的な動作の概要は周知であるため、ここでは詳細な説明を省略する。
 上述のように、上アーム回路は、スイッチング用のパワー半導体素子として上アーム用の能動素子155と上アーム用のダイオード156とを備えており、下アーム回路は、スイッチング用のパワー半導体素子として下アーム用の能動素子157と下アーム用のダイオード158とを備えている。能動素子155、157は、ドライバ回路174を構成する2つのドライバ回路の一方あるいは他方から出力された駆動信号を受けてスイッチング動作し、バッテリ136から供給された直流電力を三相交流電力に変換する。
 上述したように、上アーム用の能動素子155および下アーム用の能動素子157は、コレクタ電極、エミッタ電極、ゲート電極を備えている。上アーム用のダイオード156および下アーム用のダイオード158は、カソード電極およびアノード電極の2つの電極を備えている。図13に示すように、ダイオード156、158のカソード電極が能動素子155、157のコレクタ電極に、アノード電極が能動素子155、157のエミッタ電極にそれぞれ電気的に接続されている。これにより、上アーム用の能動素子155および下アーム用の能動素子157のエミッタ電極からコレクタ電極に向かう電流の流れが順方向となっている。
 なお、能動素子としてはMOSFET(金属酸化物半導体型電界効果トランジスタ)を用いても良く、この場合は、上アーム用のダイオード156、下アーム用のダイオード158は不要となる。
 各上・下アーム直列回路の正極側端子315Bと負極側端子319Bとはコンデンサモジュール500のコンデンサ接続用の直流端子362A、362Bにそれぞれ接続されている。上アーム回路と下アーム回路の接続部にはそれぞれ交流電力が発生し、各上・下アーム直列回路の上アーム回路と下アーム回路の接続部は各パワーモジュール300の交流側端子320Bに接続されている。各相の各パワーモジュール300の交流側端子320Bはそれぞれ電力変換装置200の交流出力端子に接続され、発生した交流電力はモータジェネレータ192または194の固定子巻線に供給される。
 制御回路172は、車両側の制御装置やセンサ(例えば、電流センサ180)などからの入力情報に基づいて、上アーム用の能動素子155、下アームの能動素子157のスイッチングタイミングを制御するためのタイミング信号を生成する。ドライバ回路174は、制御回路172から出力されたタイミング信号に基づいて、上アーム用の能動素子155、下アーム用の能動素子157をスイッチング動作させるための駆動信号を生成する。なお、181、182、188はコネクタである。
 上・下アーム直列回路は、不図示の温度センサを含み、上・下アーム直列回路の温度情報が制御回路172に入力される。また、制御回路172には上・下アーム直列回路の直流正極側の電圧情報が入力される。制御回路172は、それらの情報に基づいて過温度検知および過電圧検知を行い、過温度或いは過電圧が検知された場合には全ての上アーム用の能動素子155、下アーム用の能動素子157のスイッチング動作を停止させ、上・下アーム直列回路を過温度或いは過電圧から保護する。
 図16は、図15に示す電力変換装置200の外観斜視図であり、図17は、図16に示す電力変換装置200のXV-XV線の断面斜視図である。
 図16に示すように、電力変換装置200は、下部ケース11および上部ケース10により構成され、ほぼ直方体形状に形成された筐体12を備えている。筐体12の内部には、電気回路体400、コンデンサモジュール500等が収容されている。電気回路体400は冷却流路を有しており、筐体12の一側面からは、冷却流路に連通する冷却水流入管13および冷却水流出管14が突出している。下部ケース11は、上部側(Z方向)が開口され、上部ケース10は、下部ケース11の開口を塞いで下部ケース11に取り付けられている。上部ケース10と下部ケース11とは、アルミニウム合金等により形成され、外部に対して密封して固定される。上部ケース10と下部ケース11とを一体化して構成してもよい。筐体12を、単純な直方体形状としたことで、車両等への取り付けが容易となり、また、生産性も向上する。
 筐体12の長手方向の一側面に、コネクタ17が取り付けられており、このコネクタ17には、交流ターミナル18が接続されている。また、冷却水流入管13および冷却水流出管14が導出された面には、コネクタ21が設けられている。
 図17に示すように、筐体12内には、電気回路体400が収容されている。電気回路体400の上方には、制御回路172およびドライバ回路174が配置され、電気回路体400の直流端子側には、コンデンサモジュール500が収容されている。コンデンサモジュールを電気回路体400と同一高さに配置することで、電力変換装置200を薄型化でき、車両への設置自由度が向上する。電気回路体400の交流側端子320Bは、電流センサ180を貫通してバスバーに接合されている。また、電気回路体400の直流端子である正極側端子315Bおよび負極側端子319Bは、それぞれ、コンデンサモジュール500の正・負極端子(図13の直流端子362A、362B)に接合される。
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)電気回路体400は、導体板430、431、432、433の一方面に接合されるパワー半導体素子155、156、157、158と、導体板430、431、432、433の他方面に接合される絶縁層を含んだシート部材440、441と、シート部材440、441の導体板430、431、432、433と接合される面とは反対の面が露出した状態でシート部材440、441と導体板430、431、432、433とパワー半導体素子155、156、157、158とを一体的に封止する封止部材360と、シート部材440、441の反対の面と熱伝導部材453を介して接着される冷却部材340と、を備えた電気回路体400であって、シート部材440、441が露出する封止部材360の表面には、シート部材440、441よりも外周側に、シート部材440、441の外縁に沿って凹部454、455が形成される。これにより、熱伝導部材がはみ出すのを防止して、絶縁性を確保し、装置の信頼性が向上する。
(2)電気回路体400の製造方法は、電気回路体400は、導体板430、431、432、433の一方面に接合されるパワー半導体素子155、156、157、158と、導体板430、431、432、433の他方面に接合される絶縁層を含んだシート部材440、441と、シート部材440、441の導体板430、431、432、433と接合される面とは反対の面が露出した状態でシート部材440、441と導体板430、431、432、433とパワー半導体素子155、156、157、158とを一体的に封止する封止部材360と、シート部材440、441の反対の面と熱伝導部材453を介して接着される冷却部材340と、を備えた電気回路体400の製造方法であって、シート部材440、441の外周側に対応して凸部603が形成された金型によりシート部材440、441を保持する工程と、金型を加圧して、シート部材440、441を導体板430、431、432、433の他方面に接合し、封止部材360で封止し、金型の凸部603に対応して封止部材360に凹部454、455を形成する工程とを備える。これにより、熱伝導部材がはみ出すのを防止して、絶縁性を確保し、装置の信頼性が向上する。
 本発明は、上述の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。
 1・・・マイコン、10・・・上部ケース、11・・・下部ケース、12・・・筐体、13・・・冷却水流入管、14・・・冷却水流出管、17・・・コネクタ、18・・・交流ターミナル、21・・・コネクタ、43、140、142・・・インバータ回路、155・・・第1パワー半導体素子(上アーム回路能動素子)、156・・・第1パワー半導体素子(上アーム回路ダイオード)、157・・・第2パワー半導体素子(下アーム回路能動素子)、158・・・第2パワー半導体素子(下アーム回路ダイオード)、172・・・制御回路、174・・・ドライバ回路、180・・・電流センサ、181、182、188・・・コネクタ、192、194・・・モータジェネレータ、200・・・電力変換装置、300・・・パワーモジュール、310・・・回路体、315B・・・正極側端子、319B・・・負極側端子、320B・・・交流側端子、325・・・信号端子、325K・・・ケルビンエミッタ信号端子、325L・・・下アームゲート信号端子、325M・・・ミラーエミッタ信号端子、325U・・・上アームゲート信号端子、340・・・冷却部材、360・・・封止部材、400・・・電気回路体、430・・・第1導体板(上アーム回路エミッタ側)、431・・・第2導体板(上アーム回路コレクタ側)、432・・・第3導体板(下アーム回路エミッタ側)、433・・・第4導体板(下アーム回路コレクタ側)、440・・・第1シート部材(エミッタ側)、441・・・第2シート部材(コレクタ側)、442・・・第1樹脂絶縁層(エミッタ側)、443・・・第2樹脂絶縁層(コレクタ側)、444・・・金属箔、453・・・熱伝導部材、454、455・・・封止部材の凹部、458・・・溜り領域、459・・・冷却部材の凹部、500・・・コンデンサモジュール、601・・・トランスファーモールド装置、602・・・スプリング、603・・・金型の凸部。

Claims (11)

  1.  導体板の一方面に接合されるパワー半導体素子と、前記導体板の他方面に接合される絶縁層を含んだシート部材と、前記シート部材の前記導体板と接合される面とは反対の面が露出した状態で前記シート部材と前記導体板と前記パワー半導体素子とを一体的に封止する封止部材と、前記シート部材の前記反対の面と熱伝導部材を介して接着される冷却部材と、を備えた電気回路体であって、
     前記シート部材が露出する前記封止部材の表面には、前記シート部材よりも外周側に、前記シート部材の外縁に沿って凹部が形成される電気回路体。
  2.  請求項1に記載の電気回路体において、
     前記熱伝導部材は、前記封止部材の表面から露出している前記シート部材を少なくとも覆うとともに、前記封止部材の前記凹部の中に一部が溜まる電気回路体。
  3.  請求項1に記載の電気回路体において、
     前記凹部は、その底面が段差形状である電気回路体。
  4.  請求項1に記載の電気回路体において、
     前記凹部は、複数個の凹部よりなる電気回路体。
  5.  請求項1に記載の電気回路体において、
     前記シート部材の端部が前記凹部に装填される電気回路体。
  6.  請求項1に記載の電気回路体において、
     前記シート部材の外縁に沿って形成された前記凹部の隅には前記熱伝導部材が溜まる溜り領域が形成される電気回路体。
  7.  請求項1に記載の電気回路体において、
     前記冷却部材は、前記シート部材よりも外周側に、前記シート部材の外縁に沿って凹部が形成される電気回路体。
  8.  請求項1から請求項7までのいずれか一項に記載の電気回路体において、
     前記導体板は、前記パワー半導体素子の両面に配置されて、前記配置された前記各導体板の一方面は前記パワー半導体素子に接合され、
     前記シート部材は、前記各導体板の他方面にそれぞれ接合され、
     前記冷却部材は、前記各シート部材と前記熱伝導部材を介してそれぞれ接着される電気回路体。
  9.  請求項1から請求項7までのいずれか一項に記載の電気回路体を備え、直流電力を交流電力に変換する電力変換装置。
  10.  導体板の一方面に接合されるパワー半導体素子と、前記導体板の他方面に接合される絶縁層を含んだシート部材と、前記シート部材の前記導体板と接合される面とは反対の面が露出した状態で前記シート部材と前記導体板と前記パワー半導体素子とを一体的に封止する封止部材と、前記シート部材の前記反対の面と熱伝導部材を介して接着される冷却部材と、を備えた電気回路体の製造方法であって、
     前記シート部材の外周側に対応して凸部が形成された金型により前記シート部材を保持する工程と、
     前記金型を加圧して、前記シート部材を前記導体板の他方面に接合し、前記封止部材で封止し、前記金型の前記凸部に対応して前記封止部材に凹部を形成する工程と、
     を備える電気回路体の製造方法。
  11.  請求項10に記載の電気回路体の製造方法において、
     前記熱伝導部材で前記封止部材の表面から露出している前記シート部材を覆い、前記熱伝導部材に前記冷却部材を接着する工程をさらに備える電気回路体の製造方法。
PCT/JP2021/036023 2020-12-10 2021-09-29 電気回路体、電力変換装置、および電気回路体の製造方法 WO2022123870A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/039,896 US20240038611A1 (en) 2020-12-10 2021-09-29 Electrical Circuit Body, Power Converter, and Electrical Circuit Body Manufacturing Method
DE112021005358.2T DE112021005358T5 (de) 2020-12-10 2021-09-29 Elektrischer Schaltungskörper, Leistungsumsetzer und Herstellungsverfahren für einen elektrischen Schaltungskörper
CN202180081821.0A CN116636000A (zh) 2020-12-10 2021-09-29 电路体、功率转换装置和电路体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020205422A JP2022092545A (ja) 2020-12-10 2020-12-10 電気回路体、電力変換装置、および電気回路体の製造方法
JP2020-205422 2020-12-10

Publications (1)

Publication Number Publication Date
WO2022123870A1 true WO2022123870A1 (ja) 2022-06-16

Family

ID=81973493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036023 WO2022123870A1 (ja) 2020-12-10 2021-09-29 電気回路体、電力変換装置、および電気回路体の製造方法

Country Status (5)

Country Link
US (1) US20240038611A1 (ja)
JP (1) JP2022092545A (ja)
CN (1) CN116636000A (ja)
DE (1) DE112021005358T5 (ja)
WO (1) WO2022123870A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024006808A (ja) * 2022-07-04 2024-01-17 日立Astemo株式会社 電気回路体および電力変換装置
JP2024072609A (ja) * 2022-11-16 2024-05-28 日立Astemo株式会社 電気回路体および電力変換装置
WO2024116873A1 (ja) * 2022-11-29 2024-06-06 ローム株式会社 半導体モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033872A (ja) * 2010-06-30 2012-02-16 Denso Corp 半導体装置
JP2013073964A (ja) * 2011-09-26 2013-04-22 Hitachi Automotive Systems Ltd パワーモジュール
JP2013258334A (ja) * 2012-06-13 2013-12-26 Denso Corp 半導体装置及びその製造方法
WO2018159209A1 (ja) * 2017-02-28 2018-09-07 日立オートモティブシステムズ株式会社 パワー半導体装置
JP2020088019A (ja) * 2018-11-16 2020-06-04 日立オートモティブシステムズ株式会社 パワー半導体モジュール、電力変換装置およびパワー半導体モジュールの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033872A (ja) * 2010-06-30 2012-02-16 Denso Corp 半導体装置
JP2013073964A (ja) * 2011-09-26 2013-04-22 Hitachi Automotive Systems Ltd パワーモジュール
JP2013258334A (ja) * 2012-06-13 2013-12-26 Denso Corp 半導体装置及びその製造方法
WO2018159209A1 (ja) * 2017-02-28 2018-09-07 日立オートモティブシステムズ株式会社 パワー半導体装置
JP2020088019A (ja) * 2018-11-16 2020-06-04 日立オートモティブシステムズ株式会社 パワー半導体モジュール、電力変換装置およびパワー半導体モジュールの製造方法

Also Published As

Publication number Publication date
CN116636000A (zh) 2023-08-22
JP2022092545A (ja) 2022-06-22
DE112021005358T5 (de) 2023-08-10
US20240038611A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
WO2022123870A1 (ja) 電気回路体、電力変換装置、および電気回路体の製造方法
JP6979864B2 (ja) パワー半導体装置及びその製造方法
CN109727960B (zh) 半导体模块、其制造方法以及电力变换装置
WO2021054008A1 (ja) 電気回路体、電力変換装置、および電気回路体の製造方法
WO2021181831A1 (ja) 電気回路体、電力変換装置、および電気回路体の製造方法
WO2018159209A1 (ja) パワー半導体装置
JP6644196B1 (ja) 半導体装置およびその製造方法ならびに電力変換装置
WO2022137692A1 (ja) 電気回路体および電力変換装置
JP2013211299A (ja) パワー半導体モジュール及びそれを用いた電力変換装置
WO2022137701A1 (ja) 電気回路体および電力変換装置
WO2022137704A1 (ja) パワーモジュールおよび電力変換装置
WO2019171684A1 (ja) 半導体装置及び電力変換装置
CN113261095A (zh) 半导体装置、半导体装置的制造方法及电力转换装置
WO2022270022A1 (ja) 電気回路体および電力変換装置
WO2024009613A1 (ja) 電気回路体および電力変換装置
WO2023112997A1 (ja) 半導体装置及び電力変換装置
WO2023162475A1 (ja) 半導体装置及び電力変換装置
WO2024106072A1 (ja) 電気回路体および電力変換装置
JP7171516B2 (ja) パワー半導体モジュール、電力変換装置およびパワー半導体モジュールの製造方法
WO2024009617A1 (ja) 電気回路体および電力変換装置
WO2023100771A1 (ja) 半導体モジュール、電力変換装置、および半導体モジュールの製造方法
CN118318305A (en) Semiconductor module, power conversion device, and method for manufacturing semiconductor module
JP2022070483A (ja) パワー半導体モジュール及びその製造方法並びに電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902974

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18039896

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180081821.0

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21902974

Country of ref document: EP

Kind code of ref document: A1