WO2024009617A1 - 電気回路体および電力変換装置 - Google Patents
電気回路体および電力変換装置 Download PDFInfo
- Publication number
- WO2024009617A1 WO2024009617A1 PCT/JP2023/018279 JP2023018279W WO2024009617A1 WO 2024009617 A1 WO2024009617 A1 WO 2024009617A1 JP 2023018279 W JP2023018279 W JP 2023018279W WO 2024009617 A1 WO2024009617 A1 WO 2024009617A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electric circuit
- circuit body
- semiconductor device
- conductive member
- heat conductive
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 13
- 239000004065 semiconductor Substances 0.000 claims abstract description 168
- 229920005989 resin Polymers 0.000 claims abstract description 101
- 239000011347 resin Substances 0.000 claims abstract description 101
- 238000001816 cooling Methods 0.000 claims abstract description 57
- 230000017525 heat dissipation Effects 0.000 claims abstract description 29
- 230000006835 compression Effects 0.000 claims abstract description 9
- 238000007906 compression Methods 0.000 claims abstract description 9
- 239000004020 conductor Substances 0.000 claims description 36
- 238000003475 lamination Methods 0.000 claims 1
- 239000003990 capacitor Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 230000007246 mechanism Effects 0.000 description 11
- 238000001721 transfer moulding Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000000945 filler Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000003825 pressing Methods 0.000 description 8
- 238000001723 curing Methods 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 239000003566 sealing material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000009849 vacuum degassing Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000013008 moisture curing Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/40—Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/18—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
Definitions
- the present invention relates to an electric circuit body and a power conversion device.
- Power conversion devices based on the switching operation of semiconductor elements have high conversion efficiency, so they are widely used in consumer products, vehicles, railways, power substation equipment, etc.
- Semiconductor elements generate heat when energized.
- a cooling member is provided to cool the semiconductor element, and furthermore, a heat conductive member is arranged between the semiconductor device containing the semiconductor element and the cooling member arranged opposite to the semiconductor device. .
- the heat conductive member conducts heat generated from the semiconductor element to the cooling member by bringing the semiconductor device and the cooling member into close contact with each other. Cooling of semiconductor devices requires high reliability in order to maintain heat dissipation, especially in in-vehicle applications.
- Patent Document 1 discloses an inverter including a casing formed with a housing section that accommodates a power card in which both sides of a semiconductor element are sandwiched between heat sinks, and a circulation path section that circulates a cooling medium around the power card. , a technique has been disclosed in which a gap between a power card and a housing section is filled with an insulating resin, and the insulating resin is cured to fix the power card.
- Patent Document 1 does not take into consideration countermeasures against leakage of the heat conductive member, which reduces the reliability of the device.
- An electric circuit body includes a semiconductor device that includes a built-in semiconductor element and has a heat dissipation section of the semiconductor element formed on at least one surface, and is disposed opposite to the heat dissipation section of the semiconductor device, and is disposed opposite to the heat dissipation section of the semiconductor device.
- a cooling member that cools heat generation
- a heat conductive member disposed between the semiconductor device and the cooling member
- a stack of the semiconductor device and the cooling member the heat conduction member being disposed between the semiconductor device and the cooling member
- a resin member disposed in close contact with the heat conductive member outside a projected area of the heat radiating portion in the direction, and the resin member has a smaller compression set than the heat conductive member.
- FIG. 1 is a plan view of an electric circuit body according to an embodiment.
- FIG. 3 is a cross-sectional view of the electric circuit body taken along line XX.
- FIG. 3 is a cross-sectional perspective view taken along the YY line of the electric circuit body.
- FIG. 3 is a cross-sectional perspective view taken along line XX of the electric circuit body.
- FIG. 2 is a semi-transparent plan view of a semiconductor device.
- FIG. 2 is a circuit diagram of a semiconductor device.
- (a) (b) (c) (d) It is sectional drawing explaining the manufacturing process of a semiconductor device.
- (a) (b) It is sectional drawing explaining the manufacturing process of an electric circuit body.
- FIG. 1 is a circuit diagram of a power conversion device using a semiconductor device. It is an external perspective view of a power converter.
- FIG. 2 is a cross-sectional perspective view of a power conversion device.
- FIG. 1 is a plan view of an electric circuit body 400 according to the embodiment.
- the electric circuit body 400 includes a semiconductor device 300 and a cooling member 340.
- the electric circuit body 400 is formed by providing three semiconductor devices 300 in parallel.
- the semiconductor device 300 includes semiconductor elements 155 and 157, which will be described later, sealed with a sealing material 360. Heat radiating portions are formed on both surfaces of the semiconductor elements 155 and 157 to radiate heat generated by switching operations of the semiconductor elements 155 and 157. Further, in the semiconductor device 300, terminals connected to the semiconductor elements 155 and 157 are led out from the sealing material 360 on the side surface of the semiconductor device 300. These terminals include a positive terminal 315B and a negative terminal 319B connected to the capacitor module 500 (see FIG. 13) of the DC circuit, an AC side terminal 320B connected to the motor generators 192 and 194 (see FIG. 13) of the AC circuit, etc. This is a power terminal through which a large current flows.
- terminals led out from the sealing material 360 on the side surface of the semiconductor device 300 include a lower arm gate terminal 325L, a collector sense terminal 325C, an emitter sense terminal 325E, and an upper arm gate terminal 325U.
- An electric circuit body 400 in which three semiconductor devices 300 are provided in parallel functions as a power converter that converts direct current and alternating current by switching operations of semiconductor elements 155 and 157. Note that the number of semiconductor devices 300 included in the electric circuit body 400 is not limited to three, and can be arbitrarily set according to various forms of the electric circuit body 400.
- the cooling member 340 is arranged to face the heat radiation section of the semiconductor device 300 and cools the heat generated by the switching operations of the semiconductor elements 155 and 156. Specifically, the cooling member 340 has a flow path formed therein through which a refrigerant flows, and the heat generated by the semiconductor device 300 is cooled by the refrigerant flowing through the flow path.
- a refrigerant water, an antifreeze solution containing ethylene glycol, or the like can be used.
- the cooling member 340 is desirably made of aluminum, which has high thermal conductivity and is lightweight. Manufactured by extrusion molding, forging, brazing, etc.
- FIG. 2 is a cross-sectional view of the electric circuit body 400 shown in FIG. 1 taken along line XX
- FIG. 3 is a cross-sectional perspective view of the electric circuit body 400 shown in FIG. 1 taken along line YY.
- FIG. 4 is a cross-sectional perspective view taken along the line XX of the electric circuit body 400 shown in FIG. 1, and shows the semiconductor device 300 from which the cooling member 340 and the heat conductive member 453 are removed.
- the electric circuit body 400 includes a pressurizing mechanism 341 that pinches and presses the cooling member 340 provided on both sides of the semiconductor device 300 from both sides.
- the pressurizing mechanism 341 is, for example, a mechanism that connects the cooling members 340 on both sides to each other with screws or the like and pressurizes the semiconductor device 300 side.
- an active element 155 and a diode 156 are provided as the first semiconductor element forming the upper arm circuit of the power conversion device (see FIGS. 5 and 6 described later).
- the active element Si, SiC, GaN, GaO, C, etc. can be used.
- the body diode of the active element 155 the separate diode may be omitted.
- the collector side of the first semiconductor element 155 is joined to the second conductive plate 431. For this joining, solder or sintered metal may be used.
- a first conductor plate 430 is bonded to the emitter side of the first semiconductor element 155.
- an active element 157 and a diode 158 are provided as the second semiconductor element forming the lower arm circuit (see FIGS. 5 and 6 described later).
- the collector side of the second semiconductor element 157 is joined to the fourth conductor plate 433.
- a third conductive plate 432 is bonded to the emitter side of the second semiconductor element 157.
- the conductive plates 430, 431, 432, and 433 are not particularly limited as long as they are made of a material with high electrical conductivity and high thermal conductivity, but may be made of metal materials such as copper-based or aluminum-based materials, or metal-based materials with high thermal conductivity. It is desirable to use a composite material such as diamond, carbon, or ceramic. These may be used alone, but may be plated with Ni, Ag, or the like to improve bondability with solder or sintered metal.
- FIG. 2 As shown in FIG. 2, FIG. 3, and FIG. It plays the role of a heat transfer member that transfers heat. Since the conductor plates 430, 431, 432, 433 and the cooling member 340 have different potentials, it is desirable to use insulating sheets 440, 441 between them.
- the resin insulating layer 443 of the insulating sheets 440, 441 is not particularly limited as long as it has adhesive properties with the heat sink, but an epoxy resin insulating layer in which powdered inorganic filler is dispersed is preferable. This is because there is a good balance between adhesiveness and heat dissipation.
- the insulating sheets 440 and 441 may be formed by a single resin insulating layer 443, it is preferable to provide a metal foil 444 on the side in contact with a heat conductive member 453, which will be described later.
- the insulating sheets 440 and 441 are cured simultaneously with the encapsulant 360 during a transfer molding process.
- a release sheet or metal foil is placed on the contact surface between the insulating sheets 440, 441 and the mold to prevent adhesion to the mold. 444 will be provided.
- the mold release sheet has poor thermal conductivity, so a peeling process is required after transfer molding, but when using Metal Foil 444, it is possible to select a metal with high thermal conductivity such as copper or aluminum. , it can be used without peeling after transfer molding.
- Semiconductor elements 155, 156, 157, 158, conductor plates 430, 431, 432, 433, and insulating sheets 440, 441 are sealed with sealant 360 by transfer molding to constitute semiconductor device 300.
- a heat conductive member 453 is disposed between the semiconductor device 300 and the cooling member 340 in order to reduce the contact thermal resistance between the semiconductor device 300 and the cooling member 340.
- a resin member 454 is disposed between the semiconductor device 300 and the cooling member 340 and in close contact with the heat conductive member 453 outside the projection area 460 of the heat dissipation section in the stacking direction of the semiconductor device 300 and the cooling member 340. Ru.
- the heat conductive member 453 is a cured resin material that has fluidity in an uncured state and loses fluidity after curing.
- a curable resin cured product has a low viscosity and excellent workability when applied, and has the advantage that mechanical properties can be improved by curing.
- heat curing, moisture curing, ultraviolet curing, etc. can be used, but heat curing is preferable for deep curing.
- the thermally conductive member 453 needs to have low stress because it brings the semiconductor device 300 and the cooling member 340, which have different coefficients of thermal expansion, into close contact with each other. Therefore, the Young's modulus of the heat conductive member 453 is preferably 50 MPa or less.
- the Young's modulus in this embodiment is a value measured at a frequency of 10 Hz, a strain of 0.1%, and a temperature of 25° C. in a dynamic viscoelasticity test in the tensile or compressive direction.
- the thermally conductive member 453 is made of a material that is a mixture of resin and filler.
- the most desirable resin is a silicone resin whose elastic modulus changes little from around -40°C to around 200°C.
- the filler is a highly thermally conductive material such as metal, ceramic, or carbon-based material.
- the thermally conductive member 453 is a hardened material that has a large compression set and is easily plastically deformed because the resin is filled with a filler and has a low elastic modulus.
- the compression permanent strain in this embodiment refers to the strain remaining 30 minutes after applying a 10% compressive displacement at room temperature for 30 minutes and unloading.
- the resin member 454 is a hardened resin material that has fluidity in an uncured state and loses fluidity after hardening for workability and heat dissipation.
- the cured resin material has a low viscosity and is excellent in workability when applied, and is thinned to the same thickness as the heat conductive member 453 by pressure and cured, so that the semiconductor device 300 and the cooling member 340 are cured. It can function as a spacer between. Therefore, the heat conductive member 453 can be made thinner, and the heat dissipation performance is improved, compared to the case where spacers having a constant thickness are arranged. This point will be discussed later with reference to FIG.
- the Young's modulus of the resin member 454 is desirably higher than that of the thermally conductive member 453.
- the resin member 454 is placed outside the projection area 460 in close contact with the heat conductive member 453, and between the semiconductor device 300 and the cooling member 340, the stress of the resin member 454 is made higher than that of the heat conductive member 453. suppresses plastic deformation.
- the resin member 454 a resin such as a silicone resin may be used alone, or a material obtained by mixing this resin with a filler may be used. In either case, the cured product has a smaller compression set than the heat conductive member 453. Since the resin member 454 has a smaller compression set than the thermally conductive member 453, the pressurizing mechanism 341 shares the pressure force for pressing the cooling member 340 against the semiconductor device 300, and the thermally conductive member 453 plastically deforms, causing the semiconductor device 300 to be compressed. can be prevented from leaking out. That is, the resin member 454 is set so that its load share is larger than that of the heat conductive member 453. This point will be discussed later with reference to FIG.
- the resin member 454 is arranged at least outside the projection area 460 of the heat dissipation section in the stacking direction of the semiconductor device 300 and the cooling member 340, as shown in FIG. Thereby, the heat of the semiconductor elements 155 to 158 can be conducted to the heat conductive member 453 without being hindered by the resin member 454.
- the resin member 454 may be placed outside the projection area 461 of the conductive plates 430, 431, 432, and 433 in the stacking direction of the semiconductor device 300 and the cooling member 340. Thereby, the heat conducted from the semiconductor elements 155 and 156 via the conductor plates 430, 431, 432, and 433 can be conducted to the heat conduction member 453 without being obstructed by the resin member 454.
- the resin member 454 is made of a material that is a mixture of resin and a filler, which is a highly thermally conductive material, so that the heat conduction is lower than that of the heat conductive member 453, but it does not significantly impede heat conduction. can be prevented. Furthermore, in either case, a filler or the like is added so that the Young's modulus of the resin member 454 is higher than the Young's modulus of the thermally conductive member 453.
- FIG. 5 is a semi-transparent plan view of the semiconductor device 300.
- FIG. 6 is a circuit diagram of the semiconductor device 300.
- the positive side terminal 315B is output from the collector side of the upper arm circuit, and is connected to the positive side of the battery or capacitor.
- the upper arm gate terminal 325U is output from the gate of the active element 155 of the upper arm circuit.
- the negative terminal 319B is output from the emitter side of the lower arm circuit, and is connected to the negative terminal of the battery or capacitor, or to GND.
- the lower arm gate terminal 325L is output from the gate of the active element 157 of the lower arm circuit.
- the AC side terminal 320B is output from the collector side of the lower arm circuit and is connected to the motor. When grounding the neutral point, connect the lower arm circuit to the negative electrode side of the capacitor instead of GND.
- the emitter sense terminal 325E of the upper arm is output from the emitter of the active element 155 of the upper arm circuit
- the emitter sense terminal 325E of the lower arm is output from the emitter of the active element 157 of the lower arm circuit.
- the collector sense terminal 325C of the upper arm is output from the collector of the active element 155 of the upper arm circuit
- the collector sense terminal 325C of the lower arm is output from the collector of the active element 157 of the lower arm circuit.
- a conductor plate (upper arm circuit emitter side) 430 and a conductor plate (upper arm circuit collector side) 431 are arranged above and below the active element 155 and diode 156 of the semiconductor element (upper arm circuit).
- a conductor plate (lower arm circuit emitter side) 432 and a conductor plate (lower arm circuit collector side) 433 are arranged above and below the active element 157 and diode 158 of the semiconductor element (lower arm circuit).
- the semiconductor device 300 of this embodiment has a 2-in-1 structure in which two arm circuits, an upper arm circuit and a lower arm circuit, are integrated into one module.
- a structure in which a plurality of upper arm circuits and lower arm circuits are integrated into one module may be used. In this case, the number of output terminals from the semiconductor device 300 can be reduced and the size of the semiconductor device 300 can be reduced.
- FIG. 7(a), FIG. 7(b), FIG. 7(c), and FIG. 7(d) are cross-sectional views illustrating the manufacturing process of the semiconductor device 300. Similar to FIG. 2, it is shown as a cross-sectional view taken along the line X--X for one module.
- FIG. 7(a) shows the temporary attachment process.
- the collector side of the semiconductor element 155 and the cathode side of the semiconductor element 156 are connected to the second conductor plate 431, and the gate electrode, emitter sense electrode, and collector electrode of the semiconductor element 155 are wire-bonded to the gate terminal 325U of the upper arm and the emitter sense terminal. 325E and collector sense terminal 325C, respectively.
- the emitter side of the semiconductor element 155 and the anode side of the semiconductor element 156 are connected to the first conductor plate 430, thereby producing the circuit body 310 on the upper arm side.
- the collector side of the semiconductor element 157 and the cathode side of the semiconductor element 158 are connected to the fourth conductor plate 433, and the gate electrode, emitter sense electrode, and collector electrode of the semiconductor element 157 are connected to the gate terminal 325L of the lower arm by wire bonding. It is connected to the emitter sense terminal 325E and the collector sense terminal 325C, respectively.
- the emitter side of the semiconductor element 157 and the anode side of the semiconductor element 158 are connected to the third conductor plate 432 to produce the circuit body 310 on the lower arm side.
- FIG. 7A only the circuit body 310 on the upper arm side is illustrated, and the circuit body 310 on the lower arm side is not illustrated.
- insulating sheets 440 and 441 are temporarily attached to the conductor plates 430 to 433. Temporary attachment means to temporarily attach the insulating sheets 440, 441 using their adhesive strength under conditions that leave room for the insulating sheets 440, 441 to harden and adhere in the subsequent transfer molding process.
- FIGS. 7(b) to 7(d) show the transfer molding process.
- the transfer molding device 601 includes a mold 603 with a spring 602. Due to this spring 602, even if the height of the circuit body 310 varies, a predetermined load can be applied by the force of the spring 602 without applying excessive pressure to the semiconductor elements 155 to 158. Further, the transfer molding apparatus 601 includes a vacuum degassing mechanism (not shown). By vacuum degassing, even if the sealing material 360 made of resin or the like entrains the voids, the voids can be compressed to a small size and the insulation can be improved. Further, by covering the circuit body 310 with a release film (not shown), resin burrs can be prevented from entering the spring drive section and the like.
- the circuit body 310 with the insulating sheets 440 and 441 temporarily attached is set in a mold 603 that has been heated to a constant temperature of 175° C. in advance.
- the upper and lower molds 603 are clamped.
- the insulating sheets 440 and 441 and the conductor plates 430 to 433 are pressed by the spring 602 and brought into close contact with each other.
- the conductor plates 431 and 433 located on the collector side are pressurized toward the lower mold 603 when the terminal parts on the outer periphery of the conductor plates 431 and 433 are clamped with a mold, and this is added to the force of the spring 602. , are crimped onto the insulating sheet 441 with a stronger force than the conductive plates 430 and 432 located on the emitter side.
- a sealing material 360 is injected into the mold 603. Thereafter, the resin-sealed semiconductor device 300 is taken out from the transfer molding apparatus 601 and post-cured at 175° C. for 2 hours or more.
- FIG. 8(a) and 8(b) are cross-sectional views illustrating the manufacturing process of the electric circuit body 400. This process is performed using the semiconductor device 300 manufactured by the process shown in FIG. 7(d).
- FIG. 8(a) shows the coating process.
- a heat conductive member 453 and a resin member 454 are applied to the cooling member 340. The locations to be coated will be described later with reference to FIG. 11.
- FIG. 8(b) shows the adhesion and curing process.
- the cooling member 340 coated with the heat conductive member 453 and the resin member 454 is brought into close contact with the semiconductor device 300 .
- the electric circuit body 400 is manufactured by curing the heat conductive member 453 and the resin member 454.
- FIGS. 9(a), 9(b), and 9(c) are cross-sectional views illustrating plastic deformation of the heat conductive member 453 according to the comparative example.
- This comparative example is a case where this embodiment is not applied.
- the heat conductive member 453 is pressed by the pressing mechanism 341 and is in close contact with the semiconductor device 300.
- the density of the filler filled in the heat conductive member 453 becomes sparse, and the heat dissipation performance of the heat conductive member 453 is reduced. Furthermore, if the leaked heat conductive member 453 touches a terminal or the like led out from the semiconductor device 300, there is a concern that the insulation properties may deteriorate.
- FIGS. 10(a), 10(b), and 10(c) are cross-sectional views illustrating plastic deformation of the heat conductive member 453 according to this embodiment.
- the heat conductive member 453 and the resin member 454 are pressed by the pressure mechanism 341 and are in close contact with the semiconductor device 300.
- the resin member 454 having a smaller permanent compressive strain than the heat conductive member 453 is disposed between the semiconductor device 300 and the cooling member 340 and outside the projection area 460 of the heat dissipation section, the heat conductive member 453 The force that tends to move outward B is pushed back in the direction of arrow E by the repulsive force of the resin member 454, suppressing this movement.
- FIG. 11(a), FIG. 11(b), FIG. 11(c), and FIG. 11(d) are plan views showing the arrangement of the resin member 454.
- 11(a) shows the embodiment
- FIG. 11(b) shows the modified example 1
- FIG. 11(c) shows modification example 2
- FIG. 11(d) shows modification example 3.
- the heat conductive member 453 is shown in a transparent state.
- the resin member 454 is arranged in a band shape surrounding the outer periphery of the heat conducting member 453 and in close contact with the heat conducting member 453.
- the resin member 454 is arranged outside the projection area 461 of the conductor plates 430, 431, 432, and 433.
- the resin member 454 may be placed at least outside the projection area 460 of the heat dissipation section.
- the load sharing by the resin member 454 has the effect of suppressing outflow of the heat conductive member 453.
- the resin member 454 surrounding the heat conductive member 453 has the effect of preventing outflow.
- the resin member 454 has a lower thermal conductivity than the thermally conductive member 453, but by disposing it outside the projection area 460 of the heat dissipation section, it is possible to prevent the cooling performance of the semiconductor device 300 from deteriorating. Furthermore, by arranging the resin member 454 outside the projection area 460 of the heat dissipation section, the cooling performance of the semiconductor device 300 can be maintained at the same level as when the resin member 454 is not provided.
- terminals 315B, 319B, and 320B connected to semiconductor elements 155, 156, 157, and 158 are led out from the side surface of the semiconductor device 300, but the resin member 454 are arranged in a band shape on this side surface in close contact with the heat conductive member 453.
- the load sharing by the resin member 454 has the effect of suppressing outflow of the heat conductive member 453.
- the resin member 454 can be formed so as to draw two lines, resulting in excellent workability.
- the resin member 454 is formed in a band-like shape between the projection areas 460 of the heat dissipation parts of the plurality of semiconductor elements 155, 156, 157, and 158 built in the semiconductor device 300.
- the resin member 454 may be arranged between the projection areas 461 of the conductor plates 430, 431, 432, and 433. This has the effect of increasing the load sharing by the resin member 454 and suppressing outflow of the heat conductive member 453 while maintaining the cooling performance of the semiconductor device 300.
- the resin member 454 is arranged in a dotted manner outside the projection area 460 of the heat radiating section in close contact with the heat conductive member 453.
- the resin members 454 are disposed outside the projection area 460 of the heat dissipation section and at the four corners and the center of the heat conductive member 453, respectively.
- the load sharing by the resin member 454 has the effect of suppressing outflow of the heat conductive member 453.
- the resin member 454 can be formed into dots, the workability is excellent.
- the shape and number of the resin members 454 arranged in a dotted manner are appropriately set so that the load shared by the resin members 454 is larger than the load shared by the heat conductive member 453. Note that in FIGS. 11(a), 11(b), and 11(c), an example in which the resin members 454 are arranged in a band-like manner has been described, but the resin members 454 may be arranged in a dot-like manner.
- the resin member 454 is arranged so that its load share is larger than that of the heat conductive member 453.
- the volume ratio of the resin member 454 and the heat conductive member 453, their respective Young's moduli, the density of the filler, the crosslinked structure of the resin, etc. are set.
- the description focuses on the heat dissipation portions of the semiconductor elements 155 and 157 on one side of the semiconductor device 300, but the semiconductor element Similarly, a resin member 454 and a heat conductive member 453 are disposed on the other side of 155 and 157.
- the arrangement shape of the resin member 454 on the other surface is the same as the arrangement shape of the resin member 454 on the one surface shown in FIGS. They may be the same, ie, the same on both sides, or different on both sides.
- FIG. 12(a) and 12(b) are cross-sectional views of the electric circuit body 400 shown in FIG. 1 taken along the YY line.
- FIG. 12(a) shows an embodiment of the present invention
- FIG. 12(b) shows a comparative example.
- FIGS. 12(a) and 12(b) the case where there is variation in the thickness of the semiconductor device 300 in the stacking direction of the semiconductor device 300 and the cooling member 340 is shown.
- the variations in thickness are greatly drawn and do not represent the actual thickness.
- the heat conductive member 453 and the resin member 454 are cured resins that have fluidity in an uncured state and lose fluidity after hardening. Therefore, in the adhesion process described with reference to FIG. 8B, the cooling member 340 coated with the uncured heat conductive member 453 and the resin member 454 is brought into close contact with the semiconductor device 300. As shown in FIG. 12A, even if there is variation in the thickness of the semiconductor device 300, this variation can be absorbed and the cooling member 340 can be brought into close contact with the semiconductor device 300. After that, the heat conductive member 453 and the resin member 454 are cured.
- a comparative example to which this embodiment is not applied shows a case where a solid spacer 455 is used.
- variations in the thickness of the semiconductor device 300 cannot be absorbed, and the cooling member 340 and the semiconductor device 300 do not come into close contact with each other, so that the reliability of the electric circuit body 400, such as heat dissipation performance, deteriorates.
- the resin member 454 with a small compression set is placed in close contact with the heat conductive member 453, a decrease in heat dissipation due to outflow of the heat conductive member 453 is suppressed, and a highly reliable electric circuit body 400 is achieved.
- the heat conductive member 453 and the resin member 454 are cured resins that have fluidity in an uncured state and lose fluidity after hardening, so they absorb variations in the thickness of the semiconductor device 300 and dissipate heat.
- a highly reliable electric circuit body 400 can be provided without deterioration in performance.
- by arranging the resin member 454 on the terminal side it is possible to suppress the outflow of the heat conductive member 453 to the terminal side, and provide a highly reliable electric circuit body 400.
- FIG. 13 is a circuit diagram of a power conversion device 200 using a semiconductor device 300.
- the power conversion device 200 includes inverter circuit units 140 and 142, an auxiliary inverter circuit unit 43, and a capacitor module 500.
- the inverter circuit units 140 and 142 include a plurality of semiconductor devices 300, and configure a three-phase bridge circuit by connecting them.
- the increase in current capacity can be handled by further connecting semiconductor devices 300 in parallel and making these parallel connections corresponding to each phase of the three-phase inverter circuit. Further, the increase in current capacity can also be handled by connecting in parallel active elements 155 and 157 and diodes 156 and 158, which are semiconductor elements built into the semiconductor device 300.
- the inverter circuit section 140 and the inverter circuit section 142 have the same basic circuit configuration, and the control method and operation are also basically the same. Since the outline of the circuit operation of the inverter circuit section 140 and the like is well known, detailed explanation will be omitted here.
- the upper arm circuit includes an active element 155 for the upper arm and a diode 156 for the upper arm as a semiconductor element for switching
- the lower arm circuit includes an active element 155 for the upper arm as a semiconductor element for switching, and a diode 156 for the upper arm as a semiconductor element for switching.
- the active elements 155 and 157 perform a switching operation in response to a drive signal output from one or the other of the two driver circuits constituting the driver circuit 174, and convert the DC power supplied from the battery 136 into three-phase AC power. .
- the active element 155 for the upper arm and the active element 157 for the lower arm include a collector electrode, an emitter electrode, and a gate electrode.
- the diode 156 for the upper arm and the diode 158 for the lower arm include two electrodes: a cathode electrode and an anode electrode.
- the cathode electrodes of the diodes 156 and 158 are electrically connected to the collector electrodes of the active elements 155 and 157
- the anode electrodes are electrically connected to the emitter electrodes of the active elements 155 and 157, respectively.
- the active elements 155 and 157 are, for example, IGBTs.
- MOSFET metal oxide semiconductor field effect transistor
- the positive terminal 315B and negative terminal 319B of each upper and lower arm series circuit are connected to a DC terminal for connecting a capacitor of the capacitor module 500, respectively.
- AC power is generated at the connection between the upper arm circuit and the lower arm circuit, respectively, and the connection between the upper arm circuit and the lower arm circuit of each upper and lower arm series circuit is connected to the AC side terminal 320B of each semiconductor device 300.
- AC side terminals 320B of each semiconductor device 300 of each phase are respectively connected to an AC output terminal of power converter 200, and the generated AC power is supplied to the stator winding of motor generator 192 or 194.
- the control circuit 172 controls the switching timing of the active element 155 for the upper arm and the active element 157 for the lower arm based on input information from a control device or a sensor (for example, a current sensor 180) on the vehicle side. generates a timing signal.
- the driver circuit 174 generates a drive signal for switching the upper arm active element 155 and the lower arm active element 157 based on the timing signal output from the control circuit 172. Note that 181, 182, and 188 are connectors.
- the upper/lower arm series circuit includes a temperature sensor (not shown), and temperature information of the upper/lower arm series circuit is input to the microcomputer. Further, voltage information on the DC positive pole side of the upper and lower arm series circuits is input to the microcomputer. The microcomputer performs overtemperature detection and overvoltage detection based on the information, and when overtemperature or overvoltage is detected, switches all the active elements 155 for the upper arm and the active elements 157 for the lower arm. to protect the upper and lower arm series circuits from overtemperature or overvoltage.
- FIG. 14 is an external perspective view of the power converter 200 shown in FIG. 13, and FIG. 15 is a cross-sectional perspective view taken along the line XV-XV of the power converter 200 shown in FIG.
- the power conversion device 200 includes a casing 12 that is composed of a lower case 11 and an upper case 10 and is formed into a substantially rectangular parallelepiped shape. Inside the housing 12, an electric circuit body 400, a capacitor module 500, etc. are housed.
- the electric circuit body 400 has a cooling channel that flows to the cooling member 340, and a cooling water inflow pipe 13 and a cooling water outflow pipe 14 that communicate with the cooling channel protrude from one side of the housing 12.
- the lower case 11 has an open upper side, and the upper case 10 is attached to the lower case 11 by closing the opening of the lower case 11.
- the upper case 10 and the lower case 11 are made of aluminum alloy or the like, and are sealed and fixed to the outside.
- the upper case 10 and the lower case 11 may be integrated. Since the housing 12 has a simple rectangular parallelepiped shape, it can be easily attached to a vehicle or the like, and it can also be manufactured easily.
- a connector 17 is attached to one longitudinal side of the housing 12, and an AC terminal 18 is connected to the connector 17. Further, a connector 21 is provided on the surface from which the cooling water inflow pipe 13 and the cooling water outflow pipe 14 are led out.
- an electric circuit body 400 is housed within the housing 12.
- a control circuit 172 and a driver circuit 174 are arranged above the electric circuit body 400, and a capacitor module 500 is housed on the DC terminal side of the electric circuit body 400.
- the AC side terminal 320B of the electric circuit body 400 passes through the current sensor 180 and is connected to the connector 188. Further, the positive terminal 315B and the negative terminal 319B, which are DC terminals of the semiconductor device 300, are connected to the positive and negative terminals 362A and 362B of the capacitor module 500, respectively.
- the electric circuit body 400 is arranged to face the semiconductor device 300 which includes the semiconductor elements 155 and 157 and has a heat radiation part of the semiconductor elements 155 and 157 formed on at least one surface, and the heat radiation part of the semiconductor device 300.
- a cooling member 340 that cools the heat generated by the semiconductor elements 155 and 157;
- a heat conduction member 453 disposed between the semiconductor device 300 and the cooling member 340;
- a resin member 454 is disposed in close contact with the heat conductive member 453 outside the projection area 460 of the heat dissipation part in the stacking direction of the semiconductor device 300 and the cooling member 340, and the resin member 454 is arranged in close contact with the heat conductive member 453.
- Small compression set This makes it possible to provide a highly reliable device.
- the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included within the scope of the present invention, as long as they do not impair the characteristics of the present invention. . Moreover, it is good also as a structure which combined the above-mentioned embodiment and several modification.
- Second conductor plate (upper arm circuit collector side), 432 ...Third conductor plate (lower arm circuit emitter side), 433...Fourth conductor plate (lower arm circuit collector side), 440...First insulating sheet (emitter side), 441...Second Insulating sheet (collector side), 442... first resin insulating layer (emitter side), 443... second resin insulating layer (collector side), 444... metal foil, 453... heat conductive member, 454... Resin member, 455... Spacer, 460... Projection area of heat radiation part, 461... Projection area of conductor plate, 500... Capacitor module, 601... Transfer molding device, 602... ⁇ spring.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
半導体素子を内蔵し、少なくとも一方面に前記半導体素子の放熱部が形成された半導体装置と、前記半導体装置の前記放熱部と対向して配置され、前記半導体素子による発熱を冷却する冷却部材と、前記半導体装置と前記冷却部材との間に配置された熱伝導部材と、前記半導体装置と前記冷却部材との間であって、前記半導体装置と前記冷却部材の積層方向における前記放熱部の投影領域の外側に前記熱伝導部材と密着して配置された樹脂部材とを備え、前記樹脂部材は、前記熱伝導部材よりも圧縮永久ひずみが小さい電気回路体。
Description
本発明は、電気回路体および電力変換装置に関する。
半導体素子のスイッチング動作による電力変換装置は、変換効率が高いため、民生用、車載用、鉄道用、変電設備等に幅広く利用されている。半導体素子は通電により発熱する。このため、半導体素子を冷却する冷却部材が設けられ、さらに、半導体素子を内蔵した半導体装置と、半導体装置と対向して配置される冷却部材との間には、熱伝導部材が配置されている。この熱伝導部材は、半導体装置と冷却部材との間を密着することにより、半導体素子からの発熱を冷却部材へ伝導する。半導体装置の冷却は、特に、車載用途においては、放熱性を維持するための高い信頼性が求められる。
特許文献1には、半導体素子の両面を放熱板で挟んだパワーカードを収容する収容部と、パワーカードの周囲に冷却媒体を循環させる循環経路部とが形成された筐体を具備するインバータにおいて、パワーカードと収容部との隙間に絶縁性樹脂を充填し、絶縁性樹脂を硬化させてパワーカードを固定する技術が開示されている。
特許文献1には、熱伝導部材の流出等の対策は考慮されておらず、装置の信頼性が低下する。
本発明による電気回路体は、半導体素子を内蔵し、少なくとも一方面に前記半導体素子の放熱部が形成された半導体装置と、前記半導体装置の前記放熱部と対向して配置され、前記半導体素子による発熱を冷却する冷却部材と、前記半導体装置と前記冷却部材との間に配置された熱伝導部材と、前記半導体装置と前記冷却部材との間であって、前記半導体装置と前記冷却部材の積層方向における前記放熱部の投影領域の外側に前記熱伝導部材と密着して配置された樹脂部材とを備え、前記樹脂部材は、前記熱伝導部材よりも圧縮永久ひずみが小さい。
本発明によれば、熱伝導部材の流出を抑制し、信頼性の高い装置を提供することができる。
以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
図1は、実施形態にかかる電気回路体400の平面図である。
電気回路体400は、半導体装置300と冷却部材340からなる。図1に示す例では、電気回路体400は、半導体装置300を3個並列に設けてなる。
電気回路体400は、半導体装置300と冷却部材340からなる。図1に示す例では、電気回路体400は、半導体装置300を3個並列に設けてなる。
半導体装置300は、後述する半導体素子155、157を封止材360により封止して内蔵している。この半導体素子155、157の両面は半導体素子155、157のスイッチング動作による熱を放熱する放熱部が形成されている。さらに、半導体装置300は、半導体素子155、157と接続されている端子が半導体装置300の側面の封止材360より導出される。これらの端子は、直流回路のコンデンサモジュール500(図13参照)に連結する正極側端子315Bおよび負極側端子319B、交流回路のモータジェネレータ192、194(図13参照)に連結する交流側端子320B等の大電流が流れるパワー端子である。また、半導体装置300の側面の封止材360より導出される端子は、下アームゲート端子325L、コレクタセンス端子325C、エミッタセンス端子325E、上アームゲート端子325Uなどの端子である。半導体装置300を3個並列に設けた電気回路体400は、半導体素子155、157のスイッチング動作により直流電流と交流電流を変換する電力変換装置として機能する。なお、電気回路体400が有する半導体装置300の個数は3個に限らず、電気回路体400の種々の形態に合わせて任意に設定される。
冷却部材340は、半導体装置300の放熱部と対向して配置され、半導体素子155、156のスイッチング動作による発熱を冷却する。具体的には、冷却部材340は、内部に冷媒が流通する流路が形成され、流路を流通する冷媒により半導体装置300の発熱を冷却する。冷媒には、水や水にエチレングリコールを混入した不凍液等を用いることができる。冷却部材340は、熱伝導率が高く軽量なアルミ系が望ましい。押し出し成型や、鍛造、ろう付け等で作製する。
図2は、図1に示す電気回路体400のX-X線における断面図、図3は、図1に示す電気回路体400のY-Y線における断面斜視図である。図4は、図1に示す電気回路体400のX-X線における断面斜視図であるが、電気回路体400から冷却部材340および熱伝導部材453を取り除いた半導体装置300を示す。
図2に示すように、電気回路体400は、半導体装置300の両面に設けられた冷却部材340を両面から挟んで加圧する加圧機構341を備えている。加圧機構341は、図示を簡略化しているが、例えば、両面の冷却部材340を互いにビス等で連結して半導体装置300側に加圧する機構である。
図2に示すように、電力変換装置の上アーム回路を形成する第1半導体素子として、能動素子155、ダイオード156を備える(後述の図5、図6参照)。能動素子としては、Si、SiC、GaN、GaO、C等を用いることができる。能動素子155のボディダイオードを用いる場合は、別付けのダイオードを省略してもよい。第1半導体素子155のコレクタ側は、第2導体板431に接合されている。この接合には、はんだを用いてもよいし、焼結金属を用いてもよい。第1半導体素子155のエミッタ側には第1導体板430が接合されている。
図3に示すように、下アーム回路を形成する第2半導体素子として、能動素子157、ダイオード158を備える(後述の図5、図6参照)。図3に示すように、第2半導体素子157のコレクタ側は、第4導体板433に接合されている。第2半導体素子157のエミッタ側には第3導体板432が接合されている。
導体板430、431、432、433は、電気伝導性と熱伝導率が高い材料であれば特に限定されないが、銅系又はアルミ系材料等の金属系材料や、金属系材料と高熱伝導率のダイヤモンド、カーボンやセラミック等の複合材料等を用いることが望ましい。これらは、単独で用いてもよいが、はんだや、焼結金属との接合性を高めるためNiやAg等のめっきを施してもよい。
図2、図3、図4に示すように、導体板430、431、432、433は、電流を通電する役割の他に、半導体素子155、156、157、158が発する熱を冷却部材340に伝熱する伝熱部材としての役割をはたしている。導体板430、431、432、433と冷却部材340は電位が異なるため、この間に絶縁シート440、441を用いることが望ましい。
絶縁シート440、441の樹脂絶縁層443は、放熱板と接着性を有するものであれば特に限定されないが、粉末状の無機充填剤を分散したエポキシ樹脂系樹脂絶縁層が望ましい。これは、接着性と放熱性のバランスが良いためである。絶縁シート440、441は、樹脂絶縁層443単体でもよいが、後述の熱伝導部材453と接する側に金属箔444を設けることが望ましい。絶縁シート440、441は、トランスファーモールド工程で封止材360と同時に硬化される。トランスファーモールド成型工程において、絶縁シート440、441を金型に搭載する際、金型への接着を防ぐため、絶縁シート440、441と金型との接触面には、離型シート又は、金属箔444を設ける。離型シートは、熱伝導率が悪いためトランスファーモールド後に剥離する工程が必要となるが、金属箔444を用いた場合は、銅系や、アルミ系の熱伝導率の高い金属を選択することで、トランスファーモールド後に剥離することなく使用することができる。
半導体素子155、156、157、158、導体板430、431、432、433、絶縁シート440、441は、トランスファーモールド成型により封止材360で封止され、半導体装置300を構成する。
図2に示すように、半導体装置300と冷却部材340との間の接触熱抵抗を低減するために、半導体装置300と冷却部材340との間には熱伝導部材453が配置される。さらに、半導体装置300と冷却部材340との間であって、半導体装置300と冷却部材340の積層方向における放熱部の投影領域460の外側に熱伝導部材453と密着して樹脂部材454が配置される。
熱伝導部材453は、作業性と長期信頼性を確保のため、未硬化状態では流動性を有し、硬化後に流動性がなくなる硬化型の樹脂硬化物である。硬化型の樹脂硬化物は、塗布時は、粘度が低く作業性に優れ、硬化することで、機械物性を向上することができる利点がある。硬化は熱硬化、湿気硬化、紫外線硬化などを利用することができるが、深部まで硬化するには熱硬化が望ましい。熱伝導部材453は、熱膨張率の異なる半導体装置300と冷却部材340の間を密着するため、応力を低くする必要がある。このため、熱伝導部材453のヤング率は、50MPa以下が望ましい。本実施形態におけるヤング率は、引っ張り又は圧縮方向の動的粘弾性試験で、周波数10Hz、ひずみ0.1%、温度25℃で測定した値である。
熱伝導部材453は、樹脂に充填材を混ぜ合わせた材料である。樹脂は、-40℃付近から200℃付近まで弾性率の変化が小さいシリコーン樹脂が最も望ましい。充填材は、金属、セラミックス、炭素系材料等の高熱伝導材料である。熱伝導部材453は、樹脂に充填材を充填して弾性率が低くなるため、圧縮永久ひずみが大きい塑性変形しやすい硬化物となる。本実施形態における圧縮永久ひずみは、常温で10%の圧縮変位を30分間加え、除荷した後、30分後に残っているひずみのことである。
樹脂部材454は、作業性と放熱性のため、未硬化状態では流動性を有し、硬化後に流動性がなくなる硬化型の樹脂硬化物である。硬化型の樹脂硬化物は、塗布時は、粘度が低く作業性に優れ、また、加圧により熱伝導部材453と同じ厚さに薄肉化され、硬化することで、半導体装置300と冷却部材340との間のスペーサとして機能させることができる。このため一定厚さのスペーサを配置した場合と比較して、熱伝導部材453を薄肉化でき、放熱性が向上する。この点に関しては、図12を参照して後述する。
樹脂部材454のヤング率は、熱伝導部材453のヤング率より高いほうが望ましい。樹脂部材454は、投影領域460の外側に熱伝導部材453と密着して配置されるが、半導体装置300と冷却部材340の間において、熱伝導部材453の応力より高くして、熱伝導部材453の塑性変形を抑制する。
樹脂部材454は、シリコーン樹脂などの樹脂を単独で用いてもよく、また、この樹脂に充填材を混ぜ合わせた材料でもよい。いずれの場合も、熱伝導部材453より、圧縮永久ひずみが小さい硬化物とする。樹脂部材454は、熱伝導部材453より、圧縮永久ひずみが小さいので、加圧機構341により冷却部材340を半導体装置300に押し付ける加圧力を分担し、熱伝導部材453が塑性変形して半導体装置300の外に流出するのを抑制することができる。すなわち、樹脂部材454は、その荷重分担が熱伝導部材453の荷重分担より大きくなるように設定する。この点に関しては、図10を参照して後述する。
樹脂部材454は、図4に示す、少なくとも、半導体装置300と冷却部材340の積層方向における放熱部の投影領域460の外側に配置される。これにより、半導体素子155~158の熱を樹脂部材454で妨げることなく熱伝導部材453へ伝導することができる。または、樹脂部材454は、半導体装置300と冷却部材340の積層方向における導体板430、431、432、433の投影領域461の外側に配置してもよい。これにより、半導体素子155、156から導体板430、431、432、433を介して伝導された熱を樹脂部材454で妨げることなく熱伝導部材453へ伝導することができる。なお、いずれの場合も、樹脂部材454は、樹脂に高熱伝導材料である充填材を混ぜ合わせた材料とすることにより、熱伝導部材453よりは熱伝導は少なくなるが、熱伝導を大きく妨げるのを防止できる。さらに、いずれの場合も、樹脂部材454のヤング率は、熱伝導部材453のヤング率より高くなるように充填材等を配合する。
図5は、半導体装置300の半透過平面図である。図6は、半導体装置300の回路図である。
図5、図6に示すように、正極側端子315Bは、上アーム回路のコレクタ側から出力しており、バッテリ又はコンデンサの正極側に接続される。上アームゲート端子325Uは、上アーム回路の能動素子155のゲートから出力している。負極側端子319Bは、下アーム回路のエミッタ側から出力しており、バッテリ若しくはコンデンサの負極側、又はGNDに接続される。下アームゲート端子325Lは、下アーム回路の能動素子157のゲートから出力している。交流側端子320Bは、下アーム回路のコレクタ側から出力しており、モータに接続される。中性点接地をする場合は、下アーム回路は、GNDでなくコンデンサの負極側に接続する。
図5、図6に示すように、正極側端子315Bは、上アーム回路のコレクタ側から出力しており、バッテリ又はコンデンサの正極側に接続される。上アームゲート端子325Uは、上アーム回路の能動素子155のゲートから出力している。負極側端子319Bは、下アーム回路のエミッタ側から出力しており、バッテリ若しくはコンデンサの負極側、又はGNDに接続される。下アームゲート端子325Lは、下アーム回路の能動素子157のゲートから出力している。交流側端子320Bは、下アーム回路のコレクタ側から出力しており、モータに接続される。中性点接地をする場合は、下アーム回路は、GNDでなくコンデンサの負極側に接続する。
上アームのエミッタセンス端子325Eは、上アーム回路の能動素子155のエミッタから、下アームのエミッタセンス端子325Eは、下アーム回路の能動素子157のエミッタから出力される。上アームのコレクタセンス端子325Cは、上アーム回路の能動素子155のコレクタから、下アームのコレクタセンス端子325Cは、下アーム回路の能動素子157のコレクタから出力される。
また、半導体素子(上アーム回路)の能動素子155およびダイオード156の上下に導体板(上アーム回路エミッタ側)430、導体板(上アーム回路コレクタ側)431が配置される。半導体素子(下アーム回路)の能動素子157およびダイオード158の上下に導体板(下アーム回路エミッタ側)432、導体板(下アーム回路コレクタ側)433が配置される。
本実施形態の半導体装置300は、上アーム回路及び下アーム回路の2つのアーム回路を、1つのモジュールに一体化した構造である2in1構造である。この他に、複数の上アーム回路及び下アーム回路を、1つのモジュールに一体化した構造を用いてもよい。この場合は、半導体装置300からの出力端子の数を低減し小型化することができる。
図7(a)、図7(b)、図7(c)、図7(d)は、半導体装置300の製造工程を説明する断面図である。図2と同様に、1モジュール分のX-X線の断面図で示す。
図7(a)は、仮着け工程である。第2導体板431に半導体素子155のコレクタ側と半導体素子156のカソード側を接続し、半導体素子155のゲート電極、エミッタセンス電極、コレクタ電極をワイヤボンディングで上アームのゲート端子325U、エミッタセンス端子325E、コレクタセンス端子325Cにそれぞれ接続する。さらに、半導体素子155のエミッタ側と半導体素子156のアノード側を第1導体板430に接続して、上アーム側の回路体310を作製する。同様に、第4導体板433に半導体素子157のコレクタ側と半導体素子158のカソード側を接続し、半導体素子157のゲート電極、エミッタセンス電極、コレクタ電極をワイヤボンディングで下アームのゲート端子325L、エミッタセンス端子325E、コレクタセンス端子325Cにそれぞれ接続する。
さらに、半導体素子157のエミッタ側と半導体素子158のアノード側を第3導体板432に接続して、下アーム側の回路体310を作製する。ただし図7(a)では、上アーム側の回路体310のみを図示し、下アーム側の回路体310については図示していない。その後、導体板430~433に絶縁シート440、441を仮着けする。仮着けとは、この後のトランスファーモールド工程で絶縁シート440、441が硬化し接着する余地を残した条件で、絶縁シート440、441の密着力を使用して一時的に貼り付けることである。
図7(b)~図7(d)は、トランスファーモールド工程である。トランスファーモールド装置601は、スプリング602を金型603に備えている。このスプリング602により、回路体310の高さがばらついても、半導体素子155~158に過度の圧力を加えることなく、スプリング602の力により所定の荷重を加えることができる。また、トランスファーモールド装置601は、図示していない真空脱気機構を備える。真空脱気することで、樹脂等よりなる封止材360等がボイドを巻き込んでもボイドを小さく圧縮し、絶縁性を向上できる。また、図示していない離型フィルムで回路体310を覆うことで、スプリング駆動部等に樹脂バリが侵入するのを保護できる。
図7(b)に示すように、予め175℃の恒温状態に加熱した金型603内に、絶縁シート440、441を仮着した回路体310をセットする。次に、図7(c)に示すように、上下の金型603をクランプする。このとき、スプリング602により、絶縁シート440、441と導体板430~433は加圧され密着する。コレクタ側に位置する導体板431、433は、導体板431、433外周の端子部を金型でクランプする際に下の金型603に向けて加圧され、スプリング602の力に上乗せされるため、エミッタ側に位置する導体板430、432より強い力で絶縁シート441に圧着される。
この後、図7(d)に示すように、封止材360を金型603内に注入する。その後、トランスファーモールド装置601から樹脂封止した半導体装置300を取り出し、175℃にて2時間以上の後硬化を行う。
図8(a)、図8(b)は、電気回路体400の製造工程を説明する断面図である。この工程は、図7(d)に示した工程により製造された半導体装置300を用いて行う。
図8(a)は、塗布工程である。冷却部材340に熱伝導部材453及び樹脂部材454を塗布する。塗布する箇所等については図11を参照して後述する。
図8(a)は、塗布工程である。冷却部材340に熱伝導部材453及び樹脂部材454を塗布する。塗布する箇所等については図11を参照して後述する。
図8(b)は、密着・硬化工程である。熱伝導部材453及び樹脂部材454が塗布された冷却部材340を半導体装置300に密着する。そして、熱伝導部材453及び樹脂部材454を硬化することで電気回路体400を作製する。
図9(a)、図9(b)、図9(c)は、比較例にかかる熱伝導部材453の塑性変形を説明する断面図である。この比較例は、本実施形態を適用しない場合である。
図9(a)に示すように、熱伝導部材453は、加圧機構341により加圧され半導体装置300と密着している。
図9(b)に示すように、半導体素子155、156が通電により発熱すると、半導体素子155、156に接合されている導体板430の温度が上昇し、放熱部の投影領域460を中心に局所的に冷却部材340へ向けて矢印A方向へ熱膨張する。これにより熱伝導部材453は局所的に圧縮され塑性変形し、投影領域460の外側Bへ押し出される。
図9(c)に示すように、半導体素子155、156への通電がストップして導体板430が冷却されると、導体板430の局所的な熱膨張が元に戻る。熱伝導部材453が塑性変形した部位は、塑性変形により圧縮応力が減少するため加圧機構341の加圧力Cを分担することができない。このため、加圧機構341の加圧力Cは、塑性変形していない投影領域460の外側の熱伝導部材453に対して加圧力が増加する。その結果、投影領域460の外側の熱伝導部材453が塑性変形し、熱伝導部材453が半導体装置300の外部Dに流出し、熱伝導部材453の厚さが低減する。また、この流出を繰り返すことで、熱伝導部材453の中に充填されている充填材の密度が疎の状態になり熱伝導部材453の放熱性が低減する。また、流出した熱伝導部材453が半導体装置300より導出されている端子等に触れると絶縁性が低下する等の懸念が生じる。
図10(a)、図10(b)、図10(c)は、本実施形態にかかる熱伝導部材453の塑性変形を説明する断面図である。
図10(a)に示すように、熱伝導部材453及び樹脂部材454は、加圧機構341により加圧され半導体装置300と密着している。
図10(b)に示すように、半導体素子155、156が通電により発熱すると、半導体素子155、156に接合されている導体板430の温度が上昇し、放熱部の投影領域460を中心に局所的に冷却部材340へ向けて矢印A方向へ熱膨張する。これにより熱伝導部材453は局所的に圧縮され塑性変形し、投影領域460の外側Bへ移動しようとする。しかし、熱伝導部材453より永久圧縮ひずみが小さい樹脂部材454が、半導体装置300と冷却部材340との間であって、放熱部の投影領域460の外側に配置されているので、熱伝導部材453が外側Bへ移動しようとする力は、樹脂部材454の反発力によって矢印Eの方向に押し返され、この移動を抑制する。
図10(c)に示すように、半導体素子155、156への通電がストップして導体板430が冷却されると、導体板430の局所的な熱膨張が元に戻る。熱伝導部材453が塑性変形した部位は、塑性変形により加圧機構341の加圧力を分担しないため、投影領域460の外側Bの熱伝導部材453に加わる加圧力が増す。しかし、樹脂部材454は熱伝導部材453より永久圧縮ひずみが小さいため、樹脂部材454がこの加圧力を矢印Fで示すように分担する。換言すれば、樹脂部材454は、その荷重分担が熱伝導部材453の荷重分担より大きくなるように設定されているため、加圧力を分担する。これにより、熱伝導部材453の厚さの低減を抑制することができる。熱伝導部材453の厚さが変化しないことで、熱伝導部材453の大規模な移動や流出は防止できる。これにより、放熱性の低下は抑制される。また、この樹脂部材454を半導体装置300の端子側に配置することで、熱伝導部材453が半導体装置300の外へ流出して端子等に到達することを抑制及び防止できる。
図11(a)、図11(b)、図11(c)、図11(d)は、樹脂部材454の配置を示す平面図である。いずれも、図5に示した半導体装置300の半透過平面図において、樹脂部材454の配置位置を示し、図11(a)は実施形態を、図11(b)は変形例1を、図11(c)は変形例2を、図11(d)は変形例3を示す。また、これらの図において、熱伝導部材453は透過状態で示している。
図11(a)に示すように、本実施形態では、樹脂部材454は熱伝導部材453の外周を囲んで熱伝導部材453と密着して帯状に配置される。樹脂部材454は、導体板430、431、432、433の投影領域461の外側に配置される。なお、樹脂部材454は、少なくとも、放熱部の投影領域460の外側に配置されればよい。樹脂部材454による荷重分担により、熱伝導部材453の流出を抑制する効果がある。また、樹脂部材454が熱伝導部材453を囲むことによる流出防止の効果がある。通常、樹脂部材454は熱伝導部材453より熱伝導率が低いが、放熱部の投影領域460の外側に配置することで、半導体装置300の冷却性能の低下を押さえることができる。さらに、放熱部の投影領域460の外側に樹脂部材454を配置することで、半導体装置300の冷却性能は、樹脂部材454を設けない場合と同等に維持することができる。
図11(b)に示すように、変形例1では、半導体装置300の側面より半導体素子155、156、157、158と接続される端子315B、319B、320Bが導出されているが、樹脂部材454はこの側面の側に熱伝導部材453と密着して帯状に配置される。樹脂部材454による荷重分担により、熱伝導部材453の流出を抑制する効果がある。特に、端子側に樹脂部材454を配置することで、端子側への熱伝導部材453の流出を抑制できる。また、端子315B、319B、320Bが半導体装置300の側面の両側にある場合は、2本線を引くように樹脂部材454を形成できるため、作業性に優れる。
図11(c)に示すように、変形例2では、樹脂部材454は半導体装置300に内蔵された複数個の半導体素子155、156、157、158の各放熱部の投影領域460の間に帯状に配置される。なお、樹脂部材454は、導体板430、431、432、433の投影領域461の間に配置されてもよい。半導体装置300の冷却性能を維持しながら、樹脂部材454による荷重分担を増加させ、熱伝導部材453の流出を抑制する効果がある。
図11(d)に示すように、変形例3では、樹脂部材454は放熱部の投影領域460の外側に熱伝導部材453と密着して点状に配置される。一例として、樹脂部材454は放熱部の投影領域460の外側であって、熱伝導部材453の四隅と中央にそれぞれ配置される。この場合も、樹脂部材454による荷重分担により、熱伝導部材453の流出を抑制する効果がある。また、樹脂部材454を点状に形成できるため、作業性に優れる。点状に配置される樹脂部材454の形状や個数は、樹脂部材454の荷重分担が熱伝導部材453の荷重分担より大きくなるように、適宜設定する。なお、図11(a)、図11(b)、図11(c)では、樹脂部材454を帯状に配置する例で説明したが、樹脂部材454をそれぞれ点状に配置してもよい。
図11(a)、図11(b)、図11(c)、図11(d)に示すいずれの場合も、樹脂部材454は、その荷重分担が熱伝導部材453の荷重分担より大きくなるように、樹脂部材454と熱伝導部材453との体積比やそれぞれのヤング率や充填材の密度や樹脂の架橋構造などを設定する。
図11(a)、図11(b)、図11(c)、図11(d)では、半導体装置300の一方面における半導体素子155、157の放熱部に着目して説明したが、半導体素子155、157の他方面も同様に、樹脂部材454と熱伝導部材453とを配置する。この場合は、他方面における樹脂部材454の配置形状は、図11(a)、図11(b)、図11(c)、図11(d)に示す一方面における樹脂部材454の配置形状と同じであっても、すなわち、両面で同じであっても、また両面で異なっていてもよい。
図12(a)、図12(b)は、図1に示す電気回路体400のY-Y線における断面図である。図12(a)は本発明の実施形態を、図12(b)は比較例を示す。
図12(a)、図12(b)に示すように、半導体装置300と冷却部材340の積層方向における半導体装置300の厚さにばらつきがあった場合を示す。これらの図において、分かりやすくするために、厚さのばらつきを大きく描いており、実際の厚さを表していない。
本実施形態では、熱伝導部材453および樹脂部材454は、未硬化状態では流動性を有し、硬化後に流動性がなくなる樹脂硬化物である。したがって、図8(b)を参照して説明した密着工程において、未硬化状態の熱伝導部材453及び樹脂部材454が塗布された冷却部材340を半導体装置300に密着する。図12(a)に示すように、半導体装置300の厚さにばらつきがあっても、このばらつきを吸収して冷却部材340を半導体装置300に密着することができる。その後、熱伝導部材453及び樹脂部材454を硬化する。
本実施形態を適用しない比較例では、固形のスペーサ455を用いた場合を示す。この場合は、半導体装置300の厚さのばらつきを吸収できず、冷却部材340と半導体装置300と密着しないため、放熱性など電気回路体400の信頼性が低下する。
本実施形態では、圧縮永久ひずみが小さい樹脂部材454を熱伝導部材453と密着して配置したので、熱伝導部材453の流出による放熱性の低下を抑制し、信頼性の高い電気回路体400を提供することができる。また、熱伝導部材453および樹脂部材454は、未硬化状態では流動性を有し、硬化後に流動性がなくなる樹脂硬化物であるので、半導体装置300の厚さのばらつき等を吸収して、放熱性が低下することなく信頼性の高い電気回路体400を提供することができる。また、端子側に樹脂部材454を配置することで、端子側への熱伝導部材453の流出を抑制し、信頼性の高い電気回路体400を提供することができる。
図13は、半導体装置300を用いた電力変換装置200の回路図である。
電力変換装置200は、インバータ回路部140、142と、補機用のインバータ回路部43と、コンデンサモジュール500とを備えている。インバータ回路部140及び142は、半導体装置300を複数個備えており、それらを接続することにより三相ブリッジ回路を構成している。電流容量が大きい場合には、更に半導体装置300を並列接続し、これら並列接続を三相インバータ回路の各相に対応して行うことにより、電流容量の増大に対応できる。また、半導体装置300に内蔵している半導体素子である能動素子155、157やダイオード156、158を並列接続することでも電流容量の増大に対応できる。
電力変換装置200は、インバータ回路部140、142と、補機用のインバータ回路部43と、コンデンサモジュール500とを備えている。インバータ回路部140及び142は、半導体装置300を複数個備えており、それらを接続することにより三相ブリッジ回路を構成している。電流容量が大きい場合には、更に半導体装置300を並列接続し、これら並列接続を三相インバータ回路の各相に対応して行うことにより、電流容量の増大に対応できる。また、半導体装置300に内蔵している半導体素子である能動素子155、157やダイオード156、158を並列接続することでも電流容量の増大に対応できる。
インバータ回路部140とインバータ回路部142とは、基本的な回路構成は同じであり、制御方法や動作も基本的には同じである。インバータ回路部140等の回路的な動作の概要は周知であるため、ここでは詳細な説明を省略する。
上述のように、上アーム回路は、スイッチング用の半導体素子として上アーム用の能動素子155と上アーム用のダイオード156とを備えており、下アーム回路は、スイッチング用の半導体素子として下アーム用の能動素子157と下アーム用のダイオード158とを備えている。能動素子155、157は、ドライバ回路174を構成する2つのドライバ回路の一方あるいは他方から出力された駆動信号を受けてスイッチング動作し、バッテリ136から供給された直流電力を三相交流電力に変換する。
上述したように、上アーム用の能動素子155および下アーム用の能動素子157は、コレクタ電極、エミッタ電極、ゲート電極を備えている。上アーム用のダイオード156および下アーム用のダイオード158は、カソード電極およびアノード電極の2つの電極を備えている。図6に示すように、ダイオード156、158のカソード電極が能動素子155、157のコレクタ電極に、アノード電極が能動素子155、157のエミッタ電極にそれぞれ電気的に接続されている。これにより、上アーム用の能動素子155および下アーム用の能動素子157のエミッタ電極からコレクタ電極に向かう電流の流れが順方向となっている。能動素子155、157は、例えばIGBTである。
なお、能動素子としてはMOSFET(金属酸化物半導体型電界効果トランジスタ)を用いても良く、この場合は、上アーム用のダイオード156、下アーム用のダイオード158は不要となる。
各上・下アーム直列回路の正極側端子315Bと負極側端子319Bとはコンデンサモジュール500のコンデンサ接続用の直流端子にそれぞれ接続されている。上アーム回路と下アーム回路の接続部にはそれぞれ交流電力が発生し、各上・下アーム直列回路の上アーム回路と下アーム回路の接続部は各半導体装置300の交流側端子320Bに接続されている。各相の各半導体装置300の交流側端子320Bはそれぞれ電力変換装置200の交流出力端子に接続され、発生した交流電力はモータジェネレータ192または194の固定子巻線に供給される。
制御回路172は、車両側の制御装置やセンサ(例えば、電流センサ180)などからの入力情報に基づいて、上アーム用の能動素子155、下アーム用の能動素子157のスイッチングタイミングを制御するためのタイミング信号を生成する。ドライバ回路174は、制御回路172から出力されたタイミング信号に基づいて、上アーム用の能動素子155、下アーム用の能動素子157をスイッチング動作させるための駆動信号を生成する。なお、181、182、188はコネクタである。
上・下アーム直列回路は、不図示の温度センサを含み、上・下アーム直列回路の温度情報がマイコンに入力される。また、マイコンには上・下アーム直列回路の直流正極側の電圧情報が入力される。マイコンは、それらの情報に基づいて過温度検知および過電圧検知を行い、過温度或いは過電圧が検知された場合には全ての上アーム用の能動素子155、下アーム用の能動素子157のスイッチング動作を停止させ、上・下アーム直列回路を過温度或いは過電圧から保護する。
図14は、図13に示す電力変換装置200の外観斜視図であり、図15は、図14に示す電力変換装置200のXV-XV線の断面斜視図である。
電力変換装置200は、下部ケース11および上部ケース10により構成され、ほぼ直方体形状に形成された筐体12を備えている。筐体12の内部には、電気回路体400、コンデンサモジュール500等が収容されている。電気回路体400は冷却部材340へ流れる冷却流路を有しており、筐体12の一側面からは、冷却流路に連通する冷却水流入管13および冷却水流出管14が突出している。下部ケース11は、上部側が開口され、上部ケース10は、下部ケース11の開口を塞いで下部ケース11に取り付けられている。上部ケース10と下部ケース11とは、アルミニウム合金等により形成され、外部に対して密封して固定される。上部ケース10と下部ケース11とを一体化して構成してもよい。筐体12を、単純な直方体形状としたことで、車両等への取り付けが容易となり、また、生産もし易い。
筐体12の長手方向の一側面に、コネクタ17が取り付けられており、このコネクタ17には、交流ターミナル18が接続されている。また、冷却水流入管13および冷却水流出管14が導出された面には、コネクタ21が設けられている。
図15に図示されるように、筐体12内には、電気回路体400が収容されている。電気回路体400の上方には、制御回路172およびドライバ回路174が配置され、電気回路体400の直流端子側には、コンデンサモジュール500が収容されている。コンデンサモジュールを電気回路体400と同一高さに配置することで、電力変換装置200を薄型化でき、車両への設置自由度が向上する。電気回路体400の交流側端子320Bは、電流センサ180を貫通してコネクタ188に接続されている。また、半導体装置300の直流端子である、正極側端子315Bおよび負極側端子319Bは、それぞれ、コンデンサモジュール500の正・負極端子362A、362Bに接合される。
以上説明した実施形態によれば、次の作用効果が得られる。
(1)電気回路体400は、半導体素子155、157を内蔵し、少なくとも一方面に半導体素子155、157の放熱部が形成された半導体装置300と、半導体装置300の放熱部と対向して配置され、半導体素子155、157による発熱を冷却する冷却部材340と、半導体装置300と冷却部材340との間に配置された熱伝導部材453と、半導体装置300と冷却部材340との間であって、半導体装置300と冷却部材340の積層方向における放熱部の投影領域460の外側に熱伝導部材453と密着して配置された樹脂部材454とを備え、樹脂部材454は、熱伝導部材453よりも圧縮永久ひずみが小さい。これにより、信頼性の高い装置を提供することができる。
(1)電気回路体400は、半導体素子155、157を内蔵し、少なくとも一方面に半導体素子155、157の放熱部が形成された半導体装置300と、半導体装置300の放熱部と対向して配置され、半導体素子155、157による発熱を冷却する冷却部材340と、半導体装置300と冷却部材340との間に配置された熱伝導部材453と、半導体装置300と冷却部材340との間であって、半導体装置300と冷却部材340の積層方向における放熱部の投影領域460の外側に熱伝導部材453と密着して配置された樹脂部材454とを備え、樹脂部材454は、熱伝導部材453よりも圧縮永久ひずみが小さい。これにより、信頼性の高い装置を提供することができる。
本発明は、上述の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。
10・・・上部ケース、11・・・下部ケース、13・・・冷却水流入管、14・・・冷却水流出管、17、21、181、182、188・・・コネクタ、18・・・交流ターミナル、43、140、142・・・インバータ回路部、155・・・第1半導体素子(上アーム回路能動素子)、156・・・第1半導体素子(上アーム回路ダイオード)、157・・・第2半導体素子(下アーム回路能動素子)、158・・・第2半導体素子(下アーム回路ダイオード)、172・・・制御回路、174・・・ドライバ回路、180・・・電流センサ、192、194・・・モータジェネレータ、200・・・電力変換装置、300・・・半導体装置、315B・・・正極側端子、319B・・・負極側端子、320B・・・交流側端子、325E・・・エミッタセンス端子、325L・・・下アームゲート端子、325C・・・コレクタセンス端子、325U・・・上アームゲート端子、340・・・冷却部材、341・・・加圧機構、360・・・封止材、400・・・電気回路体、420・・・導体板、430・・・第1導体板(上アーム回路エミッタ側)、431・・・第2導体板(上アーム回路コレクタ側)、432・・・第3導体板(下アーム回路エミッタ側)、433・・・第4導体板(下アーム回路コレクタ側)、440・・・第1絶縁シート(エミッタ側)、441・・・第2絶縁シート(コレクタ側)、442・・・第1樹脂絶縁層(エミッタ側)、443・・・第2樹脂絶縁層(コレクタ側)、444・・・金属箔、453・・・熱伝導部材、454・・・樹脂部材、455・・・スペーサ、460・・・放熱部の投影領域、461・・・導体板の投影領域、500・・・コンデンサモジュール、601・・・トランスファーモールド装置、602・・・スプリング。
Claims (12)
- 半導体素子を内蔵し、少なくとも一方面に前記半導体素子の放熱部が形成された半導体装置と、
前記半導体装置の前記放熱部と対向して配置され、前記半導体素子による発熱を冷却する冷却部材と、
前記半導体装置と前記冷却部材との間に配置された熱伝導部材と、
前記半導体装置と前記冷却部材との間であって、前記半導体装置と前記冷却部材の積層方向における前記放熱部の投影領域の外側に前記熱伝導部材と密着して配置された樹脂部材とを備え、
前記樹脂部材は、前記熱伝導部材よりも圧縮永久ひずみが小さい電気回路体。 - 請求項1に記載の電気回路体において、
前記熱伝導部材および前記樹脂部材は、未硬化状態では流動性を有し、硬化後に前記流動性がなくなる樹脂硬化物である電気回路体。 - 請求項1に記載の電気回路体において、
前記樹脂部材のヤング率は、前記熱伝導部材のヤング率より高い電気回路体。 - 請求項1に記載の電気回路体において、
前記半導体装置は、前記半導体素子と接合する導体板を備え、
前記樹脂部材は、前記積層方向における前記導体板の投影領域の外側に前記熱伝導部材と密着して配置される電気回路体。 - 請求項1から請求項4までのいずれか一項に記載の電気回路体において、
前記半導体装置の少なくとも一側面より前記半導体素子と接続される端子が導出され、
前記樹脂部材は、前記端子が導出された前記一側面の側に配置される電気回路体。 - 請求項5に記載の電気回路体において、
前記樹脂部材は、前記熱伝導部材の外周に配置される電気回路体。 - 請求項6に記載の電気回路体において、
前記半導体装置は、前記半導体素子を複数個内蔵し、
前記樹脂部材は、前記内蔵された前記各半導体素子の各放熱部の投影領域の間に配置される電気回路体。 - 請求項1から請求項4までのいずれか一項に記載の電気回路体において、
前記樹脂部材は、帯状に配置される電気回路体。 - 請求項1から請求項4までのいずれか一項に記載の電気回路体において、
前記樹脂部材は、点状に配置される電気回路体。 - 請求項4に記載の電気回路体において、
前記半導体装置は、前記導体板と前記熱伝導部材および前記樹脂部材との間に絶縁シートを備える電気回路体。 - 請求項1から請求項4までのいずれか一項に記載の電気回路体において、
前記半導体素子の両面に前記放熱部が形成され、
前記冷却部材は、前記半導体装置の前記放熱部と対向して両面に配置され、
前記熱伝導部材および前記樹脂部材は、前記半導体装置と前記冷却部材との間であって両面に配置される電気回路体。 - 請求項1から請求項4までのいずれか一項に記載の電気回路体を備え、直流電力を交流電力に変換する電力変換装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022108049A JP2024006810A (ja) | 2022-07-04 | 2022-07-04 | 電気回路体および電力変換装置 |
JP2022-108049 | 2022-07-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024009617A1 true WO2024009617A1 (ja) | 2024-01-11 |
Family
ID=89453122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/018279 WO2024009617A1 (ja) | 2022-07-04 | 2023-05-16 | 電気回路体および電力変換装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024006810A (ja) |
WO (1) | WO2024009617A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003168772A (ja) * | 2001-11-30 | 2003-06-13 | Denso Corp | パワーモジュールの実装構造 |
JP2012004358A (ja) * | 2010-06-17 | 2012-01-05 | Denso Corp | 半導体モジュール実装構造 |
JP2013074010A (ja) * | 2011-09-27 | 2013-04-22 | Shindengen Electric Mfg Co Ltd | 半導体装置 |
JP2013251473A (ja) * | 2012-06-04 | 2013-12-12 | Mitsubishi Electric Corp | 電力用半導体装置 |
JP2014007267A (ja) * | 2012-06-25 | 2014-01-16 | Mitsubishi Electric Corp | 半導体モジュール |
JP2017011222A (ja) * | 2015-06-25 | 2017-01-12 | トヨタ自動車株式会社 | 半導体装置 |
JP2019125730A (ja) * | 2018-01-18 | 2019-07-25 | 三菱電機株式会社 | 半導体装置 |
-
2022
- 2022-07-04 JP JP2022108049A patent/JP2024006810A/ja active Pending
-
2023
- 2023-05-16 WO PCT/JP2023/018279 patent/WO2024009617A1/ja unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003168772A (ja) * | 2001-11-30 | 2003-06-13 | Denso Corp | パワーモジュールの実装構造 |
JP2012004358A (ja) * | 2010-06-17 | 2012-01-05 | Denso Corp | 半導体モジュール実装構造 |
JP2013074010A (ja) * | 2011-09-27 | 2013-04-22 | Shindengen Electric Mfg Co Ltd | 半導体装置 |
JP2013251473A (ja) * | 2012-06-04 | 2013-12-12 | Mitsubishi Electric Corp | 電力用半導体装置 |
JP2014007267A (ja) * | 2012-06-25 | 2014-01-16 | Mitsubishi Electric Corp | 半導体モジュール |
JP2017011222A (ja) * | 2015-06-25 | 2017-01-12 | トヨタ自動車株式会社 | 半導体装置 |
JP2019125730A (ja) * | 2018-01-18 | 2019-07-25 | 三菱電機株式会社 | 半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2024006810A (ja) | 2024-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109727960B (zh) | 半导体模块、其制造方法以及电力变换装置 | |
JP7491707B2 (ja) | 電気回路体、電力変換装置、および電気回路体の製造方法 | |
JP7196047B2 (ja) | 電気回路体、電力変換装置、および電気回路体の製造方法 | |
US20090237890A1 (en) | Semiconductor device and method for manufacturing the same | |
JP7555257B2 (ja) | 電気回路体、電力変換装置、および電気回路体の製造方法 | |
WO2018159209A1 (ja) | パワー半導体装置 | |
JPWO2020157965A1 (ja) | 半導体装置およびその製造方法ならびに電力変換装置 | |
WO2022137692A1 (ja) | 電気回路体および電力変換装置 | |
WO2024009617A1 (ja) | 電気回路体および電力変換装置 | |
CN113261095A (zh) | 半导体装置、半导体装置的制造方法及电力转换装置 | |
US12094798B2 (en) | Power semiconductor device including a deformable flow blocking member between a module unit and a cooling unit | |
CN113841235B (zh) | 半导体模块、半导体模块的制造方法以及电力变换装置 | |
WO2024009613A1 (ja) | 電気回路体および電力変換装置 | |
WO2023162475A1 (ja) | 半導体装置及び電力変換装置 | |
WO2023112997A1 (ja) | 半導体装置及び電力変換装置 | |
WO2024106072A1 (ja) | 電気回路体および電力変換装置 | |
WO2022137701A1 (ja) | 電気回路体および電力変換装置 | |
WO2022137704A1 (ja) | パワーモジュールおよび電力変換装置 | |
WO2022270022A1 (ja) | 電気回路体および電力変換装置 | |
JP7171516B2 (ja) | パワー半導体モジュール、電力変換装置およびパワー半導体モジュールの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23835156 Country of ref document: EP Kind code of ref document: A1 |