WO2018155744A1 - 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법 - Google Patents

음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법 Download PDF

Info

Publication number
WO2018155744A1
WO2018155744A1 PCT/KR2017/002113 KR2017002113W WO2018155744A1 WO 2018155744 A1 WO2018155744 A1 WO 2018155744A1 KR 2017002113 W KR2017002113 W KR 2017002113W WO 2018155744 A1 WO2018155744 A1 WO 2018155744A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
electrode active
secondary battery
coating layer
Prior art date
Application number
PCT/KR2017/002113
Other languages
English (en)
French (fr)
Inventor
이기강
박현기
Original Assignee
엠케이전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엠케이전자 주식회사 filed Critical 엠케이전자 주식회사
Priority to KR1020197025340A priority Critical patent/KR20190115022A/ko
Priority to PCT/KR2017/002113 priority patent/WO2018155744A1/ko
Publication of WO2018155744A1 publication Critical patent/WO2018155744A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material, a secondary battery including the same, and a method of manufacturing the negative electrode active material, and more particularly, to a negative electrode active material having excellent lifespan characteristics and electrochemical properties, and a secondary battery and a method of manufacturing the negative electrode active material. will be.
  • lithium secondary batteries are not only used as a power source for portable electronic products such as mobile phones and laptop computers, but also used as medium-large power sources such as hybrid electric vehicles (HEVs) and plug-in HEVs.
  • HEVs hybrid electric vehicles
  • plug-in HEVs plug-in HEVs.
  • the field of application is expanding rapidly. As the application field expands and the demand increases, the appearance and size of the battery are also changed in various ways, and more excellent capacity, life, and safety than the characteristics required in the existing small battery are required.
  • a lithium secondary battery is generally manufactured by using a material capable of intercalation and deintercalation of lithium ions as a cathode and an anode, and installing a porous separator between the electrodes and then injecting an electrolyte solution. And electricity is generated or consumed by a redox reaction by insertion and desorption of lithium ions at the positive electrode.
  • Graphite which is a negative electrode active material widely used in a conventional lithium secondary battery, has a layered structure and thus has very useful characteristics for insertion and desorption of lithium ions.
  • Graphite theoretically has a capacity of 372 mAh / g, but as the demand for high capacity lithium batteries increases recently, a new electrode that can replace graphite is required.
  • active research for commercialization of electrode active materials forming an electrochemical alloy with lithium ions such as silicon (Si), tin (Sn), antimony (Sb), and aluminum (Al) as a high capacity negative electrode active material is actively conducted. It is becoming. However, silicon, tin, antimony, aluminum, etc.
  • transduced active materials such as aluminum, has the problem of degrading electrode cycle characteristics.
  • such a volume change causes cracks on the surface of the electrode active material, and continuous crack formation leads to micronization of the electrode surface, thereby degrading cycle characteristics.
  • the first object of the present invention is to provide a negative active material for a secondary battery having excellent life characteristics and electrochemical characteristics.
  • the second object of the present invention is to provide a secondary battery having excellent life characteristics and electrochemical characteristics.
  • the third object of the present invention is to provide a method for producing a negative active material for a secondary battery having excellent life characteristics and electrochemical characteristics.
  • the present invention to achieve the above object, a silicon single phase; And an alloy phase of silicon with at least one metal element selected from the group consisting of titanium, nickel, copper, iron, manganese, aluminum, zirconium, chromium, lanthanum, tin, cerium, cobalt and zinc.
  • a battery negative electrode active material Provided is a battery negative electrode active material.
  • the ceramic coating layer in contact with the surface of the powder including the silicon single phase and alloy phase; and a carbon layer on the ceramic coating layer.
  • the ceramic coating layer may be an anode active material for a secondary battery including aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), silicon oxide (SiO 2 ) or boron oxide (B 2 O 3 ).
  • the ceramic coating layer may be in the form of islands (island) present in a non-contiguous form, the size of the island may be a negative active material for a secondary battery of 1nm to 50nm.
  • the ceramic coating layer is continuous, the thickness of the ceramic coating layer may be a negative active material for a secondary battery of 1nm to 100nm.
  • the thickness of the thinnest thickness to the thickest thickness of the ceramic coating layer may be a negative electrode active material for secondary batteries.
  • the fraction of the silicon single phase is about 10% to about 60% by weight, the fraction of the alloy phase is about 40% to about 90% by weight for secondary batteries It may be a negative electrode active material.
  • the carbon layer is 60% by weight to about 99% by weight of carbon, it may be a negative electrode active material for a secondary battery further containing a metal.
  • the transition metal may be a negative electrode active material for a secondary battery including at least one metal element selected from the group consisting of iron, nickel, chromium, manganese, cobalt, tin, copper, aluminum, zirconium, and zinc.
  • the thickness of the carbon layer may be a negative active material for a secondary battery of 10nm to 100nm.
  • the negative electrode active material for a secondary battery according to the present invention has an effect having excellent life characteristics and electrochemical characteristics.
  • FIG. 1 is a schematic view showing a cross section of a negative electrode active material for a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a negative electrode active material for a secondary battery according to an embodiment of the present invention.
  • 3 is a conceptual view for explaining the rapid cooling solidification using a melt spinner.
  • FIG. 4 is a timing diagram illustrating a cycle of forming a ceramic coating layer according to an embodiment of the present invention.
  • FIG. 5 is an exploded perspective view illustrating a rechargeable battery including a negative active material according to an embodiment of the present invention.
  • FIG. 6 is a side cross-sectional view conceptually illustrating a negative electrode included in the rechargeable battery of FIG. 5.
  • FIG. 7 is a side cross-sectional view conceptually illustrating a positive electrode included in the rechargeable battery of FIG. 5.
  • Example 8 is an image of the surface of the negative electrode active material obtained in Example 6 using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • FIG. 9 is a life crepe of a battery produced using the negative electrode active material obtained in Example 8.
  • FIG. 9 is a life crepe of a battery produced using the negative electrode active material obtained in Example 8.
  • first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and vice versa, the second component may be referred to as the first component.
  • the present invention is a negative electrode active material for a secondary battery including a silicon single phase and an alloy phase, the secondary coating having a ceramic coating layer of about 1 nm to about 50 nm thick on the surface of the powder (core) including the silicon single phase and alloy phase
  • a battery negative electrode active material Provided is a battery negative electrode active material.
  • FIG. 1 is a schematic view showing a cross-section of a negative electrode active material 100 for a secondary battery according to an embodiment of the present invention.
  • a powder 130 including a silicon single phase 110 and an alloy phase 120 is provided, and a ceramic coating layer 140 is provided on a surface of the powder 130.
  • the silicon single phase 110 may be particles made of pure silicon (Si), may be single crystalline, may be polycrystalline, or may be amorphous.
  • the alloy phase 120 may be an alloy having a formula of Si-M, and the alloy may form an intermetallic compound and / or a solid solution.
  • M may be an alkali metal, an alkaline earth metal, a group 13-16 element, a transition metal, a rare earth element, or a combination thereof (excluding Si).
  • M is magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), radium (Ra), scandium (Sc), yttrium (Y), titanium (Ti), zirconium (Zr) , Hafnium (Hf), Rutherperdium (Rf), vanadium (V), niobium (Nb), tantalum (Ta), dubnium (Db), chromium (Cr), molybdenum (Mo), tungsten (W), chevrolet (Sg), manganese (Mn), technetium (Tc), rhenium (Re), borium (Bh), iron (Fe), lead (Pb), ruthenium (Ru), osmium (Os), hassium (Hs), rhodium (Rh), iridium (Ir), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), zinc (Zn), cadmium (Mg
  • the alloy phase 120 may be configured to surround the silicon single phase 110, but there may also be a silicon single phase 110a that is not completely surrounded by the alloy phase 120.
  • the ceramic coating layer 140 surrounding the outer surface of the powder 130 including the silicon single phase 110 and the alloy phase 120 may have a thickness of about 1 nm to about 50 nm, for example, aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), silicon oxide (SiO 2 ) or boron oxide (B 2 O 3 ) may be included.
  • the ceramic coating layer 140 may be aluminum oxide, and may have a thickness of about 3 nm to about 25 nm.
  • the ceramic coating layer 140 is formed by atomic layer deposition (ALD), so that hydrothermal synthesis, physical vapor deposition (PVD), or chemical vapor deposition ( higher thickness uniformity than that formed by chemical vapor deposition (CVD).
  • ALD atomic layer deposition
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the ceramic coating layer 140 may be formed on the surface of the powder 130 substantially conformally.
  • the thickness uniformity of the ceramic coating layer 140 may be characterized as the ratio of the thinnest thickness to the thickest thickness, the thickness uniformity being less than or equal to 1 in consideration of its definition. It can be seen that it has a value.
  • the ceramic coating layer 140 of the anode active material 100 for secondary batteries of the present invention may have a thickness uniformity of about 0.75 or more.
  • the fraction of the silicon single phase 110 is about 10% to about 60% by weight, the alloy phase 120 The fraction of can be from about 40% to about 90% by weight.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a negative electrode active material for a secondary battery according to an embodiment of the present invention.
  • silicon and a metal element are mixed (S10). Since the metal element has been described in detail above, a detailed description thereof will be omitted.
  • the melting step may be implemented through induction heat generation of silicon and metal elements according to high frequency induction using a high frequency induction furnace.
  • the melt may be formed using an arc melting process or the like.
  • the melt may include, for example, about 30 wt% to about 90 wt% silicon and about 10 wt% to about 70 wt% metal element.
  • other unavoidable impurities may be further included.
  • the molten mixture may be ground to form a powder (S20).
  • the melt may be quenched and solidified to form a quenched solidified body.
  • the quench solidification can be performed using a melt spinner apparatus and will be described in detail with reference to FIG. 3.
  • 3 is a conceptual view for explaining the rapid cooling solidification using a melt spinner.
  • the melt spinner 70 includes a cooling roll 72, a high frequency induction coil 74, and a tube 76.
  • the cooling roll 72 may be formed of a metal having high thermal conductivity and thermal shock, and may be formed of, for example, copper or a copper alloy.
  • the cooling roll 72 can be rotated at high speed by a rotating means 71 such as a motor, and can rotate at a speed in the range of 1000 to 5000 rpm (revolution per minute), for example.
  • the high frequency induction coil 74 flows high frequency power by a high frequency induction means (not shown), thereby inducing high frequency to the material charged in the tube 76.
  • a cooling medium flows for cooling.
  • the tube 76 may be formed using a material having low reactivity and high heat resistance with the loaded material, such as quartz or refractory glass.
  • high frequency is induced by the high frequency induction coil 74 and materials (eg, silicon and metal materials) to be melted are charged.
  • the high frequency induction coil 74 is wound around the tube 76 and may melt the material charged in the tube 76 by high frequency induction to form a melt 77 having liquid or fluidity.
  • the tube 76 may then prevent unwanted oxidation of the melt 77 in a vacuum or inert atmosphere.
  • a compressed gas such as an inert gas such as argon or nitrogen
  • the melt 77 is discharged through the nozzle formed on the other side of the tube 76.
  • the melt 77 discharged from the tube 76 contacts the rotating cooling roll 72 and is rapidly cooled by the cooling roll 72 to form a quench solidified body 78.
  • the quench coagulation body 78 may have a shape of a ribbon, flake, powder, or the like.
  • the melt 77 can be cooled at a high rate, for example, at a cooling rate of 103 ° C / sec to 107 ° C / sec.
  • the cooling rate may vary depending on the rotational speed, material, temperature, and the like of the cooling roll 72.
  • the silicon single phase when the quench solidified body is formed using a melt spinner, since the silicon single phase is rapidly precipitated in the melt, the silicon single phase forms an interface with the silicon-metal alloy phase and the silicon-metal alloy phase in the quenched solidified body. It can be uniformly dispersed inside.
  • the present invention is not limited thereto. In other words, it will be understood by those skilled in the art that the quench solidification can be carried out via a method other than the melt spinner, for example, an atomizer or the like.
  • the quench coagulation body may optionally be heat treated.
  • the heat treatment may be performed in a vacuum atmosphere or in an inert atmosphere including nitrogen, argon, helium, or mixtures thereof, or in a reducing atmosphere including hydrogen and the like.
  • the heat treatment may be implemented by using an inert gas such as vacuum or nitrogen, argon, helium in a circulating manner.
  • the heat treatment may be performed at a temperature in the range of 400 ° C. to 800 ° C. for a period of 1 minute to 60 minutes.
  • the cooling rate after performing the heat treatment step may be in the range of 4 °C / min to 20 °C / min.
  • the heat treatment temperature may be heat treated at a temperature lower than about 200 °C compared to the melting temperature of the quench solidified body. By the heat treatment, the microstructure of the quench solidified body may change.
  • the negative electrode active material pulverized may be a powder having a diameter of several hundreds of micrometers.
  • the powder may have a diameter in the range of 1 ⁇ m to 10 ⁇ m, for example a diameter in the range of 2 ⁇ m to 4 ⁇ m.
  • the grinding process may be performed using known methods for grinding the alloy into powder alloy, such as milling process, ball milling process, jet milling process.
  • the size of the ground powder may be adjusted by adjusting the ball milling process time.
  • the powder of the negative electrode active material may be formed into a powder having a particle diameter of several micrometers by ball milling the quenched solidified body for about 20 hours to about 50 hours.
  • a ceramic coating layer may be formed on the surface of the powder by atomic layer deposition (S30).
  • FIG. 4 is a timing diagram illustrating a cycle of forming a ceramic coating layer according to an embodiment of the present invention.
  • the deposition cycle (s) may be performed.
  • the deposition cycle may be performed one or more times, and may be performed until a ceramic coating layer having a desired thickness is obtained.
  • the deposition cycle may be performed from 1 cycle to 10 cycles.
  • the thickness of the ceramic coating layer may be about 1 nm to about 50 nm, and more preferably about 3 nm to about 25 nm, as described above.
  • the metal precursor may be, for example, an aluminum precursor, a silicon precursor, a zirconium precursor, or a boron precursor.
  • the aluminum precursor is, for example, trimethylaluminum (Al (CH 3 ) 3 ), triethylaluminum (Al (C 2 H 5 ) 3 ), hexakis (dimethylamino) aluminum (Al 2 (N (CH 3 ) 2 ) 6 ), aluminum trichloride (AlCl 3 ), tritertarybutyl aluminum (TTBA), triisobutyl aluminum, or tris (dimethylamido) aluminum.
  • the silicon precursor is, for example, silane (SiH 4 ), disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), tetrasilane (Si 4 H 10 ), methylsilane ((CH 3 ) SiH 3 ), dimethylsilane ((CH 3 ) 2 SiH 2 ), ethylsilane ((C 2 H 5 ) SiH 3 ), methyldisilane ((CH 3 ) Si 2 H 5 ), dimethyldisilane ((CH 3 ) 2 Si 2 H 4 ), hexamethylsilane ((CH 3 ) 6 Si 2 ), tris (dimethylamino) silane (TDMAS), tris (tertiary-butoxy) silanol ((C 4 H 9 O) 3 Si -OH), tris (tertiary-pentoxy) silanol ((C 5 H 11 O) 3 Si-OH), di (tertiary-butoxy) silanediol
  • zirconium precursor examples include tetrakisethyl methyl amido zirconium (Zr (NEtMe) 4 , TEMAZ), tetrakis (dimethyl amido) zirconium (TDMAZ), tetrakis (diethyl amido) zirconium (TDEAZ).
  • the boron precursor may be, for example, diborane (B 2 H 6 ), triborane (B 3 H 8 ), tetraborane (B 4 H 10 ), trimethylboraine ((CH 3 ) 3 B), Triethylborane ((C 2 H 5 ) 3 B), borazine (B 3 N 3 H 6 ), alkyl-substituted derivatives of borazine, or BCl 3 .
  • the aluminum, silicon, zirconium and boron precursors are not limited thereto.
  • An inert gas such as helium (He), neon (Ne), argon (Ar), or a low active gas such as nitrogen (N 2 ) may be used to purge the reaction chamber.
  • helium He
  • neon Ne
  • argon Ar
  • nitrogen N 2
  • Water vapor (H 2 O (g)), O 2 , O 3 , N 2 O, NO, CO, CO 2 , CH 3 OH, or C 2 H 5 OH may be used as an oxidizing agent for oxidizing the metal precursor. . However, it is not limited to this.
  • heat treatment may be performed on the negative electrode active material having the ceramic coating layer formed on the surface of the powder (S40).
  • the heat treatment may be performed for about 30 minutes to about 120 minutes at a temperature of about 200 °C to about 500 °C. If the temperature of the heat treatment is too low or the time is too short, the initial efficiency of the prepared negative electrode active material may deteriorate. On the contrary, if the temperature of the heat treatment is too high or the time is too long, the material of the Si alloy powder may be recrystallized to reduce the life during charging and discharging, may cause a problem that the capacity is sharply reduced.
  • the heat treatment may be performed in an atmosphere, or may be performed in an inert atmosphere in which nitrogen gas, argon gas, helium gas, krypton gas, or xenon gas is present.
  • the negative electrode active material for the secondary battery obtained by the above method is not only excellent in initial capacity and initial efficiency as compared with the conventional negative electrode active material, it can also greatly improve the life.
  • FIG. 5 is an exploded perspective view illustrating the rechargeable battery 1 including the negative active material according to the exemplary embodiment.
  • 6 and 7 are side cross-sectional views conceptually illustrating a negative electrode 10 and a positive electrode 20 included in the secondary battery 1 of FIG. 5, respectively.
  • the secondary battery 1 includes a negative electrode 10, a positive electrode 20, and a separator 30, a battery container 40, and a sealing member 50 interposed between the negative electrode 10 and the positive electrode 20. ) May be included.
  • the secondary battery 1 may further include an electrolyte impregnated in the negative electrode 10, the positive electrode 20, and the separator 30.
  • the negative electrode 10, the positive electrode 20, and the separator 30 may be sequentially stacked and accommodated in the battery container 40 in a spirally wound state.
  • the battery container 40 may be sealed by the sealing member 50.
  • the secondary battery 1 may be a lithium secondary battery using lithium as a medium, and may be classified into a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery according to the separator 30 and the type of electrolyte.
  • the secondary battery 1 may be classified into a coin, a button, a sheet, a cylinder, a flat, a square, and the like according to a shape, and may be classified into a bulk type and a thin film type according to the size.
  • the secondary battery 1 illustrated in FIG. 5 exemplarily shows a cylindrical secondary battery, and the technical spirit of the present invention is not limited thereto.
  • the negative electrode 10 includes a negative electrode current collector 11 and a negative electrode active material layer 12 positioned on the negative electrode current collector 11.
  • the negative electrode active material layer 12 includes a negative electrode binder 14 for attaching the negative electrode active material 13 and the negative electrode active material 13 to each other.
  • the negative electrode active material layer 12 may further include a negative electrode conductor 15 selectively.
  • the negative electrode active material layer 12 may further include an additive such as a filler or a dispersant.
  • a negative electrode active material 13, a negative electrode binder 14, and / or a negative electrode conductor 15 may be mixed in a solvent to prepare a negative electrode active material composition, and the negative electrode active material composition may be disposed on the negative electrode current collector 11. It can be formed as an inclusion in the.
  • the negative electrode current collector 11 may include a conductive material and may be a thin conductive foil.
  • the negative electrode current collector 11 may include, for example, copper, gold, nickel, stainless steel, titanium, or an alloy thereof.
  • the negative electrode current collector 11 may be made of a polymer including a conductive metal.
  • the negative electrode current collector 11 may be formed by compressing the negative electrode active material.
  • the negative electrode active material 13 may use, for example, a negative electrode active material for a lithium secondary battery, and may include a material capable of reversibly intercalating / deintercalating lithium ions. As described in detail above, the negative electrode active material 13 may be a negative electrode active material having a ceramic coating layer formed on a surface of a powder composed of a silicon single phase and an alloy phase.
  • the negative electrode binder 14 attaches the particles of the negative electrode active material 13 to each other, and also serves to attach the negative electrode active material 13 to the negative electrode current collector 11.
  • the negative electrode binder 14 may be, for example, a polymer, for example polyimide, polyamideimide, polybenzimidazole, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, polyvinylchloride, carboxylation Polyvinylchloride, polyvinylfluoride, ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene, acrylated styrene-butadiene, Epoxy resins and the like.
  • the negative electrode conductor 15 may further provide conductivity to the negative electrode 10 and may be a conductive material that does not cause chemical change in the secondary battery 1, and may be, for example, graphite, carbon black, acetylene black, carbon fiber, or the like. It may include a conductive material containing a carbon-based material, a metal-based material such as copper, nickel, aluminum, silver, conductive polymer materials such as polyphenylene derivatives or mixtures thereof.
  • the positive electrode 20 includes a positive electrode current collector 21 and a positive electrode active material layer 22 positioned on the positive electrode current collector 21.
  • the positive electrode active material layer 22 includes a positive electrode active material 23 and a positive electrode binder 24 for adhering the positive electrode active material 23.
  • the positive electrode active material layer 22 may further include a positive electrode conductor 25 selectively.
  • the positive electrode active material layer 22 may further include an additive such as a filler or a dispersant.
  • the positive electrode 20 is prepared by mixing a positive electrode active material 23, a positive electrode binder 24, and / or a positive electrode conductor 25 in a solvent to prepare a positive electrode active material composition, the positive electrode active material composition on the positive electrode current collector 21 It can be formed by applying to.
  • the positive electrode current collector 21 may be a thin conductive foil, and may include, for example, a conductive material.
  • the positive electrode current collector 21 may include, for example, aluminum, nickel, or an alloy thereof.
  • the positive electrode current collector 21 may be made of a polymer including a conductive metal.
  • the positive electrode current collector 21 may be formed by compressing the negative electrode active material.
  • the positive electrode active material 23 may use, for example, a positive electrode active material for a lithium secondary battery, and may include a material capable of reversibly inserting / desorbing lithium ions.
  • the positive electrode binder 24 attaches the particles of the positive electrode active material 23 to each other, and also serves to attach the positive electrode active material 23 to the positive electrode current collector 21.
  • the positive electrode binder 24 may be, for example, a polymer, for example polyimide, polyamideimide, polybenzimidazole, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, polyvinylchloride, carboxylation Polyvinylchloride, polyvinylfluoride, ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene, acrylated styrene-butadiene, Epoxy resins and the like.
  • the positive electrode conductor 25 may further provide conductivity to the positive electrode 20, and may be a conductive material that does not cause chemical change in the secondary battery 1, and may be, for example, graphite, carbon black, acetylene black, carbon fiber, or the like. It may include a conductive material containing a carbon-based material, a metal-based material such as copper, nickel, aluminum, silver, conductive polymer materials such as polyphenylene derivatives or mixtures thereof.
  • the separator 30 may have a porosity, and may consist of a single membrane or multiple layers of two or more layers.
  • the separator 30 may include a polymer material, and may include, for example, at least one of polyethylene, polypropylene, polyvinylidene fluoride, polyolefin, and the like.
  • the electrolyte (not shown) impregnated in the cathode 10, the anode 20, and the separator 30 may include a non-aqueous solvent and an electrolyte salt.
  • the non-aqueous solvent is not particularly limited as long as it is used as a conventional non-aqueous solvent for non-aqueous electrolyte, and for example, carbonate solvent, ester solvent, ether solvent, ketone solvent, alcohol solvent or aprotic It may include a solvent.
  • the non-aqueous solvent may be used alone or in mixture of one or more, and the mixing ratio in the case of mixing one or more may be appropriately adjusted according to the desired battery performance.
  • the electrolyte salt is not particularly limited as long as it is used as a conventional electrolyte salt for a nonaqueous electrolyte, and may be, for example, a salt having a structural formula of A + B ⁇ .
  • a + may be an ion including an alkali metal cation such as Li + , Na + , K + or a combination thereof.
  • B - is PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, Or an ion such as C (CF 2 SO 2 ) 3 ⁇ , or a combination thereof.
  • the electrolyte salt may be a lithium salt, for example LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 2 C 2 F 5 ) 2 , Li (CF 3 SO 2 ) 2 N, LiN (SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ), where , x and y may be a natural number), LiCl, LiI and LiB (C 2 O 4 ) 2 It may include one or two or more selected from the group consisting of. These electrolyte salts may be used alone or in combination of two or more thereof.
  • the powder on which the carbon layer was formed was evaluated using the pitch on the ceramic coating layer.
  • the melt was first formed by melting using an arc melting process and a high frequency induction heating process to have 70% by weight of silicon and 15% by weight of nickel and titanium.
  • the melt solidified rapidly to form a rapid solidified body.
  • the rapid solidification process was performed using the melt spinner equipment.
  • the rapid coagulation body was pulverized again by using a ball milling process, and the powders obtained therein were charged into an ALD reactor and a ceramic coating layer was formed on the surface using ALD.
  • Trimethylaluminum (Al (CH 3 ) 3 ) was used as a precursor to form a ceramic coating layer on the surface of the powder, and water vapor was used as the oxidant.
  • the negative electrode active material was obtained by repeating ALD deposition cycle 2 cycles.
  • An anode active material was prepared in the same manner as in Example 1 except that the ALD deposition cycle was repeated 4 cycles instead of 2 cycles.
  • An anode active material was prepared in the same manner as in Example 1 except that the ALD deposition cycle was repeated 8 cycles instead of 2 cycles.
  • a negative electrode active material was prepared in the same manner as in Example 1 except that the heat treatment was performed at 350 ° C. for 60 minutes after the ceramic coating layer was formed.
  • a negative electrode active material was prepared in the same manner as in Example 2 except that the heat treatment was performed at 350 ° C. for 60 minutes after the ceramic coating layer was formed.
  • a negative electrode active material was prepared in the same manner as in Example 3 except that the heat treatment was performed at 350 ° C. for 60 minutes after the ceramic coating layer was formed.
  • a negative electrode active material was prepared by using ball milling for 30 minutes.
  • a ceramic coating layer was formed, a powder mixed with carbon and a pitch were mixed and pressed by uniaxial compression, and then heat-treated at 600 ° C. for 120 minutes to prepare a negative electrode active material.
  • Aluminum oxide was coated on the surface of the powder obtained in Example 1 by using hydrothermal synthesis.
  • LiPON was coated on the surface of the powder obtained in Example 1 by using hydrothermal synthesis.
  • Example 6 In order to confirm that the ceramic coating layer was well formed on the surface of the negative electrode active material obtained in Example 6, a negative electrode active material was photographed using a transmission electron microscope (TEM). As a result, as shown in FIG. 8, it was found that the ceramic coating layer was formed on the surface of the particles with a uniform thickness of about 8 nm.
  • TEM transmission electron microscope
  • a coin cell was prepared using a metal lithium as a reference electrode and a negative electrode formed by adding a binder and a conductive material to the negative electrode active materials obtained in Examples 1 to 6 and Comparative Examples 1 to 3 as measurement electrodes. .
  • Example 1 813 84.2 99.4 92.2
  • Example 2 812 84.3 99.4 92.7
  • Example 3 812 84.9 99.5 92.9
  • Example 4 813 87.2 99.8 94.6
  • Example 5 813 87.6 99.8 94.8
  • Example 6 813 88.3 99.9 95.2 Comparative Example 1 813 82.3 99 87.1 Comparative Example 2 757 83.5 99.2 88.5 Comparative Example 3 763 82.8 99.1 88.3
  • the negative electrode active materials of Examples 1 to 6 can be seen that the initial capacity is further improved compared to when the surface layer is formed on the surface by using hydrothermal synthesis. Furthermore, it was found that the initial capacity was more disadvantageous than when the surface layer was formed on the surface of the negative electrode active material by the hydrothermal synthesis method (Comparative Example 2, Comparative Example 3) rather than when the surface layer was not formed (Comparative Example 1).
  • the negative electrode active materials prepared in Examples 1 to 6 not only improved initial efficiency and coulombic efficiency than the negative electrode active materials prepared in Comparative Examples 1 to 3, but also the negative electrode active materials of Examples 4 to 6, which were subjected to heat treatment, to Example 1 It was found that the initial efficiency and the coulombic efficiency were significantly improved than the negative electrode active material of the third to third.
  • the negative electrode active materials prepared in Examples 1 to 6 showed remarkably superior characteristics compared to the negative electrode active materials prepared in Comparative Examples 1 to 3, and particularly in the negative electrode active materials of Examples 4 to 6 subjected to heat treatment. It was confirmed to have a better capacity retention rate.
  • the design of the battery used for the life evaluation is as follows.
  • the negative electrode capacity of the negative electrode used was 600 mAh / g, and the mixture density was 1.5 g / cc.
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the cathode material.
  • the present invention can be usefully used in the secondary battery industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법에 관한 것으로서, 보다 구체적으로는 실리콘 단일상 및 합금상을 포함하는 분말의 표면에 약 1 nm 내지 약 50 nm 두께의 세라믹 코팅층을 포함하는 이차전지용 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법에 관한 것이다. 본 발명에 따른 이차 전지용 음극 활물질은 우수한 수명 특성 및 전기화학적 특성을 갖는 효과가 있다.

Description

음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법
본 발명은 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법에 관한 것으로서, 보다 구체적으로는 우수한 수명 특성 및 전기화학적 특성을 갖는 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법에 관한 것이다.
최근 리튬 이차 전지는 휴대폰, 노트북 컴퓨터 등을 비롯한 휴대용 전자제품의 전원으로 사용될 뿐만 아니라 하이브리드 전기자동차(hybrid electric vehicles, HEV), 플러그인 하이브리드 전기자동차(plug-in HEV) 등의 중대형 전원으로 사용되는 등 응용 분야가 급속히 확대되고 있다. 이와 같은 응용분야의 확대 및 수요의 증가에 따라 전지의 외형적인 모양과 크기도 다양하게 변하고 있으며, 기존의 소형전지에서 요구되는 특성보다 더욱 우수한 용량, 수명, 및 안전성이 요구되고 있다.
리튬 이차 전지는 리튬 이온의 삽입(intercalation) 및 탈리(deintercalation)가 가능한 물질을 음극 및 양극으로 사용하고, 상기 전극들 사이에 다공성 분리막을 설치한 후 전해액을 주입시켜 제조되는 것이 일반적이며, 상기 음극 및 양극에서 리튬 이온의 삽입 및 탈리에 의한 산화 환원 반응에 의하여 전기가 생성되거나 소비된다.
종래의 리튬 이차 전지에 널리 사용되고 있는 음극 활물질인 흑연(graphite)은 층상 구조를 가지고 있어 리튬 이온의 삽입 및 탈리에 매우 유용한 특징을 지닌다. 흑연은 이론적으로 372mAh/g의 용량을 나타내지만 최근의 고용량의 리튬 전지에 대한 수요가 증가함에 따라 흑연을 대체할 수 있는 새로운 전극이 요구되고 있다. 이에 따라, 고용량의 음극 활물질로 실리콘(Si), 주석(Sn), 안티몬(Sb), 알루미늄(Al) 등과 같이 리튬 이온과 전기화학적인 합금을 형성하는 전극 활물질에 대하여 상용화를 위한 연구가 활발히 진행되고 있다. 그러나, 실리콘, 주석, 안티몬, 알루미늄 등은 리튬과의 전기화학적 합금 형성을 통한 충전/방전시 부피가 증가/감소하는 특성을 갖고 있으며, 이러한 충방전에 따른 부피 변화는 실리콘, 주석, 안티모니, 알루미늄 등의 활물질을 도입한 전극에 있어서 전극 사이클 특성을 열화시키는 문제를 갖고 있다. 또한, 이러한 부피 변화는 전극 활물질 표면에 균열을 일으키고, 지속적인 균열 형성은 전극 표면의 미분화를 가져오게 되어 사이클 특성을 열화시키는 또 다른 요인으로 작용하게 된다.
본 발명이 이루고자 하는 첫 번째 과제는 우수한 수명 특성 및 전기화학적 특성을 갖는 이차 전지용 음극 활물질을 제공하는 것이다.
본 발명이 이루고자 하는 두 번째 과제는 수명 특성 및 전기화학적 특성이 우수한 이차 전지를 제공하는 것이다.
본 발명이 이루고자 하는 세 번째 과제는 수명 특성 및 전기화학적 특성이 우수한 이차 전지용 음극 활물질의 제조 방법을 제공하는 것이다.
본 발명은 상기 과제를 이루기 위하여, 실리콘 단일상; 및 티타늄, 니켈, 구리, 철, 망간, 알루미늄, 지르코늄, 크롬, 란타늄, 주석, 세륨, 코발트 및 아연으로 구성된 군으로부터 선택된 1종 이상의 금속 원소와 실리콘의 합금상;을 포함하는 분말을 구비하는 이차전지용 음극 활물질을 제공한다. 이때, 상기 실리콘 단일상 및 합금상을 포함하는 상기 분말의 표면에 접하여 있는 세라믹 코팅층;및 상기 세라믹 코팅층 상에 있는 카본층을 포함한다.
또한, 상기 세라믹 코팅층은 알루미늄 산화물(Al2O3), 지르코늄 산화물(ZrO2), 실리콘 산화물(SiO2) 또는 붕소 산화물(B2O3)을 포함하는 이차전지용 음극 활물질일 수 있다.
또한, 상기 세라믹 코팅층은 연속되지 않은 형태로 존재하는 섬(island) 형태이고, 상기 섬의 크기는 1nm 내지 50nm인 이차전지용 음극 활물질일 수 있다.
또한, 상기 세라믹 코팅층은 연속되어 있고, 상기 세라믹 코팅층의 두께는 1nm 내지 100nm인 이차전지용 음극 활물질일 수 있다.
또한, 상기 세라믹 코팅층의 가장 두꺼운 두께에 대한 가장 얇은 두께의 비가 약 0.75 이상인 이차전지용 음극 활물질일 수 있다.
또한, 상기 실리콘 단일상과 상기 합금상의 상대적인 함량과 관련하여, 상기 실리콘 단일상의 분율이 약 10 중량% 내지 약 60 중량%이고, 상기 합금상의 분율은 약 40 중량% 내지 약 90 중량%인 이차전지용 음극 활물질일 수 있다.
또한, 상기 카본층은 카본을 60 중량% 내지 약 99중량%이고, 금속을 더 포함하는 이차전지용 음극 활물질일 수 있다.
또한, 상기 전이금속은 철, 니켈, 크롬, 망간, 코발트, 주석, 구리, 알루미늄, 지르코늄 및 아연으로 구성된 군으로부터 선택된 1종 이상의 금속 원소를 포함하는 이차전지용 음극 활물질일 수 있다.
또한, 상기 카본층의 두께는 10nm 내지 100nm 인 이차전지용 음극 활물질 일 수 있다.
본 발명에 따른 이차 전지용 음극 활물질은 우수한 수명 특성 및 전기화학적 특성을 갖는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 이차 전지용 음극 활물질의 단면을 나타낸 모식도이다.
도 2는 본 발명의 본 발명의 일 실시예에 따른 이차 전지용 음극 활물질의 제조 방법을 나타낸 흐름도이다.
도 3은 멜트 스피너를 이용하여 급냉 응고를 수행하는 것을 설명하기 위한 개념도이다.
도 4는 본 발명의 일 실시예에 따른 세라믹 코팅층을 형성하는 사이클을 보여주는 타이밍도이다.
도 5는 본 발명의 일 실시예에 따른 음극 활물질을 포함하는 이차 전지를 도시하는 분해 사시도이다.
도 6은 도 5의 이차 전지에 포함된 음극을 개념적으로 도시하는 측단면도이다.
도 7은 도 5의 이차 전지에 포함된 양극을 개념적으로 도시하는 측단면도이다.
도 8은 실시예 6에서 얻은 음극 활물질의 표면을 투과전자현미경(transmission electron microscope, TEM)을 이용하여 관찰한 이미지이다.
도 9는 실시예 8에서 얻은 음극 활물질을 이용하여 제작한 전지의 수명 크래프이다.
이하, 첨부도면을 참조하여 본 발명 개념의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명 개념의 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명 개념의 범위가 아래에서 상술하는 실시예들로 인해 한정되어지는 것으로 해석되어져서는 안 된다. 본 발명 개념의 실시예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명 개념을 보다 완전하게 설명하기 위해서 제공되어지는 것으로 해석되는 것이 바람직하다. 동일한 부호는 시종 동일한 요소를 의미한다. 나아가, 도면에서의 다양한 요소와 영역은 개략적으로 그려진 것이다. 따라서, 본 발명 개념은 첨부한 도면에 그려진 상대적인 크기나 간격에 의해 제한되어지지 않는다.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는 데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되지 않는다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명 개념의 권리 범위를 벗어나지 않으면서 제 1 구성 요소는 제 2 구성 요소로 명명될 수 있고, 반대로 제 2 구성 요소는 제 1 구성 요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로서, 본 발명 개념을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, “포함한다” 또는 “갖는다” 등의 표현은 명세서에 기재된 특징, 개수, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 개수, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
달리 정의되지 않는 한, 여기에 사용되는 모든 용어들은 기술 용어와 과학 용어를 포함하여 본 발명 개념이 속하는 기술 분야에서 통상의 지식을 가진 자가 공통적으로 이해하고 있는 바와 동일한 의미를 지닌다. 또한, 통상적으로 사용되는, 사전에 정의된 바와 같은 용어들은 관련되는 기술의 맥락에서 이들이 의미하는 바와 일관되는 의미를 갖는 것으로 해석되어야 하며, 여기에 명시적으로 정의하지 않는 한 과도하게 형식적인 의미로 해석되어서는 아니 될 것임은 이해될 것이다.
본 발명은 실리콘 단일상 및 합금상을 포함하는 이차 전지용 음극 활물질로서, 상기 실리콘 단일상 및 합금상을 포함하는 분말(core)의 표면에 약 1 nm 내지 약 50 nm 두께의 세라믹 코팅층이 구비된 이차 전지용 음극 활물질을 제공한다.
도 1은 본 발명의 일 실시예에 따른 이차 전지용 음극 활물질(100)의 단면을 나타낸 모식도이다. 도 1을 참조하면, 실리콘 단일상(110) 및 합금상(120)을 포함하는 분말(130)가 제공되고, 상기 분말(130)의 표면에 세라믹 코팅층(140)이 제공된다.
상기 실리콘 단일상(110)은 순수한 실리콘(Si)으로 이루어진 입자일 수 있으며, 단결정질(single crystalline)일 수도 있고, 다결정질(polycrystalline)일 수도 있고, 비결정질(amorphous)일 수도 있다.
상기 합금상(120)은 Si-M의 식을 갖는 합금일 수 있으며, 상기 합금은 금속간 화합물(intermetallic compound) 및/또는 고용체(solid solution)를 이룰 수 있다. 여기서 M은 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소, 또는 이들의 조합(Si는 제외)일 수 있다. 보다 구체적으로, M은 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 스칸듐(Sc), 이트륨(Y), 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf), 러더퍼듐(Rf), 바나듐(V), 니오븀(Nb), 탄탈륨(Ta), 두브늄(Db), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 시보르귬(Sg), 망간(Mn), 테크네튬(Tc), 레늄(Re), 보륨(Bh), 철(Fe), 납(Pb), 루테늄(Ru), 오스뮴(Os), 하슘(Hs), 로듐(Rh), 이리듐(Ir), 팔라듐(Pd), 백금(Pt), 구리(Cu), 은(Ag), 금(Au), 아연(Zn), 카드뮴(Cd), 니켈(Ni), 란타늄(La), 세륨(Ce), 코발트(Co), 붕소(B), 알루미늄(Al), 갈륨(Ga), 주석(Sn), 인듐(In), 티타늄(Ti), 저머늄(Ge), 인(P), 비소(As), 안티몬(Sb), 비스무트(Bi), 황(S), 셀레늄(Se), 텔루륨(Te), 폴로늄(Po) 또는 이들의 조합일 수 있다. 보다 바람직하게는 상기 M은 티타늄, 니켈, 구리, 철, 망간, 알루미늄, 지르코늄, 크롬, 란타늄, 주석, 세륨, 코발트, 아연 또는 이들의 조합일 수 있다.
상기 합금상(120)은 상기 실리콘 단일상(110)을 둘러싸도록 구성될 수도 있지만 상기 합금상(120)에 의하여 완전히 둘러싸여지지는 않는 실리콘 단일상(110a)도 존재할 수 있다.
상기 실리콘 단일상(110) 및 상기 합금상(120)을 포함하는 분말(130)의 외표면을 둘러싸는 상기 세라믹 코팅층(140)은 약 1 nm 내지 약 50 nm의 두께를 가질 수 있으며, 예를 들면, 알루미늄 산화물(Al2O3), 지르코늄 산화물(ZrO2), 실리콘 산화물(SiO2) 또는 붕소 산화물(B2O3)을 포함할 수 있다. 특히, 상기 세라믹 코팅층(140)은 알루미늄 산화물일 수 있으며, 약 3 nm 내지 약 25 nm의 두께를 가질 수 있다.
뒤에서 상세하게 설명하는 바와 같이 세라믹 코팅층(140)은 원자층 증착법(atomic layer deposition, ALD)에 의하여 형성되기 때문에 수열합성법(hydrothermal synthesis), 물리 기상 증착법(physical vapor deposition, PVD) 또는 화학 기상 증착법(chemical vapor deposition, CVD)에 의하여 형성된 것보다 높은 두께 균일성을 갖는다. 다시 말해, 상기 세라믹 코팅층(140)은 상기 분말(130)의 표면 상에 상당히(substantially) 콘포말(conformal)하게 형성될 수 있다.
보다 구체적으로, 상기 세라믹 코팅층(140)의 두께 균일성(thickness uniformity)은 가장 두꺼운 두께에 대한 가장 얇은 두께의 비로서 특성화될(characterized) 수 있으며, 상기 두께 균일성은 그 정의를 고려할 때 1 이하의 값을 갖는 것을 알 수 있다. 본 발명의 이차 전지용 음극 활물질(100)의 세라믹 코팅층(140)은 약 0.75 이상의 두께 균일성을 가질 수 있다.
또한, 상기 실리콘 단일상(110)과 상기 합금상(120)의 상대적인 함량비를 살펴보면, 상기 실리콘 단일상(110)의 분율이 약 10 중량% 내지 약 60 중량%이고, 상기 합금상(120)의 분율이 약 40 중량% 내지 약 90 중량%일 수 있다.
도 2는 본 발명의 본 발명의 일 실시예에 따른 이차 전지용 음극 활물질의 제조 방법을 나타낸 흐름도이다.
도 2를 참조하면, 실리콘과 금속 원소가 혼합된다(S10). 상기 금속 원소는 위에서 상세하게 설명하였으므로 여기서는 구체적인 설명을 생략한다.
상기 실리콘과 금속 원소의 혼합은 이들을 함께 용융하여 용융물을 형성하는 것일 수 있다. 상기 용융 단계를, 예를 들면, 고주파 유도로를 이용하여 고주파 유도에 따른 실리콘 및 금속 원소의 유도 열 발생을 통하여 구현될 수있다. 이 외에도 아크(arc) 용해 공정 등을 사용하여 용융물을 형성할 수 있다. 상기 용융물은, 예를 들면, 약 30 중량% 내지 약 90 중량%의 실리콘 및 약 10 중량% 내지 약 70 중량%의 금속 원소를 포함할 수 있다. 또한, 기타 불가피한 불순물이 더 포함될 수 있다.
그런 다음 용융된 상기 혼합물을 분쇄하여 분말을 형성할 수 있다(S20).
상기 혼합물의 분쇄를 위하여 우선 상기 용융 물을 급냉 응고하여 급냉 응고체를 형성할 수 있다. 상기 급냉 응고는 멜트 스피너(melt spinner) 장치를 사용하여 수행될 수 있으며 도 3을 참조하여 상세하게 설명한다.
도 3은 멜트 스피너를 이용하여 급냉 응고를 수행하는 것을 설명하기 위한 개념도이다.
도 3을 참조하면, 멜트 스피너(70)는 냉각 롤(72), 고주파 유도 코일(74), 튜브(76)를 포함한다. 냉각 롤(72)은 열전도성과 열충격성이 높은 금속으로 형성될 수 있고, 예를 들어 구리 또는 구리 합금으로 형성될 수 있다. 냉각 롤(72)은 모터와 같은 회전 수단(71)에 의하여 빠른 속도로 회전할 수 있고, 예를 들어 1000 내지 5000 rpm (revolution per minute) 범위의 속도로 회전할 수 있다. 고주파 유도 코일(74)은 고주파 유도 수단(미도시)에 의하여 고주파 전력이 흐르며, 이에 따라 튜브(76) 내에 장입된 물질에 고주파를 유도한다. 고주파 유도 코일(74) 내에는 냉각을 위하여 냉각 매질이 유동한다. 튜브(76)는 석영, 내화 유리 등과 같이 장입된 물질과 반응성이 낮고 내열 강도가 높은 물질을 이용하여 형성될 수 있다. 튜브(76) 내에는 고주파 유도 코일(74)에 의하여 고주파가 유도되고 용융시키고자 하는 물질들(예를 들어 실리콘과 금속 물질)이 장입된다. 고주파 유도 코일(74)은 튜브(76)를 둘러싸며 권취되어 있고, 고주파 유도에 의하여 튜브(76) 내에 장입된 물질을 용융시켜 액상 또는 유동성을 가지는 용융물(77)을 형성할 수 있다. 이 때 튜브(76)는 진공 또는 불활성 분위기로 용융물(77)의 원하지 않는 산화를 방지할 수 있다. 용융물(77)이 형성되면, 튜브(76)의 일 측으로부터 압축 가스(예를 들어 아르곤, 질소와 같은 불활성 가스)를 튜브(76) 내로 인입시키고(화살표로 표시함), 상기 압축 가스에 의하여 튜브(76)의 타측에 형성된 노즐을 통하여 용융물(77)이 배출된다. 튜브(76)로부터 배출된 용융물(77)은 회전하는 냉각 롤(72)에 접촉하고, 냉각 롤(72)에 의하여 빠르게 냉각되어 급냉 응고체(78)를 형성한다. 급냉 응고체(78)는 리본(ribbon), 박편(flake), 또는 분말(powder)의 형상 등을 가질 수 있다. 이러한 냉각 롤에 의한 급냉 응고에 의하여 용융물(77)은 빠른 속도로 냉각될 수 있고, 예를 들어 103 ℃/초 내지 107 ℃/초의 냉각 속도로서 냉각될 수 있다. 상기 냉각 속도는 냉각 롤(72)의 회전 속도, 재질, 온도 등에 따라 변화할 수 있다.
따라서, 멜트 스피너를 사용하여 급냉 응고체를 형성하는 경우 용융물 내에서 실리콘 단일상의 급격한 석출이 가능하므로, 상기 급냉 응고체 내에서 실리콘 단일상이 실리콘-금속 합금상과 계면을 이루며 실리콘-금속 합금상 내부에 균일하게 분산될 수 있다. 그러나, 본 발명은 여기에 한정되지 않는다. 즉, 상기 급냉 응고는 멜트 스피너 이외의 다른 방법, 예를 들면, 아토마이저(atomizer) 등을 통하여서도 수행될 수 있음은 본 기술 분야의 통상의 기술자는 이해할 수 있을 것이다.
이어서, 선택적으로(optionally), 상기 급냉 응고체를 열처리할 수 있다. 상기 열처리에 의하여 상기 급냉 응고체에 포함된 결정(crystal) 또는 상(phase)이 재결정되거나 및/또는 결정립 성장될 수 있다. 상기 열처리는 진공 분위기에서 수행되거나 또는 질소, 아르곤, 헬륨, 또는 이들의 혼합물을 포함하는 불활성 분위기에서 수행되거나, 또는 수소 등을 포함하는 환원성 분위기에서 수행될 수 있다. 또한, 상기 열처리는 진공이나 질소, 아르곤, 헬륨 등의 불활성 가스를 순환식으로 사용하여 구현될 수 있다. 상기 열처리는 400℃ 내지 800℃ 범위의 온도에서 1분 내지 60분의 범위의 기간 동안 수행될 수 있다. 또한 상기 열처리 단계를 수행한 후의 냉각 속도는 4℃/분 내지 20℃/분의 범위일 수 있다. 또한, 상기 열처리 온도는 상기 급냉 응고체의 융해 온도에 비하여 약 200℃ 더 낮은 온도에서 열처리될 수 있다. 상기 열처리에 의하여 상기 급냉 응고체의 미세구조 특성이 변화할 수 있다.
이어서, 상기 급냉 응고체를 분쇄하여 분말(core)를 형성한다. 분쇄된 상기 음극 활물질은 수 내지 수백 마이크로 미터의 직경을 가지는 분말일 수 있다. 상기 분말은 1 ㎛ 내지 10 ㎛ 범위의 직경을 가질 수 있고, 예를 들어 2 ㎛ 내지 4 ㎛ 범위의 직경을 가질 수 있다. 상기 분쇄 공정은 밀링(milling) 공정, 볼밀링(ball milling) 공정, 제트 밀링(jet milling) 공정 등 합금을 분말 합금으로 분쇄하기 위한 공지의 방법들을 사용하여 수행될 수 있다. 예를 들면, 상기 볼밀링 공정 시간을 조절함에 따라 분쇄된 분말의 사이즈를 조절할 수 있다. 예시적인 실시예들에 따르면, 상기 급냉 응고체를 약 20 시간 내지 약 50시간 동안 볼밀링함으로써 음극 활물질의 분말을 수 마이크로미터의 입자 직경을 갖는 분말로 형성할 수 있다.
그런 다음, 원자층 증착법으로 상기 분말의 표면에 세라믹 코팅층을 형성할 수 있다(S30).
도 4는 본 발명의 일 실시예에 따른 세라믹 코팅층을 형성하는 사이클을 보여주는 타이밍도이다.
도 4를 참조하면, 분말의 표면에 금속 전구체를 화학흡착시키기 위하여 사기 분말이 위치된 반응 챔버 내에 금속 전구체를 제1시간(t1) 동안 공급하는 단계, 이어서 상기 분말의 표면에 화학흡착되고 남은 과잉의 금속 전구체를 상기 반응 챔버로부터 제거하기 위하여 상기 반응 챔버를 제2시간(t2) 동안 퍼지(purge)하는 단계, 상기 분말의 표면에 금속 산화물의 단일층을 형성하기 위하여 상기 반응 챔버 내에 산화제를 제3시간(t3) 동안 공급하는 단계, 및 상기 금속 전구체와 반응하고 남은 잔여 미반응 산화제를 상기 반응 챔버로부터 제거하기 위하여 상기 반응 챔버를 제4시간(t4) 동안 퍼지(purge)하는 단계를 포함하는 퇴적 사이클(들)이 수행될 수 있다.
상기 퇴적 사이클은 1회 이상 수행될 수 있으며, 원하는 두께의 세라믹 코팅층을 얻을 때까지 수행될 수 있다. 예를 들면, 상기 퇴적 사이클은 1사이클 내지 10사이클 수행될 수 있다. 상기 세라믹 코팅층의 두께는 위에서 살펴본 바와 같이 약 1 nm 내지 약 50 nm일 수 있고, 더욱 바람직하게는 약 3 nm 내지 약 25 nm일 수 있다.
상기 금속 전구체는, 예를 들면, 알루미늄 전구체, 실리콘 전구체, 지르코늄 전구체 또는 붕소 전구체일 수 있다.
상기 알루미늄 전구체는, 예를 들면, 트리메틸알루미늄(Al(CH3)3), 트리에틸알루미늄(Al(C2H5)3), 헥사키스(디메틸아미노)알루미늄(Al2(N(CH3)2)6), 삼염화 알루미늄(AlCl3), 트리터셔리부틸 알루미늄(TTBA), 트리이소부틸 알루미늄, 또는 트리스(디메틸아미도)알루미늄일 수 있다.
상기 실리콘 전구체는, 예를 들면, 실란(SiH4), 디실란(Si2H6), 트리실란(Si3H8), 테트라실란(Si4H10), 메틸실란((CH3)SiH3), 디메틸실란((CH3)2SiH2), 에틸실란((C2H5)SiH3), 메틸디실란((CH3)Si2H5), 디메틸디실란((CH3)2Si2H4), 헥사메틸실란((CH3)6Si2), 트리스(디메틸아미노)실란(TDMAS), 트리스(터셔리-부톡시)실라놀((C4H9O)3Si-OH), 트리스(터셔리-펜톡시)실라놀((C5H11O)3Si-OH), 디(터셔리-부톡시)실란디올((C4H9O)2Si(OH)2), 메틸 디(터셔리-부톡시)실란디올(CH3(C4H9O)2Si-OH), 비스(디에틸아미노)실란(SiH2(NC2H5)2), 모노실릴아민(H2N(SiH3)), 디실릴아민(HN(SiH3)2), 트리실릴아민(N(SiH3)3), 디메톡시실란, 디에톡시실란, 트리메톡시실란, 트리에톡시실란, 테트라메톡시실란, 테트라에톡시실란, 또는 디에톡시메틸실란일 수 있다.
상기 지르코늄 전구체는, 예를 들면, 테트라키스에틸메틸아미도지르코늄(Zr(NEtMe)4, TEMAZ), 테트라키스(디메틸아미도)지르코늄(TDMAZ), 테트라키스(디에틸아미도)지르코늄(TDEAZ), Zr(O-tBu)4, ZrCl4, ZrCp2Me2, Zr(t-BuCp)2Me2, 테트라키스(1-메톡시-2-메틸-2-프로폭시) 지르코늄 (Zr(mmp)4), 테트라키스(2-메틸-3-부텐-2-옥시) 지르코늄 (ZMBO), Zr(DMAMP)4, Zr(dmae)4, Zr(dmae)2(iPrO)2, 또는 비스(시클로펜타디에닐) 지르코늄일 수 있다.
상기 붕소 전구체는, 예를 들면, 디보레인(B2H6), 트리보레인(B3H8), 테트라보레인(B4H10), 트리메틸보레인((CH3)3B), 트리에틸보레인((C2H5)3B), 보라진(B3N3H6), 보라진의 알킬-치환된 유도체들, 또는 BCl3일 수 있다.
그러나, 상기 알루미늄, 실리콘, 지르코늄 및 붕소 전구체들이 여기에 한정되는 것은 아니다.
상기 반응 챔버를 퍼지하기 위하여 헬륨(He), 네온(Ne), 아르곤(Ar) 등의 불활성 기체, 또는 질소(N2)와 같은 저활성 기체가 이용될 수 있다. 그러나, 이들 기체에 한정되는 것은 아니다.
상기 금속 전구체를 산화시키기 위한 산화제로서는 수증기(H2O(g)), O2, O3, N2O, NO, CO, CO2, CH3OH, 또는 C2H5OH가 사용될 수 있다. 그러나, 여기에 한정되는 것은 아니다.
다시 도 2를 참조하면, 위에서 설명한 바와 같이 분말 표면에 세라믹 코팅층이 형성된 음극 활물질에 대하여 열처리가 수행될 수 있다(S40).
상기 열처리는 약 200 ℃ 내지 약 500 ℃의 온도에서 약 30분 내지 약 120분 동안 수행될 수 있다. 상기 열처리의 온도가 너무 낮거나 또는 시간이 너무 짧으면 제조된 음극 활물질의 초기 효율이 열화될 수 있다. 반대로, 상기 열처리의 온도가 너무 높거나 또는 시간이 너무 길면 Si 합금 분말의 물질이 재결정화되어 충방전시 수명이 감소할 수 있으며, 용량이 급격히 감소하는 문제가 발생할 수 있다.
상기 열처리는 대기 분위기에서 수행될 수도 있고, 질소 가스, 아르곤 가스, 헬륨 가스, 크립톤 가스 또는 크세논 가스 등이 존재하는 불활성 분위기에서 수행될 수도 있다.
이상의 방법에 의하여 얻어진 이차 전지용 음극 활물질은 종래의 음극 활물질과 비교하여 초기 용량 및 초기 효율이 우수할 뿐만 아니라 수명도 크게 향상될 수 있다.
도 5는 본 발명의 일 실시예에 따른 음극 활물질을 포함하는 이차 전지(1)를 도시하는 분해 사시도이다. 도 6 및 도 7은 도 5의 이차 전지(1)에 포함된 음극(10) 및 양극(20)을 각각 개념적으로 도시하는 측단면도들이다.
도 5를 참조하면, 이차 전지(1)는 음극(10), 양극(20) 및 음극(10)과 양극(20) 사이에 개재된 분리막(30), 전지 용기(40) 및 봉입 부재(50)를 포함할 수 있다. 또한, 이차 전지(1)는 음극(10), 양극(20) 및 분리막(30)에 함침된 전해질을 더 포함할 수 있다. 또한, 음극(10), 양극(20) 및 분리막(30)은 순차적으로 적층되고 나선형으로 권취된 상태로 전지 용기(40) 내에 수납될 수 있다. 전지 용기(40)는 봉입 부재(50)에 의하여 봉입될 수 있다.
이차 전지(1)는 리튬을 매개체로 사용하는 리튬 이차 전지일 수 있고, 분리막(30)과 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있다. 또한, 이차 전지(1)는 형태에 따라 코인, 버튼, 시트, 실린더, 편평형, 각형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 도 5에 도시된 이차 전지(1)는 실린더형 이차 전지를 예시적으로 도시한 것이며, 본 발명의 기술적 사상은 이에 한정되는 것은 아니다.
도 6을 참조하면, 음극(10)은 음극 집전체(11) 및 음극 집전체(11) 상에 위치하는 음극 활물질층(12)을 포함한다. 음극 활물질층(12)은 음극 활물질(13) 및 음극 활물질(13)을 서로 부착하는 음극 바인더(14)를 포함한다. 또한, 음극 활물질층(12)은 음극 전도체(15)를 선택적으로 더 포함할 수 있다. 또한, 도시되지는 않았지만, 음극 활물질층(12)은 필러 또는 분산재와 같은 첨가재를 더 포함할 수 있다. 음극(10)은 음극 활물질(13), 음극 바인더(14), 및/또는 음극 전도체(15) 등을 용매 중에서 혼합하여 음극 활물질 조성물을 제조하여, 상기 음극 활물질 조성물을 음극 집전체(11) 상에 도포함으로서 형성될 수 있다.
음극 집전체(11)는 전도성 물질을 포함할 수 있고, 얇은 전도성 호일(foil)일 수 있다. 음극 집전체(11)는, 예를 들어 구리, 금, 니켈, 스테인레스, 티타늄, 또는 이들의 합금을 포함할 수 있다. 또는, 음극 집전체(11)는 전도성 금속을 포함하는 폴리머로 구성될 수 있다. 또는, 음극 집전체(11)는 음극 활물질을 압축하여 형성될 수 있다.
음극 활물질(13)은, 예를 들어 리튬 이차 전지용 음극 활물질을 사용할 수 있고, 리튬 이온을 가역적으로 삽입(intercalation)/탈리(deintercalation)할 수 있는 물질을 포함할 수 있다. 음극 활물질(13)은, 위에서 상세하게 설명한 바와 같이 실리콘 단일상과 합금상으로 이루어지는 분말의 표면에 세라믹 코팅층이 형성된 음극 활물질일 수 있다.
음극 바인더(14)는 음극 활물질(13)의 입자들을 서로 부착시키고, 또한 음극 활물질(13)을 음극 집전체(11)에 부착시키는 역할을 한다. 음극 바인더(14)는, 예를 들어 폴리머일 수 있고, 예를 들어 폴리이미드, 폴리아미드이미드, 폴리벤즈이미다졸, 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드,폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔, 아크릴레이티드 스티렌-부타디엔, 에폭시 수지 등일 수 있다.
음극 전도체(15)는 음극(10)에 전도성을 더 제공할 수 있고, 이차 전지(1)에 화학변화를 야기하지 않는 전도성 재료일 수 있고, 예를 들어 흑연, 카본 블랙, 아세틸렌 블랙, 탄소섬유 등의 탄소계 물질, 구리, 니켈, 알루미늄, 은 등의 금속계 물질, 폴리페닐렌 유도체 등의 전도성 폴리머 물질 또는 이들의 혼합물을 포함하는 전도성 재료를 포함할 수 있다.
도 7을 참조하면, 양극(20)은 양극 집전체(21) 및 양극 집전체(21) 상에 위치하는 양극 활물질층(22)을 포함한다. 양극 활물질층(22)은 양극 활물질(23) 및 양극 활물질(23)을 접착하는 양극 바인더(24)를 포함한다. 또한, 양극 활물질층(22)은 양극 전도체(25)를 선택적으로 더 포함할 수 있다. 또한, 도시되지는 않았지만, 양극 활물질층(22)은 필러 또는 분산제와 같은 첨가제를 더 포함할 수 있다. 양극(20)은 양극 활물질(23), 양극 바인더(24), 및/또는 양극 전도체(25) 등을 용매 중에서 혼합하여 양극 활물질 조성물을 제조하여, 상기 양극 활물질 조성물을 양극 집전체(21) 상에 도포함으로써 형성될 수 있다.
양극 집전체(21)는 얇은 전도성 호일일 수 있고, 예를 들어 전도성 물질을 포함할 수 있다. 양극 집전체(21)는, 예를 들어 알루미늄, 니켈, 또는 이들의 합금을 포함할 수 있다. 또는, 양극 집전체(21)는 전도성 금속을 포함하는 폴리머로 구성될 수 있다. 또는, 양극 집전체(21)는 음극 활물질을 압축하여 형성될 수 있다.
양극 활물질(23)은, 예를 들어 리튬 이차 전지용 양극 활물질을 사용할 수 있고, 리튬 이온을 가역적으로 삽입/탈리할 수 있는 물질을 포함할 수 있다. 양극 활물질(23)은 리튬 함유 전이금속 산화물, 리튬함유 전이금속 황화물 등을 포함할 수 있고, 예를 들어 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2 (0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1 - yCoyO2, LiCo1 - yMnyO2, LiNi1 - yMnyO2 (여기에서, 0≤y<1), Li(NiaCobMnc)O4 (0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2 - zNizO4, LiMn2 - zCozO4 (여기에서, 0<z<2), LiCoPO4, 및 LiFePO4 중 적어도 어느 하나를 포함할 수 있다.
양극 바인더(24)는 양극 활물질(23)의 입자들을 서로 부착시키고, 또한 양극 활물질(23)을 양극 집전체(21)에 부착시키는 역할을 한다. 양극 바인더(24)는, 예를 들어 폴리머일 수 있고, 예를 들어 폴리이미드, 폴리아미드이미드, 폴리벤즈이미다졸, 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드,폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔, 아크릴레이티드 스티렌-부타디엔, 에폭시 수지 등일 수 있다.
양극 전도체(25)는 양극(20)에 전도성을 더 제공할 수 있고, 이차 전지(1)에 화학변화를 야기하지 않는 전도성 재료일 수 있고, 예를 들어 흑연, 카본 블랙, 아세틸렌 블랙, 탄소섬유 등의 탄소계 물질, 구리, 니켈, 알루미늄, 은 등의 금속계 물질, 폴리페닐렌 유도체 등의 전도성 폴리머 물질 또는 이들의 혼합물을 포함하는 전도성 재료를 포함할 수 있다.
다시 도 5를 참조하면, 분리막(30)은 다공성을 가질 수 있고, 단일막 또는 2층 이상의 다중막으로 구성될 수 있다. 분리막(30)은 폴리머 물질을 포함할 수 있고, 예를 들어 폴리에틸렌계, 폴리프로필렌계, 폴리비닐리덴 플루오라이드계, 폴리올레핀계 폴리머 등의 적어도 하나를 포함할 수 있다.
음극(10), 양극(20), 및 분리막(30) 내에 함침된 전해질(미도시)은 비수성 용매(non-aqueous solvent)와 전해질 염을 포함할 수 있다. 상기 비수성 용매는 통상적인 비수성 전해액용 비수성 용매로 사용하고 있는 것이면 특별히 제한하지 않으며, 예를 들어 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 케톤계 용매, 알코올계 용매 또는 비양성자성 용매를 포함할 수 있다. 상기 비수성 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있다.
상기 전해질 염은 통상적인 비수 전해액용 전해질 염으로 사용하고 있는 것이면 특별히 제한하지 않으며, 예를 들어 A+B- 의 구조식을 가지는 염일 수 있다. 여기에서, A+는 Li+, Na+, K+ 등의 알칼리 금속 양이온 또는 이들의 조합을 포함하는 이온일 수 있다. 또한. B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 - 등과 같은 음이온 또는 이들의 조합을 포함하는 이온일 수 있다. 예를 들어, 상기 전해질 염은 리튬계염일 수 있고, 예를 들어 LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x + 1SO2)(CyF2y + 1SO2)(여기서, x 및 y는 자연수임), LiCl, LiI 및 LiB(C2O4)2 로 이루어진 군에서 선택되는 하나 또는 둘 이상을 포함할 수 있다. 이러한 전해질 염은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.
도 9를 참조하면, 분말 표면상에 세라믹 코팅층을 형성한 후에, 세라믹 코팅층상에 피치를 사용하여 카본층이 형성된 분말을 전지평가 하였다.
세라믹 코팅층과 카본층이 형성된 분말의 수명이 급락없이 진행함을 확인하였다.
이하, 구체적인 실시예 및 비교예를 가지고 본 발명의 구성 및 효과를 보다 상세히 설명하지만, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐 본 발명의 범위를 한정하고자 하는 것은 아니다.
<실시예 1>
우선 실리콘 70 중량%와 니켈 및 티타늄 각 15 중량%를 갖도록 아크 멜팅 공정 및 고주파 유도 가열 공정을 사용하여 용융시킴으로써 용융물을 형성하였다. 상기 용융물을 급속 응고시켜 급속 응고체를 형성하였다. 이 때, 급속 응고 과정은 멜트 스피너 장비를 이용하여 수행되었다. 상기 급속 응고체는 다시 볼 밀링(ball milling) 공정을 이용하여 분쇄되었으며, 여기서 얻어진 분말들을 ALD 반응기 내에 장입하고 ALD를 이용하여 표면에 세라믹 코팅층을 형성하였다.
상기 분말의 표면에 세라믹 코팅층을 형성하기 위하여 트리메틸알루미늄(Al(CH3)3)을 전구체로 이용하였으며, 산화제로는 수증기를 이용하였다. ALD 증착 사이클을 2 사이클 반복함으로써 음극 활물질을 얻었다.
<실시예 2>
ALD 증착 사이클을 2 사이클 대신 4 사이클 반복한 것을 제외하면 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
<실시예 3>
ALD 증착 사이클을 2 사이클 대신 8 사이클 반복한 것을 제외하면 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
<실시예 4>
세라믹 코팅층을 형성한 후에 350 ℃에서 60분 동안 열처리를 수행한 것을 제외하면 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
<실시예 5>
세라믹 코팅층을 형성한 후에 350 ℃에서 60분 동안 열처리를 수행한 것을 제외하면 실시예 2와 동일한 방법으로 음극 활물질을 제조하였다.
<실시예 6>
세라믹 코팅층을 형성한 후에 350 ℃에서 60분 동안 열처리를 수행한 것을 제외하면 실시예 3과 동일한 방법으로 음극 활물질을 제조하였다.
<실시예 7>
세라믹 코팅층이 형성된 분말과 카본을 믹서를 사용하여 혼합 후, 30분동안 볼 밀링(Ball Milling)을 이용하여 음극 활물질을 제조하였다.
<실시예 8>
세라믹 코팅층이 형성되고, 카본과 혼합된 분말과 피치(Pitch)를 혼합하여 일축 압축으로 프레스(Press)한 후, 600℃에서 120분 동안 열처리를 수행하여 음극 활물질을 제조하였다.
<비교예 1>
실시예 1에서 얻은 분말의 표면에 세라믹 코팅층을 형성하지 않은 채 음극 활물질로 사용하였다.
<비교예 2>
실시예 1에서 얻은 분말의 표면에 수열합성법을 이용하여 알루미늄 산화물을 코팅하였다.
<비교예 3>
실시예 1에서 얻은 분말의 표면에 수열합성법을 이용하여 LiPON을 코팅하였다.
세라믹 코팅층의 확인
실시예 6에서 얻은 음극 활물질의 표면에 세라믹 코팅층이 잘 형성되어 있는지를 확인하기 위하여 투과전자현미경(transmission electron microscope, TEM)을 이용하여 음극 활물질을 촬영하였다. 그 결과 도 8에 나타낸 바와 같이 입자 표면에 약 8 nm의 균일한 두께로 세라믹 코팅층이 형성된 것을 볼 수 있었다.
하프셀의 제작
이상에서 얻은 음극 활물질의 전기 화학적 특성을 평가하기 위하여 이들을 이용하여 하프셀(half-cell)을 제작하였다. 기준 전극으로 금속 리튬을 사용하고, 측정 전극으로서 실시예 1 내지 6 및 비교예 1 내지 3에서 얻은 음극 활물질에 바인더 및 도전재를 첨가하여 형성한 음극을 사용하여 코인셀(coin cell)을 제조하였다.
충방전 특성의 평가
상술한 바와 같이 제조된 하프셀에 대하여 초기 용량, 초기 효율, 쿨롱 효율, 및 50 사이클 후 용량 유지율을 측정하였다. 이 때, 제1회 및 제2회 충방전은 0.1 C 및 0.2 C의 전류밀도로 각각 수행되었고, 제3회부터의 충방전은 1.0 C의 전류밀도로 충반전을 수행하였다.
그 결과 하기 표 1과 같은 결과를 얻었다.
초기 용량(mAh/g) 초기 효율(%) 쿨롱 효율(%) 50 사이클 후용량 유지율(%)
실시예 1 813 84.2 99.4 92.2
실시예 2 812 84.3 99.4 92.7
실시예 3 812 84.9 99.5 92.9
실시예 4 813 87.2 99.8 94.6
실시예 5 813 87.6 99.8 94.8
실시예 6 813 88.3 99.9 95.2
비교예 1 813 82.3 99 87.1
비교예 2 757 83.5 99.2 88.5
비교예 3 763 82.8 99.1 88.3
상기 표 1에서 보는 바와 같이 실시예 1 내지 실시예 6의 음극 활물질은 표면에 수열 합성법(hydrothermal synthesis)을 이용하여 표면층을 형성하였을 때와 대비하여 초기 용량이 더 향상되는 것을 볼 수 있다. 더욱이 음극 활물질의 표면에 수열 합성법으로 표면층을 형성하는 경우(비교예 2, 비교예 3) 오히려 표면층을 형성하지 않는 경우(비교예 1)보다도 초기 용량이 불리한 것을 알 수 있었다.
또한, 실시예 1 내지 6에서 제조된 음극 활물질은 비교예 1 내지 3에서 제조된 음극 활물질보다 초기 효율과 쿨롱 효율이 향상되었을 뿐만 아니라, 열처리를 실시한 실시예 4 내지 6의 음극 활물질은 실시예 1 내지 3의 음극 활물질보다 뚜렷하게 초기 효율과 쿨롱 효율이 개선되었음을 알 수 있었다.
50 사이클 후의 용량 유지율에 있어서도 실시예 1 내지 6에서 제조된 음극 활물질은 비교예 1 내지 3에서 제조된 음극 활물질에 비하여 현저하게 우수한 특성을 보이며, 특히 열처리를 실시한 실시예 4 내지 6의 음극 활물질에서 더욱 우수한 용량 유지율을 갖는 것이 확인되었다.
도 9를 참조하면, 수명 평가에 사용된 전지의 설계는 다음과 같다. 사용된 음극의 극판 용량은 600mAh/g이고, 합제 밀도는 1.5g/cc이다. 양극재료는 LiNi1/3Co1/3Mn1/3O2 를 사용하였다. 제작된 전지의 용량은 1Ah이고, 사용된 전해질은 EC/DEC/FED = 20%/80%/10%을 기본으로 약간의 첨가제를 투입하였다.
이상에서 살펴본 바와 같이 본 발명의 실시예들에 대해 상세히 기술되었지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구 범위에 정의된 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형하여 실시할 수 있을 것이다. 따라서 본 발명의 앞으로의 실시예들의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.
본 발명은 이차 전지 산업에 유용하게 이용될 수 있다.

Claims (9)

  1. 실리콘 단일상; 및
    티타늄, 니켈, 구리, 철, 망간, 알루미늄, 지르코늄, 크롬, 란타늄, 주석, 세륨, 코발트 및 아연으로 구성된 군으로부터 선택된 1종 이상의 금속 원소와 실리콘의 합금상;
    을 포함하는 이차전지용 음극 활물질로서,
    상기 실리콘 단일상 및 합금상을 포함하는 분말의 표면에 접하여 있는 세라믹 코팅층; 및 상기 세라믹 코팅층 상에 있는 카본층을 포함하는 이차전지용 음극 활물질.
  2. 제 1 항에 있어서,
    상기 세라믹 코팅층이 알루미늄 산화물(Al2O3), 지르코늄 산화물(ZrO2), 실리콘 산화물(SiO2) 또는 붕소 산화물(B2O3)을 포함하는 것을 특징으로 하는 이차전지용 음극 활물질.
  3. 제 1 항에 있어서,
    상기 세라믹 코팅층은 연속되지 않은 형태로 존재하는 섬(island) 형태이고, 상기 섬의 크기는 1nm 내지 50nm인 것을 특징으로 하는 이차전지용 음극 활물질.
  4. 제 1 항에 있어서,
    상기 세라믹 코팅층은 연속되어 있고, 상기 세라믹 코팅층의 두께는 1nm 내지 100nm인 것을 특징으로 하는 이차전지용 음극 활물질.
  5. 제 3 항 또는 제 4 항에 있어서,
    상기 세라믹 코팅층의 가장 두꺼운 두께에 대한 가장 얇은 두께의 비가 약 0.75 이상인 것을 특징으로 하는 이차전지용 음극 활물질.
  6. 제 1 항에 있어서,
    상기 실리콘 단일상과 상기 합금상의 상대적인 함량에 있어서, 상기 실리콘 단일상의 분율이 약 10 중량% 내지 약 60 중량%이고, 상기 합금상의 분율이 약 40 중량%내지 약 90 중량%인 것을 특징으로 하는 이차전지용 음극 활물질
  7. 제 1 항에 있어서,
    상기 카본층은 카본을 60 중량% 내지 약 99 중량%이고, 금속을 더 포함하는 것을 특징으로 하는 이차전지용 음극 활물질.
  8. 제 7 항에 있어서,
    상기 전이금속은 철, 니켈, 크롬, 망간, 코발트, 주석, 구리, 알루미늄, 지르코늄 및 아연으로 구성된 군으로부터 선택된 1종 이상의 금속 원소를 포함하는 이차전지용 음극 활물질.
  9. 제 1 항에 있어서, 상기 카본층의 두께는 10 nm 내지 100 nm 인 것을 특징으로 하는 이차전지용 음극 활물질.
PCT/KR2017/002113 2017-02-27 2017-02-27 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법 WO2018155744A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197025340A KR20190115022A (ko) 2017-02-27 2017-02-27 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법
PCT/KR2017/002113 WO2018155744A1 (ko) 2017-02-27 2017-02-27 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/002113 WO2018155744A1 (ko) 2017-02-27 2017-02-27 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법

Publications (1)

Publication Number Publication Date
WO2018155744A1 true WO2018155744A1 (ko) 2018-08-30

Family

ID=63254230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002113 WO2018155744A1 (ko) 2017-02-27 2017-02-27 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법

Country Status (2)

Country Link
KR (1) KR20190115022A (ko)
WO (1) WO2018155744A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220144260A (ko) 2021-04-19 2022-10-26 대구한의대학교산학협력단 타트체리 추출물을 포함하는 피부손상 예방 및 피부보호용 약학 조성물 및 화장료 조성물 또한 이를 이용한 화장품 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159333A (ja) * 2006-12-21 2008-07-10 Toyota Motor Corp リチウム二次電池用負極およびリチウム二次電池
KR20150008327A (ko) * 2013-07-12 2015-01-22 (주)포스코켐텍 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20150077053A (ko) * 2013-12-27 2015-07-07 엠케이전자 주식회사 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법
KR20160123162A (ko) * 2015-04-15 2016-10-25 울산과학기술원 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20160123078A (ko) * 2015-04-15 2016-10-25 주식회사 엘지화학 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159333A (ja) * 2006-12-21 2008-07-10 Toyota Motor Corp リチウム二次電池用負極およびリチウム二次電池
KR20150008327A (ko) * 2013-07-12 2015-01-22 (주)포스코켐텍 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20150077053A (ko) * 2013-12-27 2015-07-07 엠케이전자 주식회사 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법
KR20160123162A (ko) * 2015-04-15 2016-10-25 울산과학기술원 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20160123078A (ko) * 2015-04-15 2016-10-25 주식회사 엘지화학 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법

Also Published As

Publication number Publication date
KR20190115022A (ko) 2019-10-10

Similar Documents

Publication Publication Date Title
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2015099233A1 (ko) 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019235885A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2017150945A1 (ko) 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2013115473A1 (ko) 이차 전지용 음극 활물질 및 이를 포함하는 이차 전지
WO2019059552A2 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2013089365A1 (ko) 이차 전지용 음극 활물질 및 그 제조 방법
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020085731A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020080800A1 (ko) 리튬 이차전지용 양극 첨가제의 제조방법 및 이로부터 제조된 리튬 이차전지용 양극 첨가제
WO2016053051A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2019143135A1 (en) Composite material including selenium, method of fabricating the same, lithium ion and lithium selenium secondary batteries including the same, and lithium ion capacitor including the same
WO2019108050A1 (ko) 규소산화물복합체를 포함하는 비수전해질 이차전지용 음극활물질 및 이의 제조방법
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2020145638A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질
WO2015088248A1 (ko) 이차전지용 음극재 및 이를 이용한 이차전지
WO2018155744A1 (ko) 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197025340

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897310

Country of ref document: EP

Kind code of ref document: A1