WO2018155037A1 - ヒータ - Google Patents

ヒータ Download PDF

Info

Publication number
WO2018155037A1
WO2018155037A1 PCT/JP2018/001777 JP2018001777W WO2018155037A1 WO 2018155037 A1 WO2018155037 A1 WO 2018155037A1 JP 2018001777 W JP2018001777 W JP 2018001777W WO 2018155037 A1 WO2018155037 A1 WO 2018155037A1
Authority
WO
WIPO (PCT)
Prior art keywords
end side
flange portion
rear end
metal layer
brazing material
Prior art date
Application number
PCT/JP2018/001777
Other languages
English (en)
French (fr)
Inventor
恵里子 加納
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2019501126A priority Critical patent/JP6835946B2/ja
Publication of WO2018155037A1 publication Critical patent/WO2018155037A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material

Definitions

  • the present disclosure relates to a heater used for a fluid heating heater, a powder heating heater, a gas heating heater, an oxygen sensor heater, a soldering iron heater, and the like.
  • a columnar ceramic body having a longitudinal direction, a metal layer provided on the side surface of the rear end side of the ceramic body along the circumferential direction, and embedded in the ceramic body and provided on the front side of the metal layer
  • a heater body having a heating resistor, a heater body embedded in the ceramic body and connected to the heating resistor and drawn out to the rear end side of the metal layer, and a hole through which the ceramic body is inserted
  • a heater including a flange portion including a support fitting in which the flange portion is joined to a metal layer of a heater body with a brazing material (see, for example, Patent Document 1).
  • the heater of the present disclosure is provided along a circumferential direction on a rod-shaped or cylindrical ceramic body having a longitudinal direction, a heating resistor embedded in the ceramic body, and a side surface on the rear end side of the ceramic body.
  • a metal layer and a side surface of the ceramic body which is embedded in the ceramic body on the rear end side from the metal layer and has one end electrically connected to the heating resistor and the other end on the rear end side from the metal layer
  • a heater main body having a lead-out portion that is drawn out to the head.
  • a flange portion having a hole through which the heater body is inserted is provided, and the flange portion is provided with a support fitting joined to the metal layer with a brazing material.
  • the brazing material extends along the metal layer to both the front end side and the rear end side from the flange portion, and extends to the front end side of the flange portion from the length extending from the flange portion to the rear end side. The length is shorter.
  • FIG. 3 is a schematic perspective view showing an example of an embodiment of a heater.
  • FIG. 2 is a partially broken perspective view of the heater shown in FIG. 1.
  • FIG. 2 is a schematic longitudinal sectional view of the heater shown in FIG. 1.
  • FIG. 4 is an enlarged cross-sectional view of a main part A of the heater shown in FIG. 3. It is a principal part expanded sectional view of the other example of a heater. It is a principal part expanded sectional view of the other example of a heater.
  • FIG. 4 is a schematic perspective view showing another example of a heater.
  • FIG. 8 is a partially broken perspective view of the heater shown in FIG. 7.
  • FIG. 9 is a schematic sectional view taken along line VIIII-VIIII shown in FIG. FIG.
  • FIG. 10 is an enlarged sectional view of a main part B of the heater shown in FIG. 9. It is a principal part expanded sectional view of the other example of a heater. It is a principal part expanded sectional view of the other example of a heater.
  • FIG. 4 is a partially transparent side view showing another example of a heater.
  • FIG. 14 is an enlarged view of a main part of the heater shown in FIG. 13.
  • the flange portion is brazed at the center in the longitudinal direction of the metal layer provided on the side surface of the heater body along the circumferential direction. At this time, in order to maintain the sealing performance between the flange portion and the metal layer, the brazing material protruded uniformly from the flange portion to the front end side and the rear end side.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a heater having improved durability by reducing the influence of thermal stress while maintaining the bonding force between the flange portion and the metal layer.
  • FIG. 1 is a schematic perspective view showing an example of an embodiment of a heater
  • FIG. 2 is a partially broken perspective view of the heater shown in FIG. 3 is a schematic longitudinal sectional view of the heater shown in FIG. 1
  • FIG. 4 is an enlarged sectional view of a main part A of the heater shown in FIG.
  • the heater according to the present disclosure includes a rod-shaped or cylindrical ceramic body 2 having a longitudinal direction, a heating resistor 3 embedded in the ceramic body 2, and a side surface on the rear end side of the ceramic body 2 along the circumferential direction.
  • the provided metal layer 4 is embedded in the ceramic body 2 on the rear end side of the metal layer 4, one end is electrically connected to the heating resistor 3, and the other end is behind the metal layer 4.
  • a heater main body 1 having a drawing portion 8 drawn to the side surface of the ceramic body 2 on the end side is provided.
  • a flange portion 61 having a hole through which the heater main body 1 is inserted is provided, and the flange portion 61 includes a support fitting 6 joined to the metal layer 4 with a brazing material 5.
  • the brazing material 5 extends along the metal layer 4 to both the front end side and the rear end side from the flange portion 61, and the front end of the flange portion 61 is longer than the length extending from the flange portion 61 to the rear end side. The length that extends to the side is shorter.
  • the ceramic body 2 constituting the heater body 1 is a rod-like or cylindrical member having a longitudinal direction.
  • the rod shape include a columnar shape or a prismatic shape.
  • the rod shape here includes, for example, a plate shape elongated in a specific direction.
  • examples of the cylindrical shape include a cylindrical shape and a rectangular tube shape.
  • the ceramic body 2 is cylindrical.
  • the length of the heater body 1 is set to 20 to 60 mm, for example.
  • the diameter when the ceramic body 2 has an outer diameter with a cylindrical cross section or a circular cross section is set to 2.5 to 5.5 mm, for example.
  • the heater 1 is used so that an object to be heated is brought into contact with the inner peripheral surface or outer peripheral surface of the ceramic body 2 and heated.
  • the heater 1 is used to heat an object to be heated in contact with the outer peripheral surface of the ceramic body 2.
  • the ceramic body 2 includes, for example, a rod-shaped or cylindrical core material 21 and a surface layer portion 22 provided so as to cover the side surface of the core material 21.
  • the ceramic body 2 is made of an insulating ceramic material.
  • the insulating ceramic material include alumina, silicon nitride, and aluminum nitride.
  • Alumina can be used in terms of oxidation resistance and easy manufacturing, silicon nitride in terms of excellent strength, toughness, high insulation and heat resistance, and aluminum nitride in terms of excellent thermal conductivity.
  • the ceramic body 2 may contain a compound of a metal element contained in the heating resistor 3. For example, when the heating resistor 3 contains tungsten or molybdenum, the ceramic body 2 contains WSi 2 or MoSi 2 may be included.
  • a heating resistor 3 is embedded in the ceramic body 2.
  • the heating resistor 3 generates heat when the current flows to heat the ceramic body 2.
  • the heating resistor 3 is made of a conductor whose main component is a high melting point metal such as tungsten (W), molybdenum (Mo), or rhenium (Re).
  • the dimensions of the heating resistor 3 can be set, for example, to a width of 0.3 to 2 mm, a thickness of 0.01 to 0.1 mm, and a total length of 500 to 5000 mm. These dimensions are appropriately set according to the heating temperature of the heating resistor 3, the voltage applied to the heating resistor 3, and the like.
  • the heating resistor 3 is arranged so as to generate the most heat at the tip side of the ceramic body 2.
  • the heating resistor 3 has a folded portion (meandering portion) provided along the circumferential direction while being repeatedly folded in the length direction on the tip side of the ceramic body 2.
  • the heating resistor 3 is a pair of linear portions on the rear end side of the folded portion, and is electrically connected to the lead portion 8 at the rear end portion of each linear portion.
  • the shape of the cross section of the heating resistor 3 may be any shape such as a circle, an ellipse, or a rectangle.
  • the heating resistor 3 may be a pattern that repeatedly reciprocates between the front end side and the rear end side, instead of a pattern in which the folded portion that is repeatedly folded back is only on the front end side.
  • the heating resistor 3 may be formed using the same material for the folded portion on the front end side and the pair of linear portions on the rear end side. Further, in order to suppress unnecessary heat generation, by making the cross-sectional area of the linear portion larger than the cross-sectional area of the folded portion, or by reducing the content of the material of the ceramic body 2 included in the linear portion, The resistance value per unit length of the linear portion may be smaller than that of the folded portion.
  • the metal layer 4 is provided on the side surface of the rear end side of the ceramic body 2 along the circumferential direction.
  • the metal layer 4 is made of, for example, molybdenum (Mo) or tungsten (W), and has a thickness of, for example, 50 to 300 ⁇ m.
  • the metal layer 4 may be composed only of a conductor layer made of, for example, molybdenum (Mo) or tungsten (W), or may be one in which a plating layer made of, for example, Ni—B or Au is provided on the surface of the conductor layer.
  • the presence of the metal layer 4 on the side surface of the ceramic body 2 improves the bondability between the heater body 1 and a support fitting 6 (flange portion 61) described later.
  • the width (length in the longitudinal direction) of the metal layer 4 is, for example, 4 to 10 mm, and is set to, for example, 4 to 10 times the thickness of the flange portion 61 of the support fitting 6.
  • the drawer part 8 is also embedded inside the ceramic body 2.
  • the lead portion 8 is embedded in the ceramic body 2 further on the rear end side than the metal layer 4 provided on the side surface of the ceramic body 2, and one end is electrically connected to the rear end portion of the heating resistor 3. The other end is drawn out to the side surface of the ceramic body 2 on the rear end side with respect to the metal layer 4.
  • the lead portion 8 may be made of the same material as that of the heating resistor 3 or may be made of a material having a lower resistance value than that of the heating resistor 3.
  • An electrode pad 7 is provided on the side surface on the rear end side of the metal layer 4 provided on the side surface of the ceramic body 2 as necessary, and is electrically connected to the lead portion 8 embedded in the ceramic body 2.
  • the A lead terminal is bonded to the electrode pad 7 and is electrically connected to an external circuit (external power source).
  • the electrode pad 7 is made of, for example, molybdenum (Mo) or tungsten (W), and has a thickness of, for example, 50 to 300 ⁇ m.
  • the length of the electrode pad 7 can be set to 9 mm, for example, and the width can be set to 5 mm, for example.
  • the electrode pad 7 may be composed of only a conductor layer made of, for example, molybdenum (Mo) or tungsten (W), and may be one in which a plating layer made of, for example, Ni—B or Au is provided on the surface of the conductor layer.
  • Mo molybdenum
  • W tungsten
  • a support metal fitting 6 for fixing to the outside is attached to the side surface of the heater body 1.
  • the support metal 6 is made of, for example, an alloy made of Fe or Ni, and specifically, a material such as stainless steel (SUS), Fe—Ni—Co alloy, Ni heat-resistant alloy, or the like is used.
  • the support fitting 6 includes a flange portion 61 having a hole through which the heater body 1 is inserted, and the hole portion of the flange portion 61 is joined to the metal layer 4 of the heater body 1 by the brazing material 5.
  • the flange portion 61 means a disk-shaped (ring-shaped) portion that expands in a radial direction perpendicular to the longitudinal direction of the heater main body 1. .
  • the support fitting 6 includes a cylindrical portion 62 extending in the longitudinal direction continuously to the outer periphery of the flange portion 61, and a second flange portion 63 extending in the radial direction continuously to the outer periphery of the rear end of the cylindrical portion 62, as a whole. It has a shape that opens toward the rear end side. There is no limitation in particular about the shape of this support metal fitting 2, For example, the shape which a diameter expands gradually toward a rear-end side may be sufficient.
  • the diameter of the hole provided in the flange part 61 is, for example, a part where the flange part 61 is provided in order to sufficiently spread the brazing material 5 to the inside of the hole of the flange part 61 and obtain an appropriate bonding force.
  • the outer diameter of the heater body 1 (the total value of the diameter of the ceramic body 2 and the thickness of the metal layer 4) is set in the range of 101 to 120%, preferably in the range of 105 to 115%.
  • brazing material 5 for joining the heater body 1 (metal layer 4) and the flange portion 61 for example, silver brazing, silver copper brazing or the like is used.
  • the brazing material 5 extends along the metal layer 4 to both the front end side and the rear end side from the flange portion 61, and the front end of the flange portion 61 is longer than the length extending from the flange portion 61 to the rear end side.
  • the length that extends to the side is shorter.
  • the protruding length of the brazing filler metal 5 that protrudes from the opposed region between the hole of the flange portion 61 and the metal layer 4 to the front end side and the rear end side is shorter on the front end side than on the rear end side.
  • the tip end side of the ceramic body 2 Since the tip end side of the ceramic body 2 generates the most heat, when the thermal stress between the brazing filler metal 5 and the metal layer 4 is seen, it is larger between the brazing filler metal 5 and the metal layer 4 extending from the flange portion 61 to the tip end side. Thermal stress is applied.
  • the length of the brazing material 5 (the length of the joint between the brazing material 5 and the metal layer 4) is short, the thermal stress can be reduced. Therefore, the length of the brazing material 5 extending from the flange portion 61 which is the brazing material 5 to which the thermal stress is applied is shortened and the flange portion 61 which is the brazing material 5 which is less susceptible to the thermal stress.
  • the length of the brazing material 5 extending from the flange portion 61 to the rear end side is, for example, 1 to 2 mm.
  • the length of the brazing material 5 extending from the flange portion 61 to the front end side is, for example, 0.5 to 1.8 mm, and is 50 to 90% of the length of the brazing material 5 extending to the rear end side. It is assumed.
  • the volume of the brazing material 5 extending to the front end side from the flange portion 61 may be smaller than the volume of the brazing material extending to the rear end side from the flange portion 61. .
  • the volume of the brazing material 5 on the tip side where the temperature change is large it becomes difficult for thermal stress to be applied between the brazing material 5 on the tip side and the metal layer 4. Since the cracks can be prevented and the volume of the brazing material 5 on the rear end side can be increased to improve the bonding force between the flange portion 61 and the metal layer 4, the durability of the heater can be improved.
  • the volume ratio of the brazing material 5 extending from the flange portion 61 to the front end side with respect to the volume of the brazing material 5 extending from the flange portion 61 to the rear end side (volume extending to the front end side / in the rear end side).
  • the extending volume is, for example, 40 to 90%.
  • the brazing filler metal 5 extending to the front end side from the flange portion 61 expands along the front end side surface of the flange portion 61 and extends from the flange portion 61 to the rear end side.
  • the brazing filler metal 5 also extends along the rear end surface of the flange portion 61, and the expansion of the brazing material 5 along the front end surface of the flange portion 61 extends along the rear end surface of the flange portion 61. It may be smaller than the spread of the material 5.
  • the bonding force between the flange portion 61 and the metal layer 4 can be improved by increasing the expansion of the brazing material 5 on the rear end side, the durability of the heater can be improved.
  • the height of the brazing filler metal 5 spreading along the surface on the rear end side of the flange portion 61 when viewed in cross section is, for example, 1 to 2 mm.
  • the height of the brazing material 5 extending along the front surface of the flange portion 61 is, for example, 0.5 to 1.8 mm, and the height of the brazing material 5 extending along the rear surface is 50 to 50 mm.
  • the height is 90%.
  • the ceramic body 2 has a groove 23 extending in the longitudinal direction on the side surface, and the metal layer 4 extends along the circumferential direction on the side surface on the rear end side of the ceramic body 2.
  • the first region 41 provided and the second region 42 provided continuously along the inner surface of the groove 23 by entering the groove 23 continuously to the first region 41 may be provided.
  • the thickness of the thinnest portion t ⁇ b> 1 out of the thickness from the bottom surface of the groove 23 is thicker than the thickness of the thinnest portion t ⁇ b> 2 of the thickness from the side surface of the groove 23. It may be.
  • the step between the first region 41 and the second region at the bottom of the groove 23 is reduced. In doing so, the gap between the groove portion 23 and the flange portion 61 is reduced, and the brazing material 5 easily flows, so that the bonding force and the sealing performance between the flange portion 61 and the metal layer 4 are improved.
  • the surface of the second region 42 may be rounded without a corner from the bottom surface to the side surface. Since the surface of the second region 42 is rounded, the brazing material 5 can easily flow, so that the bonding force and the sealing performance between the flange portion 61 and the metal layer 4 are improved.
  • the second region 42 may be longer in the longitudinal direction than the first region 41.
  • the groove 23 is a portion where the gap between the metal layer 4 and the flange portion 61 is large and the brazing material 5 hardly flows, but the metal layer 4 (second region 42) on the inner surface of the groove 23 is arranged in the longitudinal direction. Since the brazing material 5 easily flows into the groove 23 by increasing the length of the brazing material 5 and the volume of the brazing material 5 increases, it becomes difficult to form a gap between the metal layer 4 and the flange portion 61. The joining force and sealing performance between 61 and the metal layer 4 are improved.
  • the brazing material 5 extends along the metal layer 4 to both the front end side and the rear end side from the flange portion 61, and extends from the flange portion 61 to the rear end side.
  • the length that extends to the tip side of the flange portion 61 is shorter than the length that is present.
  • an alumina ceramic green sheet that is the surface layer portion 22 of the ceramic body 2 is prepared so that Al 2 O 3 is a main component and SiO 2 , CaO, MgO, and ZrO 2 are adjusted to be within 10 mass% in total. .
  • a predetermined pattern to be the heating resistor 3 is formed on the surface of the alumina ceramic green sheet.
  • a pattern forming method of the heating resistor 3 there are a screen printing method, a transfer method, an embedding method, a method of forming a metal stay by an etching method, and a method of embedding a nichrome wire in a coil shape.
  • the metal layer 4 and the electrode pad 7 are formed in a predetermined pattern shape on the surface of the alumina ceramic green sheet opposite to the surface on which the heat generating resistor 3 is formed in the same manner as the heat generating resistor 3 is formed.
  • the alumina ceramic green sheet is filled with conductor paste for forming holes and through-hole conductors in order to form lead portions 8 for electrically connecting the heating resistors 3 and the electrode pads 7. Made.
  • the metal layer 4, the electrode pad 7, and the lead portion 8 for example, a conductive paste whose main component is a refractory metal such as tungsten, molybdenum, rhenium, or the like can be used.
  • a columnar or cylindrical alumina ceramic molded body to be the core material 21 is molded by extrusion molding.
  • an adhesion liquid in which alumina ceramics having the same composition is dispersed is applied to the core material 21 (alumina ceramic molded body), and the alumina ceramic green sheet to be the surface layer portion 22 is wound and adhered.
  • an alumina integral molded body to be the ceramic body 2 can be obtained.
  • a gap may be provided between the ends of the alumina ceramic green sheet 22 around which the core material 21 is wound.
  • region 42 of the metal layer 4 in the groove part 23 what is necessary is just to apply
  • the thickness of the second region 42 located at the bottom of the groove 23 is increased, the surface is rounded, or the second region 42 is adjusted to be longer than the first region 41 in the longitudinal direction.
  • the alumina single-piece molded body thus obtained is fired in a reducing atmosphere (nitrogen atmosphere) at 1500 to 1600 ° C., whereby the alumina single-piece molded body shrinks, and an alumina single-piece sintered body (insulating base 1) is produced. can do.
  • plating is performed on the metal layer 4 and the electrode pad 7 formed on the side surface of the ceramic body 2.
  • the plating nickel plating, gold plating, tin plating and the like are generally used.
  • the plating method may be selected from electroless plating, electrolytic plating, barrel plating and the like according to the purpose.
  • the heater main body 1 is set on a jig, and a support metal fitting 6 having a surface of 1 to 6 ⁇ m of electroplating is set together with a brazing material 5 on a portion of the ceramic body 2 where the metal layer 4 is present, and a reducing atmosphere. And brazing at about 1000 ° C.
  • the linear brazing material 5 is wound around the metal layer 4 formed on the side surface of the ceramic body 2 on the front end side or the rear end side with respect to the flange portion 61, and the temperature of the support fitting 6 is increased by raising the temperature in a furnace.
  • the brazing filler metal 5 is poured into the gap between the inner wall of the hole of the flange portion 61 and the metal layer 4 and protrudes from the gap to the opposite side, and then cooled and hardened.
  • the brazing material 5 extends along the metal layer 4 to both the front end side and the rear end side from the flange portion 61, and the length of the flange portion 61 is longer than the length extending from the flange portion 61 to the rear end side.
  • the flange portion 61 of the support fitting 6 may be disposed on the distal end side of the metal layer 4 so that the length extending to the distal end side is shorter. Since the brazing material 5 does not protrude from a certain region of the metal layer 5, the length of the brazing material 5 on the front end side can be made shorter than the rear end side.
  • the brazing material 5 extending from the flange portion 61 toward the front end side is wound around the metal layer 4 so that the volume of the brazing material 5 extending toward the rear end side from the flange portion 61 is smaller.
  • the material 5 is set on the rear end side of the metal layer 4, and the flange portion 61 of the support fitting 6 is set on the front end side of the brazing material 5.
  • the volume of the brazing material 5 on the rear end side can be increased by increasing the amount of the brazing material 5 remaining on the rear end side rather than the brazing material 5 passing through the gap between the flange portion 61 and the metal layer 5. .
  • the brazing material 5 extending to the front end side from the flange portion 61 expands along the front end side surface of the flange portion 61, and the brazing material 5 extending to the rear end side from the flange portion 61 is expanded to the flange portion.
  • 61 also extends along the surface on the rear end side of 61, and the expansion of the brazing material 5 along the surface on the front end side of the flange portion 61 is smaller than the expansion of the brazing material 5 along the surface on the rear end side of the flange portion 61.
  • boron nitride slurry may be applied to the surface on the tip side of the flange portion 61 to suppress the spreading of the brazing material 5.
  • the electrode pad 7 joins to the electrode pad 7 by methods, such as soldering a lead member as a electric power feeding part.
  • the heater of this embodiment is obtained by the above method.
  • Heater body 2 Ceramic body 3: Heating resistor 4: Metal layer 5: Brazing material 6: Support fitting 61: Flange portion 62: Cylindrical portion 62: Second flange portion 7: Electrode pad 8: Lead-out portion

Landscapes

  • Resistance Heating (AREA)

Abstract

本開示のヒータは、長手方向を有する棒状または筒状のセラミック体2と、セラミック体2の内部に埋設された発熱抵抗体3と、セラミック体2の後端側の側面に周方向に沿って設けられた金属層4と、金属層4よりも後端側のセラミック体2の内部に埋設されて一端が発熱抵抗体3と電気的に接続されているとともに他端が金属層4よりも後端側のセラミック体2の側面に引き出された引出部8とを有するヒータ本体1を備える。さらに、このヒータ本体1が挿通される孔を有するフランジ部61を含み、フランジ部61がろう材5で金属層4に接合された支持金具6を備える。そして、ろう材5は、金属層4に沿ってフランジ部61よりも先端側および後端側の両方に延びており、フランジ部61より後端側に延びている長さよりもフランジ部61の先端側に延びている長さのほうが短い。

Description

ヒータ
 本開示は、流体加熱用ヒータ,粉体加熱用ヒータ,気体加熱用ヒータ,酸素センサ用ヒータ,半田ゴテ用ヒータ等に用いられるヒータに関する。
 長手方向を有する柱状のセラミック体と、このセラミック体の後端側の側面に周方向に沿って設けられた金属層と、セラミック体の内部に埋設されるとともに金属層よりも先端側に設けられた発熱抵抗体と、セラミック体の内部に埋設されるとともに前記発熱抵抗体と接続されて金属層よりも後端側に引き出された引出部とを有するヒータ本体と、セラミック体が挿通される孔を有するフランジ部を含み、このフランジ部がろう材でヒータ本体の金属層に接合された支持金具とを備えたヒータが知られている(例えば特許文献1を参照)。
特開2001-210453号公報
 本開示のヒータは、長手方向を有する棒状または筒状のセラミック体と、このセラミック体の内部に埋設された発熱抵抗体と、セラミック体の後端側の側面に周方向に沿って設けられた金属層と、この金属層よりも後端側のセラミック体の内部に埋設されて一端が発熱抵抗体と電気的に接続されているとともに他端が金属層よりも後端側のセラミック体の側面に引き出された引出部とを有するヒータ本体を備える。さらに、このヒータ本体が挿通される孔を有するフランジ部を含み、このフランジ部がろう材で金属層に接合された支持金具を備える。そして、ろう材は、金属層に沿ってフランジ部よりも先端側および後端側の両方に延びており、フランジ部より後端側に延びている長さよりもフランジ部の先端側に延びている長さのほうが短くなっている。
はヒータの実施形態の一例を示す概略斜視図である。 は図1に示すヒータの一部破断斜視図である。 は図1に示すヒータの概略縦断面図である。 は図3に示すヒータの要部Aの拡大断面図である。 ヒータの他の例の要部拡大断面図である。 ヒータの他の例の要部拡大断面図である。 はヒータの他の例を示す概略斜視図である。 は図7に示すヒータの一部破断斜視図である。 は図8に示すVIIII-VIIII線で切断した概略断面図である。 は図9に示すヒータの要部Bの拡大断面図である。 ヒータの他の例の要部拡大断面図である。 ヒータの他の例の要部拡大断面図である。 はヒータの他の例を示す一部透過側面図である。 は図13に示すヒータの要部拡大図である。
 従来のヒータは、ヒータ本体の側面に周方向に沿って設けられた金属層の長手方向中央にフランジ部がろう付けされていた。このとき、フランジ部と金属層との間でシール性を保つため、フランジ部から先端側および後端側にそれぞれ均等にろう材がはみ出していた。
 このようなヒータにおいては、繰り返し熱サイクルをかけると、加熱されて熱応力のかかるフランジ部から先端側に延びているろう材と金属層との間にクラックが入ってしまい、ヒータの耐久性が悪いという問題があった。
 本開示は上記事情に鑑みてなされたもので、フランジ部と金属層との接合力を保ちつつ熱応力の影響を低減し、耐久性の向上したヒータを提供することを目的とする。
 以下、本実施形態のヒータの一例について図面を参照して説明する。
  図1はヒータの実施形態の一例を示す概略斜視図、図2は図1に示すヒータの一部破断斜視図である。また、図3は図1に示すヒータの概略縦断面図、図4は図3に示すヒータの要部Aの拡大断面図である。
 本開示のヒータは、長手方向を有する棒状または筒状のセラミック体2と、セラミック体2の内部に埋設された発熱抵抗体3と、セラミック体2の後端側の側面に周方向に沿って設けられた金属層4と、金属層4よりも後端側のセラミック体2の内部に埋設されて一端が発熱抵抗体3と電気的に接続されているとともに他端が金属層4よりも後端側のセラミック体2の側面に引き出された引出部8とを有するヒータ本体1を備える。さらに、ヒータ本体1が挿通される孔を有するフランジ部61とを含み、フランジ部61がろう材5で金属層4に接合された支持金具6を備える。そして、ろう材5は、金属層4に沿ってフランジ部61よりも先端側および後端側の両方に延びており、フランジ部61より後端側に延びている長さよりもフランジ部61の先端側に延びている長さのほうが短い。
 ヒータ本体1を構成するセラミック体2は、長手方向を有する棒状または筒状の部材である。棒状としては、例えば円柱状または角柱状等が挙げられる。なお、ここでいう棒状とは、例えば特定の方向に長く伸びた板状も含んでいる。また、筒状としては、例えば円筒状または角筒状が挙げられる。図1および図2に示すヒータ1においては、セラミック体2は円筒状である。ヒータ本体1の長さは、例えば20~60mmに設定される。セラミック体2が断面円筒状の外径または断面円形状の場合の直径は、例えば2.5~5.5mmに設定される。
 セラミック体2が筒状(円筒状)である場合には、ヒータ1はセラミック体2の内周面または外周面に被加熱物を接触させて加熱するように用いられる。また、図示しないが、セラミック体2が棒状の場合は、ヒータ1はセラミック体2の外周面に被加熱物を接触させて加熱するように用いられる。
 セラミック体2は、例えば、棒状または筒状の芯材21と、芯材21の側面を覆うように設けられた表層部22とを有している。
 セラミック体2は、絶縁性のセラミック材料から成る。絶縁性のセラミック材料としては、例えばアルミナ、窒化珪素または窒化アルミニウムが挙げられる。耐酸化性があって製造しやすいという点ではアルミナ、高強度,高靱性,高絶縁性および耐熱性に優れるという点では窒化珪素、熱伝導率に優れるという点では窒化アルミニウムを用いることができる。なお、セラミック体2には発熱抵抗体3に含まれる金属元素の化合物が含まれていてもよく、例えば発熱抵抗体3にタングステンまたはモリブデンが含まれている場合は、セラミック体2にWSi2またはMoSi2が含まれていてもよい。
 セラミック体2の内部には発熱抵抗体3が埋設されている。発熱抵抗体3は、電流が流れることによって発熱してセラミック体2を加熱するものである。発熱抵抗体3は、例えばタングステン(W)、モリブデン(Mo)またはレニウム(Re)等の高融点の金属を主成分とした導電体からなる。発熱抵抗体3の寸法は、例えば、幅を0.3~2mm、厚みを0.01~0.1mm、全長を500~5000mmに設定することができる。これらの寸法は、発熱抵抗体3の発熱温度および発熱抵抗体3に加える電圧等によって適宜設定される。
 発熱抵抗体3は、セラミック体2の先端側で最も発熱するように配置される。図1および図2に示す例では、発熱抵抗体3は、セラミック体2の先端側において長さ方向に繰り返して折り返しながら周方向に沿って設けられた折り返し部(蛇行部)を有している。また、発熱抵抗体3は、折返し部の後端側においては一対の直線状部となっていて、それぞれの直線状部の後端部において引出部8と電気的に接続されている。発熱抵抗体3の横断面の形状は、円、楕円、矩形などいずれの形状でもよい。発熱抵抗体3は、繰り返して折り返す折返し部が先端側だけにあるパターンではなく、先端側と後端側との間を繰り返して往復するパターンであってもよい。
 発熱抵抗体3は、先端側の折返し部と後端側の一対の直線状部とが同様の材料を用いて形成されてもよい。また、不要な発熱を抑えるために、直線状部の断面積を折返し部の断面積よりも大きくしたり、直線状部に含まれるセラミック体2の材料の含有量を少なくしたりすることによって、折返し部よりも直線状部の単位長さ当たりの抵抗値を小さくしてもよい。
 セラミック体2の後端側の側面には、周方向に沿って金属層4が設けられている。金属層4は、例えばモリブデン(Mo)またはタングステン(W)からなり、例えば50~300μmの厚みとされたものである。金属層4は、例えばモリブデン(Mo)またはタングステン(W)からなる導体層のみからなるものでもよく、当該導体層の表面に例えばNi-BまたはAuからなるメッキ層が設けられたものでもよい。セラミック体2の側面に金属層4があることで、ヒータ本体1と後述する支持金具6(フランジ部61)との接合性が向上する。金属層4の幅(長手方向の長さ)は、例えば4~10mmで、支持金具6のフランジ部61の厚みの例えば4~10倍に設定される。
 セラミック体2の内部には引出部8も埋設されている。引出部8は、セラミック体2の側面に設けられた金属層4よりもさらに後端側のセラミック体2の内部に埋設されていて、一端が発熱抵抗体3の後端部と電気的に接続されているとともに他端が金属層4よりも後端側のセラミック体2の側面に引き出されている。引出部8は、発熱抵抗体3と同様の材料からなるものでもよく、発熱抵抗体3よりも抵抗値の低い材料からなるものでもよい。
 セラミック体2の側面に設けられた金属層4よりも後端側の側面には、必要により電極パッド7が設けられて、セラミック体2の内部に埋設された引出部8と電気的に接続される。そして、電極パッド7にリード端子が接合されて、外部回路(外部電源)と電気的に接続される。この電極パッド7は、例えばモリブデン(Mo)またはタングステン(W)からなり、例えば50~300μmの厚みとされたものである。また、電極パッド7の長さは例えば9mm、幅は例えば5mmに設定することができる。なお、図1および図2に示す例では、引出部8が引き出された部位が2箇所あって、それぞれの部位において電極パッド7が設けられている。電極パッド7は、例えばモリブデン(Mo)またはタングステン(W)からなる導体層のみからなるものでもよく、当該導体層の表面に例えばNi-BまたはAuからなるメッキ層が設けられたものでもよい。
 また、ヒータ本体1の側面には、例えば外部に固定するための支持金具6が取り付けられている。支持金具6は、例えばFeやNiからなる合金が用いられ、具体的にはステンレス(SUS)やFe-Ni-Co合金やNi系耐熱合金等の材料が用いられる。
 この支持金具6は、ヒータ本体1が挿通される孔を有するフランジ部61を含んでいて、フランジ部61の孔の部分がヒータ本体1の金属層4にろう材5で接合されている。ここで、例えばヒータ本体1が円筒状または円柱状の場合、フランジ部61とはヒータ本体1の長手方向に垂直な径方向に拡がる円板状(リング状)の部分のことを意味している。また支持金具6は、フランジ部61の外周に連続して長手方向に延びる筒状部62、筒状部62の後端外周に連続して径方向に拡がる第2フランジ部63を含み、全体として後端側に向かって開口する形状を有している。この支持金具2の形状について特に限定はなく、例えば後端側に向かって徐々に径が拡がる形状であってもよい。
 なお、フランジ部61に設けられる孔の径は、ろう材5をフランジ部61の孔の内側に十分に行き渡らせて適度な接合力を得るようにするために、例えばフランジ部61が設けられる部位のヒータ本体1の外径(セラミック体2の直径と金属層4の厚みとの合計の値)の101~120%の範囲、好ましくは105~115%の範囲に設定される。
 ヒータ本体1(金属層4)とフランジ部61とを接合するろう材5としては、例えば銀ろう、銀銅ろう等が用いられる。
 そして、ろう材5は、金属層4に沿ってフランジ部61よりも先端側および後端側の両方に延びており、フランジ部61より後端側に延びている長さよりもフランジ部61の先端側に延びている長さのほうが短い。言い換えると、フランジ部61の孔と金属層4との対向領域から先端側および後端側にはみ出したろう材5のはみ出し長さは、後端側よりも先端側が短い。
 セラミック体2の先端側が最も発熱するので、ろう材5と金属層4との熱応力を見ると、フランジ部61から先端側に延びているろう材5と金属層4との間に、より大きな熱応力がかかる。一方、ろう材5の長さ(ろう材5と金属層4との接合部の長さ)が短いと熱応力が低減できる。そこで、熱応力がかかるほうのろう材5であるフランジ部61から先端側に延びているろう材5の長さを短くし、かつ熱応力のかかりにくいほうのろう材5であるフランジ部61から後端側に延びているろう材5の長さを長くすることで、フランジ部61と金属層4との接合力を保ちつつ熱応力の影響を低減できるため、ヒータの耐久性を向上させることができる。
 なお、フランジ部61から後端側に延びているろう材5の長さは例えば1~2mmとされる。そして、フランジ部61から先端側に延びているろう材5の長さは例えば0.5~1.8mmとされ、後端側に延びているろう材5の長さの50~90%の長さとされる。
 ここで、図5および図6に示すように、フランジ部61より先端側に延びているろう材5の体積がフランジ部61より後端側に延びているろう材の体積よりも小さくてもよい。温度変化が大きい先端側のろう材5の体積を減らすことで、先端側のろう材5と金属層4との間で熱応力がかかりにくくなるので、先端側のろう材5と金属層4と間のクラックを防止でき、かつ後端側のろう材5の体積を増やしてフランジ部61と金属層4との間の接合力を向上できるため、ヒータの耐久性を向上させることができる。
 なお、フランジ部61から後端側に延びているろう材5の体積に対し、フランジ部61から先端側に延びているろう材5の体積の体積比(先端側に延びる体積/後端側に延びる体積)は、例えば40~90%とされる。
 また、図6に示すように、フランジ部61より先端側に延びているろう材5がフランジ部61の先端側の面に沿っても拡がっているとともに、フランジ部61より後端側に延びているろう材5がフランジ部61の後端側の面に沿っても拡がっており、フランジ部61の先端側の面に沿ったろう材5の拡がりがフランジ部61の後端側の面に沿ったろう材5の拡がりよりも小さくてもよい。温度変化が大きい先端側のろう材5の拡がりを減らすことで、先端側のろう材5と金属層4との間で熱応力がかかりにくくなるので、先端側のろう材5と金属層4との間のクラックを防止でき、かつ後端側のろう材5の拡がりを増やしてフランジ部61と金属層4との間の接合力を向上できるため、ヒータの耐久性を向上させることができる。
 なお、断面で見て、フランジ部61の後端側の面に沿って拡がるろう材5の高さは例えば1~2mmとされる。そして、フランジ部61の先端側の面に沿って拡がるろう材5の高さは例えば0.5~1.8mmとされ、後端側の面に沿って拡がるろう材5の高さの50~90%の高さとされる。
 また、図7~図10に示すように、セラミック体2は側面に長手方向に延びる溝23を有しており、金属層4は、セラミック体2の後端側の側面に周方向に沿って設けられた第1領域41と、第1領域41に連続して溝23に入り込んで当該溝23の内面に沿って設けられた第2領域42とを備えていてもよい。これにより、溝23にもろう材5が流れこむことで、金属層4とフランジ部61との間を隙間なくろう材5で埋めることができるため、フランジ部61と金属層4との間の接合力およびシール性が向上する。
 また、図11に示すように、第2領域42は、溝23の底面からの厚みのうち最も薄い部分t1の厚みが、溝23の側面からの厚みのうち最も薄い部分t2の厚みよりも厚くなっていてもよい。溝部23の底に位置する金属層4(第2領域42)を厚くすることで、第1領域41と溝部23の底にある第2領域との段差が小さくなるので、ろう材5でろう付けする際、溝部23とフランジ部61との隙間が小さくなり、ろう材5が流れやすくなるため、フランジ部61と金属層4との間の接合力およびシール性が向上する。
 また、図12に示すように、第2領域42の表面は、底面から側面にかけて角がなく丸みを帯びていてもよい。第2領域42の表面が丸みを帯びることで、ろう材5が流れ込みやすくなるため、フランジ部61と金属層4との間の接合力およびシール性が向上する。
 また、図13および図14に示すように、第2領域42は第1領域41よりも長手方向に長くなっていてもよい。溝部23は金属層4とフランジ部61との間の隙間が大きくなっていて、ろう材5が流れにくい部分であるが、溝部23の内面にある金属層4(第2領域42)を長手方向に長くして面積を広げることで、溝部23にろう材5が流れやすくなり、ろう材5の体積が増えることで、金属層4とフランジ部61の間に隙間ができにくくなるため、フランジ部61と金属層4との間の接合力およびシール性が向上する。
 なお、図7~図14の形態においても、ろう材5は、金属層4に沿ってフランジ部61よりも先端側および後端側の両方に延びており、フランジ部61より後端側に延びている長さよりもフランジ部61の先端側に延びている長さのほうが短くなっている。
 次に、本実施形態のヒータの製造方法の一例について説明する。なお、本例ではセラミック体がアルミナ質セラミックスからなる場合について説明する。
 まず、Al23を主成分とし、SiO2,CaO,MgO,ZrO2が合計で10質量%以内になるように調整したセラミック体2の表層部22となるアルミナ質セラミックグリーンシートを作製する。
 そして、このアルミナ質セラミックグリーンシートの表面に、発熱抵抗体3となる所定のパターンを形成する。発熱抵抗体3のパターン形成方法としてはスクリーン印刷法、転写法、埋設法、その他の方法として金属泊をエッチング法などにより形成する方法や、ニクロム線をコイル状に形成し埋設する方法などがあるが、スクリーン印刷法で形成することが品質面での安定性や製造コストが抑えられるといった面から用いられやすい。
 アルミナ質セラミックグリーンシートの発熱抵抗体3を形成する面とは反対側の面に、金属層4および電極パッド7を発熱抵抗体3の形成と同様に所定のパターン形状で形成する。
 また、アルミナ質セラミックグリーンシートには、発熱抵抗体3と電極パッド7とを電気的に接続する引出部8を形成するために、孔加工およびスルーホール導体を形成するための導体ペーストの充填がなされる。
 発熱抵抗体3、金属層4、電極パッド7および引出部8(スルーホール導体)は、例えばタングステン、モリブデン、レニウムなどの高融点金属を主成分とする導電性ペーストを用いることができる。
 一方、押し出し成型にて、芯材21となる円柱状または円筒状のアルミナ質セラミック成型体を成型する。
 そして、この芯材21(アルミナ質セラミック成型体)に同一の組成のアルミナ質セラミックスを分散させた密着液を塗布し、前述の表層部22となるアルミナ質セラミックグリーンシートを巻きつけて密着させることで、セラミック体2となるアルミナ質一体成型体を得ることができる。
 なお、セラミック体2の側面に長手方向に延びる溝部23を設けるには、芯材21の巻き付けたアルミナ質セラミックグリーンシート22の端と端との間に隙間を設けるようにすればよい。そして、溝部23に金属層4の第2領域42を形成するには、ディスペンサー等を用いて、タングステン、モリブデン等からなるペーストを塗布すればよい。このとき、溝部23の底に位置する第2領域42の厚みを厚くしたり、表面に丸みを帯びさせたり、第2領域42を第1領域41よりも長手方向に長くしたりするように調整することもできる。
 こうして得られたアルミナ質一体成型体を1500~1600℃の還元雰囲気中(窒素雰囲気)で焼成することで、アルミナ質一体成型体が収縮し、アルミナ質一体焼結体(絶縁基体1)を作製することができる。
 次に、セラミック体2の側面に形成された金属層4および電極パッド7上にメッキを施す。メッキは、ニッケルメッキ、金メッキ、錫メッキなどが汎用的である。メッキの施術方法は無電解メッキや電解メッキ、バレルメッキなどの施術方法を目的に応じて選択すると良い。
 次に、治具にヒータ本体1をセットし、表面に厚みが1~6μmの電解メッキを施した支持金具6をセラミック体2の金属層4のある部分にろう材5とともにセットし、還元雰囲気の炉にて約1000℃でろう付けする。具体的には、線状のろう材5をフランジ部61よりも先端側または後端側のセラミック体2の側面に形成された金属層4に巻きつけ、炉で温度を上げて支持金具6のフランジ部61の孔の内壁と金属層4との隙間にろう材5を流し込んで、当該隙間から反対側まではみ出させた後、冷却して固める。
 ここで、ろう材5が、金属層4に沿ってフランジ部61よりも先端側および後端側の両方に延びており、フランジ部61より後端側に延びている長さよりもフランジ部61の先端側に延びている長さのほうが短い構成とするために、支持金具6のフランジ部61を金属層4の先端側に配置してもよい。ろう材5は金属層5のある領域をはみ出ることはないので、後端側よりも先端側の方のろう材5の長さを短くすることができる。
 また、フランジ部61より先端側に延びているろう材5の体積がフランジ部61より後端側に延びているろう材5の体積よりも小さい構成とするために、金属層4に巻きつけるろう材5を金属層4の後端側にセットし、支持金具6のフランジ部61をろう材5よりも先端側にセットする。そして、フランジ部61と金属層5との隙間を通るろう材5よりも後端側に残るろう材5の方を多くすることで、後端側のろう材5の体積を大きくすることができる。
 また、フランジ部61より先端側に延びているろう材5がフランジ部61の先端側の面に沿っても拡がっているとともに、フランジ部61より後端側に延びているろう材5がフランジ部61の後端側の面に沿っても拡がっており、フランジ部61の先端側の面に沿ったろう材5の拡がりがフランジ部61の後端側の面に沿ったろう材5の拡がりよりも小さい構成とするために、上述の方法と同様の方法としてもよく、フランジ部61の先端側の面に例えば窒化ホウ素のスラリーを塗ってろう材5の拡がりを抑制するようにしてもよい。
 なお、電極パッド7には、給電部としてリード部材をはんだ付けするなどの方法で接合する。
 以上の方法により本実施形態のヒータが得られる。
1:ヒータ本体
2:セラミック体
3:発熱抵抗体
4:金属層
5:ろう材
6:支持金具
61:フランジ部
62:筒状部
62:第2フランジ部
7:電極パッド
8:引出部

Claims (7)

  1.  長手方向を有する棒状または筒状のセラミック体と、該セラミック体の内部に埋設された発熱抵抗体と、前記セラミック体の後端側の側面に周方向に沿って設けられた金属層と、該金属層よりも後端側の前記セラミック体の内部に埋設されて一端が前記発熱抵抗体と電気的に接続されているとともに他端が前記金属層よりも後端側の前記セラミック体の側面に引き出された引出部とを有するヒータ本体と、
     該ヒータ本体が挿通される孔を有するフランジ部を含み、該フランジ部がろう材で前記金属層に接合された支持金具とを備え、
     前記ろう材は、前記金属層に沿って前記フランジ部よりも先端側および後端側の両方に延びており、前記フランジ部より後端側に延びている長さよりも前記フランジ部の先端側に延びている長さのほうが短いヒータ。
  2.  前記フランジ部より先端側に延びているろう材の体積が前記フランジ部より後端側に延びているろう材の体積よりも小さい請求項1に記載のヒータ。
  3.  前記フランジ部より先端側に延びている前記ろう材が前記フランジ部の先端側の面に沿っても拡がっているとともに、前記フランジ部より後端側に延びている前記ろう材が前記フランジ部の後端側の面に沿っても拡がっており、前記フランジ部の先端側の面に沿った前記ろう材の拡がりが前記フランジ部の後端側の面に沿った前記ろう材の拡がりよりも小さい請求項2に記載のヒータ。
  4.  前記セラミック体は側面に前記長手方向に延びる溝を有しており、前記金属層は、前記セラミック体の後端側の側面に周方向に沿って設けられた第1領域と、該第1領域に連続して前記溝に入り込んで当該溝の内面に沿って設けられた第2領域とを備えている請求項1乃至請求項3のうちのいずれかに記載のヒータ。
  5.  前記第2領域は、前記溝の底面からの厚みのうち最も薄い部分の厚みが、前記溝の側面からの厚みのうち最も薄い部分の厚みよりも厚い請求項4に記載のヒータ。
  6.  前記第2領域の表面は、底面から側面にかけて角がなく丸みを帯びている請求項4または請求項5に記載のヒータ。
  7.  前記第2領域は前記第1領域よりも前記長手方向に長い請求項4乃至請求項6のうちのいずれかに記載のヒータ。
PCT/JP2018/001777 2017-02-24 2018-01-22 ヒータ WO2018155037A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019501126A JP6835946B2 (ja) 2017-02-24 2018-01-22 ヒータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-033611 2017-02-24
JP2017033611 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018155037A1 true WO2018155037A1 (ja) 2018-08-30

Family

ID=63253661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001777 WO2018155037A1 (ja) 2017-02-24 2018-01-22 ヒータ

Country Status (2)

Country Link
JP (1) JP6835946B2 (ja)
WO (1) WO2018155037A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3934378A4 (en) * 2019-02-28 2022-11-23 Kyocera Corporation HEAT EXCHANGER UNIT AND CLEANING DEVICE RELATED THERETO

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051546A (ja) * 2014-08-29 2016-04-11 京セラ株式会社 ヒータおよびこれを用いた流体加熱装置
WO2016068207A1 (ja) * 2014-10-30 2016-05-06 京セラ株式会社 ヒータおよびこれを用いた流体加熱装置
WO2016163558A1 (ja) * 2015-04-10 2016-10-13 京セラ株式会社 ヒータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051546A (ja) * 2014-08-29 2016-04-11 京セラ株式会社 ヒータおよびこれを用いた流体加熱装置
WO2016068207A1 (ja) * 2014-10-30 2016-05-06 京セラ株式会社 ヒータおよびこれを用いた流体加熱装置
WO2016163558A1 (ja) * 2015-04-10 2016-10-13 京セラ株式会社 ヒータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3934378A4 (en) * 2019-02-28 2022-11-23 Kyocera Corporation HEAT EXCHANGER UNIT AND CLEANING DEVICE RELATED THERETO

Also Published As

Publication number Publication date
JP6835946B2 (ja) 2021-02-24
JPWO2018155037A1 (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
JP5261103B2 (ja) セラミックヒーター
JP6317469B2 (ja) ヒータおよびこれを用いた流体加熱装置
JP2024045746A (ja) ヒータ
WO2018135225A1 (ja) ヒータ装置
WO2018155037A1 (ja) ヒータ
JP6228039B2 (ja) ヒータ
JP6829022B2 (ja) ヒータ
WO2015064598A1 (ja) ヒータおよびグロープラグ
JP2022188253A (ja) 熱交換ユニットおよびこれを備えた洗浄装置
CN110521279B (zh) 加热器
JP6818886B2 (ja) ヒータ
JP6803396B2 (ja) ヒータ
JP6940443B2 (ja) ヒータ
WO2022249794A1 (ja) ヒータ
JP6075781B2 (ja) ヒータ
JP2019061876A (ja) ヒータ
JP6693811B2 (ja) ヒータ
JPWO2020175564A1 (ja) 熱交換ユニットおよびこれを備えた洗浄装置
JP6100633B2 (ja) ヒータ
JP6711708B2 (ja) ヒータ
JPWO2020111196A1 (ja) ヒータ
JP4582868B2 (ja) セラミックヒータ
JPWO2017199711A1 (ja) ヒータおよびこれを備えたグロープラグ
JPWO2017135362A1 (ja) ヒータおよびこれを備えたグロープラグ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501126

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757403

Country of ref document: EP

Kind code of ref document: A1