WO2018154907A1 - 樹脂成形品の製造方法 - Google Patents

樹脂成形品の製造方法 Download PDF

Info

Publication number
WO2018154907A1
WO2018154907A1 PCT/JP2017/043545 JP2017043545W WO2018154907A1 WO 2018154907 A1 WO2018154907 A1 WO 2018154907A1 JP 2017043545 W JP2017043545 W JP 2017043545W WO 2018154907 A1 WO2018154907 A1 WO 2018154907A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin molded
molded product
mold
integral hinge
resin
Prior art date
Application number
PCT/JP2017/043545
Other languages
English (en)
French (fr)
Inventor
真琴 瀬木
佳宏 前田
Original Assignee
トヨタ車体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ車体株式会社 filed Critical トヨタ車体株式会社
Publication of WO2018154907A1 publication Critical patent/WO2018154907A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding

Definitions

  • the present disclosure relates to a method for manufacturing a resin molded product in which a fiber reinforced resin obtained by adding a fiber material to a resin is injected into a mold and a resin molded product having an integral hinge portion is manufactured.
  • fiber reinforced resins in which fiber materials such as plant fibers (wood flour, etc.), glass fibers, carbon fibers, etc. are blended into the resin are preferably used as the resin molded material. Is done.
  • the fiber reinforced resin is less flexible than a normal resin, it is difficult to use the fiber reinforced resin as a material for a resin molded product having an integral hinge portion (bending portion).
  • a bent portion of a resin product made of plant fiber reinforced resin is bent while being heated, thereby preventing the bent portion from cracking.
  • the flexibility of the fiber reinforced resin does not decrease so much by making the addition rate of the fiber material added to the resin 10% or less and making the particle size of the fiber material smaller than, for example, about 70 ⁇ m. ing.
  • the integral hinge portion is formed using a fiber reinforced resin to which a fiber material having a small particle size is added as a raw material.
  • the particle size of the wood powder suitably used as the fiber material of the fiber reinforced resin is 100 ⁇ m or more. For this reason, it is difficult to manufacture a resin molded product having an integral hinge portion using a fiber reinforced resin using wood powder as a raw material.
  • a first aspect of the present disclosure is a resin molded product manufacturing method for manufacturing a resin molded product having an integral hinge portion by injecting a fiber reinforced resin obtained by adding a fiber material to a resin into a mold.
  • a molding step for molding the resin molded product with a mold, a mold opening step for removing the resin molded product from the molding die, and a temperature of the resin molded product after the mold opening step is the mold opening step.
  • the integral hinge portion of the resin molded product is bent and extended a plurality of times in a state where the temperature of the resin molded product is higher than the temperature of the mold during the mold opening process.
  • crystallization of the fiber reinforced resin in the integral hinge part is inhibited.
  • the flexibility in the integral hinge portion can be ensured even when the fiber reinforced resin is cooled. That is, even when a fiber reinforced resin to which a fiber material such as wood powder having a lower flexibility than a normal resin is added is used as a material for the integral hinge part, the integral hinge part is difficult to break when used at low temperatures. Become.
  • the integral hinge portion of the resin molded product is bent and extended three times or more. For this reason, the flexibility of the integral hinge portion can be reliably maintained at a low temperature.
  • the bending angle of the integral hinge portion of the resin molded product is set to 90 ° or more. For this reason, even if the integral hinge part is used at a bending angle of 90 ° or more, it becomes difficult to break.
  • the integral hinge portion of the resin molded product is bent and extended using a demolding device that removes the resin molded product from the mold. For this reason, it is not necessary to provide a dedicated device for bending and extending the integral hinge portion.
  • the demolding device is an extrusion pin that extrudes a resin molded product from a mold, and the integral hinge portion is bent when the resin molded product is extruded from the mold using the extrusion pin.
  • the mold is composed of a plurality of mold pieces, and the demolding device removes the resin product by moving the plurality of mold pieces in the direction of the mold opening position.
  • the integral hinge portion is bent and extended by moving other mold dies while some of the mold dies are in the mold opening position.
  • the integral hinge portion of the resin molded product taken out from the mold is bent and extended using a bending extension apparatus. That is, since the integral hinge portion can be bent and extended after the resin molded product is taken out of the mold, for example, it is possible to bend and extend the integral hinge portions of many resin molded products at the same time.
  • a fiber reinforced resin by adding a fiber material having a particle size of 250 ⁇ m or less to the resin. Since a fiber material having a particle size of 250 ⁇ m or less can be used, various fiber materials can be used.
  • the thickness dimension of the integral hinge portion of the resin molded product is set to 0.8 mm or less. For this reason, an integral hinge part becomes difficult to break.
  • the resin molded product 10 manufactured by the manufacturing method according to this embodiment includes a first flat plate portion 11 and a second flat plate portion 12 as shown in FIGS. And the back surface 11b of the 1st flat plate part 11 and the back surface 12b of the 2nd flat plate part 12 are connected by the thin plate-shaped integral hinge part 13. As shown in FIG.
  • the resin molded product 10 has a back surface 10b (hereinafter referred to as a back side 10b) which is a flat surface, whereas a front side 10f is formed in a stepped shape. Then, the first flat plate portion 11 and the second flat plate portion 12 of the resin molded product 10 can be relatively rotated around the integral hinge portion 13.
  • the wall thickness dimension of the integral hinge part 13 is set to 0.8 mm or less.
  • a raw material of the resin molded product 10 for example, a fiber reinforced resin obtained by adding wood flour as a fiber material to polypropylene (PP) is used.
  • Wood powder having a particle size of 100 ⁇ m to 150 ⁇ m is used as a fiber material of fiber reinforced resin.
  • the weight ratio of the wood flour added to polypropylene is set to about 20%. That is, the fiber reinforced resin is obtained by kneading polypropylene having a weight ratio of about 80% and wood powder having a weight ratio of about 20% with a kneader, and is formed into pellets of a predetermined size. And fiber reinforced resin is supplied to the injection unit of the injection molding apparatus 20 (it mentions later) in the state of a pellet.
  • wood flour having a particle size of 250 ⁇ m or less.
  • glass fiber, carbon fiber, etc. instead of wood flour as a fiber material added to polypropylene (resin).
  • PS polystyrene
  • PE polyethylene
  • PP polypropylene
  • the injection molding apparatus 20 is an apparatus for molding the resin molded product 10 by heating and melting the fiber reinforced resin pellets and injecting the pellets into the mold 22.
  • the molding die 22 of the injection molding apparatus 20 includes a first molding die piece 24 and a second molding die piece 26.
  • the first mold piece 24 is a mold piece that molds the stepped front side 10f of the resin molded product 10, and has a molding surface composed of upper and lower square concave portions 24a and 24b and a central square convex portion 24t. .
  • Extrusion pins 25u and 25d for removing the molded resin product 10 are provided at the positions of the upper and lower rectangular recesses 24a and 24b of the first mold piece 24, respectively.
  • molding die piece 26 is a die piece which shape
  • the resin molded product 10 is molded in the molding die 22 with the first molding die piece 24 and the second molding die piece 26 of the molding die 22 being clamped as shown in FIG.
  • a space S is formed. That is, as shown in FIG. 4, the first flat plate portion 11 is formed by the space S formed by the upper rectangular recess 24 a of the first mold piece 24 and the molding surface 26 f of the second mold piece 26.
  • the second flat plate portion 12 is formed by the space S formed by the lower rectangular recess 24 b on the lower side of the first mold piece 24 and the molding surface 26 f of the second mold piece 26.
  • the integral hinge portion 13 is formed by the space S formed by the tip surface of the square convex portion 24 t of the first mold die piece 24 and the molding surface 26 f of the second mold die piece 26.
  • the injection molding apparatus 20 raises and lowers the first flat plate portion 11 of the removed resin molded product 10 to bend and extend the integral hinge portion 13 of the resin molded product 10.
  • An extending device 30 is provided.
  • the fiber reinforced resin pellets are supplied to the injection unit of the injection molding apparatus 20. Further, the mold 22 of the injection molding apparatus 20 is clamped as shown in FIG. At this time, the tips of the extrusion pins 25u and 25d of the first mold piece 24 of the mold 22 are aligned with the position of the molding surface.
  • the fiber reinforced resin heated and melted by the injection unit is injected into the space S of the mold 22 (molding step). Then, when the fiber reinforced resin is solidified after a predetermined time has elapsed, as shown in FIG. 5, the mold 22 is opened (a mold opening process).
  • the temperature of the mold 22 when the mold 22 is opened is about 40 ° C.
  • the temperature of the resin molded product 10 is maintained at about 60 ° C.
  • the upper extrusion pin 25 u protrudes from the molding surface of the first mold piece 24, and the first flat plate portion 11 of the resin molded product 10 is formed. It is extruded from the first mold piece 24. Thereby, the 1st flat plate part 11 of the resin molded product 10 falls from the 1st shaping
  • the tip receiving portion 32 of the bending extension device 30 is lowered and the first flat plate portion 11 of the resin molded product 10 is lowered, so that the integral hinge portion 13 is again the first flat plate portion. It will be bent downward with a weight of 11.
  • the bending extension of the integral hinge part 13 of the resin molded product 10 can be performed as many times as desired by repeatedly raising and lowering the tip receiving part 32 of the bending extension apparatus 30 (bending extension process).
  • the bending extension of the integral hinge portion 13 of the resin molded product 10 is performed three or more times.
  • the bending extension angle is set to at least 90 ° or more.
  • the bending and extending step is performed within 5 minutes, more preferably within 1 minute after the mold 22 is opened. That is, the bending and extending process is performed in a state where the temperature of the resin molded product 10 is higher than the temperature of the mold 22 when the mold 22 is opened.
  • the integral hinge portion 13 of the resin molded product 10 is bent and extended a plurality of times in a state where the temperature of the resin molded product 10 is higher than the temperature of the mold 22 during the mold opening process. Thereby, crystallization of the fiber reinforced resin in the integral hinge part 13 is inhibited.
  • the flexibility of the integral hinge portion 13 can be ensured even if a fiber reinforced resin to which wood powder having a particle size of 100 ⁇ m to 150 ⁇ m is added is used as the material of the integral hinge portion 13. Therefore, even when the resin molded product 10 is at a low temperature, the integral hinge portion 13 can be held in a flexible state. As a result, even if the integral hinge portion 13 is used at a low temperature, the integral hinge portion 13 is difficult to break.
  • the integral hinge portion 13 of the resin molded product 10 is bent and extended three times or more, so that the flexibility of the integral hinge portion 13 can be reliably ensured. Furthermore, since the bending angle of the integral hinge portion 13 of the resin molded product 10 is set to 90 ° or more, it is difficult to break even if the integral hinge portion 13 is used at a bending angle of 90 ° or more. Moreover, since a fiber reinforced resin can be produced by adding a fiber material having a particle size of 250 ⁇ m or less to polypropylene, various fiber materials can be used. Moreover, since the thickness dimension of the integral hinge part 13 of the resin molded product 10 is set to 0.8 mm or less, the integral hinge part 13 becomes difficult to break.
  • the said embodiment can be changed in the range of this indication.
  • the integral hinge portion 13 of the resin molded product 10 is bent and extended using the extrusion pin 25 u on the upper side of the mold 22 and the bending extension device 30.
  • An example is shown.
  • FIGS. 9 and 10 it is also possible to add a central push pin 25m to the position of the square convex portion 24t of the mold 22 (first mold piece 24) and to move the central push pin 25m forward and backward. It is.
  • the integral hinge portion 13 is bent while being extended, and by storing the central push pin 25m, the integral hinge portion 13 can be returned to a straight shape (in an extended state).
  • the demolding device central push pin 25m
  • the integral hinge portion 13 can be bent and extended. That is, the molding die 22 shown in FIG. 11 and the like has an upper slide core 28u and a lower slide for forming the upper end surface 11e and the lower end surface 12e of the resin molded product 10 on the upper and lower portions of the second molding die piece 26. And a core 28d.
  • the upper slide core 28u and the lower slide core 28d are configured to be vertically slidable along the flat molding surface 26f of the second molding die piece 26.
  • the integral hinge portion 13 can be bent by sliding the 28u and 28d toward each other. Further, the integral hinge portion 13 can be extended by sliding the upper and lower slide cores 28u, 28d in directions away from each other.
  • the integral hinge part 13 of the resin molded product 10 is bent and extended using the mold release device, it is not necessary to provide a dedicated device for bending and extending the integral hinge part 13.

Abstract

樹脂に繊維材料を添加した繊維強化樹脂を成形型内に射出してインテグラルヒンジ部を有する樹脂成形品を製造する樹脂成形品の製造方法は、樹脂成形品(10)の成形工程と、成形型(22)から樹脂成形品(10)を部分的、あるいは全体的に取り出す型開き工程と、型開き工程後、樹脂成形品(10)の温度が型開き工程時の成形型(22)の温度よりも高い状態で、樹脂成形品(10)のインテグラルヒンジ部(13)を複数回曲げ延ばしする曲げ延ばし工程とを有する。

Description

樹脂成形品の製造方法
 本開示は、樹脂に繊維材料を添加した繊維強化樹脂を成形型内に射出してインテグラルヒンジ部を有する樹脂成形品を製造する樹脂成形品の製造方法に関する。
 樹脂成形品の強度向上、耐熱性能の向上を図るため、樹脂成形品の素材として樹脂に植物繊維(木粉等)、ガラス繊維、炭素繊維等の繊維材料を配合した繊維強化樹脂が好適に使用される。しかし、繊維強化樹脂は、通常の樹脂と比較して柔軟性が低下するため、インテグラルヒンジ部(曲げ部)を有する樹脂成形品の素材としては使用するのは難しかった。特開2008-173902号公報に記載の技術では、植物繊維強化樹脂を素材とする樹脂製品の曲げ部を加熱しながら折り曲げることで、曲げ部の割れを防止している。しかし、近年では、樹脂に添加する繊維材料の添加率を10%以下で、繊維材料の粒径を、例えば、約70μmよりも小さくすることで繊維強化樹脂の柔軟性がさほど低下しないことが分かっている。このため、粒径の小さな繊維材料が添加された繊維強化樹脂を素材としてインテグラルヒンジ部を成形することが行われている。
 しかし、繊維強化樹脂の繊維材料として好適に使用される木粉の粒径は、100μm以上である。このため、木粉を使用した繊維強化樹脂を素材としてインテグラルヒンジ部を有する樹脂成形品を製造するのは難しい。
 したがって、改良された樹脂成形品の製造方法が必要とされている。
 本開示の第一側面は、樹脂に繊維材料を添加した繊維強化樹脂を成形型内に射出してインテグラルヒンジ部を有する樹脂成形品を製造する樹脂成形品の製造方法であって、前記成形型によって前記樹脂成形品を成形する成形工程と、前記成形型から前記樹脂成形品を取り出し可能な状態にする型開き工程と、前記型開き工程後、前記樹脂成形品の温度が前記型開き工程時の成形型の温度よりも高い状態で、前記樹脂成形品のインテグラルヒンジ部を複数回曲げ延ばしする曲げ延ばし工程とを有する。
 本側面によると、樹脂成形品の温度が型開き工程時の成形型の温度よりも高い状態で、前記樹脂成形品のインテグラルヒンジ部を複数回曲げ延ばしする。これにより、インテグラルヒンジ部における繊維強化樹脂の結晶化が阻害される。この結果、繊維強化樹脂が冷えた状態でもインテグラルヒンジ部における柔軟性を確保できる。即ち、通常の樹脂よりも柔軟性が低い木粉等の繊維材料が添加された繊維強化樹脂をインテグラルヒンジ部の素材として使用しても、前記インテグラルヒンジ部が低温下の使用で割れ難くなる。
 本開示の第二側面によると、曲げ延ばし工程では、樹脂成形品のインテグラルヒンジ部を三回以上曲げ延ばす。このため、低温下でインテグラルヒンジ部の柔軟性を確実に保持できる。
 本開示の第三側面によると、樹脂成形品のインテグラルヒンジ部の曲げ角度は、90°以上に設定されている。このため、インテグラルヒンジ部を90°以上の曲げ角度で使用しても割れ難くなる。
 本開示の第四側面によると、曲げ延ばし工程では、成形型から樹脂成形品を取り外す脱型装置を利用して、前記樹脂成形品のインテグラルヒンジ部を曲げ延ばす。このため、インテグラルヒンジ部を曲げ延ばすための専用の装置を設ける必要がなくなる。
 本開示の第五側面によると、脱型装置は、成形型から樹脂成形品を押し出す押出ピンであり、前記押出ピンで樹脂成形品を前記成形型から押し出す際にインテグラルヒンジ部を曲げる。
 本開示の第六側面によると、成形型は、複数の成形型片から構成されており、脱型装置は、複数の成形型片を型開き位置方向に移動させることで、樹脂製品を脱型する構成であり、一部の前記成形型片が型開き位置にある状態で、他の成形型片が移動することにより、前記インテグラルヒンジ部を曲げ延ばす。
 本開示の第七側面によると、曲げ延ばし工程では、曲げ延ばし装置を利用して前記成形型から取り出した樹脂成形品のインテグラルヒンジ部を曲げ延ばす。即ち、樹脂成形品を成形型から取り出した後で、インテグラルヒンジ部を曲げ延ばせるため、例えば、多数の樹脂成形品のインテグラルヒンジ部を同時に曲げ延ばすことが可能になる。
 本開示の第八側面によると、樹脂に対して粒径が250μm以下の繊維材料を添加して繊維強化樹脂を製造する工程を有する。粒径が250μm以下の繊維材料を使用できるため、種々の繊維材料を使用できる。
 本開示の第九側面によると、樹脂成形品の成形工程では、前記樹脂成形品のインテグラルヒンジ部の肉厚寸法を0.8mm以下に設定する。このため、インテグラルヒンジ部が割れ難くなる。
本開示の実施形態1に係る製造方法により製造された樹脂成形品の模式斜視図である。 前記樹脂成形品の縦断面図(図1のII-II矢視断面図)である。 前記樹脂成形品の成形型を表す縦断面図である。 前記樹脂成形品の成形工程を表す縦断面図である。 前記樹脂成形品の型開き工程を表す縦断面図である。 前記樹脂成形品の曲げ延ばし工程を表す縦断面図である。 前記樹脂成形品の曲げ延ばし工程を表す縦断面図である。 前記樹脂成形品の曲げ延ばし工程を表す縦断面図である。 変更例1に係る前記樹脂成形品の成形工程を表す縦断面図である。 変更例1に係る前記樹脂成形品の型開き工程、曲げ延ばし工程を表す縦断面図である。 変更例2に係る前記樹脂成形品の成形工程を表す縦断面図である。 変更例2に係る前記樹脂成形品の型開き工程を表す縦断面図である。 変更例2に係る前記樹脂成形品の曲げ延ばし工程を表す縦断面図である。
  [実施形態1]
 以下、図1から図13に基づいて本開示の実施形態1に係る樹脂成形品の製造方法について説明する。
<樹脂成形品10について>
 本実施形態に係る製造方法によって製造される樹脂成形品10は、図1、図2に示すように、第1平板部11と第2平板部12とを備えている。そして、第1平板部11の背面11bと第2平板部12の背面12bとが薄板状のインテグラルヒンジ部13によって連結されている。即ち、樹脂成形品10は、背面10b(以後、裏側10bという)が平坦面であるのに対し、表側10fが段差状に形成されている。そして、樹脂成形品10の第1平板部11と第2平板部12とは、インテグラルヒンジ部13を中心にして相対回動が可能になる。ここで、インテグラルヒンジ部13の肉厚寸法は、0.8mm以下に設定されている。樹脂成形品10の素材としては、例えば、ポリプロピレン(PP)に対して繊維材料である木粉を添加した繊維強化樹脂が使用されている。
<繊維強化樹脂について>
 繊維強化樹脂の繊維材料である木粉には、粒径が100μm~150μmのものが使用されている。また、ポリプロピレンに添加される木粉の重量比率は約20%に設定されている。即ち、前記繊維強化樹脂は、重量比率が約80%のポリプロピレンと重量比率が約20%の木粉とを混練機で混練したものであり、所定サイズのペレットに成形される。そして、繊維強化樹脂は、ペレットの状態で射出成形装置20(後記する)の射出ユニットに供給される。ここで、ポリプロピレンに対する木粉の重量比率を約10%にまで下げることで、粒径が250μm以下の木粉を添加することが可能になる。また、ポリプロピレン(樹脂)に添加する繊維材料として木粉の代わりに、ガラス繊維、炭素繊維等を使用することも可能である。また、ポリプロピレン(PP)に代わりにポリスチレン(PS)、ポリエチレン(PE)等を使用することも可能である。
<射出成形装置20について>
 射出成形装置20は、前記繊維強化樹脂のペレットを加熱溶融させて成形型22に射出し、前記樹脂成形品10を成形する装置である。射出成形装置20の成形型22は、図3に示すように、第1成形型片24と第2成形型片26とを備えている。第1成形型片24は、樹脂成形品10の段差状の表側10fを成形する型片であり、上下の角形凹部24a,24bと中央部の角形凸部24tとからなる成形面を備えている。そして、第1成形型片24の上下の角形凹部24a,24bの位置に樹脂成形品10の脱型を行う押出ピン25u,25dがそれぞれ設けられている。また、第2成形型片26は、樹脂成形品10の裏側10bを成形する型片であり、平坦な成形面26fを備えている。
 上記構成により、成形型22の第1成形型片24と第2成形型片26とが、図3に示すように、型締めされた状態で、成形型22内には樹脂成形品10を成形するための空間Sが形成される。即ち、図4に示すように、第1成形型片24の上側の角形凹部24aと第2成形型片26の成形面26fとからなる空間Sにより第1平板部11が成形される。また、第1成形型片24の下側の角形凹部24bと第2成形型片26の成形面26fとからなる空間Sにより第2平板部12が成形される。さらに、第1成形型片24の角形凸部24tの先端面と第2成形型片26の成形面26fとからなる空間Sによりインテグラルヒンジ部13が成形される。
 さらに、射出成形装置20は、図6等に示すように、脱型された樹脂成形品10の第1平板部11を昇降させて、樹脂成形品10のインテグラルヒンジ部13を曲げ延ばしする曲げ延ばし装置30が設けられている。
<樹脂成形品10の製造方法について>
 先ず、前記繊維強化樹脂のペレットが射出成形装置20の射出ユニットに供給される。また、射出成形装置20の成形型22が、図3に示すように、型締めされる。このとき、成形型22の第1成形型片24の押出ピン25u,25dの先端は成形面の位置に合わせられている。次に、図4に示すように、成形型22の空間S内に射出ユニットにより加熱溶融させた繊維強化樹脂が射出される(成形工程)。そして、所定時間が経過して繊維強化樹脂が固化すると、図5に示すように、成形型22の型開きが行われる(型開き工程)。ここで、成形型22の型開きが行われる際の成形型22の温度は約40℃程度であり、樹脂成形品10の温度は約60℃程度に保持されている。
 そして、成形型22の型開きが行われると、図5に示すように、上側の押出ピン25uが第1成形型片24の成形面から突出して、樹脂成形品10の第1平板部11が第1成形型片24から押し出される。これにより、樹脂成形品10の第1平板部11が、図6に示すように、自重で成形型22の第1成形型片24から落下し、インテグラルヒンジ部13が下方に曲げられる。そして、樹脂成形品10の第1平板部11が曲げ延ばし装置30の先端受け部32によって受けられる。次に、図7に示すように、上側の押出ピン25uが第1成形型片24の成形面に収納された状態で、曲げ延ばし装置30の先端受け部32が上昇して樹脂成形品10の第1平板部11を押し上げる。これにより、インテグラルヒンジ部13が上方に延ばされるようになる。
 また、図8に示すように、曲げ延ばし装置30の先端受け部32が下降して樹脂成形品10の第1平板部11が下降することで、再び、インテグラルヒンジ部13が第1平板部11の重量で下方に曲げられるようになる。そして、曲げ延ばし装置30の先端受け部32の昇降を繰り返すことで、樹脂成形品10のインテグラルヒンジ部13の曲げ延ばしを希望する回数だけ行うことができる(曲げ延ばし工程)。ここで、樹脂成形品10のインテグラルヒンジ部13の曲げ延ばしは、三回以上行われる。また、曲げ延ばしの角度は、少なくとも90°以上に設定されている。さらに、曲げ延ばし工程は、成形型22を型開きしてから5分以内、さらに好ましくは1分以内に行われる。即ち、曲げ延ばし工程は、成形型22を型開きしたときの成形型22の温度よりも樹脂成形品10の温度が高い状態で行われる。
<本実施形態に係る樹脂成形品10の成形方法の長所について>
 本開示によると、樹脂成形品10の温度が型開き工程時の成形型22の温度よりも高い状態で、樹脂成形品10のインテグラルヒンジ部13を複数回曲げ延ばしする。これにより、インテグラルヒンジ部13における繊維強化樹脂の結晶化が阻害される。この結果、粒径が100μm~150μmの木粉を添加した繊維強化樹脂をインテグラルヒンジ部13の素材として使用しても、インテグラルヒンジ部13の柔軟性を確保できる。したがって、樹脂成形品10が低温下にある場合でも、インテグラルヒンジ部13を柔軟な状態に保持できる。この結果、低温下でインテグラルヒンジ部13を使用しても、インテグラルヒンジ部13が割れ難くなる。
 また、曲げ延ばし工程では、樹脂成形品10のインテグラルヒンジ部13を三回以上曲げ延ばすため、インテグラルヒンジ部13の柔軟性が確実に確保できる。さらに、樹脂成形品10のインテグラルヒンジ部13の曲げ角度は、90°以上に設定されているため、インテグラルヒンジ部13を90°以上の曲げ角度で使用しても割れ難くなる。また、ポリプロピレンに対して粒径が250μm以下の繊維材料を添加して繊維強化樹脂を製造できるため、種々の繊維材料を使用できる。また、樹脂成形品10のインテグラルヒンジ部13の肉厚寸法を0.8mm以下に設定しているため、インテグラルヒンジ部13が割れ難くなる。
<変更例>
 なお、上記実施形態は本開示の範囲における変更が可能である。例えば、本実施形態に係る樹脂成形品10の製造方法では、成形型22の上側の押出ピン25uと曲げ延ばし装置30とを利用して樹脂成形品10のインテグラルヒンジ部13の曲げ延ばしを行う例を示した。しかし、図9、図10に示すように、成形型22(第1成形型片24)の角形凸部24tの位置に中央押出ピン25mを追加し、この中央押出ピン25mを進退させることも可能である。即ち、中央押出ピン25mを押し出すことで、インテグラルヒンジ部13を延ばしながら曲げ、中央押出ピン25mを格納することで、インテグラルヒンジ部13を直線状(延ばした状態)に戻すことができる。このように、脱型装置(中央押出ピン25m)を利用して、樹脂成形品10のインテグラルヒンジ部13を曲げ延ばすため、前記インテグラルヒンジ部13を曲げ延ばすための専用の装置を設ける必要がなくなる。
 また、押出ピン25u、中央押出ピン25mを利用して樹脂成形品10のインテグラルヒンジ部13を曲げ延ばす代わりに、図11~図13に示すように、成形型22の一部を移動させることで、前記インテグラルヒンジ部13を曲げ延ばすことも可能である。即ち、図11等に示す成形型22は、第2成形型片26の上部と下部とに、樹脂成形品10の上端面11eと下端面12eとを形成するための上部スライドコア28uと下部スライドコア28dとを備えている。上部スライドコア28uと下部スライドコア28dとは、第2成形型片26の平坦な成形面26fに沿って上下にスライド可能に構成されている。
 上記構成により、図12に示すように、成形型22の第1成形型片24と第2成形型片26とを相対移動させて型開きした後、図13に示すように、上下のスライドコア28u,28dを相互に接近する方向にスライドさせることで、前記インテグラルヒンジ部13を曲げることができる。また、上下のスライドコア28u,28dを相互に離隔する方向にスライドさせることで、前記インテグラルヒンジ部13を延ばすことができる。このように、脱型装置を利用して、樹脂成形品10のインテグラルヒンジ部13を曲げ延ばすため、インテグラルヒンジ部13を曲げ延ばすための専用の装置を設ける必要がなくなる。
 また、専用の曲げ延ばし装置としてロボット等(図示省略)を利用し、脱型後の樹脂成形品10のインテグラルヒンジ部13を複数個同時に曲げ延ばしすることも可能である。

Claims (9)

  1.  樹脂に繊維材料を添加した繊維強化樹脂を成形型内に射出してインテグラルヒンジ部を有する樹脂成形品を製造する樹脂成形品の製造方法であって、
     前記成形型によって前記樹脂成形品を成形する成形工程と、
     前記成形型から前記樹脂成形品を取り出し可能な状態にする型開き工程と、
     前記型開き工程後、前記樹脂成形品の温度が前記型開き工程時の成形型の温度よりも高い状態で、前記樹脂成形品のインテグラルヒンジ部を複数回曲げ延ばしする曲げ延ばし工程と、
    を有する樹脂成形品の製造方法。
  2.  請求項1に記載された樹脂成形品の製造方法であって、
     前記曲げ延ばし工程では、前記樹脂成形品のインテグラルヒンジ部を三回以上曲げ延ばす樹脂成形品の製造方法。
  3.  請求項1又は請求項2のいずれかに記載された樹脂成形品の製造方法であって、
     前記樹脂成形品のインテグラルヒンジ部の曲げ角度は、90°以上に設定されている樹脂成形品の製造方法。
  4.  請求項1から請求項3のいずれかに記載された樹脂成形品の製造方法であって、
     前記曲げ延ばし工程では、前記成形型から前記樹脂成形品を取り外す脱型装置を利用して、前記樹脂成形品のインテグラルヒンジ部を曲げ延ばす樹脂成形品の製造方法。
  5.  請求項4に記載された樹脂成形品の製造方法であって、
     前記脱型装置は、前記成形型から樹脂成形品を押し出す押出ピンであり、前記押出ピンで樹脂成形品を前記成形型から押し出す際に前記インテグラルヒンジ部を曲げる樹脂成形品の製造方法。
  6.  請求項4に記載された樹脂成形品の製造方法であって、
     前記成形型は、複数の成形型片から構成されており、
     前記脱型装置は、複数の成形型片を型開き位置方向に移動させることで、前記樹脂製品を脱型する構成であり、一部の前記成形型片が型開き位置にある状態で、他の成形型片が移動することにより、前記インテグラルヒンジ部を曲げ延ばす樹脂成形品の製造方法。
  7.  請求項1から請求項3のいずれかに記載された樹脂成形品の製造方法であって、
     前記曲げ延ばし工程では、曲げ延ばし装置を利用して前記成形型から取り出した前記樹脂成形品のインテグラルヒンジ部を曲げ延ばす樹脂成形品の製造方法。
  8.  請求項1から請求項7のいずれかに記載された樹脂成形品の製造方法であって、
     樹脂に対して粒径が250μm以下の繊維材料を添加して繊維強化樹脂を製造する工程を有する樹脂成形品の製造方法。
  9.  請求項1から請求項8のいずれかに記載された樹脂成形品の製造方法であって、
     前記樹脂成形品の成形工程では、前記樹脂成形品のインテグラルヒンジ部の肉厚寸法を0.8mm以下に設定する樹脂成形品の製造方法。
PCT/JP2017/043545 2017-02-24 2017-12-05 樹脂成形品の製造方法 WO2018154907A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017033228A JP6798352B2 (ja) 2017-02-24 2017-02-24 樹脂成形品の製造方法
JP2017-033228 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018154907A1 true WO2018154907A1 (ja) 2018-08-30

Family

ID=63254272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043545 WO2018154907A1 (ja) 2017-02-24 2017-12-05 樹脂成形品の製造方法

Country Status (2)

Country Link
JP (1) JP6798352B2 (ja)
WO (1) WO2018154907A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020105907A1 (de) 2020-03-05 2021-09-09 HELLA GmbH & Co. KGaA Verfahren zur Herstellung eines einteiligen Kunststoffprodukts und Kunststoffspritzgussvorrichtung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118708U (ja) * 1985-01-09 1986-07-26
JPS63132721U (ja) * 1986-09-19 1988-08-30
JPH02104212U (ja) * 1989-02-08 1990-08-20
JPH11198194A (ja) * 1998-01-12 1999-07-27 Sekisui Chem Co Ltd 射出成形品の製造方法
JPH11254472A (ja) * 1998-03-12 1999-09-21 Futaba Sangyo Co Ltd プレス成形用金型及びプレス成形方法
JP2000141414A (ja) * 1998-11-12 2000-05-23 Sekisui Chem Co Ltd 射出成形用金型
JP2011063699A (ja) * 2009-09-16 2011-03-31 Jx Nippon Oil & Energy Corp 液晶ポリエステル樹脂組成物の成形方法および成形体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118708U (ja) * 1985-01-09 1986-07-26
JPS63132721U (ja) * 1986-09-19 1988-08-30
JPH02104212U (ja) * 1989-02-08 1990-08-20
JPH11198194A (ja) * 1998-01-12 1999-07-27 Sekisui Chem Co Ltd 射出成形品の製造方法
JPH11254472A (ja) * 1998-03-12 1999-09-21 Futaba Sangyo Co Ltd プレス成形用金型及びプレス成形方法
JP2000141414A (ja) * 1998-11-12 2000-05-23 Sekisui Chem Co Ltd 射出成形用金型
JP2011063699A (ja) * 2009-09-16 2011-03-31 Jx Nippon Oil & Energy Corp 液晶ポリエステル樹脂組成物の成形方法および成形体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020105907A1 (de) 2020-03-05 2021-09-09 HELLA GmbH & Co. KGaA Verfahren zur Herstellung eines einteiligen Kunststoffprodukts und Kunststoffspritzgussvorrichtung

Also Published As

Publication number Publication date
JP6798352B2 (ja) 2020-12-09
JP2018138342A (ja) 2018-09-06

Similar Documents

Publication Publication Date Title
JP6057598B2 (ja) 中空部を有する金属粉末焼結体の製造方法
CN103962559A (zh) 一种熔芯式金属注射成形工艺
CN102092116B (zh) 用于制造手工工具把手的方法以及手工工具把手
WO2018154907A1 (ja) 樹脂成形品の製造方法
CN105268978A (zh) 粉末注射成型的活塞的制备方法
CN100386168C (zh) 一种用于金属和陶瓷微型零件成形的微注射成形用模具
CN104441493A (zh) 衬套注射模具
CN213321392U (zh) 一种多行位结构的模具
CN208681907U (zh) 一种硅胶快速成型模具
CN107791463B (zh) 母模斜抽芯退出结构
CN209955215U (zh) 一种前模行位抽心结构
CN105290391A (zh) 粉末注射成型的取样器的制备方法
CN206085501U (zh) 一种设置有空气阀的注塑模具
CN205326157U (zh) 模具斜唧咀结构
CN106182630B (zh) 一种皮肤吻合器中粘贴板的生产方法
JP6509038B2 (ja) 金属粉末射出成形体の製造方法
CN106182629B (zh) 一种皮肤吻合器中牵张条的生产方法
CN211891739U (zh) 汽车配件的注塑模具
CN206009841U (zh) 一种金属粉末注射成型模具
CN219464759U (zh) 一种粉末冶金注射成型模具结构
CN214188207U (zh) 一种便于产品推出的模具
JPH03182313A (ja) 成形金型の製造方法
CN205929318U (zh) 一种皮肤吻合器中粘贴板的制作模具
CN212385925U (zh) 一种快速脱模侧向分型滑块注塑成型模具
CN108481654B (zh) 一种复合材料注塑成型工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897571

Country of ref document: EP

Kind code of ref document: A1