WO2018154774A1 - 寸法測定装置 - Google Patents
寸法測定装置 Download PDFInfo
- Publication number
- WO2018154774A1 WO2018154774A1 PCT/JP2017/007461 JP2017007461W WO2018154774A1 WO 2018154774 A1 WO2018154774 A1 WO 2018154774A1 JP 2017007461 W JP2017007461 W JP 2017007461W WO 2018154774 A1 WO2018154774 A1 WO 2018154774A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- distance
- distance meter
- reference lines
- measurement object
- meter
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B7/00—Other common features of elevators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B7/00—Other common features of elevators
- B66B7/02—Guideways; Guides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
- G01C3/02—Details
- G01C3/06—Use of electric means to obtain final indication
Definitions
- This invention relates to a dimension measuring apparatus, and more particularly to a dimension measuring apparatus for measuring the position and orientation of equipment installed in an elevator hoistway.
- FIG. 7 shows a conventional general centering operation (see, for example, Patent Document 1).
- an upper template 52 is installed at the upper part of the hoistway
- the lower template 53 is installed at the lower part of the hoistway, based on the hall reference piano wires 50 and 51 that are the building reference lines.
- four piano wires 54 to 57 are suspended from the upper template 52 toward the lower template 53, and a car side guide rail (not shown) and a weight side guide rail (see FIG. Positioning) (not shown).
- the piano wires 54 and 55 are piano wires for centering the car-side guide rail
- the piano wires 56 and 57 are piano wires for centering the weight-side guide rail. Accordingly, the car-side guide rail is positioned with reference to the piano wires 54 and 55, and the weight-side guide rail is positioned with reference to the piano wires 56 and 57.
- the hall equipment is positioned using the piano wires 50 and 51 for the hall reference.
- a landing threshold 58 is illustrated as one of the landing devices.
- the landing device includes other devices such as a landing door device, but these are not shown in FIG.
- FIG. 8 shows how the car-side guide rails 73 and 74 are positioned using the centering device with reference to the piano wires 54 and 55. Since the weight side guide rail is similarly positioned, only the positioning of the car side guide rails 73 and 74 will be described here.
- the centering device includes a rod-shaped rail gauge 70 and ruler plates 71 and 72 fixed to both ends of the rail gauge 70.
- the ruler plates 71 and 72 are formed with notches 71a and 72a for setting the distance between the car-side guide rails 73 and 74 by abutting the rail surfaces of the car-side guide rails 73 and 74, respectively. Further, the ruler plates 71 and 72 are formed with notches 71b and 72b for inserting the piano wires 54 and 55, respectively.
- the car side guide rails 73 and 74 are temporarily fixed to a bracket (not shown).
- the notches 71 a and 72 a formed on the ruler plates 71 and 72 provided at both ends of the rail gauge 70 are temporarily applied to the side surfaces of the car-side guide rails 73 and 74.
- adjustment is made so that the rail surfaces of the car-side guide rails 73 and 74 are surely aligned with the ruler surfaces of the notches 71a and 72a.
- the level of the rail gauge 70 is confirmed using a leveler 75 fixed to the rail gauge 70.
- the centering device is positioned by aligning the piano wires 54 and 55 with the notches 71b and 72b. In this state, the car side guide rails 73 and 74 are fixed to the bracket.
- JP 2002-362850 A Japanese Utility Model Publication No. 60-40537
- the upper mold plate 52 and the lower mold plate 53 are installed at the upper and lower portions of the hoistway, and the piano wires 54, 55, 56, and 57 for centering the guide rail are connected. Install. However, in the installation work of these piano wires 54, 55, 56, 57, it is necessary to adjust the positioning with respect to the hall reference piano wires 50, 51, and compared with the installation work of the hall reference piano wires 50, 51. It takes a lot of time.
- a rail gauge 70 as shown in FIG. 8 is applied to the left and right car side guide rails 73 and 74 to position the piano wires 54, 55, 56 and 57 for centering. Since the relationship is finely adjusted visually, it takes a lot of time for positioning.
- a steel scale is applied to the left and right hall reference piano wires 50 and 51 to adjust the position and inclination of the landing equipment.
- much time is required for fine adjustment by visual inspection.
- the present invention has been made to solve such a problem, and provides a dimension measuring device capable of easily and accurately measuring the position of a measurement object and easily positioning the measurement object.
- the purpose is to obtain.
- the present invention includes a distance meter that measures a distance in a horizontal plane, and an arithmetic unit that identifies the position of the distance meter based on the distance measured by the distance meter and calculates the position and orientation of the measurement object.
- the distance meter measures the distance between two reference lines previously installed in the vertical direction as the installation reference of the measurement object and the distance meter, and the measurement object to be installed and the distance The distance between the distance meter is measured, and the calculation unit is configured to measure the distance between one of the two reference lines measured by the distance meter and the distance meter, and the two distance measured by the distance meter.
- the position of the distance meter with respect to the two reference lines is identified and identified
- the position of the distance meter Based on the distance between the measurement object measured by the distance meter and the distance meter, and calculating the positions of at least two feature points set in advance on the surface of the measurement object, It is a dimension measuring apparatus which calculates the inclination between the said feature points.
- the distance measuring device measures the distance in the horizontal plane, and the position of the distance measuring device relative to the reference line is identified to calculate the position of the measuring object.
- the position of the object can be easily measured by easily and accurately measuring the position of the object.
- FIG. 3 is a block diagram showing a hardware configuration of a dimension measuring apparatus according to Embodiments 1 to 3 of the present invention.
- FIG. FIG. 1 shows a state in the hoistway 1 when the elevator is installed. As shown in FIG. 1, when the elevator is installed, the dimension measuring device 8 according to the first embodiment is installed in the hoistway 1.
- a landing opening 2 is arranged in the hoistway 1.
- One landing opening 2 is installed for each floor landing. Therefore, those hall openings 2 are arranged side by side in the vertical direction like the hall openings 2a and 2b shown in FIG.
- a landing threshold 3 is installed at the lower part of the landing opening 2.
- the landing device includes other devices such as a landing door device and a three-way frame. The landing door device is installed above the landing opening 2, and the three-way frame is installed around the landing opening 2.
- the landing door device is a device for opening and closing a landing door installed in the landing opening 2.
- Reference lines 4 and 5 are provided on both sides of the landing opening 2 so as to be separated from the landing opening 2 by a certain distance.
- the reference lines 4 and 5 are composed of piano wires, for example.
- the reference lines 4 and 5 are used as installation standards when installing landing equipment such as the landing sill 3, the landing door device, and the three-way frame.
- the reference lines 4 and 5 are respectively installed vertically from the top of the hoistway 1 toward the bottom.
- guide rails 6 and 7 are installed in the hoistway 1 as shown in FIG.
- the guide rail includes a car-side guide rail and a weight-side guide rail.
- FIG. 1 only the car-side guide rail is illustrated as guide rails 6 and 7 for simplification of the drawing.
- a dimension measuring device 8 is provided at the center of the hoistway 1.
- the dimension measuring device 8 includes a light projecting unit 9, an imaging unit 10, a calculation unit 11, and a display unit 12.
- the light projecting unit 9 projects the laser light 13 in a line shape in the horizontal direction.
- the laser beam 13 is incident on the measurement object, reflected on the surface of the measurement object, and becomes reflected light 33.
- the imaging unit 10 is arranged away from the light projecting unit 9 by a predetermined distance D 1 set in the vertical direction in advance.
- the imaging unit 10 is composed of, for example, a CCD camera and functions as an image sensor.
- the imaging unit 10 receives the reflected light 33 of the laser light 13 and generates image data.
- the calculation unit 11 processes the image data captured by the imaging unit 10, detects the reflected light 33 of the laser beam 13, identifies the position of the dimension measuring device 8 using the principle of triangulation, and measures the measurement object. The position of is calculated.
- the display unit 12 displays the result calculated by the calculation unit 11.
- FIG. 1 shows an example in which the light projecting unit 9 and the imaging unit 10 are fixed and the laser beam 13 is projected to a certain area.
- the present invention is not limited to this, and the light projecting unit 9 and the imaging unit 10 may be rotated about the vertical axis.
- the light projecting unit 9 projects the laser light 13 in a beam shape in the horizontal direction while rotating in one direction around the vertical axis.
- the imaging unit 10 rotates in synchronization with the light projecting unit 9 and receives the reflected light 33 of the laser light 13.
- the dimension measuring device 8 measures the distance to the measurement object at each rotation angle by rotationally scanning the horizontal plane using the light projecting unit 9 and the imaging unit 10 in this way. The position may be calculated.
- FIG. 9A shows a case where each function of the dimension measuring device 8 is configured by hardware
- FIG. 9B shows a case where each function of the dimension measuring device 8 is configured by software.
- the input unit in the dimension measuring apparatus 8 is a distance meter 1100 or a distance meter 2200
- the display unit 12 is a display 1200 or 2300.
- the distance meter includes a light projecting unit 9, an imaging unit 10, and a distance calculating unit that calculates a distance.
- the distance calculation unit is configured by a processing circuit 1110
- the distance calculation unit is configured by a processor 2210 and a memory 2220.
- the processing circuit 1000 when the processing circuit 1110 is dedicated hardware, the processing circuit 1000 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, and an FPGA.
- the function of the distance calculation unit is realized by software, firmware, or a combination of software and firmware.
- Software and firmware are described as programs and stored in the memory 2220.
- a processor 2210 that is a processing circuit reads out and executes a program stored in the memory 2220, thereby realizing the function of each unit.
- each function of the calculation unit 11 of the dimension measuring device 8 is realized by a processing circuit.
- the processing circuit 1000 when the processing circuit 1000 is dedicated hardware, the processing circuit 1000 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, and an FPGA. Or a combination of these.
- the functions of the above-described units may be realized by a processing circuit, or the functions of the units may be collectively realized by a processing circuit.
- FIG. 9B when the processing circuit is a CPU, each function of the calculation unit 11 is realized by software, firmware, or a combination of software and firmware.
- Software and firmware are described as programs and stored in the memory 2100.
- the processor 2000 which is a processing circuit, reads out and executes a program stored in the memory 2100, thereby realizing the functions of the respective units.
- processing circuit 1110 and the processing circuit 1000 are shown as separate components, but these may be a single processing circuit.
- the processor 2210 and the processor 2000 are shown as being configured separately, but these may be a single processor.
- the memory 2220 and the memory 2100 are shown as being configured separately, but these may be a single memory.
- the dimension measuring device 8 measures the distance in the horizontal plane, and the calculation for identifying the position of the distance meter based on the distance measured by the distance meter and calculating the position and orientation of the measurement object. And a display for displaying the calculation result of the calculation unit.
- the distance meter measures the distance between the reference lines 4 and 5 and the distance meter, and measures the distance between the measurement object to be installed and the distance meter.
- the calculation unit includes a distance between the reference line 4 and the distance meter measured by the distance meter, a distance between the reference line 5 and the distance meter measured by the distance meter, and the reference line 4 and the reference line 5. The position of the distance meter relative to the reference lines 4 and 5 is identified based on the distance between the two.
- the calculation unit is set as a measurement target in advance on the surface of the measurement object based on the position of the identified distance meter and the distance between the measurement object measured by the distance meter and the distance meter. The position of at least two feature points is calculated, and the inclination between these feature points is calculated.
- FIG. 2 is an enlarged perspective view showing the inside of the round frame A of FIG. In FIG. 2, only a part of the guide rail 7 is shown for easy understanding.
- the laser light 13 projected in the horizontal direction from the light projecting unit 9 of the dimension measuring device 8 is projected on the inner wall surface of the hoistway 1, but a part thereof is hoistway. 1 is projected onto a measurement object installed in the interior.
- a measuring object such as the guide rails 6 and 7 in the hoistway 1 will be described with reference to FIG.
- the calculation unit 11 a measurement object is set in advance. Furthermore, in the calculating part 11, the part used as a measuring object is preset for every measuring object.
- the portion to be measured is referred to as a feature point.
- the computing unit 11 extracts feature points using the laser beam 13. For example, the description will be given with reference to FIG.
- the arithmetic unit 11 has previously set the three points 16, 17, and 18 on the head surface 7a and the side surface 7b, which are the processed surfaces of the guide rail 7, as feature points.
- Point 16 is the intersection of head surface 7a and side surface 7b.
- the point 17 is a point indicating the end of the side surface 7b, and the point 18 is a point indicating the end of the head surface 7a. Therefore, first, the light projecting unit 9 projects the laser light 13 toward the guide rail 7.
- the laser beam 13 is applied to the surface of the guide rail 7 as indicated by the thick line in FIG.
- an approximate area is designated for each area where the measurement object is present. Therefore, the imaging unit 10 captures the approximate area.
- the imaging unit 10 receives the reflected light 33 of the laser light 13 projected on the head surface 7a and the side surface 7b, which are the processed surfaces of the guide rail 7, and generates image data.
- the calculation unit 11 performs image processing on the image data, thereby recognizing the laser beam 13 as the line segments 14 and 15, the intersection 16 of the line segment 14 and the line segment 15, the end point 17 of the line segment 14, the line Each end point 18 of the minute 15 is extracted as a feature point.
- the calculation unit 11 processes the image data obtained by the imaging unit 10, recognizes the laser beam 13 irradiated on the measurement object as a line segment, and extracts feature points from these line segments.
- the calculation unit 11 includes the feature points 16, 17, and 18 of the guide rail 7 shown in FIG. 2 and the feature points 19 of the guide rail 6 and the positions 20 and 21 of the reference lines 4 and 5 shown in FIG.
- the two ends 22 and 23 of the landing sill 3 are extracted as feature points, and the positions of the feature points are measured based on the distance between the feature points and the distance meter measured by the distance meter. calculate.
- the spot light when the laser beam 13 is projected onto the measurement object is photographed, and measurement distance information on the horizontal plane is acquired. Based on the measurement distance information and the angle information at the time of measurement, the coordinates of each spot light are calculated. From the coordinate information of each spot light, the intersections 16 and 19 of the head and side surfaces of the guide rails 6 and 7 to be measured, the end points 17 and 18, the both ends 22 and 23 of the landing threshold, and the positions 20 of the reference lines 4 and 5 , 21 are extracted as feature points.
- the identification of the position of the distance meter is as follows. Laser light 13 is projected onto the reference lines 4 and 5 from the light projecting section 9 of the dimension measuring device 8, and the calculation section 11 provides distance information D 20 and D 21 to the positions 20 and 21 of the reference lines 4 and 5. Is acquired. Next, the computing unit 11 uses the coordinate data of the reference lines 4 and 5 stored in advance based on the distance information D 20 and D 21 as shown in FIG. a circle to the distance D 20 between the radial center and the distance D 21 centered on the coordinates of the reference line 5 and generates a circle having a radius, the P 8 points of intersection of these two circles, rangefinders Identify as location.
- the calculation unit 11 uses the triangulation principle based on the set interval D between between the reference lines 4 and 5 and the distances D 20 and D 21 to calculate the distance meter for the two reference lines 4 and 5. Identify position coordinates.
- the position of the distance meter is the center point of the dimension measuring device 8.
- the position of the distance meter may be either the center point of the light projecting unit 9 or the center point of the imaging unit 10.
- the calculation part 11 is the characteristic of a measuring object based on the distance information between those measuring objects measured with a distance meter for each measuring object such as the guide rails 6 and 7 and the landing threshold 3. Two or more points are extracted, and the distance to those feature points is obtained.
- the calculation unit 11 calculates the position and angle of the measurement object based on the extracted distances to the feature points and the coordinate data of the reference lines 4 and 5, and calculates the position information of the measurement object as coordinate data. Get converted to.
- the calculating part 11 calculates the attitude
- the display unit 12 displays the measurement position of the measurement object as shown in FIG. 3B.
- the guide rails 6 and 7 and the landing threshold 3 are displayed as measurement objects.
- the gray portions indicate the normal installation positions with respect to the reference lines 4 and 5 where the guide rails 6 and 7 and the landing sill 3 are to be installed, respectively.
- the coordinate data of these regular installation positions is stored in advance in the calculation unit 11.
- frames 26 and 27 indicate the actual current position and inclination of the guide rails 6 and 7 obtained by measurement with respect to the reference lines 4 and 5.
- the frame 28 indicates the actual current position and inclination of the landing threshold 3 obtained by measurement with respect to the reference lines 4 and 5.
- the measurement result is enlarged and displayed by several times to several tens of times, so that the position and inclination of each measurement object can be easily visually identified.
- the arrow has shown the direction which should move the measuring object with respect to a regular installation position.
- the calculation unit 11 is configured to perform normalization based on the difference between the coordinates of the position of the measurement object based on the coordinates of the position of the feature point calculated by the calculation unit 11 and the coordinates of the regular installation position stored in advance in the calculation unit 11. A direction in which the measurement object should be moved with respect to the installation position is obtained, and the direction is enlarged and displayed on the display screen of the display unit 12 with an arrow.
- the worker adjusts the positions and inclinations of the guide rails 6 and 7 and the landing threshold 3 while viewing the screen of the display unit 12.
- a display indicating that the adjustment is completed is displayed on the display screen of the display unit 12.
- the character message 29 of “OK” is displayed as the display.
- the frames 26, 27, and 28 are displayed in red.
- the red display may be switched to the green display, and the “OK” character message 29 may be displayed in green.
- red and green are merely examples, and any color may be set.
- the dimension measuring apparatus it is possible to easily perform positioning and centering of landing equipment such as a guide rail and a landing sill without using a jig or a steel ruler. it can. Also, since it is not necessary to wire the guide rail centering piano wires 54 to 57 described in FIG. 7 and required in the prior art, installation preparation time can be reduced.
- the display screen of the display unit displays the current position of the measurement object and the normal installation position to be installed, so that the operator can easily recognize the positional deviation of the measurement object and make fine adjustments visually. Therefore, the time for fine adjustment can be greatly reduced.
- the position and inclination of the guide rail and the landing sill are enlarged and displayed on the display screen of the display unit, so that it is easy to see for workers, and the adjustment results are displayed in color, etc. Since it can also be displayed, the worker can easily confirm the current situation. Therefore, labor saving of installation adjustment work can be achieved.
- FIG. FIG. 4 shows a dimension measuring apparatus 8 according to the second embodiment.
- FIG. 4 shows a state in the hoistway 1 when the elevator is installed.
- the dimension measuring device 8 according to the second embodiment is installed in the hoistway 1.
- the same components as those in the first embodiment are denoted by the same reference numerals.
- the display unit 12 is not shown in FIG.
- FIG. 5 shows a plan view of the guide rail centering jig 65.
- the guide rail centering jig 65 includes a rod-shaped rail gauge and ruler plates 61 and 62 fixed to both ends of the rail gauge.
- the ruler plates 61 and 62 are notched 61a for setting the distance between the guide rails 6 and 7 by abutting the head surfaces 6a and 7a and the side surfaces 6b and 7b, which are processed surfaces of the guide rails 6 and 7, respectively. , 62a are formed. Further, on the rail gauge of the guide rail centering jig 65, rod-like base protrusions 66 and 67 serving as a reference for distance measurement are installed so as to protrude in the vertical direction from the surface of the rail gauge. . The guide rail centering jig 65 is engaged with the guide rails 6 and 7 by inserting the processed surfaces of the guide rails 6 and 7 into the notches 61a and 62a.
- the guide rail centering jig 65 shown in FIG. 5 is formed on the ruler plates 61 and 62 provided at both ends of the centering device 65 with the guide rails 6 and 7 temporarily fixed to a bracket (not shown).
- the notches 61a and 62a thus made are temporarily applied to the side surfaces of the guide rails 6 and 7. Thereafter, adjustment is made so that the processed surfaces of the guide rails 6 and 7 coincide with the ruler surfaces of the notches 61a and 62a. Further, the positions of the guide rails 6 and 7 are determined by measuring the positions of two points of the rod-like base protrusions 66 and 67 installed on the guide rail centering jig 65 by using the laser beam 13.
- the positions and inclinations 6 and 7 are calculated and displayed on the display screen of the display unit 12. Thereby, the worker adjusts the positions of the guide rails 6 and 7 so that the positions and the inclinations of the guide rails 6 and 7 are respectively set to the normal installation position and the inclination set in advance. At this time, if necessary, the level may be confirmed using a leveler 75. In this state, the guide rails 6 and 7 are fixed to the bracket.
- the reference line 30 installed separately from the reference lines 4 and 5 is projected with the laser beam 13 from the light projecting unit 9 of the dimension measuring device 8, and the calculation unit 11 provides the distance information of the position 31 of the reference line 30. Is acquired.
- the identification position of the distance meter identified from the distance information between the reference line 4 and the reference line 30 in the same manner as the distance meter identification method described in the first embodiment, and Based on the identification position of the distance meter identified from the distance information between the reference line 5 and the reference line 30, the two identification position information is averaged to calculate the position of the distance meter.
- At least three or more reference lines 4, 5, and 30 are arranged at predetermined intervals, respectively. Then, two of the three or more reference lines are selected, and based on the distance information between the selected two reference lines and the distance information between the selected two reference lines and the distance meter, Identify the position information of the distance meter. This is the first position information. Next, another two reference lines are selected, and based on the distance information between the selected two reference lines and the distance information between the selected two reference lines and the distance meter, the position information of the distance meter is obtained. Identify. This is the second position information. In this way, an average value of the first position information and the second position information is obtained, and the average value is identified as the position of the distance meter.
- the position 31 of the reference line 30 is used in addition to the positions 20 and 21 of the reference lines 4 and 5, the position of the distance meter can be identified more accurately. Therefore, the position information of each device can be calculated based on the position information of the distance meter with higher accuracy, and the position of each device can be measured in more detail.
- the guide rail centering jig 65 is used to determine the distance between the head surfaces 6a and 7a of the opposing guide rails 6 and 7, the guide rail can be easily used. The distance between 6 and 7 can be determined. Further, the guide rail centering jig 65 is provided with notches 61a and 62a, and the processed surfaces of the guide rails 6 and 7 are inserted into the notches 61a and 62a. Therefore, the side surfaces 6b and 7b of the guide rails 6 and 7 can be easily aligned on the same plane. Further, the positions of the guide rails 6 and 7 are determined by measuring the positions of two points of the rod-like base protrusions 66 and 67 installed on the guide rail centering jig 65. By identifying the inclination, the position of the guide rails 6 and 7 can be adjusted so that the position and inclination of the guide rails 6 and 7 are respectively set to the normal installation position and inclination set in advance.
- the same effect as in the first embodiment can be obtained, and further, in the second embodiment, the distance can be increased by installing three or more reference lines.
- the position of the meter can be identified more accurately.
- the guide rail centering jig 65 is used to determine the distance between the head surfaces 6a, 7a of the left and right guide rails 6, 7, and to align the side surfaces 6b, 7b on the same surface. Therefore, the left and right guide rails 6 and 7 can be positioned at the same time, and the installation work can be further saved.
- FIG. 6 shows a dimension measuring apparatus 8A according to the third embodiment.
- FIG. 6 shows a state in the hoistway 1 when the elevator is installed.
- the dimension measuring device 8 ⁇ / b> A according to the third embodiment is installed in the hoistway 1 when the elevator is installed.
- the same components as those in the first embodiment are denoted by the same reference numerals.
- the hoistway 1 is provided with a plurality of landing openings 2a and 2b for each floor.
- a landing threshold 3a is installed below the landing opening 2a.
- a landing threshold 3b is installed at the lower part of the landing opening 2b, and a landing door device 3c is installed at the upper part of the landing opening 2b.
- a landing door device is also installed above the landing opening 2a, but is not shown in FIG.
- reference lines 4 and 5 are installed on both sides of the landing openings 2a and 2b. Also in the third embodiment, the reference lines 4 and 5 serve as installation standards for landing equipment such as the landing thresholds 3a and 3b and the landing door device 3c.
- the dimension measuring device 8 ⁇ / b> A includes an upper light projecting unit 9 a, a lower light projecting unit 9 b, an imaging unit 10 ⁇ / b> A, a calculation unit 11 ⁇ / b> A, and a display unit 12.
- the display unit 12 is not shown in FIG.
- the upper projecting portion 9a and the lower projecting portion 9b, in the vertical direction, are spaced apart by a distance D 2 which is set in advance.
- the upper light projecting unit 9a projects the laser light 13a in a line shape in the horizontal direction.
- a plane on which the laser beam 13a is projected is referred to as a first horizontal plane.
- the upper light projecting unit 9a is used for measuring the distance in the first horizontal plane.
- the lower light projecting unit 9b projects the laser light 13b in a line shape in the horizontal direction.
- the plane on which the laser beam 13b is projected is referred to as a second horizontal plane.
- the lower light projecting unit 9b is used to measure the distance in the second horizontal plane.
- the imaging unit 10A is disposed between the upper light projecting unit 9a and the lower light projecting unit 9b. Imaging unit 10A is spaced a predetermined distance D 1 from the upper light projecting portion 9a is previously set in the vertical direction, are spaced apart by a predetermined distance D 1 which is previously set from the lower projecting portion 9b in the vertical direction Yes.
- the imaging unit 10A is composed of, for example, a CCD camera and functions as an image sensor.
- the imaging unit 10A receives the reflected lights 33a and 33b of the laser beams 13a and 13b and generates image data.
- the calculation unit 11A processes the image data captured by the imaging unit 10A, detects the reflected lights 33a and 33b of the laser beams 13a and 13b, and calculates the position of the measurement object using the principle of triangulation.
- the display unit 12 displays the result calculated by the calculation unit 11A. For an example of the display screen of the display unit 12, see, for example, FIG. 3B.
- the operation of the dimension measuring apparatus 8A is basically the same as the operation of the dimension measuring apparatus 8 described in the first embodiment. Therefore, only differences from the first embodiment will be described below.
- the calculation unit 11A processes image data obtained by the imaging unit 10A photographing the reflected light 33b of the laser beam 13b, and the positions 40 and 41 of the reference lines 4 and 5 are the characteristics in the second horizontal plane, respectively. Extract as a point. Next, the calculation unit 11A determines the position P 8b of the dimension measuring device 8, that is, the position P 8b of the distance meter based on the positions 40 and 41 of the reference lines 4 and 5 by the same method as in the first embodiment. Identify. In this way, the calculation unit 11A identifies the position P8b of the distance meter within the second horizontal plane.
- the calculation unit 11A processes image data obtained by the imaging unit 10A photographing the reflected light 33a of the laser light 13a, and sets the positions 42 and 43 of the reference lines 4 and 5 to the first Extracted as feature points on the horizontal plane.
- identification calculation unit 11A based on the position 42 and 43 of the reference line 4,5 in the same way as in the first embodiment, the position P 8a of the dimension measuring apparatus 8A, i.e., the position P 8a rangefinder To do. In this way, the calculation unit 11A identifies the position P8b of the distance meter within the first horizontal plane.
- Calculation unit 11A includes a first identification position P 8a rangefinder in the horizontal plane identified using a laser beam 13a which is projected in the upper projecting portion 9a, the laser beam projected by the lower projecting portion 9b second is the distance meter identification position P 8b in the horizontal plane identified using 13b, in the vertical direction, it is judged whether are offset from each other, if the offset is sizer 8A is vertically It is determined that it is inclined with respect to In that case, the calculation unit 11 ⁇ / b> A displays the determination result on the display screen of the display unit 12. Further, the calculation unit 11A may calculate the inclination of the dimension measuring device 8A with respect to the vertical direction and display it on the display screen of the display unit 12. Thereby, the worker can correct the falling of the dimension measuring device 8A.
- the calculation unit 11A may calculate the amount of collapse of the dimension measuring device 8A and calculate the position of each device with respect to the reference lines 4 and 5 in consideration of the amount of collapse. Accordingly, the calculation unit 11A identifies the position of the dimension measuring device 8A at a preset vertical position with respect to the reference lines 4 and 5 installed in the vertical direction, thereby causing an error due to the amount of collapse of the dimension measuring device 8A. Can be corrected. Therefore, the position of each device in the hoistway 1 can be measured with higher accuracy.
- the dimension measuring apparatus 8A is provided with the first distance meter for measuring the distance in the first horizontal plane and the distance D 2 away from the first distance meter. And a second distance meter for measuring a distance in the second horizontal plane.
- Dimension measuring apparatus 8A is set to the position P 8a rangefinder identified in the first horizontal plane, the position P 8b rangefinder identified in a second horizontal plane, based on the distance D 2, dimension measuring apparatus 8A Identify the vertical fall of the.
- the dimension measuring devices 8 and 8A have been described with respect to the example used for position measurement and positioning in the installation of each device that constitutes the elevator. Needless to say, the dimension measuring devices 8, 8A can be used for position measurement and positioning of an arbitrary measurement object such as a building pillar or a building material such as a window frame.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Indicating And Signalling Devices For Elevators (AREA)
Abstract
寸法測定装置8は、水平面内の距離を計測する距離計9,10と、距離計9,10で計測された距離に基づいて距離計の位置を同定して測定対象物3,6,7の位置及び姿勢を算出する演算部11とを備えている。演算部11は、基準線4と距離計との距離と、基準線5と距離計との距離と、基準線4,5間の間隔とに基づいて、距離計の位置を同定し、同定された距離計の位置と距離計で計測された測定対象物までの距離に基づいて、測定対象物の表面における予め測定対象として設定された少なくとも2つの特徴点の位置を算出するとともに、それらの特徴点間の傾きを算出する。
Description
この発明は寸法測定装置に関し、特に、エレベータの昇降路内に設置する機器の位置や姿勢を測定するための寸法測定装置に関する。
従来、エレベータの昇降路内にかご側ガイドレール及びおもり側ガイドレールを設置する場合、それらのガイドレールの位置を正確に位置決めして垂直になるように設置する作業、いわゆる芯出し作業を行う必要があった。
図7に、従来の一般的な芯出し作業の様子を示す(例えば、特許文献1参照)。図7に示すように、まず、建築の基準線となる乗場基準用のピアノ線50,51を基に、昇降路上部に上部型板52を設置するとともに、昇降路下部に下部型板53を設置する。そうして、上部型板52から下部型板53に向かって4本のピアノ線54~57を吊り下げ、ピアノ線54~57に対するかご側ガイドレール(図示せず)およびおもり側ガイドレール(図示せず)の位置決めが行われる。なお、ピアノ線54,55が、かご側ガイドレールの芯出用のピアノ線で、ピアノ線56,57が、おもり側ガイドレールの芯出し用のピアノ線である。従って、かご側ガイドレールは、ピアノ線54,55を基準に位置決めが実施され、おもり側ガイドレールは、ピアノ線56,57を基準に位置決めが実施される。
また、乗場基準用のピアノ線50,51を用いて、乗場機器の位置決めが実施される。図7においては、乗場機器の1つとして、乗場敷居58が図示されている。乗場機器には、乗場ドア装置等の他の機器が含まれるが、図7では、それらの図示を省略している。
さらに、かご側ガイドレールおよびおもり側ガイドレールの芯出作業には、図8に示すような芯出し装置が使用される(例えば、特許文献1,2参照)。図8においては、ピアノ線54,55を基準に、芯出し装置を用いて、かご側ガイドレール73,74の位置決めを行う様子が示されている。なお、おもり側ガイドレールについても、同様に位置決めを行うため、ここでは、かご側ガイドレール73,74の位置決めについてのみ説明する。図8に示すように、芯出し装置は、棒状のレールゲージ70と、レールゲージ70の両端に固定された定規板71,72とから構成されている。定規板71,72には、かご側ガイドレール73,74のレール面を突当てることにより、かご側ガイドレール73,74間の間隔を設定するための切欠き71a,72aが形成されている。さらに、定規板71,72には、ピアノ線54,55を挿入するための切欠き71b,72bが形成されている。
図8に示す芯出し装置の使用方法について説明する。まず、かご側ガイドレール73,74を、図示しないブラケットに仮固定する。その状態で、レールゲージ70の両端に設けた各定規板71,72に形成された切欠き71a,72aをかご側ガイドレール73,74の側面に仮当てする。その後、かご側ガイドレール73,74のレール面が切欠き71a,72aの定規面に確実に一致するように調整する。また、この際に、レールゲージ70に固定された水平器75を用いて、レールゲージ70の水平を確認する。次に、切欠き71b,72bにピアノ線54,55を合わせることで、芯出し装置の位置決めを行う。そうして、この状態において、かご側ガイドレール73,74をブラケットに固定する。
上述したように、従来の芯出し作業においては、昇降路の上部および下部に上部型板52および下部型板53を設置して、ガイドレール芯出用のピアノ線54,55,56,57を設置する。しかしながら、これらのピアノ線54,55,56,57の設置作業においては、乗場基準用のピアノ線50,51に対する位置決め調整が必要となり、乗場基準用のピアノ線50,51の設置作業と比較して、多大な時間を要する。
さらに、ガイドレールの位置決めの際には、図8に示すようなレールゲージ70を左右のかご側ガイドレール73,74に当てて、芯出用のピアノ線54,55,56,57との位置関係を目視で微調整するため、位置決めに多大な時間を要する。
また、乗場敷居58および乗場ドア装置などの乗場機器の位置決めをする際には、左右の乗場基準用のピアノ線50,51に対し、鋼尺を当てて、乗場機器の位置および傾きを調整するが、目視による微調整に多大な時間を要する。
この発明は、かかる問題点を解決するためになされたものであり、測定対象物の位置を容易にかつ正確に測定して、測定対象物の位置決めを容易に行うことが可能な寸法測定装置を得ることを目的とする。
この発明は、水平面内の距離を計測する距離計と、前記距離計で計測された前記距離に基づいて前記距離計の位置を同定するとともに測定対象物の位置及び姿勢を算出する演算部とを備え、前記距離計は、前記測定対象物の据付基準として鉛直方向に予め設置された2つの基準線と前記距離計との間の距離を計測するとともに、据付対象の前記測定対象物と前記距離計との間の距離を計測し、前記演算部は、前記距離計によって計測された前記2つの基準線の一方と前記距離計との間の距離と、前記距離計によって計測された前記2つの基準線の他方と前記距離計との間の距離と、前記2つの基準線間の予め設定された設定間隔とに基づいて、前記2つの基準線に対する前記距離計の位置を同定するとともに、同定された前記距離計の位置と前記距離計で計測された前記測定対象物と前記距離計との間の距離に基づいて、前記測定対象物の表面における予め測定対象として設定された少なくとも2つの特徴点の位置を算出するとともに、前記特徴点間の傾きを算出する、寸法測定装置である。
この発明に係る寸法測定装置においては、水平面内の距離を計測する距離計を有し、基準線に対する距離計の位置を同定して、測定対象物の位置を算出するようにしたので、測定対象物の位置を容易にかつ正確に測定して、測定対象物の位置決めを容易に行うことができる。
以下、図面に基づき、この発明の実施の形態に係る寸法測定装置について説明する。
実施の形態1.
図1は、エレベータの据付時の昇降路1内の様子を示している。図1に示すように、エレベータの据付時には、本実施の形態1に係る寸法測定装置8が、昇降路1内に設置される。
図1は、エレベータの据付時の昇降路1内の様子を示している。図1に示すように、エレベータの据付時には、本実施の形態1に係る寸法測定装置8が、昇降路1内に設置される。
図1に示すように、昇降路1には、乗場開口部2が配置されている。乗場開口部2は、各階床の乗場に対して、1つずつ設置される。従って、それらの乗場開口部2は、図6に示す乗場開口部2a,2bのように、鉛直方向に並んで配置されている。しかしながら、図1においては、図の簡略化のために、複数の乗場開口部2のうちの1つのみを図示している。また、図1に示すように、乗場開口部2の下部には、乗場敷居3が設置されている。図1においては、乗場機器として、乗場敷居3のみを図示しているが、乗場機器には、乗場ドア装置、三方枠などの他の機器も含まれる。乗場ドア装置は乗場開口部2の上部に設置され、三方枠は乗場開口部2の周囲に設置される。乗場ドア装置は、乗場開口部2に設置される乗場ドアの開閉を行うための装置である。乗場開口部2の両側には、乗場開口部2に対して一定距離だけ離間して、基準線4,5が設けられている。基準線4,5は、例えばピアノ線から構成されている。基準線4,5は、乗場敷居3、乗場ドア装置、三方枠などの乗場機器を据え付ける際の据付基準として用いられる。基準線4,5は、それぞれ、昇降路1の頂上部から最下部に向かって垂直に設置される。
さらに、エレベータの据付時には、図1に示すように、昇降路1内に、ガイドレール6,7が設置される。ガイドレールには、かご側ガイドレールとおもり側ガイドレールとがあるが、図1においては、図の簡略化のために、かご側ガイドレールのみをガイドレール6,7として図示している。
昇降路1内の中央部には、寸法測定装置8が設けられている。寸法測定装置8は、投光部9と、撮像部10と、演算部11と、表示部12とから構成されている。投光部9は、レーザ光13を水平方向にライン状に投光する。レーザ光13は、測定対象物に入射され、測定対象物の表面で反射して、反射光33となる。撮像部10は、投光部9から鉛直方向に予め設定された一定距離D1だけ離間して配置されている。撮像部10は、例えば、CCDカメラから構成され、画像センサとして機能する。撮像部10は、レーザ光13の反射光33を受光して画像データを生成する。演算部11は、撮像部10が撮影した画像データを処理して、レーザ光13の反射光33を検出し、三角測量の原理を用いて、寸法測定装置8の位置を同定するとともに測定対象物の位置を算出する。表示部12は、演算部11が演算した結果を表示する。
なお、図1においては、投光部9と撮像部10とを固定させて、一定のエリアに対してレーザ光13を投光する例を示している。しかしながら、その場合に限らず、投光部9と撮像部10とを鉛直軸回りに回転させるようにしてもよい。このとき、投光部9は、鉛直軸を中心として、一方向に回転しながら、レーザ光13を水平方向にビーム状に投光する。撮像部10は、投光部9と同期して回転し、レーザ光13の反射光33を受信する。寸法測定装置8は、このように投光部9と撮像部10とを用いて、水平面内を回転走査することで、各回転角度ごとに測定対象物までの距離を測定して測定対象物の位置を算出する構成としてもよい。
次に、寸法測定装置8のハードウェア構成について説明する。図9(a)は、寸法測定装置8の各機能がハードウェアで構成される場合を示し、図9(b)は、寸法測定装置8の各機能がソフトウェアで構成される場合を示す。
図9(a)および図9(b)に示すように、寸法測定装置8における入力部は距離計1100または距離計2200であり、表示部12はディスプレイ1200または2300である。距離計は、投光部9と、撮像部10と、距離を算出する距離算出部とから構成される。距離算出部は、図9(a)の場合、処理回路1110で構成され、図9(b)の場合、プロセッサ2210とメモリ2220で構成される。図9(a)に示すように、処理回路1110が専用のハードウェアである場合、処理回路1000は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらを組み合わせたものが該当する。また、図9(b)の場合、距離算出部の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリ2220に格納される。処理回路であるプロセッサ2210は、メモリ2220に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。
また、寸法測定装置8の演算部11の各機能は、処理回路により実現される。図9(a)に示すように、処理回路1000が専用のハードウェアである場合、処理回路1000は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらを組み合わせたものが該当する。上記各部の機能それぞれを処理回路で実現してもよいし、各部の機能をまとめて処理回路で実現してもよい。一方、図9(b)に示すように、処理回路がCPUの場合、演算部11の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリ2100に格納される。処理回路であるプロセッサ2000は、メモリ2100に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。
なお、図9(a)では、処理回路1110と処理回路1000とを別体で構成するように示しているが、これらは、1つの処理回路としてもよい。また、図9(b)では、プロセッサ2210とプロセッサ2000とを別体で構成するように示しているが、これらは、1つのプロセッサとしてもよい。同様に、図9(b)では、メモリ2220とメモリ2100とを別体で構成するように示しているが、これらは、1つのメモリとしてもよい。
このように、寸法測定装置8は、水平面内の距離を計測する距離計と、距離計で計測された距離に基づいて距離計の位置を同定するとともに測定対象物の位置および姿勢を算出する演算部と、演算部の演算結果を表示するディスプレイとから構成されている。距離計は、基準線4,5と距離計との間の距離を計測するとともに、据付対象の測定対象物と距離計との間の距離を測定する。演算部は、距離計によって計測された基準線4と距離計との間の距離と、距離計によって計測された基準線5と距離計との間の距離と、基準線4と基準線5との間の距離とに基づいて、基準線4,5に対する距離計の位置を同定する。また、演算部は、同定された距離計の位置と、距離計で計測された測定対象物と距離計との間の距離とに基づいて、測定対象物の表面における予め測定対象として設定された少なくとも2つの特徴点の位置を算出するとともに、それらの特徴点間の傾きを算出する。
次に、図1に示した本実施の形態1に係る寸法測定装置8の動作について説明する。図2は、図1の丸枠A内を示した拡大斜視図である。図2においては、分かりやすいように、ガイドレール7の一部分だけを示している。
まず、図1に示すように、寸法測定装置8の投光部9から水平方向に投光されたレーザ光13は、大部分が昇降路1の内壁面に投射されるが、一部分が昇降路1内に設置された測定対象物に投射される。図2を用いて、昇降路1内のガイドレール6,7などの測定対象物について説明する。演算部11においては、測定対象物が予め設定されている。さらに、演算部11においては、各測定対象物ごとに、測定対象となる部分が予め設定されている。以下では、測定対象となる部分を特徴点と呼ぶこととする。演算部11では、レーザ光13を用いて、特徴点を抽出する。たとえば、図2の例で説明する。いま、ガイドレール7の加工面である頭面7aと側面7bにおける3つの点16,17,18を特徴点とすることが演算部11において予め設定されているとする。点16は、頭面7aと側面7bとの交点である。点17は、側面7bの端部を示す点であり、点18は、頭面7aの端部を示す点である。そこで、まず、投光部9が、ガイドレール7に向けてレーザ光13を投光する。当該レーザ光13は、図2の太線で示されるように、ガイドレール7の表面に照射される。一方、撮像部10においては、測定対象物が、それぞれ、どのエリアに存在するかにつき、おおよそのエリアが指定されている。従って、撮像部10は、当該おおよそのエリアを撮影する。そうして、撮像部10は、ガイドレール7の加工面である頭面7aと側面7bとに投射されたレーザ光13の反射光33を受光して、画像データを生成する。演算部11は、当該画像データを画像処理することで、レーザ光13を線分14,15として認識し、線分14と線分15との交点16、および、線分14の端点17、線分15の端点18を、それぞれ、特徴点として抽出する。
このように、演算部11においては、測定対象物ごとに、測定対象となる特徴点が予め設定されている。測定対象物としては、ガイドレール6,7、基準線4,5、乗場敷居3などの乗場機器が挙げられる。演算部11は、撮像部10により得られる画像データを処理して、測定対象物に照射されたレーザ光13を線分として認識し、それらの線分から特徴点を抽出する。このように、演算部11は、図2に示すガイドレール7の特徴点16,17,18、および、図1に示す、ガイドレール6の特徴点19、基準線4,5の位置20,21、乗場敷居3の両端22,23などを、それぞれ、特徴点として抽出し、距離計で計測された、それらの特徴点と距離計との間の距離に基づいて、それらの特徴点の位置を算出する。
あるいは、投光部9を回転させながら距離を測定する場合は、レーザ光13を測定対象物に投光した際のスポット光を撮影し、水平面上の測定距離情報を取得する。この測定距離情報と測定した際の角度情報とに基づいて、各スポット光の座標を算出する。各スポット光の座標情報から測定対象となるガイドレール6,7の頭面と側面の交点16,19、および、端点17,18、乗場敷居の両端22,23、基準線4,5の位置20,21を、それぞれ、特徴点として抽出する。
距離計の位置の同定は次の通りである。基準線4,5には、寸法測定装置8の投光部9からレーザ光13が投光され、演算部11により、基準線4,5の位置20,21までの距離情報D20,D21が取得される。次に、演算部11は、それらの距離情報D20,D21に基づいて、図3Aに示すように、予め記憶されている基準線4,5の座標データを用いて、基準線4の座標を中心とした距離D20を半径とする円と、基準線5の座標を中心とした距離D21を半径とする円とを生成し、これら2つの円の交わる点P8を、距離計の位置として同定する。すなわち、演算部11は、基準線4,5間の設定間隔Dbetweenと、距離D20,D21とに基づいて、三角測量の原理を用いて、2つの基準線4,5に対する距離計の位置の座標を同定する。この場合の距離計の位置は、寸法測定装置8の中心点とする。あるいは、距離計の位置を、投光部9の中心点、または、撮像部10の中心点のいずれかとしてもよい。
演算部11は、ガイドレール6,7、乗場敷居3などの各測定対象物につき、距離計で測定したそれらの測定対象物と距離計との間の距離情報に基づいて、測定対象物の特徴点を2つ以上抽出し、それらの特徴点までの距離を求める。演算部11は、抽出したそれらの特徴点までの距離と基準線4,5の座標データとに基づいて、測定対象物の位置と角度とを算出して、測定対象物の位置情報を座標データに変換して取得する。また、演算部11は、それらの特徴点間の傾きから測定対象物の姿勢を算出する。
このようにして抽出した特徴点の座標に基づいて、表示部12では、図3Bに示すように、測定対象物の測定位置を表示する。図3Bでは、測定対象物として、ガイドレール6,7と乗場敷居3とが表示されている。図3Bにおいて、グレー色の部分は、ガイドレール6,7および乗場敷居3をそれぞれ設置すべき基準線4,5に対する正規設置位置を表示している。これらの正規設置位置の座標データは、演算部11に予め記憶されている。また、図3Bにおいて、枠26,27は、基準線4,5に対する測定により得られたガイドレール6,7の実際の現在の位置および傾きを示している。同様に、枠28は、基準線4,5に対する測定により得られた乗場敷居3の実際の現在の位置および傾きを示している。表示部12においては、測定結果を数倍から数十倍程度拡大して表示することにより、各測定対象物の位置および傾きが視覚的に判別しやすくなるので、好ましくは、そのように拡大して表示する。また、図3Bにおいて、矢印は、正規設置位置に対する測定対象物を移動させるべき方向を示している。演算部11は、演算部11で算出された特徴点の位置の座標に基づく測定対象物の位置の座標と、演算部11に予め記憶された正規設置位置の座標との差分に基づいて、正規設置位置に対して測定対象物を移動させるべき方向を求め、当該方向を矢印で表示部12の表示画面に拡大して表示する。また、表示部12の画面を見ながら、作業員が、ガイドレール6,7及び乗場敷居3の位置および傾きを調整する。その結果、ガイドレール6,7及び乗場敷居3が、それぞれ、正規設置位置に対して正確に設置された際には、調整完了した旨を示す表示を表示部12の表示画面に表示する。図3Bの例では、当該表示として、「OK」の文字メッセージ29を表示している。また、正規設置位置から測定対象物の位置がずれている場合は、枠26,27,28を赤色で表示し、微調整の結果、測定対象物が正規設置位置に設置された際には、赤色表示を緑色表示に切り替えるとともに、緑色で「OK」の文字メッセージ29を表示するようにしてもよい。なお、赤色、緑色は、単なる例であり、任意の色に設定して良いことは言うまでもない。
以上のように、本実施の形態1に係る寸法測定装置によれば、治具または鋼尺などを用いることなく、ガイドレールおよび乗場敷居などの乗場機器の位置決めおよび芯出しを容易に行うことができる。また、図7で説明した、従来は必要であった、ガイドレール芯出用のピアノ線54~57を配線する必要が無いため、据付準備時間を削減できる。さらに、表示部の表示画面に、測定対象物の現在位置と設置すべき正規設置位置とを表示するようにしたので、測定対象物の位置ずれを作業員が容易に認識でき、目視による微調整が不要となるため、微調整の時間が大幅に削減できる。さらに、表示部の表示画面に、ガイドレールおよび乗場敷居の位置および傾きを拡大して表示するようにしたため、作業員にとって、見やすく、さらに、調整した結果を色表示するなど、視覚的に判りやすく表示することもできるので、作業員が、現在の状況を容易に確認することができる。よって、据付調整作業の省力化ができる。
実施の形態2.
図4に、本実施の形態2に係る寸法測定装置8を示す。図4は、エレベータの据付時の昇降路1内の様子を示している。図4に示すように、エレベータの据付時には、本実施の形態2に係る寸法測定装置8が、昇降路1内に設置される。図4において、上記の実施の形態1と同じ構成については、同一符号を付して示す。但し、図4においては、表示部12の図示を省略している。
図4に、本実施の形態2に係る寸法測定装置8を示す。図4は、エレベータの据付時の昇降路1内の様子を示している。図4に示すように、エレベータの据付時には、本実施の形態2に係る寸法測定装置8が、昇降路1内に設置される。図4において、上記の実施の形態1と同じ構成については、同一符号を付して示す。但し、図4においては、表示部12の図示を省略している。
以下では、上記の実施の形態1との違いのみ記載する。本実施の形態2においては、基準線4,5以外に、別の基準線30を設置している。基準線30は、例えば、ピアノ線から構成される。基準線30は、基準線4,5と同様に、昇降路1の頂上部から最下部に向かって垂直に設置される。また、本実施の形態2においては、ガイドレール芯出し用治具65を用いる。図5に、ガイドレール芯出し用治具65の平面図を示す。ガイドレール芯出し用治具65は、図4および図5に示すように、棒状のレールゲージと、レールゲージの両端に固定された定規板61,62とから構成されている。定規板61,62には、ガイドレール6,7の加工面である頭面6a,7aと側面6b,7bを突当てることにより、ガイドレール6,7間の距離を設定するための切欠き61a,62aが形成されている。また、ガイドレール芯出し用治具65のレールゲージには、距離測定用の基準となる棒状の基点突起部66,67がレールゲージの表面から鉛直方向に向かって突出するように設置されている。切欠き61a,62aにガイドレール6,7の加工面を挿入することで、ガイドレール芯出し用治具65をガイドレール6,7に係合させる。
図5に示すガイドレール芯出し用治具65は、まず、ガイドレール6,7を、図示しないブラケットに仮固定した状態で、芯出し装置65の両端に設けた各定規板61,62に形成された切欠き61a,62aをガイドレール6,7の側面に仮当てする。その後、ガイドレール6,7の加工面が切欠き61a,62aの定規面に確実に一致するように調整する。さらに、ガイドレール6,7の位置については、ガイドレール芯出し用治具65に設置した棒状の基点突起部66,67の2点の位置をレーザ光13を用いて測定することによって、ガイドレール6,7の位置および傾きを算出して、表示部12の表示画面に表示する。これにより、作業員が、ガイドレール6,7の位置および傾きがそれぞれ予め設定された正規設置位置および傾きになるように、ガイドレール6,7の位置を調整する。また、このときに、必要であれば、さらに水平器75を用いて水平を確認してもよい。そうして、その状態において、ガイドレール6,7をブラケットに固定する。
また、基準線4,5とは別に設置した基準線30には、寸法測定装置8の投光部9からレーザ光13が投光され、演算部11により、基準線30の位置31の距離情報が取得される。
本実施の形態2においては、上記の実施の形態1に記載の距離計の同定方法と同様にして、基準線4と基準線30との距離情報から同定される距離計の同定位置、および、基準線5と基準線30との距離情報から同定される距離計の同定位置に基づいて、これら2つの同定位置情報を平均化して距離計の位置を算出する。
このように、本実施の形態2においては、少なくとも3つ以上の基準線4,5,30を、それぞれ、予め設定された間隔を介して配置する。そうして、3つ以上の基準線の中から2つを選定して、選定した2つの基準線間の間隔情報と、選定した2つの基準線と距離計との距離情報とを元に、距離計の位置情報を同定する。これを第1の位置情報とする。次に、別の2つの基準線を選定して、選定した2つの基準線間の間隔情報と、選定した2つの基準線と距離計との距離情報とを元に、距離計の位置情報を同定する。これを第2の位置情報とする。こうして、第1の位置情報と第2の位置情報との平均値を求めて、当該平均値を距離計の位置として同定する。
このように、本実施の形態2においては、基準線4,5の位置20,21に加え、基準線30の位置31を活用するため、距離計の位置をより正確に同定することができる。よって、より精度の高い距離計の位置情報を基準に、各機器の位置情報を算出することができ、より詳細に各機器の位置を測定することができる。
また、本実施の形態2においては、ガイドレール芯出し用治具65を用いて、対向するガイドレール6,7の頭面6a,7a間の距離を決めるようにしたので、容易に、ガイドレール6,7間の距離を決定することができる。さらに、ガイドレール芯出し用治具65に切欠き61a,62aを設けて、切欠き61a,62aにガイドレール6,7の加工面を挿入することで、ガイドレール6,7の水平面上の角度を調整するようにしたので、ガイドレール6,7の側面6b,7bを同一平面上に容易に揃えることができる。また、ガイドレール6,7の位置については、ガイドレール芯出し用治具65に設置した棒状の基点突起部66,67の2点の位置を測定することによって、ガイドレール6,7の位置および傾きを同定して、ガイドレール6,7の位置および傾きがそれぞれ予め設定された正規設置位置および傾きになるように、ガイドレール6,7の位置を調整することができる。
以上のように、本実施の形態2においては、上記の実施の形態1と同様の効果が得られるとともに、さらに、本実施の形態2においては、基準線を3本以上設置することで、距離計の位置をより精度よく同定することができる。さらに、本実施の形態2では、ガイドレール芯出し用治具65を用いて、左右のガイドレール6,7の頭面6a,7a間距離を定めるとともに側面6b,7bを同一面に揃えるようにしたので、左右のガイドレール6,7を同時に位置決めすることができ、据付作業をより省力化することができる。
実施の形態3.
図6に、本実施の形態3に係る寸法測定装置8Aを示す。図6は、エレベータの据付時の昇降路1内の様子を示している。図6に示すように、エレベータの据付時には、本実施の形態3に係る寸法測定装置8Aが、昇降路1内に設置される。図6において、上記の実施の形態1と同じ構成については、同一符号を付して示す。
図6に、本実施の形態3に係る寸法測定装置8Aを示す。図6は、エレベータの据付時の昇降路1内の様子を示している。図6に示すように、エレベータの据付時には、本実施の形態3に係る寸法測定装置8Aが、昇降路1内に設置される。図6において、上記の実施の形態1と同じ構成については、同一符号を付して示す。
図6に示すように、昇降路1には、各階床に対する複数の乗場開口部2a,2bが設置される。また、乗場開口部2aの下部には、乗場敷居3aが設置される。また、乗場開口部2bの下部には、乗場敷居3bが設置され、乗場開口部2bの上部には、乗場ドア装置3cが設置される。なお、乗場開口部2aの上部にも、同様に、乗場ドア装置が設置されるが、図6においては図示を省略している。
乗場開口部2a,2bの両側には、実施の形態1と同様に、基準線4,5が設置されている。本実施の形態3においても、基準線4,5は、乗場敷居3a,3b、乗場ドア装置3cなどの乗場機器の据付基準となる。
昇降路1内の中央部には、寸法測定装置8Aが設けられる。寸法測定装置8Aは、図6に示すように、上部投光部9aと、下部投光部9bと、撮像部10Aと、演算部11Aと、表示部12とから構成されている。但し、図6においては、表示部12は図示を省略している。
上部投光部9aと下部投光部9bとは、鉛直方向に、予め設定された距離D2だけ離間して設けられている。上部投光部9aは、レーザ光13aを水平方向にライン状に投光する。以下では、レーザ光13aが投光される平面を、第1の水平面と呼ぶこととする。上部投光部9aは、第1の水平面内の距離を計測するために用いられる。一方、下部投光部9bは、レーザ光13bを水平方向にライン状に投光する。以下では、レーザ光13bが投光される平面を、第2の水平面と呼ぶこととする。下部投光部9bは、第2の水平面内の距離を計測するために用いられる。
撮像部10Aは、上部投光部9aと下部投光部9bとの間に配置されている。撮像部10Aは、上部投光部9aから鉛直方向に予め設定された一定距離D1だけ離間し、下部投光部9bから鉛直方向に予め設定された一定距離D1だけ離間して配置されている。撮像部10Aは、例えば、CCDカメラから構成され、画像センサとして機能する。撮像部10Aは、レーザ光13a,13bの反射光33a,33bを受光して画像データを生成する。
演算部11Aは、撮像部10Aが撮影した画像データを処理して、レーザ光13a,13bの反射光33a,33bを検出し、三角測量の原理を用いて、測定対象物の位置を算出する。
表示部12は、演算部11Aが演算した結果を表示する。表示部12の表示画面の例としては、例えば、図3Bを参照されたい。
次に、本実施の形態3に係る寸法測定装置8Aの動作について説明する。寸法測定装置8Aの動作は、上記の実施の形態1で説明した寸法測定装置8の動作と基本的に同じである。従って、以下では、実施の形態1と異なる点についてのみ説明する。
演算部11Aは、撮像部10Aがレーザ光13bの反射光33bを撮影することにより得られる画像データを処理して、基準線4,5の位置40,41を、それぞれ、第2の水平面における特徴点として抽出する。次に、演算部11Aは、基準線4,5の位置40,41に基づいて、実施の形態1と同じ方法で、寸法測定装装置8の位置P8b、すなわち、距離計の位置P8bを同定する。このように、演算部11Aは、第2の水平面内で距離計の位置P8bを同定する。
同様に、演算部11Aは、撮像部10Aがレーザ光13aの反射光33aを撮影することにより得られる画像データを処理して、基準線4,5の位置42,43を、それぞれ、第1の水平面における特徴点として抽出する。次に、演算部11Aは、基準線4,5の位置42,43に基づいて、実施の形態1と同じ方法で、寸法測定装置8Aの位置P8a、すなわち、距離計の位置P8aを同定する。このように、演算部11Aは、第1の水平面内で距離計の位置P8bを同定する。
演算部11Aは、上部投光部9aで投光されたレーザ光13aを用いて同定した第1の水平面内の距離計の同定位置P8aと、下部投光部9bで投光されたレーザ光13bを用いて同定した第2の水平面内の距離計の同定位置P8bとが、鉛直方向において、互いにずれているか否を判定して、ずれている場合には、寸法測定装置8Aが鉛直方向に対して傾いていると判定する。その場合、演算部11Aは、当該判定結果を表示部12の表示画面に表示する。さらに、演算部11Aは、鉛直方向に対する寸法測定装置8Aの傾きを算出して表示部12の表示画面に表示するようにしてもよい。これにより、作業員が、寸法測定装置8Aの倒れを矯正することができる。
あるいは、演算部11Aが、寸法測定装置8Aの倒れ量を算出し、当該倒れ量を考慮に入れて、基準線4,5に対する各機器の位置を算出するようにしてもよい。これにより、演算部11Aは、鉛直方向に設置した基準線4,5に対し、予め設定された上下の位置で寸法測定装置8Aの位置を同定することで、寸法測定装置8Aの倒れ量による誤差を補正することができる。よって、より高精度に、昇降路1内の各機器の位置を測定することができる。
以上のように、本実施の形態3に係る寸法測定装置8Aは、第1の水平面内の距離を計測する第1の距離計と、第1の距離計から距離D2だけ離間して設けられ、第2の水平面内の距離を計測する第2の距離計とを有している。寸法測定装置8Aは、第1の水平面内で同定した距離計の位置P8aと、第2の水平面内で同定した距離計の位置P8bと、距離D2とに基づいて、寸法測定装置8Aの鉛直方向の倒れを同定する。これにより、寸法測定装置8Aの倒れ量による誤差を補正することができので、より高精度に、昇降路1内の各機器の位置を測定することができる。
なお、上記の実施の形態1~3においては、寸法測定装置8,8Aを、エレベータを構成する各機器の設置における位置測定および位置決めに用いる例について示したが、その場合に限らず、例えば、建築物の柱または窓枠などの建築材など、任意の測定対象物の位置測定および位置決めに寸法測定装置8,8Aを用いることができることは言うまでもない。
1 昇降路、2,2a,2b 乗場開口部、3,3a,3b 乗場敷居、3c 乗場ドア装置、4,5,30 基準線、8,8A 寸法測定装置、9 投光部、9a 上部投光部、9b 下部投光部、10,10A 撮像部、11,11A 演算部、12 表示部、13,13a,13b レーザ光、14,15 線分、16,19 交点、17,18 端点、20,21,31,40,41,42,43 位置、22,23 両端、26,27,28 枠、29 文字メッセージ、33,33a,33b 反射光、61,62 定規板、65 ガイドレール芯出し用治具、66,67 基点突起部、75 水平器。
Claims (9)
- 水平面内の距離を計測する距離計と、
前記距離計で計測された前記距離に基づいて前記距離計の位置を同定するとともに測定対象物の位置及び姿勢を算出する演算部と
を備え、
前記距離計は、前記測定対象物の据付基準として鉛直方向に予め設置された2つの基準線と前記距離計との間の距離を計測するとともに、据付対象の前記測定対象物と前記距離計との間の距離を計測し、
前記演算部は、
前記距離計によって計測された前記2つの基準線の一方と前記距離計との間の距離と、前記距離計によって計測された前記2つの基準線の他方と前記距離計との間の距離と、前記2つの基準線間の予め設定された設定間隔とに基づいて、前記2つの基準線に対する前記距離計の位置を同定するとともに、
同定された前記距離計の位置と前記距離計で計測された前記測定対象物と前記距離計との間の距離に基づいて、前記測定対象物の表面における予め測定対象として設定された少なくとも2つの特徴点の位置を算出するとともに、前記特徴点間の傾きを算出する、
寸法測定装置。 - 前記距離計は、
第1の水平面内の距離を計測する第1の距離計と、
前記第1の距離計に対して予め設定された一定距離を介して鉛直方向に配置され、前記第1の水平面に平行な第2の水平面内の距離を計測する第2の距離計と
を有し、
前記演算部は、
前記第1の距離計および前記第2の距離計で計測された距離に基づいて、前記第1の水平面内で前記2つの基準線に対する前記距離計の位置を同定するとともに、前記第2の水平面内で前記2つの基準線に対する前記距離計の位置を同定するとともに、
前記第1の距離計と前記第2の距離計との間の前記一定距離と、前記第1の水平面内で同定された前記距離計の位置と、前記第2の水平面内で同定された前記距離計の位置とに基づいて、前記寸法測定装置が前記鉛直方向に対して傾いているか否かを判定する、
請求項1に記載の寸法測定装置。 - 前記基準線は、少なくとも3以上設置されており、
前記演算部は、
前記3以上の基準線から2つの基準線を選定し、前記距離計によって計測された前記2つの基準線の一方と前記距離計との間の距離と、前記距離計によって計測された前記2つの基準線の他方と前記距離計との間の距離と、前記2つの基準線間の予め設定された設定間隔とに基づいて、前記2つの基準線に対する前記距離計の位置を第1の位置として同定するとともに、
前記3以上の基準線からさらに別の2つの基準線を選定し、前記距離計によって計測された前記別の2つの基準線の一方と前記距離計との間の距離と、前記距離計によって計測された前記別の2つの基準線の他方と前記距離計との間の距離と、前記別の2つの基準線間の予め設定された設定間隔とに基づいて、前記別の2つの基準線に対する前記距離計の位置を第2の位置として同定し、
前記第1の位置と前記第2の位置とを平均化して前記距離計の位置を同定する、
請求項1に記載の寸法測定装置。 - 前記距離計は、
水平方向にレーザ光を投光する投光部と、
前記投光部から投光された前記レーザ光が前記測定対象物の表面で反射した反射光を受光して画像データを生成する撮像部と、
前記撮像部で生成された前記画像データに基づいて、前記測定対象物までの距離を算出する距離算出部と
を有する、
請求項1から3までのいずれか1項に記載の寸法測定装置。 - 前記距離計は前記水平面内を回転走査する、
請求項1から4までのいずれか1項に記載の寸法測定装置。 - 前記演算部の演算結果を表示する表示部をさらに備え、
前記演算部は、前記測定対象物を設置すべき正規設置位置の情報と、前記基準線の位置の情報とを予め記憶しており、
前記表示部は、前記演算部で算出された前記特徴点の位置に基づく前記測定対象物の位置と、前記演算部に予め記憶された前記正規設置位置と前記基準線の位置とを表示する、
請求項1から5までのいずれか1項に記載の寸法測定装置。 - 前記演算部は、前記演算部で算出された前記特徴点の位置に基づく前記測定対象物の位置と前記演算部に予め記憶された前記正規設置位置との差分に基づいて、前記正規設置位置に前記測定対象物を移動させる方向を前記表示部に拡大して表示する、
請求項6に記載の寸法測定装置。 - 前記測定対象物は、エレベータの昇降路に設置される2つのガイドレールであり、
前記2つのガイドレールはガイドレール芯出し用治具に係合され、
前記演算部は、前記ガイドレール芯出し用治具の表面における予め設定された2以上の特徴点の位置を算出することで、前記2つのガイドレールの位置を同定する、
請求項1から7までのいずれか1項に記載の寸法測定装置。 - 前記測定対象物は、エレベータの昇降路に設置される乗場敷居であり、
前記演算部は、
前記乗場敷居の両端間の距離の情報を予め記憶しており、
前記距離計で計測された前記距離計と前記乗場敷居の前記両端との間の距離に基づいて、前記乗場敷居の位置および傾きを同定する、
請求項1から8までのいずれか1項に記載の寸法測定装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780087067.5A CN110325472B (zh) | 2017-02-27 | 2017-02-27 | 尺寸测定装置 |
JP2019500998A JP6685633B2 (ja) | 2017-02-27 | 2017-02-27 | 寸法測定装置 |
PCT/JP2017/007461 WO2018154774A1 (ja) | 2017-02-27 | 2017-02-27 | 寸法測定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/007461 WO2018154774A1 (ja) | 2017-02-27 | 2017-02-27 | 寸法測定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018154774A1 true WO2018154774A1 (ja) | 2018-08-30 |
Family
ID=63253753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/007461 WO2018154774A1 (ja) | 2017-02-27 | 2017-02-27 | 寸法測定装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6685633B2 (ja) |
CN (1) | CN110325472B (ja) |
WO (1) | WO2018154774A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210163265A1 (en) * | 2019-02-22 | 2021-06-03 | Hitachi Building Systems Co., Ltd. | Reference Core Position Calculation Device for Elevator and Reference Core Position Calculation Method |
CN113844992A (zh) * | 2020-06-28 | 2021-12-28 | 奥的斯电梯公司 | 用于安装电梯门构件的方法及装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6579595B1 (ja) * | 2018-11-30 | 2019-09-25 | 東芝エレベータ株式会社 | 基準位置設定システム |
US20230174345A1 (en) * | 2020-03-27 | 2023-06-08 | Inventio Ag | Universal console and pit assembly for a rail vehicle of an elevator system, rail system, and method for aligning the rail system |
JP2022188441A (ja) * | 2021-06-09 | 2022-12-21 | 株式会社日立ビルシステム | ピアノ線位置検出器、およびレール芯出し装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03124683A (ja) * | 1989-10-11 | 1991-05-28 | Hitachi Elevator Eng & Service Co Ltd | ガイドレールの据付精度測定装置 |
JPH03297780A (ja) * | 1990-04-16 | 1991-12-27 | Hitachi Building Syst Eng & Service Co Ltd | エレベータのガイドレールの据付誤差測定装置 |
JPH06100268A (ja) * | 1992-09-22 | 1994-04-12 | Toshiba Erebeeta Technos Kk | エレベータのガイドレール芯出装置 |
JP2956657B2 (ja) * | 1997-06-17 | 1999-10-04 | 日本電気株式会社 | 距離測定装置 |
JP3220414B2 (ja) * | 1997-05-13 | 2001-10-22 | 株式会社京三製作所 | 鉄道用距離測定装置 |
JP4346105B2 (ja) * | 2006-12-25 | 2009-10-21 | 株式会社ジェノバ | 測量方法 |
US20130036598A1 (en) * | 2010-04-30 | 2013-02-14 | Inventio Ag | Method and device for installing an elevator in an elevator shaft |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2182163Y (zh) * | 1994-01-12 | 1994-11-09 | 李贤明 | 电梯安装用导轨靠导尺 |
CN2884141Y (zh) * | 2005-12-30 | 2007-03-28 | 北京交通大学 | 一种激光六自由度同时测量装置 |
CN102167250A (zh) * | 2011-05-12 | 2011-08-31 | 南京信息工程大学 | 一种大型电梯轿厢保持水平装置及其控制方法 |
CN204569068U (zh) * | 2015-04-17 | 2015-08-19 | 沈阳工业大学 | 直线电梯磁悬浮导向系统平台 |
-
2017
- 2017-02-27 WO PCT/JP2017/007461 patent/WO2018154774A1/ja active Application Filing
- 2017-02-27 JP JP2019500998A patent/JP6685633B2/ja not_active Expired - Fee Related
- 2017-02-27 CN CN201780087067.5A patent/CN110325472B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03124683A (ja) * | 1989-10-11 | 1991-05-28 | Hitachi Elevator Eng & Service Co Ltd | ガイドレールの据付精度測定装置 |
JPH03297780A (ja) * | 1990-04-16 | 1991-12-27 | Hitachi Building Syst Eng & Service Co Ltd | エレベータのガイドレールの据付誤差測定装置 |
JPH06100268A (ja) * | 1992-09-22 | 1994-04-12 | Toshiba Erebeeta Technos Kk | エレベータのガイドレール芯出装置 |
JP3220414B2 (ja) * | 1997-05-13 | 2001-10-22 | 株式会社京三製作所 | 鉄道用距離測定装置 |
JP2956657B2 (ja) * | 1997-06-17 | 1999-10-04 | 日本電気株式会社 | 距離測定装置 |
JP4346105B2 (ja) * | 2006-12-25 | 2009-10-21 | 株式会社ジェノバ | 測量方法 |
US20130036598A1 (en) * | 2010-04-30 | 2013-02-14 | Inventio Ag | Method and device for installing an elevator in an elevator shaft |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210163265A1 (en) * | 2019-02-22 | 2021-06-03 | Hitachi Building Systems Co., Ltd. | Reference Core Position Calculation Device for Elevator and Reference Core Position Calculation Method |
US11953317B2 (en) * | 2019-02-22 | 2024-04-09 | Hitachi Building Systems Co., Ltd. | Reference core position calculation device for elevator and reference core position calculation method |
CN113844992A (zh) * | 2020-06-28 | 2021-12-28 | 奥的斯电梯公司 | 用于安装电梯门构件的方法及装置 |
EP3929137A1 (en) * | 2020-06-28 | 2021-12-29 | Otis Elevator Company | Method and device for installing elevator door components |
US20210403279A1 (en) * | 2020-06-28 | 2021-12-30 | Otis Elevator Company | Method and device for installing elevator door components |
Also Published As
Publication number | Publication date |
---|---|
CN110325472A (zh) | 2019-10-11 |
JP6685633B2 (ja) | 2020-04-22 |
CN110325472B (zh) | 2020-11-13 |
JPWO2018154774A1 (ja) | 2019-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018154774A1 (ja) | 寸法測定装置 | |
KR101944210B1 (ko) | 승강로 치수 계측 장치 및 승강로 치수 계측 방법 | |
US10408608B2 (en) | Arrangement and method for aligning guide rails of an elevator | |
CN111268530B (zh) | 电梯井道测量、定位及电梯安装方法和设备 | |
JP5650942B2 (ja) | 点検システムおよび点検方法 | |
CN110386528B (zh) | 基准位置设定方法、装置及电梯机械材料的设置方法 | |
TWI705230B (zh) | 車輛尺寸測量裝置及車輛尺寸測量方法 | |
JP6579595B1 (ja) | 基準位置設定システム | |
JP2016024141A (ja) | 架線位置測定装置及び方法 | |
JP4117316B2 (ja) | ピストンリング検査装置及び方法 | |
JP2023050332A (ja) | 測量システム | |
JP7444710B2 (ja) | 昇降路内計測装置、および、昇降路内計測システム | |
JP6388566B2 (ja) | マンドレルミルのチョック部のライナー寸法精度測定方法 | |
CN103874963A (zh) | 用于在设备中定位对象的获取点的方法和装置 | |
EP2796402A1 (en) | System and control procedure for the positioning of bridge cranes | |
KR20100132841A (ko) | 비접촉식 면적측정 장치 | |
JP2000237808A (ja) | 条鋼用圧延ロールのロール位置調整方法及びロール位置調整用ガイダンス装置 | |
KR102205290B1 (ko) | 보조광원을 활용한 영상-기반 구조물 계측 시스템 | |
JP2000065541A (ja) | 位置検出装置 | |
TWI644851B (zh) | Steel coil center coordinate detecting device and method thereof | |
CN113844992A (zh) | 用于安装电梯门构件的方法及装置 | |
JP7301945B1 (ja) | 昇降路内座標軸設定方法及び昇降路形状計測装置 | |
JP7066790B2 (ja) | 位置算出システム | |
JP7522071B2 (ja) | 床版接続用継手の検査装置 | |
JP2001221620A (ja) | 構造物表面の光走査方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17898221 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019500998 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17898221 Country of ref document: EP Kind code of ref document: A1 |