WO2018152866A1 - 微发光二极管的转印装置 - Google Patents

微发光二极管的转印装置 Download PDF

Info

Publication number
WO2018152866A1
WO2018152866A1 PCT/CN2017/075838 CN2017075838W WO2018152866A1 WO 2018152866 A1 WO2018152866 A1 WO 2018152866A1 CN 2017075838 W CN2017075838 W CN 2017075838W WO 2018152866 A1 WO2018152866 A1 WO 2018152866A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting diode
micro light
heating
cooling
roller
Prior art date
Application number
PCT/CN2017/075838
Other languages
English (en)
French (fr)
Inventor
陈黎暄
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/514,078 priority Critical patent/US10347610B2/en
Publication of WO2018152866A1 publication Critical patent/WO2018152866A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7565Means for transporting the components to be connected
    • H01L2224/75651Belt conveyor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7598Apparatus for connecting with bump connectors or layer connectors specially adapted for batch processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • the invention relates to the field of micro light emitting diode display technology, in particular to a transfer device of a micro light emitting diode.
  • Flat display devices are widely used in various consumer electronics such as mobile phones, televisions, personal digital assistants, digital cameras, notebook computers, desktop computers, etc. due to their high image quality, power saving, thin body and wide application range. Products have become the mainstream in display devices.
  • a micro LED ( ⁇ LED) display is a display that realizes image display by using a high-density and small-sized LED array integrated on one substrate as a display pixel.
  • each pixel Addressable, individually driven and lit can be seen as a miniature version of the outdoor LED display, reducing the pixel distance from millimeters to micrometers, and the ⁇ LED display is the same as the Organic Light-Emitting Diode (OLED) display.
  • OLED Organic Light-Emitting Diode
  • Self-illuminating display but compared with OLED display, ⁇ LED display has the advantages of better material stability, longer life, no image imprinting, etc., and is considered to be the biggest competitor of OLED display.
  • Micro Transfer Printing technology is currently the mainstream method for preparing ⁇ LED display devices.
  • the specific preparation process is as follows: First, a micro light-emitting diode is grown on a sapphire-based substrate, and then laser lift-off (LLO) is used to micro-transfer.
  • LLO laser lift-off
  • the LED bare chip is separated from the sapphire substrate, and then a patterned polydimethylsiloxane (PDMS) transfer head is used to adsorb the micro LED bare chip from the sapphire substrate, and The PDMS transfer head is aligned with the receiving substrate, and then the micro light emitting diode bare chip adsorbed by the PDMS transfer head is attached to a preset position on the receiving substrate, and then the PDMS transfer head is peeled off, thereby completing the micro light emitting diode bare chip. Transfer to the receiving substrate to produce a ⁇ LED display device.
  • PDMS polydimethylsiloxane
  • the transfer is generally carried out by means of electric current adsorption or PDMS, and it is difficult to control the peeling effect when using the PDMS method for peeling; when using the electric current adsorption, it is necessary to conduct each adsorption head, not only Complex and stripping effect is not good; there is also a technology for transferring micro-light-emitting diodes through temperature control, the principle of which is through low-temperature peeling type glue, which has been transferred. The process is divided into adsorption-transfer-cooling to finally complete the transfer, but the process of cooling and completing the transfer is often slow, and is not conducive to repeated high-efficiency transfer.
  • the present invention provides a transfer device for a micro light emitting diode, thereby improving the efficiency of transfer.
  • the invention provides a micro light-emitting diode transfer device, comprising a frame, a heating device with a heating surface facing downward and a cooling device disposed under the heating device, the heating surface of the heating device is arranged on the frame
  • a micro light-emitting diode transfer device comprising a frame, a heating device with a heating surface facing downward and a cooling device disposed under the heating device, the heating surface of the heating device is arranged on the frame
  • a supply substrate having a micro light-emitting diode the supply substrate being fixed to the heating surface by a fixing member, the cooling surface of the cooling device for carrying the receiving substrate; the cooling surface of the cooling device and the heating of the heating device
  • a roller mechanism is disposed between the heating device and the cooling device, and the roller mechanism is fixed on the frame, and the roller mechanism is provided with a recyclable conveyor belt, and the conveyor belt is formed by a transfer film on the conveyor belt.
  • the outer surface is provided with temperature-controlled glue, and the micro-light-emitting diode on the heated supply substrate is adhered by the temperature-controlled glue on the conveyor belt, and the rotation of the roller mechanism drives the conveyor belt to move to the receiving substrate side, through the cooling device.
  • the receiving substrate is cooled, the temperature control glue loses the viscosity, and the micro light emitting diode adhered to the conveyor belt is peeled off, and the transfer of the micro light emitting diode is completed, and the frame is provided on the frame.
  • Source, power means and the drum, heating means, cooling means are electrically connected.
  • the rotation direction of the roller mechanism is opposite to the moving direction of the cooling device.
  • the cooling device is provided with a transmission mechanism connected to the power source for driving the cooling device to move.
  • the roller mechanism includes at least one driving roller and at least one driven roller, and the driving belt is sleeved on the driving roller and the driven roller, and the driving roller is connected to the power source.
  • the drive roller is a motorized drum.
  • the surface of the transmission belt is arranged with a rectangular protrusion on the surface, and the adjacent two rectangular protrusions are equally spaced, and the temperature control glue covers the rectangular protrusion and the gap between the rectangular protrusions.
  • the cooling medium of the cooling device is liquid nitrogen or dry ice.
  • the transmission mechanism includes a driving motor connected to the power source fixed at the lower end of the frame, a driving gear disposed on the output shaft of the driving motor, and a rack meshing with the driving gear, and the shifting is provided on the rack
  • the moving platform and the cooling device are fixed on the mobile platform.
  • the drive belt is made of a flexible material.
  • the present invention provides a temperature-controlled glue on the surface of the conveyor belt through a drum-type conveyor belt by providing a heating device and a cooling device, thereby realizing the cyclic adsorption and transfer of the micro-light-emitting diode, thereby improving the transfer efficiency.
  • Figure 1 is a schematic view of the structure of the present invention
  • Figure 2 is a schematic structural view of a conveyor belt of the present invention
  • Figure 3 is a schematic structural view of a heating device of the present invention.
  • Figure 4 is a schematic structural view of a cooling device of the present invention.
  • Figure 5 is a schematic view showing the connection structure between the mobile platform and the chassis of the present invention.
  • the micro light-emitting diode transfer device of the present invention comprises a frame 6, comprising a frame 6, a heating device 1 having a heating surface facing downward is provided at an upper end of the frame 6, and a transmission device is provided below the heating device 1.
  • the mechanism drives the moving cooling device 2, the heating surface of the heating device 1 is used to carry a supply substrate 91 having a micro-light-emitting diode 93, and the supply substrate 91 is fixed to the heating surface by a fixing member, where the fixing member is a snap or screw; a cooling surface of the cooling device 2 is used to carry the receiving substrate 92; a cooling surface of the cooling device 2 is disposed opposite the heating surface of the heating device 1, and a roller is disposed between the heating device 1 and the cooling device 2
  • the mechanism 3, the roller mechanism 3 is fixed on the frame 6, the roller mechanism 3 is provided with a rotatably rotating conveyor belt 4, the conveyor belt 4 is composed of a transfer film; on the outer surface of the conveyor belt 4 is provided with temperature-control glue 5, temperature
  • the glue 5 is pre-heated and viscous, and the colloid which loses viscosity when it is cold, such as the temperature-controlled detachment tape of the low-temperature peeling type, loses the adhesive peeling when the temperature is between 20
  • the working principle of the present invention is as follows: after the micro-light-emitting diode 93 on the heated supply substrate 91 is adhered by the temperature-control glue 5 on the conveyor belt 4, the rotation of the roller mechanism 3 drives the conveyor belt 4 to move to the side of the receiving substrate 92.
  • the receiving substrate 92 is cooled by a cooling device, and the micro-light-emitting diode 93 adhered to the conveyor belt 4 is peeled off from the conveyor belt 4 to complete the transfer of the micro-light-emitting diodes 93.
  • rectangular projections 41 are arranged in a uniform array on the outer surface of the conveyor belt 4, and the spacing between adjacent two rectangular projections 41 is equal, and the temperature control adhesive 5 covers the rectangular projections 41 and the rectangular projections 41.
  • the gap between the adjacent two rectangular protrusions 41 is the same as the gap width between the adjacent two micro-light-emitting diodes 93 on the supply substrate 91, thereby achieving precise adhesion of the micro-light-emitting diodes 93. .
  • the conveyor belt 4 is formed by bending a piece of the transfer film and forming an O-shape after the head and tail are joined to form an O-shaped shape.
  • the conveyor belt 4 is made of a flexible material to meet the flexibility requirement.
  • the roller mechanism 3 includes at least one drive roller 31 and at least one driven roller 32, and a distance may be left between the drive roller 31 and the driven roller 32 to thereby tighten the conveyor belt 4;
  • the plurality of driving rollers 31 and the driven rollers 32 form a transport path, and the conveyor belt 4 is sleeved on the outermost rollers on both sides, thereby tightening the conveyor belt 4.
  • the tiling roller can have a certain bearing on the conveyor belt 4. The support force enhances the effect of the transfer; in the present invention, the drive roller 31 is connected to the power source 8.
  • a first bracket 61 for fixing the roller mechanism 3 is horizontally disposed at a position of the drum mechanism 3 at a central portion of the frame 6, and a bearing for connecting the driving roller 31 and the driven roller 32 is provided on the first bracket 61, and the roller is driven 31 and both ends of the driven roller 32 are respectively mounted in the bearing.
  • the drive roller 31 employs a motorized drum in which a drive motor and a speed reducer are integrated in the drum body, and the driven roller 32 is a conventional drum that does not have any power drive.
  • the transmission mechanism can adopt some conventional transmission mechanisms in the prior art, such as transmission belt transmission, gear transmission, rack drive or screw drive, and a preferred implementation manner is given here, as shown in FIG.
  • the transmission mechanism includes a drive motor 71 connected to the power source 8 fixed at the lower end of the frame 6, a drive gear 72 provided on the output shaft of the drive motor 71, a rack 73 meshing with the drive gear 72, and an output shaft and drive of the drive motor 71.
  • the axial direction of the drum 31 is parallel, the rack 73 is perpendicular to the axial direction of the drive drum 31, and a moving platform 74 is provided on the rack 73, and the cooling device 2 is fixed to the moving platform 74.
  • a guide bar 75 is disposed on opposite sides of the moving platform 74 and the frame 6, and the bar 75 is parallel to the rack 73.
  • the frame 6 is provided with a guiding groove 76 parallel to the rack 73.
  • a guide bar 75 is provided in the guide groove 76.
  • the driving motor 71 drives the driving gear 72 to rotate
  • the driving gear 72 drives the rack 73 to move, so that the cooling device 2 is driven by the moving platform 74 and the receiving substrate 92 placed on the cooling device 2 is rotated in the opposite direction to the roller mechanism 3.
  • the side shift that is, if the drum mechanism 3 rotates clockwise, the drive motor 71 rotates counterclockwise.
  • the heating device in the present invention can adopt a heating platform of the prior art, such as a constant temperature heating platform; or can be realized as follows, as shown in FIG. 3, which includes a metal plate 11 having a heating surface, and is provided on the metal plate 11
  • the PTC heating sheet 12 energizes the PTC heating sheet 12 by the power source 8, causes the PTC heating sheet 12 to generate heat, is conducted to the supply substrate 91 through the metal plate 11, and conducts heat due to the micro-light-emitting diode 93 supplied to the substrate 91. It is applied to the temperature control glue 5 on the belt 4, so that the temperature control glue 5 dissolves and adheres to the micro light emitting diode 93.
  • the cooling device of the present invention may employ a cooling device as shown in FIG. 4, which includes a metal container 21 that can be loaded with a cooling medium.
  • the metal container 21 has a rectangular cross section, and a cooling surface is formed on the opposite side of the heating device, in the metal container 21 Loaded with a cooling medium, the inner chamber of the metal container 21 communicates with a storage tank 23 filled with a cooling medium through the first electromagnetic valve 22, the metal container 21 is further provided with an exhaust port 25, and the exhaust port 25 is provided with a second chamber
  • the solenoid valve 24, when the side belt 4 to which the micro-light-emitting diode 93 is adhered is rotated to the side opposite to the cooling surface of the metal container 21, the receiving substrate 92 is cooled by the cooling surface, and the temperature is transmitted to the micro-light-emitting diode 93 to On the temperature control glue 5, the temperature control glue 5 loses its viscosity due to low temperature, and the micro light emitting diode 93 is peeled off from the transmission belt 4
  • the cooling medium is liquid nitrogen or dry ice.
  • the invention can also set a PLC (Programmable Logic) control to control the operation of the heating device 1, the cooling device 2, the roller mechanism 3, the transmission mechanism and the like.
  • PLC Programmable Logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Led Device Packages (AREA)

Abstract

一种微发光二极管的转印装置,包括机架(6),在机架(6)上设有加热面朝下的加热装置(1)以及设于加热装置(1)下方可移动的冷却装置(2),加热装置(1)的加热面用于承载具有微发光二极管(93)的供给衬底(91),供给衬底(91)通过固定件固定于加热面上,冷却装置(2)的冷却面用于承载接收衬底(92);冷却装置(2)的冷却面与加热装置(1)的加热面相对,在加热装置(1)与冷却装置(2)之间设有滚筒机构(3),滚筒机构(3)固定在机架(6)上,滚筒机构(3)上设有可循环转动的传送带(4),传送带(4)由转印膜片构成,在传送带(4)的外表面上设有温控胶(5)。通过设置加热装置以及冷却装置,中间通过滚筒式传送带,在传送带表面设置温控胶,实现微发光二极管的循环吸附以及转印,提高转印效率。

Description

微发光二极管的转印装置 技术领域
本发明涉及一种微发光二极管显示技术领域,特别是一种微发光二极管的转印装置。
背景技术
平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
微发光二极管(Micro LED,μLED)显示器是一种以在一个基板上集成的高密度微小尺寸的LED阵列作为显示像素来实现图像显示的显示器,同大尺寸的户外LED显示屏一样,每一个像素可定址、单独驱动点亮,可以看成是户外LED显示屏的缩小版,将像素点距离从毫米级降低至微米级,μLED显示器和有机发光二极管(Organic Light-Emitting Diode,OLED)显示器一样属于自发光显示器,但μLED显示器相比OLED显示器还具有材料稳定性更好、寿命更长、无影像烙印等优点,被认为是OLED显示器的最大竞争对手。
微转印(Micro Transfer Printing)技术是目前制备μLED显示装置的主流方法,具体制备过程为:首先在蓝宝石类基板生长出微发光二极管,然后通过激光剥离技术(Laser lift-off,LLO)将微发光二极管裸芯片(bare chip)从蓝宝石类基板上分离开,随后使用一个图案化的聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)传送头将微发光二极管裸芯片从蓝宝石类基板吸附起来,并将PDMS传送头与接收基板进行对位,随后将PDMS传送头所吸附的微发光二极管裸芯片贴附到接收基板上预设的位置,再剥离PDMS传送头,即可完成将微发光二极管裸芯片转移到接收基板上,进而制得μLED显示装置。
而目前的转印一般采用通电吸附或PDMS的方式粘附进行转印,当使用PDMS方式进行剥离时存在较难控制剥离效果;当使用通电吸附时则需要对每个吸附头进行导通,不仅复杂而且剥离效果欠佳;目前还有一种通过温度控制来进行微发光二极管转印的技术,其原理是通过低温剥离型胶水,其转印的过 程分为吸附-转移-降温最终完成转印,但是往往降温和完成转印的过程速率较慢,且不利于重复进行的高效转印。
发明内容
为克服现有技术的不足,本发明提供一种微发光二极管的转印装置,从而提高转印的效率。
本发明提供了一种微发光二极管的转印装置,包括机架,在机架上设有加热面朝下的加热装置以及设于加热装置下方可移动的冷却装置,所述加热装置的加热面用于承载具有微发光二极管的供给衬底,供给衬底通过固定件固定于加热面上,所述冷却装置的冷却面用于承载接收衬底;所述冷却装置的冷却面与加热装置的加热面相对,在加热装置与冷却装置之间设有滚筒机构,滚筒机构固定在机架上,所述滚筒机构上设有可循环转动的传送带,所述传送带由转印膜片构成,在传送带的外表面上设有温控胶,通过传送带上的温控胶将被加热的供给衬底上的微发光二极管粘附后,滚筒机构的转动带动传送带移动至接收衬底一侧,通过冷却装置对接收衬底降温,温控胶失去粘性将粘附在传送带上的微发光二极管剥离,完成微发光二极管的转印,在机架上设有电源,电源与滚筒机构、加热装置、冷却装置电连接。
进一步地,所述滚筒机构的转动方向与冷却装置的移动方向相反。
进一步地,所述冷却装置上设有与电源连接的传动机构,传动机构用于驱动冷却装置移动。
进一步地,所述滚筒机构包括至少一个驱动滚筒以及至少一个从动滚筒,所述传动带套在驱动滚筒与从动滚筒上,驱动滚轮与电源连接。
进一步地,所述驱动滚筒为电动滚筒。
进一步地,所述传动带的表面上阵列排布有矩形凸起,相邻两个矩形凸起的间距相等,温控胶覆盖在矩形凸起上以及矩形凸起之间的间隙内。
进一步地,所述冷却装置的冷却介质为液氮或干冰。
进一步地,所述传动机构包括固定在机架下端的与电源连接的驱动电机、设于驱动电机输出轴上的驱动齿轮、与驱动齿轮啮合的齿条,在齿条上设有移 动平台,冷却装置固定在移动平台上。
进一步地,所述传动带采用柔性材料制成。
本发明与现有技术相比,通过设置加热装置以及冷却装置,中间通过滚筒式传送带,在传送带表面设置温控胶,实现微发光二极管的循环吸附以及转印,提高转印效率。
附图说明
图1是本发明的结构示意图;
图2是本发明传送带的结构示意图;
图3是本发明的加热装置的结构示意图;
图4是本发明的冷却装置的结构示意图;
图5是本发明的移动平台与机架之间的连接结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
如图1所示,本发明的微发光二极管转印装置包括机架6,包括机架6,在机架6的上端设有加热面朝下的加热装置1以及设于加热装置1下方通过传动机构驱动其移动的冷却装置2,所述加热装置1的加热面用于承载具有微发光二极管93的供给衬底91,供给衬底91通过固定件固定于加热面上,此处,固定件为卡扣或螺杆;冷却装置2的冷却面用于承载接收衬底92;所述冷却装置2的冷却面与加热装置1的加热面相对设置,在加热装置1与冷却装置2之间设有滚筒机构3,滚筒机构3固定在机架6上,滚筒机构3上设有可循环转动的传送带4,传送带4由转印膜片构成;在传送带4的外表面上设有温控胶5,温控胶5为预热融化并具有粘性,而遇冷失去粘性的胶体,如低温剥离型的温控秥离胶带,温度在20-60℃之间会失去粘性剥离;在机架6上设有电源8,电源8与滚筒机构3、加热装置1、冷却装置2电连接,从而为微发光二极管93的转印装置供电。
本发明的工作原理如下:通过传送带4上的温控胶5将被加热的供给衬底91上的微发光二极管93粘附后,滚筒机构3的转动带动传送带4移动至接收衬底92一侧,通过冷却装置对接收衬底92降温,将粘附在传送带4上的微发光二极管93从传送带4上剥离,完成微发光二极管93的转印。
如图2所示,传送带4的外表面上均匀阵列排布有矩形凸起41,相邻两个矩形凸起41的间距相等,温控胶5覆盖在矩形凸起41上以及矩形凸起41之间的间隙内;相邻两个矩形凸起41之间的间隙宽度与供给衬底91上相邻两个微发光二极管93之间的间隙宽度相同,从而实现微发光二极管93的精确粘附。
具体地,传送带4为将一片转印膜片弯曲后头尾相接形成一个O字形后套在滚筒机构3上;传送带4由柔性材料制成,满足柔性需求。
如图1所示,滚筒机构3包括至少一个驱动滚筒31以及至少一个从动滚筒32,驱动滚筒31和从动滚筒32之间可留有间距,从而将传送带4拉紧;还可通过平铺多个驱动滚筒31以及从动滚筒32,形成一条传输道,将传送带4套在两侧最外侧的滚筒上,从而将传送带4拉紧,此种平铺滚筒,可以对传送带4具有一定的承托力,提高转印的效果;本发明中驱动滚轮31与电源8连接。
在机架6的中部位于滚筒机构3的位置处水平设置有用于固定滚筒机构3的第一支架61,在第一支架61上设有用于连接驱动滚筒31以及从动滚筒32的轴承,驱动滚筒31以及从动滚筒32的两端分别安装在轴承中。
作为驱动滚筒31的一种较佳实施例,驱动滚筒31采用电动滚筒,其在滚筒本体内集成有驱动电机以及减速器等部件,从动滚筒32则为普通的不具有任何动力驱动的滚筒。
本发明中传动机构可采用现有技术中的一些常规传送机构,如传动带传动、齿轮传动、齿条传动或丝杆传动,在此给出一种较佳的实现方式,如图1所示,传动机构包括固定在机架6下端的与电源8连接的驱动电机71、设于驱动电机71输出轴上的驱动齿轮72、与驱动齿轮72啮合的齿条73,驱动电机71的输出轴与驱动滚筒31的轴向平行,齿条73与驱动滚筒31的轴向垂直,在齿条73上设有移动平台74,冷却装置2固定在移动平台74上。
如图5所示,在移动平台74与机架6相对的两侧设有导条75,导条75与齿条73平行;在机架6上设有与齿条73平行的导槽76,导条75设于导槽76中。
当驱动电机71驱动驱动齿轮72转动时,驱动齿轮72带动齿条73移动,实现通过移动平台74带动冷却装置2以及放置在冷却装置2上的接收衬底92朝滚筒机构3转动方向相反的一侧移,即若滚筒机构3顺时针转动,则驱动电机71逆时针转动。
本发明中的加热装置可采用现有技术的加热平台,如恒温加热平台;也可以采用如下方式实现,如图3所示,其包括具有加热面的金属板11,在金属板11上设有PTC加热片12,通过电源8对PTC加热片12加电,使PTC加热片12产生热量,通过金属板11传导至供给衬底91上,由于供给衬底91上的微发光二极管93将热量传导至传动带4上的温控胶5上,从而使温控胶5溶解粘附微发光二极管93。
本发明中冷却装置可采用如图4所示的冷却装置,其包括可装载冷却介质的金属容器21,金属容器21的截面为矩形,在与加热装置相对的一面形成冷却面,金属容器21中装载有冷却介质,金属容器21的内腔通过第一电磁阀22与一灌有冷却介质的储存罐23连通,金属容器21还设有一个排气口25,排气口25上设置有第二电磁阀24,当粘附有微发光二极管93的一侧传动带4旋转至与金属容器21的冷却面相对的一侧时,接收衬底92受冷却面降温,使温度通过微发光二极管93传导到温控胶5上,温控胶5受低温失去粘性,使微发光二极管93从传动带4上剥离,实现转印,第一电磁阀22以及第二电磁阀24均匀电源8连接。
本发明中,冷却介质为液氮或干冰。
本发明还可以设置一PLC(可编程逻辑)控制控制加热装置1、冷却装置2、滚筒机构3、传动机构等部件的运作。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (9)

  1. 一种微发光二极管的转印装置,其中:包括机架,在机架上设有加热面朝下的加热装置以及设于加热装置下方可移动的冷却装置,所述加热装置的加热面用于承载具有微发光二极管的供给衬底,供给衬底通过固定件固定于加热面上,所述冷却装置的冷却面用于承载接收衬底;所述冷却装置的冷却面与加热装置的加热面相对,在加热装置与冷却装置之间设有滚筒机构,滚筒机构固定在机架上,所述滚筒机构上设有可循环转动的传送带,所述传送带由转印膜片构成,在传送带的外表面上设有温控胶,通过传送带上的温控胶将被加热的供给衬底上的微发光二极管粘附后,滚筒机构的转动带动传送带移动至接收衬底一侧,通过冷却装置对接收衬底降温,温控胶失去粘性,使粘附在传送带上的微发光二极管剥离,完成微发光二极管的转印,在机架上设有电源,电源与滚筒机构、加热装置、冷却装置电连接。
  2. 根据权利要求1所述的微发光二极管的转印装置,其中:所述滚筒机构的转动方向与冷却装置的移动方向相反。
  3. 根据权利要求1所述的微发光二极管的转印装置,其中:所述冷却装置上设有与电源连接的传动机构,传动机构用于驱动冷却装置移动。
  4. 根据权利要求1所述的微发光二极管的转印装置,其中:所述滚筒机构包括至少一个驱动滚筒以及至少一个从动滚筒,所述传动带套在驱动滚筒与从动滚筒上,驱动滚轮与电源连接。
  5. 根据权利要求4所述的微发光二极管的转印装置,其中:所述驱动滚筒为电动滚筒。
  6. 根据权利要求1所述的微发光二极管的转印装置,其中:所述传动带的表面上阵列排布有矩形凸起,相邻两个矩形凸起的间距相等,温控胶覆盖在矩形凸起上以及矩形凸起之间的间隙内。
  7. 根据权利要求1所述的微发光二极管的转印装置,其中:所述冷却装置的冷却介质为液氮或干冰。
  8. 根据权利要求3所述的微发光二极管的转印装置,其中:所述传动机 构包括固定在机架下端的与电源连接的驱动电机、设于驱动电机输出轴上的驱动齿轮、与驱动齿轮啮合的齿条,在齿条上设有移动平台,冷却装置固定在移动平台上。
  9. 根据权利要求1所述的微发光二极管的转印装置,其中:所述传动带采用柔性材料制成。
PCT/CN2017/075838 2017-02-21 2017-03-07 微发光二极管的转印装置 WO2018152866A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/514,078 US10347610B2 (en) 2017-02-21 2017-03-07 Micro light emitting diode transfer-printing devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710093395.8A CN106876293B (zh) 2017-02-21 2017-02-21 微发光二极管的转印装置
CN201710093395.8 2017-02-21

Publications (1)

Publication Number Publication Date
WO2018152866A1 true WO2018152866A1 (zh) 2018-08-30

Family

ID=59167357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075838 WO2018152866A1 (zh) 2017-02-21 2017-03-07 微发光二极管的转印装置

Country Status (3)

Country Link
US (1) US10347610B2 (zh)
CN (1) CN106876293B (zh)
WO (1) WO2018152866A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834262A (zh) * 2020-07-24 2020-10-27 錼创显示科技股份有限公司 微型电子元件转移设备以及微型电子元件转移方法
CN112992722A (zh) * 2020-07-27 2021-06-18 重庆康佳光电技术研究院有限公司 转接板、巨量转移方法及Micro-LED显示器
US11799052B2 (en) 2020-07-24 2023-10-24 PlayNitride Display Co., Ltd. Micro-electronic element transfer apparatus and micro-electronic element transfer method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI694605B (zh) 2017-08-07 2020-05-21 財團法人工業技術研究院 元件擴距轉移方法及實施此轉移方法的設備
CN109390267B (zh) * 2017-08-09 2023-03-21 创新服务股份有限公司 批量移载微细元件的方法及其装置
CN108231653B (zh) * 2018-01-04 2020-08-04 厦门大学 一种MicroLED芯片转印方法及装置
CN111199908A (zh) 2018-11-20 2020-05-26 昆山工研院新型平板显示技术中心有限公司 微发光器件的转移方法及转移设备
CN109524339A (zh) * 2018-11-20 2019-03-26 韩进龙 一种微型器件转移装置、转移系统及转移方法
CN111199907A (zh) * 2018-11-20 2020-05-26 昆山工研院新型平板显示技术中心有限公司 微发光器件的转移方法及转移设备
CN111834239B (zh) * 2019-04-23 2024-02-02 美科米尚技术有限公司 用于转移微型元件的方法
CN110323162B (zh) * 2019-05-08 2021-11-30 京东方科技集团股份有限公司 一种巨量转移装置及巨量转移方法
CN113725338A (zh) * 2020-05-26 2021-11-30 达迈科技股份有限公司 微型led巨量转移至显示器面板的方法
CN112967991B (zh) * 2020-11-25 2022-10-21 重庆康佳光电技术研究院有限公司 转移装置、系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030034120A1 (en) * 2001-08-01 2003-02-20 Yoshiyuki Yanagisawa Device transferring method, device arraying method, and image display fabrication method using the same
US20130130440A1 (en) * 2011-11-18 2013-05-23 Hsin-Hua Hu Method of fabricating and transferring a micro device and an array of micro devices utilizing an intermediate electrically conductive bonding layer
CN106170849A (zh) * 2015-10-20 2016-11-30 歌尔股份有限公司 微发光二极管的转移方法、制造方法、装置和电子设备
CN106228913A (zh) * 2016-08-24 2016-12-14 京东方科技集团股份有限公司 转印设备及其转印方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259030B2 (en) * 2004-03-29 2007-08-21 Articulated Technologies, Llc Roll-to-roll fabricated light sheet and encapsulated semiconductor circuit devices
US8824145B2 (en) * 2012-06-08 2014-09-02 Infineon Technologies Ag Electric device package and method of making an electric device package
TW201609403A (zh) * 2014-09-01 2016-03-16 中華映管股份有限公司 顯示面板的製造方法
CN104485294A (zh) * 2014-12-12 2015-04-01 浙江中纳晶微电子科技有限公司 一种晶圆临时键合及分离方法
EP3207572B1 (en) * 2015-04-01 2019-06-05 Goertek. Inc Transferring method and manufacturing method of micro-led

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030034120A1 (en) * 2001-08-01 2003-02-20 Yoshiyuki Yanagisawa Device transferring method, device arraying method, and image display fabrication method using the same
US20130130440A1 (en) * 2011-11-18 2013-05-23 Hsin-Hua Hu Method of fabricating and transferring a micro device and an array of micro devices utilizing an intermediate electrically conductive bonding layer
CN106170849A (zh) * 2015-10-20 2016-11-30 歌尔股份有限公司 微发光二极管的转移方法、制造方法、装置和电子设备
CN106228913A (zh) * 2016-08-24 2016-12-14 京东方科技集团股份有限公司 转印设备及其转印方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834262A (zh) * 2020-07-24 2020-10-27 錼创显示科技股份有限公司 微型电子元件转移设备以及微型电子元件转移方法
CN111834262B (zh) * 2020-07-24 2023-08-08 錼创显示科技股份有限公司 微型电子元件转移设备以及微型电子元件转移方法
US11799052B2 (en) 2020-07-24 2023-10-24 PlayNitride Display Co., Ltd. Micro-electronic element transfer apparatus and micro-electronic element transfer method
CN112992722A (zh) * 2020-07-27 2021-06-18 重庆康佳光电技术研究院有限公司 转接板、巨量转移方法及Micro-LED显示器
CN112992722B (zh) * 2020-07-27 2023-04-25 重庆康佳光电技术研究院有限公司 转接板、巨量转移方法及Micro-LED显示器

Also Published As

Publication number Publication date
CN106876293B (zh) 2019-03-19
US10347610B2 (en) 2019-07-09
US20180342485A1 (en) 2018-11-29
CN106876293A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
WO2018152866A1 (zh) 微发光二极管的转印装置
WO2018152867A1 (zh) 转印模板及微发光二极管的转印装置
TWI668794B (zh) 微元件轉移設備和微元件轉移方法
CN103682177B (zh) 柔性oled面板的制作方法
WO2011066701A1 (zh) 夹持式基板翻转装置
US8623167B2 (en) Substrate sealing apparatus and method of sealing substrate using the same
WO2009031288A1 (ja) 表示素子の製造方法、表示素子の製造装置、及び表示装置
US10211363B2 (en) Transfer printing template and transfer printing device of micro light-emitting diode
US20110308076A1 (en) Apparatus for manufacturing liquid crystal display panel
CN107346070B (zh) 显示基板
KR101131181B1 (ko) 기판이송장치
CN112992722B (zh) 转接板、巨量转移方法及Micro-LED显示器
JP2013252490A (ja) ペーストの塗布装置及び塗布方法
KR101430670B1 (ko) 기능성 필름 부착 시스템
KR101873048B1 (ko) 디스플레이 패널용 편광필름 부착장치
CN106061710B (zh) 片材制造装置和片材制造方法
US12033876B2 (en) Mass transfer method and mass transfer device thereof for micro led device
US20210242056A1 (en) Mass transfer method and mass transfer device thereof for micro led device
CN220261699U (zh) 玻璃纤维基防水卷材生产装置
CN211956051U (zh) 一种传送装置
CN108674076B (zh) 一种自动烫金机双面烫金定位装置
CN114226904A (zh) 一种方便调节的自动焊锡机及焊锡工艺
JPH0643789Y2 (ja) 熱転写記録装置
KR20120130608A (ko) 광학부재 부착 장치
WO2019033566A1 (zh) 柔性基板剥离装置及剥离方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15514078

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897677

Country of ref document: EP

Kind code of ref document: A1