WO2018152755A1 - Batterie secondaire et son procédé de préparation - Google Patents

Batterie secondaire et son procédé de préparation Download PDF

Info

Publication number
WO2018152755A1
WO2018152755A1 PCT/CN2017/074634 CN2017074634W WO2018152755A1 WO 2018152755 A1 WO2018152755 A1 WO 2018152755A1 CN 2017074634 W CN2017074634 W CN 2017074634W WO 2018152755 A1 WO2018152755 A1 WO 2018152755A1
Authority
WO
WIPO (PCT)
Prior art keywords
potassium
positive electrode
secondary battery
active material
carbonate
Prior art date
Application number
PCT/CN2017/074634
Other languages
English (en)
Chinese (zh)
Inventor
唐永炳
季必发
张帆
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2017/074634 priority Critical patent/WO2018152755A1/fr
Publication of WO2018152755A1 publication Critical patent/WO2018152755A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of secondary battery technology, and in particular to a secondary battery and a method of fabricating the same.
  • a secondary battery also called a rechargeable battery, is a battery that can be repeatedly charged and discharged and used multiple times. Compared with primary batteries, secondary batteries have the advantages of low cost of use and low environmental pollution.
  • the main secondary battery technologies include lead-acid batteries, nickel-chromium batteries, nickel-hydrogen batteries, and lithium-ion batteries, among which lithium-ion batteries are the most widely used.
  • lithium-ion batteries face the problem of limited lithium resource reserves and high cost.
  • potassium-ion batteries have received increasing attention in recent years.
  • Potassium-ion batteries work similarly to lithium-ion batteries, but the storage and release of charge in the battery is achieved by the migration of potassium ions.
  • the core component of the potassium ion battery comprises a positive electrode, a negative electrode and an electrolyte, which realizes energy storage and release by a redox reaction in which ion transport and electron transport phase separation occurs at the interface between the positive electrode, the negative electrode and the electrolyte.
  • Common potassium ion batteries are Prussian blue and its analogues, iron phosphate, iron fluorosulfate and the like as positive electrode active materials, and carbon materials as negative electrode active materials.
  • the types of positive and negative materials developed based on potassium ion batteries are very limited, and the research is basically limited to the half cells of potassium plates.
  • the electrochemical performance of potassium ion batteries based on developed materials is not very satisfactory, and the preparation process is also relatively good. complex.
  • the first aspect of the present invention provides a secondary battery using a material such as graphite which can be embedded in a potassium salt anion as a positive electrode active material, and a metal foil as a negative electrode current collector and a negative electrode active simultaneously.
  • the material, with potassium salt as the electrolyte aims to solve the problem that the existing lithium secondary battery has limited lithium resource reserves, high cost, and the electrochemical performance of the existing potassium ion battery is not ideal, and the process is complicated.
  • the present invention provides a secondary battery comprising:
  • a positive electrode comprising a positive electrode current collector and a positive electrode active material, the positive electrode active material comprising a material capable of intercalating a potassium salt anion;
  • An electrolyte comprising a potassium salt and a non-aqueous solvent
  • a negative electrode comprising a metal foil, the metal foil simultaneously serving as a negative current collector and a negative active material;
  • the positive electrode active material includes one or more of a carbon material, a sulfide, a nitride, an oxide, a carbide, and a composite of the above materials.
  • the carbon material includes one or more of a graphite-based carbon material, a glassy carbon, a carbon-carbon composite material, carbon fiber, hard carbon, porous carbon, carbon black, carbon nanotubes, and graphene.
  • the graphite-based carbon material includes one or more of natural graphite, expanded graphite, artificial graphite, mesocarbon microbead graphite, pyrolytic graphite, highly oriented graphite, and three-dimensional graphite sponge.
  • the sulfide is selected from the group consisting of molybdenum disulfide, tungsten disulfide, vanadium disulfide, titanium disulfide, iron disulfide, ferrous sulfide, nickel sulfide, zinc sulfide, cobalt sulfide, manganese sulfide;
  • the nitride is selected from one or more of hexagonal boron nitride and carbon doped hexagonal boron nitride;
  • the oxide is selected from the group consisting of molybdenum trioxide, tungsten trioxide, vanadium pentoxide, vanadium dioxide, titanium dioxide, One or more of zinc oxide, copper oxide, nickel oxide, and manganese oxide;
  • the carbide is selected from one or more of titanium carbide, tantalum carbide, molybdenum carbide, and silicon carbide.
  • the material of the metal foil includes any one of tin, zinc, lead, antimony, cadmium, gold, bismuth, antimony, or an alloy containing at least one of the above metal elements, or a composite containing at least one of the above metal elements. Material material.
  • the material of the positive electrode current collector includes any one of aluminum, copper, iron, tin, zinc, nickel, titanium, manganese, or an alloy containing at least one of the above metal elements, or a composite containing at least one of the above metal elements. material.
  • the potassium salt comprises potassium hexafluorophosphate, potassium chloride, potassium fluoride, potassium sulfate, potassium carbonate, potassium phosphate, potassium nitrate, potassium difluorooxalate borate, potassium pyrophosphate, potassium dodecylbenzenesulfonate, ten Potassium dialkyl sulfate, tripotassium citrate, potassium metaborate, potassium borate, potassium molybdate, potassium tungstate, potassium bromide, potassium nitrite, potassium iodate, potassium iodide, potassium silicate, potassium lignosulfonate, Potassium oxalate, potassium aluminate, potassium methanesulfonate, potassium acetate, potassium dichromate, potassium hexafluoroarsenate, potassium tetrafluoroborate, potassium perchlorate, potassium trifluoromethanesulfonimide, trifluoromethanesulfonic acid One or more of potassium.
  • the nonaqueous solvent includes an organic solvent and an ionic liquid, and the organic solvent includes one or more of an ester, a sulfone, an ether, and a nitrile organic solvent.
  • the organic solvent includes propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), methyl formate (MF), Methyl acetate (MA), N,N-dimethylacetamide (DMA), fluoroethylene carbonate (FEC), methyl propionate (MP), ethyl propionate (EP), ethyl acetate (EA) ), ⁇ -butyrolactone (GBL), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), 1,3-dioxocyclopentane (DOL), 4-methyl-1,3-dioxane Pentane (4MeDOL), dimethoxymethane (DMM), 1,2-dimethoxypropane (DMP), triethylene glycol dimethyl ether (DG), dimethyl sulfone (MSM), dimethyl ether (D
  • the ionic liquid includes 1-ethyl-3-methylimidazolium-hexafluorophosphate, 1-ethyl-3-methylimidazole-tetrafluoroborate, 1-ethyl-3-methylimidazole-double Trifluoromethylsulfonimide salt, 1-propyl-3-methylimidazole-hexafluorophosphate, 1-propyl-3-methylimidazole-tetrafluoroborate, 1-propyl-3- Methylimidazole-bistrifluoromethylsulfonimide Salt, 1-butyl-1-methylimidazole-hexafluorophosphate, 1-butyl-1-methylimidazole-tetrafluoroborate, 1-butyl-1-methylimidazole-bistrifluoromethyl Base sulfonimide salt, N-butyl-N-methylpyrrolidine-bistrifluoromethylsulfonimide salt, 1-butyl-1-methylpyrrolidine-
  • the electrolyte further includes an additive comprising one or more of an ester, a sulfone, an ether, a nitrile, and an olefin organic additive, and the mass fraction of the additive in the electrolyte is 0.1-20%.
  • the additive includes fluoroethylene carbonate, vinylene carbonate, ethylene carbonate, 1,3-propane sultone, 1,4-butane sultone, vinyl sulfate, propylene sulfate Ester, ethylene sulfate, vinyl sulfite, propylene sulfite, dimethyl sulfite, diethyl sulfite, ethylene sulfite, methyl chloroformate, dimethyl sulfoxide, benzene Methyl ether, acetamide, diazabenzene, m-diazabenzene, crown ether 12-crown-4, crown ether 18-crown-6, 4-fluoroanisole, fluorochain ether, difluoromethyl Ethylene carbonate, trifluoromethyl ethylene carbonate, vinyl chlorocarbonate, vinyl bromoacetate, trifluoroethylphosphonic acid, bromobutyrolactone, fluoroacet
  • the separator is an insulating porous polymer film or an inorganic porous film.
  • the secondary battery provided by the first aspect of the present invention solves the problem that the existing lithium secondary battery has limited lithium resource reserves by using the potassium salt as the electrolyte, reduces the battery cost and is environmentally friendly;
  • the battery directly uses the metal foil as the negative active material and the current collector, effectively reducing the weight and volume of the battery, improving the energy density of the battery, and the secondary battery has good charge and discharge cycle performance.
  • the present invention provides a method of preparing a secondary battery, comprising the steps of:
  • the positive electrode active material layer including a positive electrode active material, the positive electrode active material including a material embedded with a potassium salt anion;
  • an electrolyte and a separator comprising a potassium salt and a non-aqueous solvent
  • the anode, the separator, and the cathode are sequentially closely packed in an inert gas or an anhydrous environment, and the electrolyte is added to completely infiltrate the separator
  • the above stacked portion is packaged into a battery case to obtain a secondary battery.
  • the method for preparing a secondary battery provided by the second aspect of the invention has a simple process and is suitable for large-scale production.
  • FIG. 1 is a schematic structural view of a secondary battery according to an embodiment of the present invention.
  • an embodiment of the present invention provides a secondary battery including a cathode current collector 10, a cathode active material layer 20, an electrolyte 30, a separator 40, and a cathode 50.
  • the cathode current collector 10 and the cathode current collector are disposed.
  • the positive electrode active material layer 20 on 10 collectively constitutes a battery positive electrode, and the positive electrode active material
  • the layer 20 includes a positive electrode active material capable of intercalating a potassium salt anion;
  • the negative electrode 50 includes a metal foil which serves as both a negative electrode current collector and a negative electrode active material;
  • the electrolyte 30 includes a potassium salt and a nonaqueous solvent; and the separator 40 is interposed between the positive electrode and the positive electrode active material; Between the anode 50 and the anode 50.
  • the working principle of the above secondary battery provided by the embodiment of the present invention is: during the charging process, the anion in the electrolyte migrates to the positive electrode and is embedded in the positive active material, the potassium ion migrates to the negative electrode and forms a potassium-metal alloy with the negative electrode; During the process, the anion is removed from the positive electrode active material and returned to the electrolyte, and the potassium ions are de-alloyed from the negative electrode to the electrolyte to realize the entire charge and discharge process.
  • the electrolyte uses potassium salt as the electrolyte, which solves the problem of limited lithium resource reserves, reduces the cost of the secondary battery, and reduces the environmental impact of the battery; in addition, since the negative metal foil serves as the negative electrode at the same time
  • the active material and the current collector reduce the weight and volume of the battery, increase the battery capacity, thereby increasing the energy density of the battery, and saving the manufacturing cost of the battery.
  • the cathode active material includes one or more of a carbon material, a sulfide, a nitride, an oxide, a carbide, and a composite of the above materials.
  • the carbon material comprises one or more of a graphite-based carbon material, a glassy carbon, a carbon-carbon composite material, carbon fiber, hard carbon, porous carbon, carbon black, carbon nanotubes, and graphene.
  • the graphite-based carbon material includes one or more of natural graphite, expanded graphite, artificial graphite, mesocarbon microbead graphite, pyrolytic graphite, highly oriented graphite, and three-dimensional graphite sponge.
  • the sulfide is selected from the group consisting of molybdenum disulfide, tungsten disulfide, vanadium disulfide, titanium disulfide, iron disulfide, ferrous sulfide, nickel sulfide, zinc sulfide, cobalt sulfide, and manganese sulfide.
  • the nitride is selected from one or more of hexagonal boron nitride and carbon-doped hexagonal boron nitride;
  • the oxide is selected from the group consisting of molybdenum trioxide, tungsten trioxide, vanadium pentoxide, One or more of vanadium dioxide, titanium dioxide, zinc oxide, copper oxide, nickel oxide, manganese oxide;
  • the carbide is selected from one or more of titanium carbide, tantalum carbide, molybdenum carbide, silicon carbide.
  • the cathode active material and the anode active material have a layered crystal structure.
  • the material of the metal foil includes any one of tin, zinc, lead, antimony, cadmium, gold, antimony, bismuth or an alloy containing at least one of the above metal elements, or at least one kind a composite material of the above metal elements.
  • the cathode current collector comprises any one of aluminum, copper, iron, tin, zinc, nickel, titanium, manganese or an alloy containing at least one of the above metal elements, or contains at least one of the above metals The composite of the elements.
  • the potassium salt as the electrolyte may be potassium hexafluorophosphate, potassium chloride, potassium fluoride, potassium sulfate, potassium carbonate, potassium phosphate, potassium nitrate, potassium difluorooxalate borate, potassium pyrophosphate, and twelve.
  • potassium alkylbenzenesulfonate potassium lauryl sulfate, tripotassium citrate, potassium metaborate, potassium borate, potassium molybdate, potassium tungstate, potassium bromide, potassium nitrite, potassium iodate, potassium iodide, silicic acid Potassium, potassium lignosulfonate, potassium oxalate, potassium aluminate, potassium methanesulfonate, potassium acetate, potassium dichromate, potassium hexafluoroarsenate, potassium tetrafluoroborate, potassium perchlorate, trifluoromethanesulfonimide
  • concentration of the potassium salt may be from 0.1 to 10 mol/L. Further, the concentration of the potassium salt may be 0.1 - 2 mol / L.
  • the nonaqueous solvent in the electrolytic solution is not particularly limited as long as the electrolyte can be dissociated into potassium ions and anions, and the potassium ions and anions can be freely migrated.
  • the nonaqueous solvent includes an organic solvent and an ionic liquid, and the organic solvent may be one or more of an ester, a sulfone, an ether, and a nitrile organic solvent.
  • the organic solvent may be propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), formic acid Ester (MF), methyl acetate (MA), N,N-dimethylacetamide (DMA), fluoroethylene carbonate (FEC), methyl propionate (MP), ethyl propionate (EP), Ethyl acetate (EA), ⁇ -butyrolactone (GBL), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), 1,3-dioxocyclopentane (DOL), 4-methyl-1, 3-dioxolane (4MeDOL), dimethoxymethane (DMM), 1,2-dimethoxypropane (DMP), Triethylene glycol dimethyl ether (DG), dimethyl sulfone (MSM), dimethyl ether (DME), vinyl sulf
  • the ionic liquid includes 1-ethyl-3-methylimidazolium-hexafluorophosphate, 1-ethyl-3-methylimidazole-tetrafluoroborate, 1-ethyl-3-methylimidazole-double Trifluoromethylsulfonimide salt, 1-propyl-3-methylimidazole-hexafluorophosphate, 1-propyl-3-methylimidazole-tetrafluoroborate, 1-propyl-3- Methylimidazole-bistrifluoromethylsulfonimide salt, 1-butyl-1-methylimidazole-hexafluorophosphate, 1-butyl-1-methylimidazole-tetrafluoroborate, 1- Butyl-1-methylimidazole-bistrifluoromethylsulfonimide salt, N-butyl-N-methylpyrrolidine-bistrifluoromethylsulfonimide salt, 1-butyl-1- Methylpyrrolidine
  • the structure of the negative electrode in order to prevent damage caused by volume change of the negative electrode during charge and discharge, the structure of the negative electrode is kept stable, and the service life and performance of the negative electrode are improved to improve the cycle performance of the secondary battery, and the electrolyte further
  • An additive is included, which may be one or more of an ester, a sulfone, an ether, a nitrile, and an olefinic organic additive.
  • the additive includes fluoroethylene carbonate, vinylene carbonate, ethylene carbonate, 1,3-propane sultone, 1,4-butane sultone, vinyl sulfate, propylene sulfate Ester, ethylene sulfate, vinyl sulfite, propylene sulfite, dimethyl sulfite, diethyl sulfite, ethylene sulfite, methyl chloroformate, dimethyl sulfoxide, benzene Methyl ether, acetamide, diazabenzene, m-diazabenzene, crown ether 12-crown-4, crown ether 18-crown-6, 4-fluoroanisole, fluorochain ether, difluoromethyl Ethylene carbonate, trifluoromethyl ethylene carbonate, vinyl chlorocarbonate, vinyl bromoacetate, trifluoroethylphosphonic acid, bromobutyrolactone, fluoroacet
  • Additives added to the electrolyte in the anode current collector (gold
  • the surface of the foil can form a stable solid electrolyte membrane, so that the metal foil is not destroyed when reacted as the anode active material, thereby improving the service life of the battery.
  • the additive has a mass fraction in the electrolyte of 0.1-20%, and further may be 2-5%.
  • the separator may be an insulating porous polymer film or an inorganic porous film, and specifically, one of a porous polypropylene film, a porous polyethylene film, a porous composite polymer film, a glass fiber paper, and a porous ceramic separator may be selected. Or a variety.
  • the positive electrode active material layer further includes a conductive agent and a binder, wherein the positive electrode active material has a mass content of 60-90%, the conductive agent has a mass content of 5-30%, and the binder has a mass content of 5-10%. Further, the positive electrode active material has a mass content of 70-85%.
  • the conductive agent and the binder are not particularly limited in the embodiment of the present invention, and it is generally used in the art.
  • the conductive agent may be one or more of conductive carbon black, conductive carbon spheres, conductive graphite, carbon nanotubes, conductive carbon fibers, graphene, and reduced graphene oxide.
  • the binder may be one or more of polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose, SBR rubber, and polyolefin.
  • an embodiment of the present invention further provides a method for preparing the above secondary battery, comprising the following steps:
  • Preparation of positive electrode providing a positive electrode current collector with a clean surface, weighing the positive electrode active material, the conductive agent and the binder in a certain ratio, adding a suitable solvent and thoroughly mixing to form a uniform slurry; then uniformly coating the slurry on the slurry Forming a positive electrode current collector surface, forming a positive electrode active material layer, pressing and cutting after being completely dried to obtain a battery positive electrode of a desired size;
  • a porous polymer film or an inorganic porous film is cut into a desired size, and after cleaning, a desired separator is obtained.
  • Battery assembly the battery negative electrode, the separator, and the positive electrode prepared in the above-mentioned manner are closely stacked in an inert gas or anhydrous environment, and the electrolyte is added to completely infiltrate the separator, and then the stacked portion is packaged into a battery.
  • the housing is assembled and a secondary battery is obtained.
  • steps (1) to (4) describe the operation of the secondary battery preparing method of the present invention in a specific order, it is not necessary to perform these operations in this specific order.
  • the operations of steps (1)-(4) can be performed simultaneously or in any order.
  • a method for preparing a secondary battery comprising the steps of:
  • the working mechanism of the secondary battery of Embodiment 1 of the present invention is: negative electrode: positive electrode:
  • Aluminum foil is used as positive electrode current collector, natural graphite is used as positive electrode active material, aluminum foil is used as negative electrode (aluminum foil is used as negative electrode active material and current collector), LiPF 6 is electrolyte, ethyl methyl carbonate is electrolyte solvent, and 2% is added to electrolyte.
  • An additive of vinylene carbonate was assembled into an aluminum-graphite dual ion battery in the same manner as in Example 1. The working mechanism of the battery is: negative electrode: positive electrode:
  • Example 1 Aluminum foil was used as a positive electrode current collector, Prussian blue was used as a positive electrode active material, potassium foil was used as a counter electrode, and KBF 4 was an electrolyte, and a potassium secondary battery half-cell was assembled in the same manner as in Example 1.
  • the working mechanism of the battery is: negative electrode: positive electrode:
  • Example 1 Aluminum foil was used as a positive electrode current collector, lithium cobaltate was used as a positive electrode active material, copper foil was used as a negative electrode current collector, graphite was used as a negative electrode active material, and LiPF 6 was an electrolyte, and assembled into a conventional lithium ion battery in the same manner as in Example 1.
  • the working mechanism of the battery is: negative electrode: positive electrode:
  • the secondary battery obtained in the above Example 1 of the present invention and the battery in Comparative Example 1-3 were subjected to a constant current charge and discharge test, and the current density was 100 mA/g, and the voltage range was 3-5 V (the same applies to the subsequent embodiments of the present invention).
  • the test method obtained electrochemical performance results). The test results and other parameters are shown in Table 1.
  • the working electrode has the potassium salt as the electrolyte, the graphite as the positive electrode active material, and the tin foil as the negative electrode active material and the current collector of the double ion secondary battery, and the working voltage is proportional to the ratio of 1-3.
  • the battery is high, and the negative electrode does not contain active graphite, the raw material cost and the process cost are low, and the environment is friendly, and the cycle stability is excellent.
  • the difference between the embodiment 2-10 and the embodiment 1 is that the selection of the negative electrode is different. Specifically, as shown in Table 2, the secondary battery obtained in the embodiment 2-12 is subjected to a constant current charge and discharge test, and the results are shown in Table 2. Show:
  • the difference between the embodiment 11-48 and the embodiment 1 is that the positive electrode active material is different, and as shown in Table 3, the secondary battery obtained in the embodiment 11-48 is subjected to a constant current charge and discharge test, and the test results are shown in Table 3. Shown as follows:
  • Example 77-78 differ from those of Example 1 only in that the electrolyte concentration is different. Specifically, as shown in Table 5, the secondary battery obtained in the above examples was subjected to a constant current charge and discharge test, and the test results are shown in Table 5:
  • Examples 127-177 differ from Example 1 only in the difference in the solvent type of the electrolyte.
  • Table 8 the secondary battery obtained in the above examples was subjected to a constant current charge and discharge test. The test results are shown in Table 8. Show:
  • the secondary battery according to the embodiment of the present invention is not limited to the button battery, and may be designed in the form of a flat battery or a cylindrical battery according to the core component.
  • the main active ingredient of the secondary battery of the embodiment of the invention is It can be used for the extraction and embedding of potassium anions, and the negative electrode active material is not needed in the battery system, so the battery weight and preparation cost can be significantly reduced, the energy density of the battery can be improved, and the battery has excellent cycle stability performance in the field of secondary batteries. with broadly application foreground.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne une batterie secondaire, comprenant une électrode positive, une solution électrolytique, une électrode négative et un diaphragme, l'électrode positive comprenant un collecteur de courant d'électrode positive, et une couche de matériau actif d'électrode positive disposée sur le collecteur de courant d'électrode positive ; la couche de matériau actif d'électrode positive comprend un matériau actif d'électrode positive, et le matériau actif d'électrode positive comprend un matériau dans lequel des anions de sel de potassium peuvent être incorporés ; la solution électrolytique comprend un sel de potassium et un solvant non aqueux ; et l'électrode négative comprend une feuille métallique, et la feuille métallique sert en même temps de collecteur de courant d'électrode négative et de matériau actif d'électrode négative. Une solution électrolytique de la batterie secondaire utilise un sel de potassium en tant qu'électrolyte, ce qui permet de résoudre le problème lié aux réserves limitées des ressources en lithium dans des batteries secondaires au lithium couramment utilisées actuellement, de réduire le coût de la batterie secondaire et d'être respectueux de l'environnement. De plus, étant donné que la feuille métallique sert en même temps de matériau actif d'électrode négative et de collecteur de courant, le poids et le volume de la batterie sont réduits, ce qui permet d'améliorer la densité énergétique de la batterie, et de faire par la même occasion des économies sur les coûts de production de la batterie.
PCT/CN2017/074634 2017-02-23 2017-02-23 Batterie secondaire et son procédé de préparation WO2018152755A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/074634 WO2018152755A1 (fr) 2017-02-23 2017-02-23 Batterie secondaire et son procédé de préparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/074634 WO2018152755A1 (fr) 2017-02-23 2017-02-23 Batterie secondaire et son procédé de préparation

Publications (1)

Publication Number Publication Date
WO2018152755A1 true WO2018152755A1 (fr) 2018-08-30

Family

ID=63254041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074634 WO2018152755A1 (fr) 2017-02-23 2017-02-23 Batterie secondaire et son procédé de préparation

Country Status (1)

Country Link
WO (1) WO2018152755A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449411A (zh) * 2018-10-30 2019-03-08 陕西科技大学 一种限域合成二硫化钨@c复合电极材料的方法
CN109659523A (zh) * 2018-12-10 2019-04-19 桂林理工大学 一种用矿物质制备锂离子电池负极活性材料的方法
CN110642883A (zh) * 2019-10-23 2020-01-03 上海如鲲新材料有限公司 一种二氟草酸硼酸盐的制备方法
CN111285361A (zh) * 2020-04-14 2020-06-16 中北大学 一种低缺陷、高分散石墨烯的高效液相机械制备方法
CN111293295A (zh) * 2020-01-13 2020-06-16 宁夏博尔特科技有限公司 废旧橡胶材料基二次电池用电极材料及其制备方法
WO2020125560A1 (fr) * 2018-12-17 2020-06-25 深圳先进技术研究院 Électrode négative à potassium pré-incorporé, procédé de préparation et utilisation, et double batterie aux ions à base de potassium, procédé de préparation associé et dispositif électrique
CN111468104A (zh) * 2019-10-15 2020-07-31 中山大学 一种石墨烯-钨酸铋的制备方法及其应用
CN111540609A (zh) * 2020-05-07 2020-08-14 电子科技大学 一种用于超级电容器的晶态-非晶态MoO3@Ni3S2材料的制备方法
CN111816858A (zh) * 2020-07-22 2020-10-23 广东工业大学 一种硫/二硫化钒/MXene复合材料及其制备方法与应用
CN113571702A (zh) * 2021-07-23 2021-10-29 中科南京绿色制造产业创新研究院 一种准固态锂硫电池的正极基体材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101241802A (zh) * 2008-03-13 2008-08-13 复旦大学 一种非对称型水系钠/钾离子电池电容器
US20160285089A1 (en) * 2015-03-26 2016-09-29 David Mitlin Anodes for batteries based on tin-germanium-antimony alloys
CN106450247A (zh) * 2016-10-28 2017-02-22 南开大学 用于钠/钾离子二次电池的金属铋负极和醚基电解液

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101241802A (zh) * 2008-03-13 2008-08-13 复旦大学 一种非对称型水系钠/钾离子电池电容器
US20160285089A1 (en) * 2015-03-26 2016-09-29 David Mitlin Anodes for batteries based on tin-germanium-antimony alloys
CN106450247A (zh) * 2016-10-28 2017-02-22 南开大学 用于钠/钾离子二次电池的金属铋负极和醚基电解液

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449411B (zh) * 2018-10-30 2020-12-01 陕西科技大学 一种限域合成二硫化钨@c复合电极材料的方法
CN109449411A (zh) * 2018-10-30 2019-03-08 陕西科技大学 一种限域合成二硫化钨@c复合电极材料的方法
CN109659523A (zh) * 2018-12-10 2019-04-19 桂林理工大学 一种用矿物质制备锂离子电池负极活性材料的方法
WO2020125560A1 (fr) * 2018-12-17 2020-06-25 深圳先进技术研究院 Électrode négative à potassium pré-incorporé, procédé de préparation et utilisation, et double batterie aux ions à base de potassium, procédé de préparation associé et dispositif électrique
CN111468104A (zh) * 2019-10-15 2020-07-31 中山大学 一种石墨烯-钨酸铋的制备方法及其应用
CN110642883A (zh) * 2019-10-23 2020-01-03 上海如鲲新材料有限公司 一种二氟草酸硼酸盐的制备方法
CN111293295A (zh) * 2020-01-13 2020-06-16 宁夏博尔特科技有限公司 废旧橡胶材料基二次电池用电极材料及其制备方法
CN111293295B (zh) * 2020-01-13 2021-08-03 博尔特新材料(银川)有限公司 废旧橡胶材料基二次电池用电极材料及其制备方法
CN111285361A (zh) * 2020-04-14 2020-06-16 中北大学 一种低缺陷、高分散石墨烯的高效液相机械制备方法
CN111540609A (zh) * 2020-05-07 2020-08-14 电子科技大学 一种用于超级电容器的晶态-非晶态MoO3@Ni3S2材料的制备方法
CN111540609B (zh) * 2020-05-07 2021-04-30 电子科技大学 一种用于超级电容器的晶态-非晶态MoO3@Ni3S2材料的制备方法
CN111816858A (zh) * 2020-07-22 2020-10-23 广东工业大学 一种硫/二硫化钒/MXene复合材料及其制备方法与应用
CN111816858B (zh) * 2020-07-22 2021-11-26 广东工业大学 一种硫/二硫化钒/MXene复合材料及其制备方法与应用
CN113571702A (zh) * 2021-07-23 2021-10-29 中科南京绿色制造产业创新研究院 一种准固态锂硫电池的正极基体材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
WO2018152755A1 (fr) Batterie secondaire et son procédé de préparation
CN108172903B (zh) 电解液、钠离子二次电池及其制备方法
WO2017084538A1 (fr) Batterie rechargeable et son procédé de préparation
CN108511803B (zh) 一种二次电池及其制备方法
WO2017190365A1 (fr) Batterie au sodium-ion et son procédé de préparation
WO2017113234A1 (fr) Batterie sodium-ion innovante et son procédé de préparation
WO2017190572A1 (fr) Pile rechargeable et son procédé de préparation
CN108630979B (zh) 一种基于钙离子的二次电池及其制备方法
WO2018170925A1 (fr) Pile rechargeable au calcium-ion et son procédé de fabrication
CN107785603B (zh) 锂硫电池电解液及其制备方法以及使用所述电解液的电池
CN111354924B (zh) 钠离子电池正极活性材料、钠离子电池正极材料、钠离子电池正极和钠离子电池及制备方法
CN108470908B (zh) 一种二次电池及其制备方法
WO2017190355A1 (fr) Solution électrolytique, batterie secondaire contenant une solution électrolytique et son procédé de préparation
CN110707287B (zh) 一种金属锂负极及其制备方法和锂电池
WO2018170928A1 (fr) Électrode négative de cellule secondaire, son procédé de fabrication et cellule secondaire
CN108155409B (zh) 钡基双离子电池及其制备方法
CN112397768A (zh) 一种新型二次电池及其制备方法
WO2020125560A1 (fr) Électrode négative à potassium pré-incorporé, procédé de préparation et utilisation, et double batterie aux ions à base de potassium, procédé de préparation associé et dispositif électrique
WO2017206062A1 (fr) Batterie secondaire et son procédé de préparation
Sun et al. Electrolyte concentration effect on sulfur utilization of Li-S batteries
WO2017190363A1 (fr) Matériau actif d'électrode négative, son procédé de préparation, électrode négative et batterie secondaire comprenant le matériau actif d'électrode négative
CN109962231B (zh) 金属箔材用作镧离子二次电池负极和镧离子二次电池及其制备方法
CN108172896B (zh) 钙离子二次电池及其制备方法
WO2020124328A1 (fr) Procédé de fabrication d'électrode négative pré-lithiée, électrode négative pré-lithiée fabriquée, dispositif de stockage d'énergie, système de stockage d'énergie et dispositif électrique
CN108054376B (zh) 硒基复合材料用作正极活性材料在钡离子电池中的应用、钡离子电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898210

Country of ref document: EP

Kind code of ref document: A1