WO2018151296A1 - 方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2018151296A1
WO2018151296A1 PCT/JP2018/005761 JP2018005761W WO2018151296A1 WO 2018151296 A1 WO2018151296 A1 WO 2018151296A1 JP 2018005761 W JP2018005761 W JP 2018005761W WO 2018151296 A1 WO2018151296 A1 WO 2018151296A1
Authority
WO
WIPO (PCT)
Prior art keywords
annealing
steel sheet
hot
slab
rolled
Prior art date
Application number
PCT/JP2018/005761
Other languages
English (en)
French (fr)
Inventor
雅紀 竹中
今村 猛
有衣子 江橋
山口 広
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP18755029.8A priority Critical patent/EP3584331A4/en
Priority to US16/483,860 priority patent/US11286538B2/en
Priority to RU2019126202A priority patent/RU2716052C1/ru
Priority to CN201880011415.5A priority patent/CN110291214A/zh
Priority to KR1020197023477A priority patent/KR102295735B1/ko
Priority to JP2018568655A priority patent/JP6512386B2/ja
Publication of WO2018151296A1 publication Critical patent/WO2018151296A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a method for manufacturing a grain-oriented electrical steel sheet.
  • the inhibitor in order for the inhibitor to function, it is necessary to finely disperse the inhibitor in the steel. For this purpose, it is necessary to heat the steel slab to a high temperature exceeding 1300 ° C. in the heating before hot rolling to once dissolve the inhibitor-forming component in the steel. Moreover, when an inhibitor remains in the grain-oriented electrical steel sheet finally obtained, the inhibitor deteriorates the magnetic properties of the grain-oriented electrical steel sheet. Therefore, after the secondary recrystallization, it is necessary to remove the inhibitor from the ground iron by performing a purification annealing at a high temperature of 1100 ° C. or higher in a controlled atmosphere.
  • Patent Document 1 proposes a method in which Al is removed as much as possible and an inhibitor containing only a small amount of MnS or MnSe is used.
  • Patent Document 2 proposes a technique for developing goth-oriented crystal grains without containing an inhibitor-forming component.
  • the grain boundary energy dependency of the grain boundary energy at the time of primary recrystallization is revealed, and without using an inhibitor.
  • the crystal grains having Goss orientation can be secondary recrystallized. In this way, the effect of controlling recrystallization due to the texture is called a texture inhibition effect.
  • JP 2002-212639 A JP 2000-129356 JP
  • the technology for producing grain-oriented electrical steel sheets without using inhibitor-forming components is expected to be compatible with the production technology using a thin slab for the purpose of cost reduction.
  • a grain-oriented electrical steel sheet is manufactured by combining these manufacturing techniques, a problem that magnetic properties deteriorate is newly clarified.
  • the present invention has been made in view of the above circumstances, and in a method for producing a grain-oriented electrical steel sheet from a thin slab without using an inhibitor-forming component, the grain-oriented electrical steel sheet having excellent magnetic properties can be stably produced.
  • the purpose is to obtain.
  • the obtained hot-rolled steel sheet was subjected to hot-rolled sheet annealing at a soaking temperature of 1000 ° C. and a soaking time of 30 seconds.
  • the time required to reach 900 ° C. from 400 ° C. in the temperature raising process of the hot-rolled sheet annealing was 50 seconds, 100 seconds, or 150 seconds.
  • the hot-rolled steel sheet was cold-rolled to obtain a cold-rolled steel sheet having a final thickness of 0.27 mm.
  • the primary recrystallization annealing was performed in an atmosphere having a soaking temperature of 850 ° C., a soaking time of 60 seconds, and 50% H 2 + 50% N 2 and a dew point of 50 ° C.
  • an annealing separator mainly composed of MgO is applied to the surface of the steel sheet, and then secondary recrystallization annealing that also serves as purification annealing held at 1200 ° C. for 10 hours in an H 2 atmosphere. went.
  • a tension applying coating treatment liquid mainly composed of magnesium phosphate and chromic acid was applied to the surface of the steel sheet after the secondary recrystallization annealing. Thereafter, planarization annealing that doubles baking of the tension-imparting coating was performed at 800 ° C. for 15 seconds. By the above procedure, a grain-oriented electrical steel sheet having a tension-imparting coating on its surface was obtained.
  • the magnetic flux density B 8 of the resultant oriented electrical steel sheet was measured by the method described in JIS C2550.
  • the relationship between the measured magnetic flux density B 8 and the slab heating conditions (heating temperature and heating time) is shown in FIGS. 1, 2, and 3 are the results when the time required to reach 900 ° C. from 400 ° C. to 50 ° C. in the temperature rising process of hot-rolled sheet annealing is 50 seconds, 100 seconds, and 150 seconds, respectively. is there.
  • FIGS. 1 to 3 indicate that a high magnetic flux density can be obtained by setting the heating temperature in the slab heating to 1000 ° C. to 1300 ° C. and the heating time to 60 seconds to 600 seconds. Furthermore, in addition to satisfying the above slab heating conditions, a higher magnetic flux density can be obtained by setting the time to reach 900 ° C. from 400 ° C. in the temperature rising process of hot-rolled sheet annealing to 100 seconds or less. I understand.
  • a characteristic of thin slabs is that the slab structure is almost columnar. This is because in the manufacture of thin slabs, cooling during casting is faster than in the case of thick slabs, and the temperature gradient at the solidified shell interface is large, so that equiaxed crystals are less likely to occur from the center of the plate thickness. it is conceivable that.
  • a slab having a structure composed of columnar crystals is hot-rolled, a hot-rolled texture that is difficult to recrystallize even during subsequent heat treatment is generated.
  • the magnetic properties of the grain-oriented electrical steel sheet finally obtained deteriorate. That is, it is presumed that the magnetic deterioration is caused by the slab having a structure mainly composed of columnar crystals before the hot rolling.
  • the above-mentioned problem can be solved by setting the soaking temperature in hot-rolled sheet annealing to 950 ° C. or higher and quickly raising the temperature to near the soaking temperature. That is, by rapidly raising the temperature to near the soaking temperature, it is possible to reach a recrystallization temperature without excessively consuming relatively little strain accumulated during hot rolling in the temperature raising process. As a result, it is considered that the recrystallization rate of the hot-rolled sheet annealed plate can be dramatically increased, and the magnetic properties are further improved.
  • the magnetic characteristics of the grain-oriented electrical steel sheet can be reduced while minimizing the cost increase by providing new facilities by successfully combining the characteristics of the structure of the grain-oriented electrical steel sheet and the features of the thin slab continuous casting method. Can be improved.
  • the present inventors when manufacturing grain-oriented electrical steel sheets from thin slabs in the inhibitorless material, the present inventors have increased the heating temperature and heating time in slab heating and the first annealing performed after hot rolling. By controlling the temperature rate and soaking temperature, we succeeded in preventing the deterioration of magnetic properties.
  • the present invention is based on the above-described novel findings, and the gist of the present invention is as follows. 1. % By mass C: 0.002% to 0.100%, Si: 2.00% to 8.00%, Mn: 0.005% or more and 1.000% or less, sol.Al: less than 0.0100%, N: less than 0.0060%, S: less than 0.0100%, and Se: less than 0.0100%, with the balance being Fe and inevitable impurities, the molten steel having a component composition is subjected to continuous casting to form a slab having a thickness of 25 mm to 100 mm, Heating the slab, The heated slab is hot rolled into a hot rolled steel sheet, Optionally subjecting the hot-rolled steel sheet to hot-rolled sheet annealing, Cold rolling the hot rolled steel sheet to obtain a cold rolled steel sheet having a final thickness, Subjecting the cold-rolled steel sheet to primary recrystallization annealing, A method for producing a grain-oriented electrical steel sheet, which is subjected to
  • the component composition is mass%, The method for producing a grain-oriented electrical steel sheet according to the above 1 or 2, comprising S: less than 0.0030% and Se: less than 0.0030%.
  • the component composition is further mass%, Cr: 0.01% to 0.50%, Cu: 0.01% or more and 0.50% or less, P: 0.005% to 0.50%, Ni: 0.001% to 0.50%, Sb: 0.005% to 0.50%, Sn: 0.005% to 0.50%, Bi: 0.005% to 0.50%, Mo: 0.005% or more and 0.100% or less, B: 0.0002% or more and 0.0025% or less,
  • the grain-oriented electrical steel sheet according to any one of 1 to 3 above, containing Nb: 0.0010% to 0.0100% and V: 1 or 2 selected from the group consisting of 0.0010% to 0.0100%. Production method.
  • 5 is a graph showing the relationship between the heating temperature and heating time in slab heating and the magnetic flux density B 8 when the time from reaching 400 ° C. to 900 ° C. in the temperature raising process of hot-rolled sheet annealing is 50 seconds. If the time from 400 ° C. in the temperature elevation process of hot-rolled sheet annealing to reach 900 ° C. is 100 seconds, it is a graph showing the relationship between heating temperature and the heating time and the magnetic flux density B 8 in the slab heating. 6 is a graph showing the relationship between the heating temperature and heating time in slab heating and the magnetic flux density B 8 when the time from 400 ° C. to 900 ° C. in the temperature rising process of hot-rolled sheet annealing is 150 seconds.
  • C 0.002% or more and 0.100% or less
  • C content is 0.002% or more, preferably 0.010% or more.
  • C causes a decrease in magnetic properties due to magnetic aging. Therefore, in manufacture of a grain-oriented electrical steel sheet, it is preferable to reduce C content in the grain-oriented electrical steel sheet finally obtained by performing decarburization annealing.
  • the C content of molten steel is 0.100% or less, preferably 0.050% or less.
  • the C content of the grain-oriented electrical steel sheet finally obtained is preferably 0.005% or less.
  • Si 2.00% or more and 8.00% or less Si is an element necessary for increasing the specific resistance of steel and improving iron loss. However, if the Si content is less than 2.00%, the effect cannot be obtained. Therefore, the Si content is 2.00% or more, preferably 2.50% or more. On the other hand, if the Si content exceeds 8.00%, the workability of the steel decreases and rolling becomes difficult. Therefore, the Si content is 8.00% or less, preferably 4.50% or less.
  • Mn 0.005% or more and 1.000% or less
  • Mn is an element necessary for improving the hot workability, but if the Mn content is less than 0.005%, the effect cannot be obtained. Therefore, the Mn content is 0.005% or more, preferably 0.040% or more.
  • the Mn content exceeds 1.000%, the magnetic flux density of the grain-oriented electrical steel sheet finally obtained decreases. Therefore, the Mn content is 1.000% or less. Preferably, it is 0.200% or less.
  • sol.Al less than 0.0100%
  • Al is an inhibitor forming component. Since the present invention is based on the inhibitorless method, it is necessary to reduce the sol.Al content as much as possible. Therefore, the sol.Al content is less than 0.0100%, preferably less than 0.0070%.
  • the lower limit of the sol.Al content is not particularly limited, and may be 0%, but industrially it may be more than 0%. Moreover, since excessive reduction causes an increase in production cost, the sol.Al content is preferably set to 0.0005% or more.
  • N less than 0.0060%
  • N is an inhibitor-forming component. Therefore, the N content is less than 0.0060%, preferably less than 0.0040%.
  • the lower limit of the N content is not particularly limited, and may be 0%, but industrially it may be more than 0%. Further, since excessive reduction leads to an increase in manufacturing cost, the N content is preferably 0.001% or more.
  • S less than 0.0100%
  • S is an inhibitor-forming component. Therefore, the S content is less than 0.0100%, preferably less than 0.0030%.
  • the lower limit of the S content is not particularly limited, and may be 0%, but may be more than 0% industrially. Further, since excessive reduction leads to an increase in manufacturing cost, the S content is preferably 0.001% or more.
  • Se less than 0.0100%
  • Se is an inhibitor-forming component. Therefore, the Se content is less than 0.0100%, preferably less than 0.0030%.
  • the lower limit of the Se content is not particularly limited, and may be 0%, but industrially it may be more than 0%.
  • a molten steel having a component composition composed of the above elements, the remaining Fe and unavoidable impurities can be used.
  • the inevitable impurities include impurities inevitably mixed from raw materials, production facilities, and the like.
  • the component composition is Cr: 0.01% to 0.50%, Cu: 0.01% or more and 0.50% or less, P: 0.005% to 0.50%, Ni: 0.001% to 0.50%, Sb: 0.005% to 0.50%, Sn: 0.005% to 0.50%, Bi: 0.005% to 0.50%, Mo: 0.005% or more and 0.100% or less, B: 0.0002% or more and 0.0025% or less,
  • One or more selected from the group consisting of Nb: 0.0010% to 0.0100% and V: 0.0010% to 0.0100% can be further optionally contained.
  • molten steel having the above component composition is subjected to a thin slab continuous casting method to form a slab.
  • the thickness of the continuously cast slab is 25mm or more and 100mm or less for cost reduction.
  • the thickness of the slab is preferably 40 mm or more.
  • the thickness of the slab is preferably 80 mm or less.
  • the slab manufactured from molten steel is heated by a heating process before hot rolling.
  • This heating is also called slab heating.
  • the present invention does not require long-term high-temperature annealing for dissolving the inhibitor, so that the heating temperature in the slab heating is 1000 ° C. or higher and 1300 ° C. or lower, and the heating time is 60 seconds or longer and 600 seconds or shorter.
  • the heating temperature is preferably 1250 ° C. or lower.
  • the heating time is preferably set to 400 seconds or less.
  • the heating temperature is preferably set to 1100 ° C. or higher and 1200 ° C.
  • the heating time refers to a time during which the heat stays in a temperature range of 1000 ° C. or higher and 1300 ° C. or lower in the process from the temperature increase to the temperature decrease during the heating.
  • the slab heating is not particularly limited and can be performed with any equipment, but is preferably performed using a tunnel furnace.
  • a tunnel furnace is a facility in which a transfer table and a heating furnace are integrated. By using a tunnel furnace, the slab can be heated and held during conveyance, and temperature fluctuations in the slab can be suppressed.
  • ordinary slab heating is generally performed in a walking beam furnace having a skid.
  • slab heating using a tunnel furnace it is possible to produce a grain-oriented electrical steel sheet with superior characteristics without suffering from slab sag generated in a walking beam furnace or deterioration of magnetic characteristics due to a decrease in skid temperature. Can be manufactured.
  • the slab In the tunnel furnace, the slab is heated while being transported in parallel with the casting direction. At this time, the slab is transported on the table roll. Therefore, from the viewpoint of suppressing surface defects caused by "sagging" between rolls and reduction in slab temperature due to contact with the rolls, it is preferable that the slab transport speed in the tunnel furnace is 10 m / min or more. .
  • the heating method in the slab heating is not particularly limited, but at least a part may be performed by an induction heating method.
  • the induction heating method is, for example, a method in which an alternating magnetic field is applied to a slab and heated by self-heating.
  • Hot rolling After the heating, hot rolling is performed.
  • the hot rolling is not particularly limited and can be performed under arbitrary conditions.
  • the hot rolling can be composed of rough rolling and rough rolling, but since the slab used is thin, from the viewpoint of manufacturing cost reduction, rough rolling is omitted and only finish rolling by a tandem mill is used. It is preferable to consist of.
  • the conditions for the hot rolling are not particularly limited, and can be performed under arbitrary conditions. From the viewpoint of further improving the magnetic properties of the grain-oriented electrical steel sheet finally obtained, it is preferable that the start temperature of the hot rolling is 900 ° C. or higher and the end temperature is 700 ° C. or higher. On the other hand, from the viewpoint of further improving the shape of the steel sheet after rolling, the end temperature is preferably set to 1000 ° C. or less. Further, from the viewpoint of suppressing variations in the steel sheet temperature, it is preferable that the time from the completion of slab heating to the start of hot rolling be within 100 seconds.
  • hot-rolled sheet annealing After hot rolling, hot-rolled sheet annealing is optionally performed. In other words, hot-rolled sheet annealing may or may not be performed.
  • hot-rolled sheet annealing hot-rolled sheet steel is subjected to hot-rolled sheet annealing to obtain an annealed sheet, and the annealed sheet is cold-rolled.
  • hot-rolled sheet annealing is not performed, the hot-rolled steel sheet is cold-rolled.
  • the time to reach 900 ° C. from 400 ° C. in the temperature rising process of the hot-rolled sheet annealing is set to 100 seconds or less, and the soaking temperature in the hot-rolled sheet annealing is set to 950 ° C or higher.
  • the upper limit of the soaking temperature is not particularly limited, but is preferably 1150 ° C. or lower. By setting the soaking temperature to 1150 ° C. or less, it is possible to prevent the crystal grains from excessively coarsening during hot-rolled sheet annealing, and to realize a primary recrystallized structure of grain size more effectively.
  • the soaking temperature is more preferably 1080 ° C. or lower.
  • the soaking time in the hot-rolled sheet annealing is not particularly limited and can be arbitrarily determined. However, if the soaking time is 10 seconds or longer, the residual band structure can be more effectively suppressed. Therefore, the soaking time is preferably 10 seconds or more, and more preferably 15 seconds or more. On the other hand, if the soaking time is set to 200 seconds or less, segregation of elements to grain boundaries can be further suppressed, and defects during cold rolling due to grain boundary segregation elements can be further suppressed. Therefore, the soaking time is preferably 200 seconds or less, and more preferably 120 seconds or less.
  • the cold rolling may consist of only one rolling, but may also consist of two or more rollings with intermediate annealing. For example, when rolling is performed twice, the first rolling, intermediate annealing, and second rolling may be performed sequentially. When rolling is performed three times or more, intermediate annealing is performed between each rolling.
  • the soaking temperature in the intermediate annealing is preferably 900 ° C. or higher and 1200 ° C. or lower. If the soaking temperature is 900 ° C. or higher, the recrystallized grains have a more appropriate size, the Goss nuclei in the primary recrystallized structure increase, and the magnetism is further improved. Further, when the soaking temperature is 1200 ° C. or lower, the coarsening of the particle size is prevented, and a primary recrystallized structure of sized particles can be realized more effectively.
  • the soaking temperature is more preferably 1150 ° C. or lower.
  • the cold rolling is composed of two or more rollings with the intermediate annealing interposed therebetween, and from 400 ° C. in the temperature rising process of the first intermediate annealing.
  • the time required to reach 900 ° C. is 100 seconds or shorter, and the soaking temperature in the first intermediate annealing needs to be 950 ° C. or higher.
  • the final cold rolling refers to the rolling performed last among the rollings included in the cold rolling process.
  • the rolling is the final cold rolling.
  • the second rolling is the final cold rolling.
  • primary recrystallization annealing is performed on the cold-rolled steel sheet obtained in the cold rolling process.
  • the primary recrystallization annealing may also serve as decarburization annealing.
  • the conditions for the primary recrystallization annealing are not particularly limited, but from the viewpoint of decarburization, the soaking temperature is preferably 800 ° C. or higher and 900 ° C. or lower.
  • the primary recrystallization annealing is preferably performed in a humid atmosphere from the viewpoint of decarburization.
  • the soaking time is preferably about 30 seconds to 300 seconds. However, this is not the case when the C content of the steel slab is 0.005% or less and it is not necessary to decarburize.
  • An annealing separator is optionally applied to the steel sheet after the primary recrystallization annealing.
  • an annealing separator mainly composed of MgO is used.
  • a forsterite film can be formed on the surface of the steel sheet by subjecting the steel sheet coated with an annealing separator mainly composed of MgO to secondary recrystallization annealing.
  • the method of applying the annealing separator is not particularly limited, but for example, electrostatic coating can be applied. According to electrostatic application, the annealing separator can be applied to the steel sheet without bringing in moisture. Moreover, the method of sticking a heat resistant inorganic material sheet
  • the heat-resistant inorganic material sheet for example, a sheet containing one or two or more selected from the group consisting of silica, alumina, and mica can be used.
  • Secondary recrystallization annealing is performed.
  • the secondary recrystallization annealing may also serve as a purification annealing.
  • the secondary recrystallization annealing is desirably performed at 800 ° C. or higher for the secondary recrystallization. In order to complete secondary recrystallization, it is preferable to hold at a temperature of 800 ° C. or higher for 20 hours or longer. If the forsterite film is not formed with emphasis on punchability, the secondary recrystallization should be completed, so the soaking temperature is preferably 850 to 950 ° C, and annealing is completed until the temperature is maintained. Is also possible. When emphasizing iron loss or forming a forsterite film to reduce transformer noise, it is preferable to raise the temperature to about 1200 ° C.
  • planarization annealing After the secondary recrystallization annealing, planarization annealing can also be performed. By performing the flattening annealing, the shape of the grain-oriented electrical steel sheet can be corrected and further the iron loss can be reduced.
  • the annealing separator is applied in the previous step, it is preferable to remove the annealing separator attached to the steel plate before the flattening annealing.
  • the removal of the annealing separator is preferably performed by one or more methods selected from the group consisting of water washing, brushing, and pickling, for example. From the viewpoint of shape correction, the soaking temperature of the flattening annealing is preferably about 700 to 900 ° C.
  • a magnetic domain refinement process After the flattening annealing, a magnetic domain refinement process can be performed to reduce iron loss.
  • a processing method for example, a method of forming a groove on the surface of a grain-oriented electrical steel sheet, which is generally performed, a method of introducing thermal strain or impact strain linearly by laser irradiation or electron beam irradiation, An example is a method in which a groove is previously formed in an intermediate product such as a cold-rolled sheet that has reached the final finished sheet thickness.
  • Example 1 A grain-oriented electrical steel sheet was produced by the following procedure, and the magnetic properties of the obtained grain-oriented electrical steel sheet were evaluated.
  • a molten steel having a component composition containing Sb: 0.090% and the balance being Fe and inevitable impurities was prepared.
  • the Se content in the molten steel was below the detection limit.
  • a slab having a thickness of 30 mm was produced from the molten steel by a continuous casting method.
  • the obtained slab was heated under the conditions shown in Table 1.
  • a regenerative burner heating type tunnel furnace was used for the slab heating.
  • the slab conveyance speed in the heating process in the tunnel furnace was changed variously according to the heating time.
  • hot rolling was started in 60 seconds to obtain a hot rolled steel sheet having a thickness of 2.2 mm. Thereafter, the obtained hot-rolled steel sheet was subjected to hot-rolled sheet annealing.
  • the time required to reach 900 ° C. from 400 ° C. in the temperature raising process of the hot-rolled sheet annealing was as shown in Table 1.
  • the soaking temperature in the hot-rolled sheet annealing was 975 ° C., and the soaking time was 60 seconds.
  • the hot-rolled steel sheet after hot-rolled sheet annealing was cold-rolled.
  • the cold rolling was composed of two rollings with intermediate annealing. Specifically, in the first rolling, the sheet thickness was set to 1.3 mm, then intermediate annealing was performed, and then the second rolling was performed to obtain a cold-rolled steel sheet having a final sheet thickness of 0.23 mm.
  • the soaking temperature of the intermediate annealing was 1000 ° C., and the soaking time was 100 seconds.
  • the cold-rolled steel sheet was subjected to primary recrystallization annealing that also served as decarburization annealing.
  • the soaking temperature in the primary recrystallization annealing was 840 ° C., and the soaking time was 100 seconds.
  • the primary recrystallization annealing was performed in an atmosphere with 50% H 2 + 50% N 2 and a dew point of 55 ° C.
  • an annealing separator mainly composed of MgO was applied to the surface of the steel sheet after the primary recrystallization annealing, and the secondary recrystallization annealing also serving as the purification annealing was performed.
  • the secondary recrystallization annealing it was held at 1200 ° C. for 10 hours in an H 2 atmosphere.
  • a treatment liquid for tension imparting coating was applied to the surface of the steel sheet, and flattening annealing was performed to double the baking of the tension imparting coating, thereby forming a tension imparting coating mainly composed of magnesium phosphate and chromic acid.
  • the planarization annealing was performed at 800 ° C. for 15 seconds.
  • the magnetic flux density B 8 of the obtained grain-oriented electrical steel sheet was measured by the method defined in JIS C2550. The measurement results are also shown in Table 1. As is clear from the results shown in Table 1, excellent magnetic properties are obtained in the invention examples that satisfy the conditions of the present invention.
  • Example 2 A slab having a thickness of 45 mm was manufactured by continuous casting from molten steel having the composition shown in Table 2.
  • "-" in the Se column of Table 2 represents that the Se content was below the detection limit.
  • the obtained slab was heated under the conditions of a heating temperature of 1200 ° C. and a heating time of 120 seconds.
  • the slab heating was performed by passing the slab through a tunnel furnace maintained at 1200 ° C.
  • the slab conveyance speed in the tunnel furnace was 20 m / min.
  • heating up to 700 ° C. was performed by an induction heating method, and thereafter heating and holding were performed using a gas burner.
  • the heated slab was hot-rolled to obtain a hot-rolled steel sheet having a thickness of 2.4 mm.
  • the hot rolling was started 30 seconds after the end of slab heating.
  • the hot-rolled steel sheet was subjected to hot-rolled sheet annealing.
  • the time required to reach 400 ° C. to 900 ° C. in the temperature raising process of the hot-rolled sheet annealing was 50 seconds.
  • the soaking temperature in the hot-rolled sheet annealing was 1000 ° C., and the soaking time was 60 seconds.
  • cold rolling was performed once to obtain a cold rolled steel sheet having a final thickness of 0.23 mm.
  • the cold-rolled steel sheet was subjected to primary recrystallization annealing that also served as decarburization annealing.
  • the soaking temperature in the primary recrystallization annealing was 820 ° C., and the soaking time was 100 seconds.
  • the primary recrystallization annealing was performed in an atmosphere with 50% H 2 + 50% N 2 and a dew point of 55 ° C.
  • an annealing separator mainly composed of MgO was applied to the surface of the steel sheet after the primary recrystallization annealing, and the secondary recrystallization annealing also serving as the purification annealing was performed.
  • the secondary recrystallization annealing it was held at 1200 ° C. for 10 hours in an H 2 atmosphere.
  • a treatment liquid for tension imparting coating was applied to the surface of the steel sheet, and flattening annealing was performed to double the baking of the tension imparting coating, thereby forming a tension imparting coating mainly composed of magnesium phosphate and chromic acid.
  • the planarization annealing was performed at 850 ° C. for 10 seconds.
  • the magnetic flux density B 8 of the obtained grain-oriented electrical steel sheet was measured by the method defined in JIS C2550. The measurement results are also shown in Table 2. As is clear from the results shown in Table 2, excellent magnetic properties are obtained in the invention examples that satisfy the conditions of the present invention.
  • Example 3 % By mass C: 0.025%, Si: 3.27% Mn: 0.084%, sol.Al: 0.0044%, N: 0.0031%, S: 0.0027%, Sn: 0.051%
  • a molten steel having a component composition containing Cr: 0.055% and the balance being Fe and inevitable impurities was prepared. The Se content in the molten steel was below the detection limit.
  • a slab having a thickness of 50 mm was produced from the molten steel by a continuous casting method.
  • the obtained slab was heated at 1200 ° C. for 100 seconds.
  • a regenerative burner heating type tunnel furnace was used for the slab heating.
  • the slab conveyance speed during the heating process in the tunnel furnace was 60 m / min.
  • hot rolling was started in 100 seconds to obtain a hot rolled steel sheet having a thickness of 2.8 mm. Thereafter, the obtained hot-rolled steel sheet was subjected to hot-rolled sheet annealing under the conditions shown in Table 3.
  • the soaking temperature in the hot-rolled sheet annealing was 1000 ° C., and the soaking time was 60 seconds.
  • the hot-rolled steel sheet after hot-rolled sheet annealing was cold-rolled.
  • Table 3 No. 1, 5, 6, and 7 were reduced to 0.27 mm, which is the product thickness, by one rolling.
  • the thickness was reduced to 0.27 mm, which was the final thickness, by rolling twice with intermediate annealing. Specifically, first, the first cold rolling was performed to a thickness of 1.6 mm, and then intermediate annealing was performed under the conditions shown in Table 3. The soaking temperature in the intermediate annealing was 1000 ° C., and the soaking time was 60 seconds. Thereafter, the second cold rolling was performed to a final thickness of 0.27 mm.
  • the obtained cold-rolled steel sheet was subjected to primary recrystallization annealing also serving as decarburization annealing.
  • the soaking temperature in the primary recrystallization annealing was 820 ° C., and the soaking time was 150 seconds.
  • the primary recrystallization annealing was performed in an atmosphere of 60% H 2 + 40% N 2 and a dew point of 54 ° C.
  • an annealing separator mainly composed of MgO was applied to the surface of the steel sheet after the primary recrystallization annealing, and the secondary recrystallization annealing also serving as the purification annealing was performed.
  • the secondary recrystallization annealing was held at 1240 ° C. for 10 hours in an H 2 atmosphere.
  • a treatment liquid for tension imparting coating was applied to the surface of the steel sheet, and flattening annealing was performed to double the tension imparting coating to form a tension imparting coating mainly composed of magnesium phosphate and chromic acid.
  • the planarization annealing was performed at 840 ° C. for 30 seconds.
  • the magnetic flux density B 8 of the obtained grain-oriented electrical steel sheet was measured by the method defined in JIS C2550. The measurement results are also shown in Table 3. As is apparent from the results shown in Table 3, excellent magnetic properties are obtained in the invention examples that satisfy the conditions of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

インヒビター形成成分を使用せずに薄スラブから製造された方向性電磁鋼板について、優れた磁気特性を安定して得る。スラブを加熱してから熱間圧延を施して熱延鋼板とし、該熱延鋼板に、熱延板焼鈍を施しまたは施すことなく、冷間圧延を施して最終板厚を有する冷延鋼板とし、該冷延鋼板に一次再結晶焼鈍を施し、該一次再結晶焼鈍後の冷延鋼板に二次再結晶焼鈍を施す方向性電磁鋼板の製造方法であって、前記スラブを加熱する工程は、加熱温度を1000℃以上1300℃以下、かつ加熱時間を60秒以上600秒以下とし、前記熱延板焼鈍を施す場合には、該熱延板焼鈍の昇温過程における400℃から900℃に到達するまでの時間を100秒以下とし、均熱温度を950℃以上とし、前記熱延板焼鈍を施さない場合には、前記冷間圧延を中間焼鈍を挟んで2回以上施し、最初の中間焼鈍の昇温過程における400℃から900℃に到達するまでの時間を100秒以下とし、均熱温度を950℃以上とする。

Description

方向性電磁鋼板の製造方法
 本発明は、方向性電磁鋼板の製造方法に関する。
 方向性電磁鋼板の製造においては、インヒビターと呼ばれる析出物を使用して、純化焼鈍中にGoss方位を有する結晶粒を二次再結晶させることが一般的に行われている。インヒビターを用いることにより、安定して二次再結晶粒を発達させることができる。
 しかし、インヒビターを機能させるためには、インヒビターを鋼中に微細分散させる必要がある。そしてそのためには、熱間圧延前の加熱において鋼スラブを1300℃超の高温に加熱し、インヒビター形成成分を一度鋼中に固溶させることが必要である。また、インヒビターは、最終的に得られる方向性電磁鋼板に残存した場合、方向性電磁鋼板の磁気特性を劣化させる。そのため、二次再結晶後に、制御された雰囲気中、1100℃以上の高温で純化焼鈍を行って、地鉄中からインヒビターを除去することが必要である。
 近年では、コストダウンを目的として、スラブ厚みを薄くし、直接熱間圧延を行う技術が開発されている。しかし、上述の通り、インヒビターを利用するためには熱間圧延前に高温でのスラブ加熱を行って、インヒビターを再固溶させる必要がある。直接熱間圧延を行う方法では、熱間圧延前の搬送中にスラブを加熱するとしても、スラブを十分高温まで加熱することができないという問題がある。そのため、特許文献1では、Alを極力除いて少量のMnSやMnSeだけのインヒビターを利用する方法が提案されている。
 一方、インヒビター形成成分を含有させずに、ゴス方位結晶粒を発達させる技術が特許文献2に提案されている。前記技術においては、インヒビター形成成分のような不純物を極力排除する事で、一次再結晶時の結晶粒界が持つ粒界エネルギーの粒界方位差角依存性を顕在化させ、インヒビターを用いずともGoss方位を有する結晶粒を二次再結晶させることができる。このように、集合組織による再結晶が制御される効果は、テクスチャーインヒビション効果と呼ばれる。
 前記技術では、インヒビターが使用されないため、二次再結晶焼鈍後に高温での純化焼鈍を行う必要がない。加えて、事前にインヒビターを鋼中に微細分散させておく必要がないため、鋼スラブの加熱を高温で行う必要もない。したがって、インヒビターを利用しない前記技術は、コスト面でもメンテナンス面でも、大きなメリットを有している。さらに、高温でのスラブ加熱が必要ないため、薄スラブを作製して直接熱間圧延を行う技術に有利に適用できると考えられる。
特開2002-212639号公報 特開2000-129356号公報
 上述のように、インヒビター形成成分を用いずに方向性電磁鋼板を製造する技術は、コストダウンを目的とした薄スラブによる製造技術と相性が良いと期待される。しかしながら、これらの製造技術を組み合わせて方向性電磁鋼板を製造したところ、磁気特性が劣化するという問題が新たに明らかとなった。
 本発明は上記の事情に鑑みてなされたものであり、インヒビター形成成分を使用せずに薄スラブから方向性電磁鋼板を製造する方法において、優れた磁気特性を有する方向性電磁鋼板を安定して得ることを目的とする。
 本発明者らは、鋭意検討を重ねた結果、熱間圧延前の加熱過程の温度と時間、並びに熱間圧延後に行われる最初の焼鈍の昇温速度および均熱温度を制御することで、インヒビター形成成分を使用せずに薄スラブから製造された方向性電磁鋼板であっても、良好な磁気特性を安定して得られることを新規に知見した。以下、本発明を導くに至った実験について説明する。
<実験>
 スラブ加熱条件が方向性電磁鋼板の磁気特性に及ぼす影響を調べるために、以下の手順で方向性電磁鋼板を製造し、得られた方向性電磁鋼板の磁気特性を評価した。
 まず、質量%で、
  C:0.019%、
  Si:3.26%、
  Mn:0.050%、
  sol.Al:0.0027%、
  N:0.0018%、
  S:0.0015%を含み、残部がFeおよび不可避的不純物からなる成分組成を有する溶鋼を調製した。前記溶鋼におけるSe含有量は検出限界以下であった。前記溶鋼から、厚さ50mmのスラブ(薄スラブ)を連続鋳造法にて製造し、次いで、前記スラブを加熱し、その後、加熱されたスラブを熱間圧延して厚さ2.6mmの熱延鋼板とした。前記スラブの加熱は、熱間圧延までの搬送中に、当該薄スラブをトンネル炉に通過させることで行った。前記スラブ加熱における加熱温度および加熱時間を種々に変化させて前記スラブ加熱を行った。前記熱間圧延は、前記スラブ加熱が終了して約30秒後に開始した。
 次いで、得られた熱延鋼板に、均熱温度:1000℃で均熱時間:30秒の熱延板焼鈍を施した。前記熱延板焼鈍の昇温過程における400℃から900℃に到達するまでの時間は、50秒、100秒、または150秒とした。前記熱延板焼鈍の後、前記熱延鋼板を冷間圧延して、最終板厚:0.27mmの冷延鋼板とした。
 その後、得られた冷延鋼板に、脱炭を兼ねた一次再結晶焼鈍を施した。前記一次再結晶焼鈍は、均熱温度:850℃、均熱時間:60秒で、50%H2+50%N2で露点50℃の雰囲気で実施した。前記一次再結晶焼鈍の後、鋼板の表面に、MgOを主体とする焼鈍分離剤を塗布し、その後、1200℃で10時間、H2雰囲気で保定する純化焼鈍を兼ねた二次再結晶焼鈍を行った。
 次に、二次再結晶焼鈍後の鋼板の表面に、リン酸マグネシウムとクロム酸を主体とした張力付与コーティング用処理液を塗布した。その後、前記張力付与コーティングの焼き付けを兼ねた平坦化焼鈍を、800℃で15秒の条件で施した。以上の手順により、張力付与コーティングを表面に有する方向性電磁鋼板を得た。
 得られた方向性電磁鋼板の磁束密度B8を、JIS C2550に記載の方法で測定した。測定された磁束密度B8と、スラブ加熱条件(加熱温度および加熱時間)との関係を、図1~3に示す。なお、図1、図2、図3はそれぞれ、熱延板焼鈍の昇温過程における400℃から900℃に到達するまでの時間を50秒、100秒、150秒で昇温した場合の結果である。
 図1~3に示した結果から、スラブ加熱における加熱温度を1000℃以上1300℃以下、かつ加熱時間を60秒以上600秒以下とすることで、高い磁束密度を得られることがわかる。さらに、前記スラブ加熱条件を満足することに加え、熱延板焼鈍の昇温過程における400℃から900℃に到達するまでの時間を100秒以下とすることにより、より高い磁束密度が得られることがわかる。
 このように、スラブ加熱における加熱温度と加熱時間、並びに熱間圧延後に行われる最初の焼鈍の昇温速度および均熱温度が磁気特性に影響を及ぼすメカニズムは必ずしも明らかにはなってはいないが、発明者らは次のように考えている。
 薄スラブの特徴として、スラブの組織がほぼ柱状晶であることが挙げられる。これは、薄スラブの製造においては、厚いスラブの場合と比較して鋳込み時の冷却が速く、凝固シェル界面の温度勾配が大きいため、板厚中央部から等軸晶が発生しにくいからであると考えられる。柱状晶からなる組織を有するスラブを熱間圧延すると、その後の熱処理でも再結晶しにくい熱延加工組織が発生する。前記熱延加工組織の影響により再結晶が阻害される結果、最終的に得られる方向性電磁鋼板の磁気特性が劣化する。すなわち、熱間圧延前の時点において、スラブが柱状晶主体の組織を有することが磁性劣化の原因と推定される。
 この問題を解決するためには、柱状晶組織を低減させることが必要である。電磁鋼板以外の一般的な鋼製品の製造においては、α(フェライト)-γ(オーステナイト)変態を伴うため、高温のα相の温度域で形成された柱状晶組織でも、γ相の温度域にて変態再結晶が生じ、柱状晶組織を低減することが可能である。しかしながら、方向性電磁鋼板では、二次再結晶後のγ変態によるGoss方位粒組織破壊を防止するため、γ相分率が著しく低く、場合によってはα単相組織となる。このため、上記γ相の温度域における変態再結晶により、柱状晶組織を低減することは困難である。
 そこで、薄スラブ製造における別の特徴、すなわち、薄スラブの組織に蓄積される歪に着目した。通常の連続鋳造において、スラブは鉛直方向に鋳込まれるが、その後、ある曲率を持っておよそ90°向きを変える形で矯正され、水平方向に搬送される。厚みが200mm程度である通常のスラブの製造では、スラブが変形しにくいことから、前記曲率が小さい。しかし、薄スラブは、厚みが薄くて曲げやすいことから、この矯正時に曲率を大きくし、曲げ矯正に必要なスペースを小さくして製造コストを下げている。その結果、薄スラブの組織には、かなりの歪が蓄積される。
 この歪が蓄積された薄スラブに対して、ある程度高温の熱処理を施すことで、部分的な歪誘起粒成長もしくは、柱状晶とは異なる組織(等軸)の再結晶が誘発される。そしてその結果、柱状晶組織が低減され、製品板の磁気特性が改善されたと考えられる。α-γ変態を伴う一般的な鋼製品では、たとえ歪が蓄積されても、変態時に歪が解放されることから、このような現象は生じない。すなわち、前記現象は、方向性電磁鋼板のようにα相が主体の鋼種に特有の現象であると考えられる。
 また、スラブ加熱における加熱温度が1300℃を超えるなど、加熱温度が高すぎた場合や加熱時間が600秒を超えるなど、加熱時間が長すぎた場合は、柱状晶組織に代わって発生した結晶粒が粗大になりすぎる。そしてその結果、柱状晶組織と同様に、熱処理でも再結晶しにくい組織が発生し、製品板の磁気特性が劣化したと考えられる。
 薄スラブを熱間圧延して熱延鋼板を製造する場合、通常の厚さのスラブを熱間圧延して熱延鋼板を製造する場合に比べて、熱間圧延における総圧下率が低くなる。そのため、熱間圧延において蓄積されるひずみ量が少なく、熱延板焼鈍時に再結晶が生じにくい。その結果、薄スラブを用いた場合には、熱延板焼鈍後の鋼板に未再結晶部が部分的に残存するという問題があった。未再結晶部分が残存すると、最終的に得られる方向性電磁鋼板の磁気特性が劣化する。そこで、上述したように、熱延板焼鈍における均熱温度を950℃以上とし、均熱温度付近まで速やかに昇温することにより、前記問題を解決できる。すなわち、均熱温度付近まで速やかに昇温することで、熱間圧延時に蓄積された比較的少ないひずみを昇温過程で過度に消費することなく再結晶可能温度まで到達することができる。その結果、熱延板焼鈍板の再結晶率を飛躍的に増加させることができ、磁気特性がさらに改善されたと考えられる。
 薄スラブの柱状晶組織の問題を解決する方法としては、製造設備に、組織の等軸晶化を図るための機能を有する設備を新たに追加して設けることも考えられるが、そのような設備の追加は、コストがかなり増大するというデメリットがある。そこで、本発明では、方向性電磁鋼板の組織の特徴と薄スラブ連続鋳造法の特徴をうまく融合させることにより、新たな設備を設けるといったコスト増大を極力抑えつつ、方向性電磁鋼板の磁気特性を向上させることができる。
 以上のように、本発明者らは、インヒビターレス素材において、薄スラブから方向性電磁鋼板を製造する際に、スラブ加熱における加熱温度および加熱時間、並びに熱間圧延後に行われる最初の焼鈍の昇温速度および均熱温度を制御することで、磁気特性劣化を防止することに成功した。
 本発明は、上記の新規な知見に立脚するものであり、その要旨構成は、以下のとおりである。
1.質量%で、
  C:0.002%以上0.100%以下、
  Si:2.00%以上8.00%以下、
  Mn:0.005%以上1.000%以下、
  sol.Al:0.0100%未満、
  N:0.0060%未満、
  S:0.0100%未満、および
  Se:0.0100%未満を含有し、残部がFeおよび不可避的不純物である成分組成を有する溶鋼を連続鋳造に供して厚さ25mm以上100mm以下のスラブを形成し、
 前記スラブを加熱し、
 加熱された前記スラブを熱間圧延を施して熱延鋼板とし、
 前記熱延鋼板に任意に熱延板焼鈍を施し、
 前記熱延鋼板に冷間圧延を施して最終板厚を有する冷延鋼板とし、
 前記冷延鋼板に一次再結晶焼鈍を施し、
 前記一次再結晶焼鈍後の冷延鋼板に二次再結晶焼鈍を施す、方向性電磁鋼板の製造方法であって、
 前記スラブの加熱は、加熱温度を1000℃以上1300℃以下、かつ加熱時間を60秒以上600秒以下とし、
 (i)前記熱延板焼鈍を施す場合には、
  前記熱延板焼鈍の昇温過程において400℃から900℃に到達するまでの時間が100秒以下、かつ、
  前記熱延板焼鈍における均熱温度が950℃以上であり、
 (ii)前記熱延板焼鈍を施さない場合には、
  前記冷間圧延が、中間焼鈍を挟んだ2回以上の圧延からなり、
  最初の中間焼鈍の昇温過程における400℃から900℃に到達するまでの時間が100秒以下であり、かつ、
  前記最初の中間焼鈍における均熱温度が950℃以上である、
方向性電磁鋼板の製造方法。
2.前記スラブの加熱が、
  前記スラブを鋳造方向に10m/min以上の速度で搬送しながら行われる、上記1に記載の方向性電磁鋼板の製造方法。
3.前記成分組成は、質量%で、
  S:0.0030%未満および
  Se:0.0030%未満を含む、上記1または2に記載の方向性電磁鋼板の製造方法。
4.前記成分組成は、さらに、質量%で、
  Cr:0.01%以上0.50%以下、
  Cu:0.01%以上0.50%以下、
  P:0.005%以上0.50%以下、
  Ni:0.001%以上0.50%以下、
  Sb:0.005%以上0.50%以下、
  Sn:0.005%以上0.50%以下、
  Bi:0.005%以上0.50%以下、
  Mo:0.005%以上0.100%以下、
  B:0.0002%以上0.0025%以下、
  Nb:0.0010%以上0.0100%以下、および
  V:0.0010%以上0.0100%以下
からなる群より選択される1または2以上を含有する、上記1から3のいずれか一項に記載の方向性電磁鋼板の製造方法。
5.前記スラブの加熱の少なくとも一部が誘導加熱方式で行われる、上記1から4のいずれか一項に記載の方向性電磁鋼板の製造方法。
 本発明によれば、インヒビター形成成分を使用せずに薄スラブから製造された方向性電磁鋼板について、優れた磁気特性を安定して得ることができる。
熱延板焼鈍の昇温過程における400℃から900℃に到達するまでの時間が50秒である場合の、スラブ加熱における加熱温度および加熱時間と磁束密度B8との関係を示すグラフである。 熱延板焼鈍の昇温過程における400℃から900℃に到達するまでの時間が100秒である場合の、スラブ加熱における加熱温度および加熱時間と磁束密度B8との関係を示すグラフである。 熱延板焼鈍の昇温過程における400℃から900℃に到達するまでの時間が150秒である場合の、スラブ加熱における加熱温度および加熱時間と磁束密度B8との関係を示すグラフである。
[成分組成]
 以下、本発明の一実施形態による方向性電磁鋼板およびその製造方法について説明する。まず、鋼スラブの製造に用いる溶鋼の成分組成の限定理由について述べる。なお、連続鋳造法によって得られる鋼スラブの成分組成は、基本的に、使用した溶鋼の成分組成と同じである。また、本明細書において、各成分の含有量を表す「%」は、特に断らない限り「質量%」を意味する。
C:0.002%以上0.100%以下
 C含有量が0.002%未満であると、Cによる粒界強化効果が失われ、スラブにクラックなどの欠陥が発生し、製造に支障をきたす。そのため、Cは0.002%以上、好ましくは0.010%以上とする。一方、Cは磁気時効による磁気特性の低下を招く。そのため、方向性電磁鋼板の製造においては、脱炭焼鈍を行って最終的に得られる方向性電磁鋼板におけるC含有量を低減することが好ましい。しかし、溶鋼におけるC含有量が0.100%を超えると、磁気時効が起こらないC量である0.005%以下まで、脱炭焼鈍後によって低減することが困難となる。そのため、溶鋼のC含有量を0.100%以下、好ましくは、0.050%以下とする。なお、上記理由により、最終的に得られる方向性電磁鋼板のC含有量は0.005%以下とすることが好ましい。
Si:2.00%以上8.00%以下
 Siは鋼の比抵抗を高め、鉄損を改善させるために必要な元素であるが、Si含有量が2.00%未満であるとその効果が得られない。そのため、Si含有量は2.00%以上、好ましくは2.50%以上とする。一方、Si含有量が8.00%を超えると鋼の加工性が低下し、圧延が困難となる。そのため、Si含有量は8.00%以下、好ましくは4.50%以下とする。
Mn:0.005%以上1.000%以下
 Mnは熱間加工性を良好にするために必要な元素であるが、Mn含有量が0.005%未満であるとその効果が得られない。そのため、Mn含有量は、0.005%以上、好ましくは0.040%以上とする。一方、Mn含有量が1.000%を超えると、最終的に得られる方向性電磁鋼板の磁束密度が低下する。そのため、Mn含有量は1.000%以下。好ましくは、0.200%以下とする。
sol.Al:0.0100%未満
 Alはインヒビター形成成分である。本発明はインヒビターレス法に基づくものであるため、sol.Al含有量は極力低減する必要がある。そのため、sol.Al含有量は0.0100%未満、好ましくは0.0070%未満とする。sol.Al含有量の下限は特に限定されず、0%であってよいが、工業的には0%超であってよい。また、過度の低減は製造コストの増加を招くため、sol.Al含有量は0.0005%以上とすることが好ましい。
N:0.0060%未満
 同様にNもインヒビター形成成分である。そのため、N含有量は0.0060%未満、好ましくは0.0040%未満とする。N含有量の下限は特に限定されず、0%であってよいが、工業的には0%超であってよい。また、過度の低減は製造コストの増加を招くため、N含有量は0.001%以上とすることが好ましい。
S:0.0100%未満
 同様にSもインヒビター形成成分である。そのため、S含有量は0.0100%未満、好ましくは0.0030%未満とする。S含有量の下限は特に限定されず、0%であってよいが、工業的には0%超であってよい。また、過度の低減は製造コストの増加を招くため、S含有量は0.001%以上とすることが好ましい。
Se:0.0100%未満
 同様にSeもインヒビター形成成分である。そのため、Se含有量は0.0100%未満、好ましくは0.0030%未満とする。Se含有量の下限は特に限定されず、0%であってよいが、工業的には0%超であってよい。
 本発明の一実施形態においては、上記の元素と、残部のFeおよび不可避的不純物からなる成分組成を有する溶鋼を使用することができる。前記不可避的不純物としては、例えば、原料、製造設備等から不可避的に混入する不純物が挙げられる。
 また、本発明の他の実施形態においては、上記成分組成は、
 Cr:0.01%以上0.50%以下、
 Cu:0.01%以上0.50%以下、
 P:0.005%以上0.50%以下、
 Ni:0.001%以上0.50%以下、
 Sb:0.005%以上0.50%以下、
 Sn:0.005%以上0.50%以下、
 Bi:0.005%以上0.50%以下、
 Mo:0.005%以上0.100%以下、
 B:0.0002%以上0.0025%以下、
 Nb:0.0010%以上0.0100%以下、および
 V:0.0010%以上0.0100%以下
からなる群より選択される1または2以上を、さらに任意に含有することができる。これらの成分の少なくとも1つをさらに含有することにより、方向性電磁鋼板の磁気特性のさらに向上させることができる。しかし、各成分の含有量が上記下限値より少ない場合には、磁気特性の向上効果が得られない。一方、各成分の含有量が上記上限値を超える場合には、二次再結晶粒の発達が抑制され、かえって磁気特性が劣化する。
 次に、本発明の方向性電磁鋼板の製造方法について説明する。
[連続鋳造]
 まず、上記成分組成を有する溶鋼を薄スラブ連続鋳造法に供してスラブを形成する。連続鋳造されるスラブの厚さは、コストダウンのため、25mm以上100mm以下とする。前記スラブの厚さは40mm以上とすることが好ましい。また、前記スラブの厚さは80mm以下とすることが好ましい。
[加熱]
 溶鋼から製造された上記スラブは、熱間圧延前の加熱過程により加熱される。この加熱を、スラブ加熱とも言う。上述したように、本発明では、インヒビターを固溶させるための長時間の高温焼鈍を必要としないため、前記スラブ加熱における加熱温度を1000℃以上1300℃以下、加熱時間を60秒以上600秒以下とする。製造コストをさらに低減するという観点からは、前記加熱温度を1250℃以下とすることが好ましい。同様に、製造コストをさらに低減するという観点からは、前記加熱時間を400秒以下とすることが好ましい。また、磁気特性をさらに向上させるという観点からは、前記加熱温度を1100℃以上1200℃以下とすることが好ましい。同様に、磁気特性をさらに向上させるという観点からは、前記加熱時間を200秒以上400秒以下とすることが好ましい。なお、ここで前記加熱時間は、前記加熱時の昇温から降温までの過程において、1000℃以上1300℃以下の温度範囲に滞留する時間を指すものとする。
 前記スラブ加熱は、特に限定されず、任意の設備で行うことができるが、トンネル炉を用いて行うことが好ましい。トンネル炉とは、搬送テーブルと加熱炉が一体となった設備である。トンネル炉を使用することにより、搬送中にスラブを加熱保持することができ、スラブ内の温度変動を抑制することが可能である。なお、通常のスラブ加熱は、スキッドを有するウォーキングビーム炉で行われることが一般的である。トンネル炉を用いてスラブ加熱を行うことにより、ウォーキングビーム炉で生じるスラブの「たれ」や、スキッドの温度低下に起因する磁気特性の劣化を受けることなく、より優れた特性の方向性電磁鋼板を製造することができる。また、トンネル炉では、スラブが鋳込み方向に対して並行に搬送されつつ加熱されるが、その際スラブはテーブルロール上を搬送される。したがって、ロール間での「たれ」に起因する表面欠陥や、ロールとの接触によるスラブ温度の低下を抑制するという観点からは、トンネル炉におけるスラブの搬送速度を10m/min以上とすることが好ましい。
 上記スラブ加熱における加熱方式は特に限定されないが、少なくとも一部を誘導加熱方式で行ってもよい。誘導加熱方式とは、例えば、スラブに交流磁場を印加して自己発熱により加熱する方式である。
[熱間圧延]
 上記加熱後に、熱間圧延を行う。前記熱間圧延は、特に限定されることなく、任意の条件で行うことができる。前記熱間圧延は、粗圧延と粗圧延からなるものとすることもできるが、使用されるスラブが薄いため、製造コスト低減の観点からは、粗圧延を省略して、タンデムミルによる仕上圧延のみからなるものとすることが好ましい。
 前記熱間圧延の条件は特に限定されず、任意の条件で行うことができる。最終的に得られる方向性電磁鋼板の磁気特性をさらに向上させるという観点からは、前記熱間圧延の開始温度を900℃以上、終了温度を700℃以上とすることが好ましい。一方、圧延後の鋼板形状をより改善するという観点からは、前記終了温度を1000℃以下とすることが好ましい。また、鋼板温度のバラツキを抑制するという観点からは、スラブ加熱完了から熱間圧延を開始するまでの時間を100秒以内とすることが好ましい。
[熱延板焼鈍]
 熱間圧延後に、任意に熱延板焼鈍を行う。言い換えると、熱延板焼鈍は行ってもよく、行わなくてもよい。熱延板焼鈍を行う場合は、熱延鋼板に熱延板焼鈍を施して焼鈍板とし、前記焼鈍板を冷間圧延する。熱延板焼鈍を行わない場合は、熱延鋼板を冷間圧延する。
 前記熱延板焼鈍を施す場合には、前記熱延板焼鈍の昇温過程において400℃から900℃に到達するまでの時間を100秒以下とし、かつ、前記熱延板焼鈍における均熱温度を950℃以上とする。前記条件を満たすことにより、良好な磁気特性を得ることができる。前記条件を満たさない場合、熱間圧延で形成されたバンド組織が熱延板焼鈍後も残留する。そしてその結果、整粒の一次再結晶組織が得られず、二次再結晶の発達が阻害される。
 前記均熱温度の上限は特に限定されないが、1150℃以下とすることが好ましい。前記均熱温度を1150℃以下とすることにより、熱延板焼鈍において結晶粒が過度に粗大化することを防止し、より効果的に整粒の一次再結晶組織を実現することができる。前記均熱温度は、1080℃以下とすることがより好ましい。
 前記熱延板焼鈍における均熱時間は、特に限定されず、任意に決定することができる。しかし、前記均熱時間を10秒以上とすれば、バンド組織の残留をより効果的に抑制できる。そのため、前記均熱時間は10秒以上とすることが好ましく、15秒以上とすることがより好ましい。一方、前記均熱時間を200秒以下とすれば、元素の粒界への偏析をさらに抑制し、粒界偏析元素に起因する冷間圧延時の欠陥発生をさらに抑制することができる。そのため、前記均熱時間は200秒以下とすることが好ましく、120秒以下とすることがより好ましい。
 なお、熱延板焼鈍を施さない場合には、熱延板焼鈍に代えて、後述する「最初の中間焼鈍」が上記焼鈍条件を満たす必要がある。
[冷間圧延]
 次いで、鋼板を冷間圧延して冷延鋼板とする。前記冷間圧延は、1回の圧延のみからなるものとすることもできるが、中間焼鈍を挟む2回以上の圧延からなるものとすることもできる。例えば、圧延を2回行う場合は、第1の圧延、中間焼鈍、第2の圧延を、順次行えばよい。圧延を3回以上行う場合には、各圧延の間に中間焼鈍を行う。
 前記中間焼鈍における均熱温度は900℃以上1200℃以下とすることが好ましい。前記均熱温度が900℃以上であれば、再結晶粒がより適当なサイズとなり、一次再結晶組織におけるGoss核が増加して磁性がさらに向上する。また、前記均熱温度が1200℃以下であれば、粒径の粗大化が防止され、より効果的に整粒の一次再結晶組織を実現することができる。前記均熱温度は、1150℃以下とすることがより好ましい。
 加えて、上述したように、熱延板焼鈍を施さない場合には、前記冷間圧延が、中間焼鈍を挟んだ2回以上の圧延からなり、最初の中間焼鈍の昇温過程における400℃から900℃に到達するまでの時間が100秒以下であり、かつ、前記最初の中間焼鈍における均熱温度が950℃以上である必要がある。
 再結晶集合組織を変化させて磁気特性をさらに向上させるために、最終冷間圧延を、100℃~300℃の圧延温度で行うことが好ましい。また、同様の理由から、冷間圧延途中で100~300℃の範囲での時効処理を1回または複数回行うことが好ましい。なお、ここで最終冷間圧延とは、冷間圧延工程に含まれる圧延のうち、最後に行われる圧延を指す。例えば、冷間圧延が1回の圧延のみからなる場合は、当該圧延が最終冷間圧延である。また、冷間圧延が中間焼鈍を挟んだ2回の圧延からなる場合、2回目の圧延が最終冷間圧延である。
[一次再結晶焼鈍]
 次いで、上記冷間圧延工程で得られた冷延鋼板に一次再結晶焼鈍を施す。前記一次再結晶焼鈍は、脱炭焼鈍を兼ねてもよい。前記一次再結晶焼鈍の条件は特に限定されないが、脱炭性の観点からは、均熱温度を800℃以上900℃以下とすることが好ましい。前記一次再結晶焼鈍は、脱炭性の観点から、湿潤雰囲気で行うことが好ましい。また、均熱時間は、30秒~300秒程度とすることが好ましい。ただし、鋼スラブのC含有量が0.005%以下であり、脱炭を行う必要がない場合にはこの限りではない。
[焼鈍分離剤の塗布]
 上記一次再結晶焼鈍後の鋼板に、任意に焼鈍分離剤を塗布する。ここで、鉄損を重視してフォルステライト被膜を形成させる場合には、MgOを主体とする焼鈍分離剤使用する。MgOを主体とする焼鈍分離剤が塗布された鋼板を二次再結晶焼鈍することにより、鋼板の表面にフォルステライト被膜を形成することができる。
 一方、打ち抜き加工性を重視してフォルステライト被膜を形成しない場合には、焼鈍分離剤を塗布せずに、二次再結晶焼鈍を行うことができる。また、焼鈍分離剤を塗布する場合であっても、MgOを含有しない焼鈍分離剤を用いればフォルステライト被膜は形成されない。MgOを含有しない焼鈍分離剤としては、例えば、シリカおよびアルミナの一方または両方を含有する焼鈍分離剤を用いることができる。
 焼鈍分離剤の塗布方法は特に限定されないが、例えば、静電塗布が適用可能である。静電塗布によれば、水分を持ち込むことなく焼鈍分離剤を鋼板に塗布することができる。また、耐熱無機材料シートを鋼板表面に貼付ける方法を用いることもできる。前記耐熱無機材料シートとしては、例えば、シリカ、アルミナ、マイカからなる群より選択される1または2以上を含むシートを用いることができる。
[二次再結晶焼鈍]
 次いで、二次再結晶焼鈍を行う。前記二次再結晶焼鈍は、純化焼鈍を兼ねてもよい。前記二次再結晶焼鈍は、二次再結晶発現のために800℃以上で行うことが望ましい。また、二次再結晶を完了させるために800℃以上の温度で20時間以上保持することが好ましい。打ち抜き性を重視してフォルステライト被膜を形成させない場合には、二次再結晶が完了すればよいので均熱温度は850~950℃が好ましく、前記温度域での保持までで焼鈍を終了することも可能である。鉄損を重視する場合や、トランスの騒音を低下させるためにフォルステライト被膜を形成させる場合は、1200℃程度まで昇温させることが好ましい。
[平坦化焼鈍]
 上記二次再結晶焼鈍後に、平坦化焼鈍を行うこともできる。平坦化焼鈍を行うことにより、方向性電磁鋼板の形状を矯正し、さらに鉄損を低減することができる。前工程で焼鈍分離剤を塗布した場合には、平坦化焼鈍の前に、鋼板に付着した焼鈍分離剤を除去することが好ましい。焼鈍分離剤の除去は、例えば、水洗、ブラッシング、および酸洗からなる群より選択される1または2以上の方法により行うことが好ましい。形状矯正の観点からは、平坦化焼鈍の均熱温度を700~900℃程度とすることが好ましい。
[絶縁コーティング]
 鋼板を積層して使用する場合には、鉄損を改善するために、平坦化焼鈍前もしくは後に、鋼板表面に絶縁コーティングを施すことが有効である。コーティングとしては、鉄損低減のために鋼板に張力を付与できるものが望ましい。バインダーを介した張力コーティング塗布方法や、物理蒸着法や化学蒸着法により無機物を鋼板表層に蒸着させてコーティングとする方法を採用することが好ましい。これらの方法を用いて絶縁コーティングを行うことにより、コーティング密着性に優れ、かつ著しい鉄損低減効果が得られるためである。
[磁区細分化処理]
 上記平坦化焼鈍後に、鉄損低減のために、磁区細分化処理を行うこともできる。処理方法としては、例えば、一般的に実施されているような、方向性電磁鋼板の表面に溝を形成する方法、レーザー照射や電子ビーム照射により線状に熱歪や衝撃歪を導入する方法、最終仕上板厚に達した冷間圧延板などの中間製品にあらかじめ溝をいれる方法が挙げられる。
 その他の製造条件は、方向性電磁鋼板の一般的な製造方法に従えばよい。
 (実施例1)
 以下の手順で方向性電磁鋼板を製造し、得られた方向性電磁鋼板の磁気特性を評価した。
 まず、質量%で、
 C:0.014%、
 Si:3.41%、
 Mn:0.060%、
 sol.Al:0.0031%、
 N: 0.0016%、
 S:0.0012%、
 Sb:0.090%を含み、残部がFeおよび不可避的不純物からなる成分組成を有する溶鋼を調製した。前記溶鋼におけるSe含有量は検出限界以下であった。前記溶鋼から、厚さ30mmのスラブを連続鋳造法にて製造した。
 得られたスラブを、表1に示した条件で加熱した。前記スラブ加熱には、リジェネバーナー加熱方式のトンネル炉を使用した。トンネル炉での加熱過程におけるスラブ搬送速度は加熱時間に応じて種々に変化させた。
 前記加熱処理終了後、60秒で熱間圧延を開始し、厚さ2.2mmの熱延鋼板を得た。その後、得られた熱延鋼板に熱延板焼鈍を施した。前記熱延板焼鈍の昇温過程における400℃から900℃に到達するまでの時間は、表1に示したとおりとした。前記熱延板焼鈍における均熱温度は975℃、均熱時間は60秒とした。
 次いで、熱延板焼鈍後の熱延鋼板に冷間圧延を施した。前記冷間圧延は、中間焼鈍を挟んだ2回の圧延からなるものとした。具体的には、まず第1の圧延において板厚1.3mmとし、次いで、中間焼鈍を行い、その後、第2の圧延を行って最終板厚0.23mmの冷延鋼板とした。前記中間焼鈍の均熱温度は1000℃、均熱時間は100秒とした。
 その後、前記冷延鋼板に、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。前記一次再結晶焼鈍における均熱温度は840℃、均熱時間は100秒とした。前記一次再結晶焼鈍は、50%H2+50%N2で、露点55℃の雰囲気中で行った。
 次に、一次再結晶焼鈍後の鋼板表面に、MgOを主体とする焼鈍分離剤を塗布し、純化焼鈍を兼ねた二次再結晶焼鈍を行った。前記二次再結晶焼鈍においては、1200℃で10時間、H2雰囲気で保定した。その後、張力付与コーティング用処理液を鋼板表面に塗布し、張力付与コーティングの焼付けを兼ねた平坦化焼鈍を行い、リン酸マグネシウムとクロム酸を主体とした張力付与コーティング形成した。前記平坦化焼鈍は、800℃で15秒の条件で実施した。
 得られた方向性電磁鋼板の磁束密度B8を、JIS C2550に定められた方法で測定した。測定結果を表1に併記した。表1に示した結果から明らかなように、本発明の条件を満たす発明例においては、優れた磁気特性が得られている。
Figure JPOXMLDOC01-appb-T000001
 (実施例2)
 表2に示した成分組成を有する溶鋼から厚さ45mmのスラブを連続鋳造にて製造した。なお、表2のSe欄における「-」は、Se含有量が検出限界以下であったことを表している。得られたスラブを加熱温度1200℃、加熱時間120秒の条件で加熱した。前記スラブ加熱は、スラブを、1200℃に保持されたトンネル炉内を通過させることによって行った。前記トンネル炉におけるスラブ搬送速度は20m/minとした。また、700℃までの加熱は誘導加熱方式で行い、その後はガスバーナーを用いて加熱および保持を行った。
 次いで、加熱されたスラブに熱間圧延を施して、厚さ2.4mmの熱延鋼板とした。前記熱間圧延は、スラブ加熱終了後、30秒後に開始した。
 その後、前記熱延鋼板に熱延板焼鈍を施した。前記熱延板焼鈍の昇温過程において400℃から900℃に到達するまでの時間は50秒とした。また、前記熱延板焼鈍における均熱温度は1000℃、均熱時間は60秒とした。その後、1回の冷間圧延を行って、最終板厚0.23mmの冷延鋼板を得た。
 その後、前記冷延鋼板に、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。前記一次再結晶焼鈍における均熱温度は820℃、均熱時間は100秒とした。前記一次再結晶焼鈍は、50%H2+50%N2で、露点55℃の雰囲気中で行った。
 次に、一次再結晶焼鈍後の鋼板表面に、MgOを主体とする焼鈍分離剤を塗布し、純化焼鈍を兼ねた二次再結晶焼鈍を行った。前記二次再結晶焼鈍においては、1200℃で10時間、H2雰囲気で保定した。その後、張力付与コーティング用処理液を鋼板表面に塗布し、張力付与コーティングの焼付けを兼ねた平坦化焼鈍を行い、リン酸マグネシウムとクロム酸を主体とした張力付与コーティング形成した。前記平坦化焼鈍は、850℃で10秒の条件で実施した。
 得られた方向性電磁鋼板の磁束密度B8を、JIS C2550に定められた方法で測定した。測定結果を表2に併記した。表2に示した結果から明らかなように、本発明の条件を満たす発明例においては、優れた磁気特性が得られている。
Figure JPOXMLDOC01-appb-T000002
(実施例3)
質量%で、
 C:0.025%、
 Si:3.27%、
 Mn:0.084%、
 sol.Al:0.0044%、
 N: 0.0031%、
 S:0.0027%、
 Sn:0.051%、
Cr:0.055%を含み、残部がFeおよび不可避的不純物からなる成分組成を有する溶鋼を調製した。前記溶鋼におけるSe含有量は検出限界以下であった。前記溶鋼から、厚さ50mmのスラブを連続鋳造法にて製造した。
 得られたスラブを、1200℃で100秒、加熱した。前記スラブ加熱には、リジェネバーナー加熱方式のトンネル炉を使用した。トンネル炉での加熱過程におけるスラブ搬送速度は60m/minとした。
 前記加熱処理終了後、100秒で熱間圧延を開始し、厚さ2.8mmの熱延鋼板を得た。その後、得られた熱延鋼板に表3に示した条件で熱延板焼鈍を施した。前記熱延板焼鈍における均熱温度は1000℃、均熱時間は60秒とした。
 次いで、熱延板焼鈍後の熱延鋼板に冷間圧延を施した。表3のうち、No. 1、5、6、および7については1回の圧延で製品厚である0.27mmまで減厚した。No. 2、3、4、8、9、および10については中間焼鈍を挟んだ2回の圧延で最終板厚である0.27mmまで減厚した。具体的には、まず、第1の冷間圧延を行って厚さ1.6mmとし、次いで、表3に示した条件で中間焼鈍を施した。前記中間焼鈍における均熱温度は1000℃、均熱時間は60秒とした。その後、第2の冷間圧延を行って、最終板厚である0.27mmとした。
 次いで、得られた前記冷延鋼板に、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。前記一次再結晶焼鈍における均熱温度は820℃、均熱時間は150秒とした。前記一次再結晶焼鈍は、60%H2+40%N2で、露点54℃の雰囲気中で行った。
 次に、一次再結晶焼鈍後の鋼板表面に、MgOを主体とする焼鈍分離剤を塗布し、純化焼鈍を兼ねた二次再結晶焼鈍を行った。前記二次再結晶焼鈍においては、1240℃で10時間、H2雰囲気で保定した。
 その後、張力付与コーティング用処理液を鋼板表面に塗布し、張力付与コーティングの焼付けを兼ねた平坦化焼鈍を行い、リン酸マグネシウムとクロム酸を主体とした張力付与コーティング形成した。前記平坦化焼鈍は、840℃で30秒の条件で実施した。
 得られた方向性電磁鋼板の磁束密度B8を、JIS C2550に定められた方法で測定した。測定結果を表3に併記した。表3に示した結果から明らかなように、本発明の条件を満たす発明例においては、優れた磁気特性が得られている。
Figure JPOXMLDOC01-appb-T000003
 本発明によれば、インヒビター形成成分を使用せずに薄スラブから製造された方向性電磁鋼板について、優れた磁気特性を安定して得ることができる。

Claims (5)

  1.  質量%で、
      C:0.002%以上0.100%以下、
      Si:2.00%以上8.00%以下、
      Mn:0.005%以上1.000%以下、
      sol.Al:0.0100%未満、
      N:0.0060%未満、
      S:0.0100%未満、および
      Se:0.0100%未満を含有し、残部がFeおよび不可避的不純物である成分組成を有する溶鋼を連続鋳造に供して厚さ25mm以上100mm以下のスラブを形成し、
     前記スラブを加熱し、
     加熱された前記スラブを熱間圧延を施して熱延鋼板とし、
     前記熱延鋼板に任意に熱延板焼鈍を施し、
     前記熱延鋼板に冷間圧延を施して最終板厚を有する冷延鋼板とし、
     前記冷延鋼板に一次再結晶焼鈍を施し、
     前記一次再結晶焼鈍後の冷延鋼板に二次再結晶焼鈍を施す、方向性電磁鋼板の製造方法であって、
     前記スラブの加熱は、加熱温度を1000℃以上1300℃以下、かつ加熱時間を60秒以上600秒以下とし、
     (i)前記熱延板焼鈍を施す場合には、
      前記熱延板焼鈍の昇温過程において400℃から900℃に到達するまでの時間が100秒以下、かつ、
      前記熱延板焼鈍における均熱温度が950℃以上であり、
     (ii)前記熱延板焼鈍を施さない場合には、
      前記冷間圧延が、中間焼鈍を挟んだ2回以上の圧延からなり、
      最初の中間焼鈍の昇温過程における400℃から900℃に到達するまでの時間が100秒以下であり、かつ、
      前記最初の中間焼鈍における均熱温度が950℃以上である、
    方向性電磁鋼板の製造方法。
  2.  前記スラブの加熱が、
      前記スラブを鋳造方向に10m/min以上の速度で搬送しながら行われる、請求項1に記載の方向性電磁鋼板の製造方法。
  3.  前記成分組成は、質量%で、
      S:0.0030%未満および
      Se:0.0030%未満を含む、請求項1または2に記載の方向性電磁鋼板の製造方法。
  4.  前記成分組成は、さらに、質量%で、
      Cr:0.01%以上0.50%以下、
      Cu:0.01%以上0.50%以下、
      P:0.005%以上0.50%以下、
      Ni:0.001%以上0.50%以下、
      Sb:0.005%以上0.50%以下、
      Sn:0.005%以上0.50%以下、
      Bi:0.005%以上0.50%以下、
      Mo:0.005%以上0.100%以下、
      B:0.0002%以上0.0025%以下、
      Nb:0.0010%以上0.0100%以下、および
      V:0.0010%以上0.0100%以下
    からなる群より選択される1または2以上を含有する、請求項1から3のいずれか一項に記載の方向性電磁鋼板の製造方法。
  5.  前記スラブの加熱の少なくとも一部が誘導加熱方式で行われる、請求項1から4のいずれか一項に記載の方向性電磁鋼板の製造方法。
     
     
     
PCT/JP2018/005761 2017-02-20 2018-02-19 方向性電磁鋼板の製造方法 WO2018151296A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18755029.8A EP3584331A4 (en) 2017-02-20 2018-02-19 METHOD FOR MANUFACTURING ORIENTED GRAIN ELECTRIC STEEL SHEET
US16/483,860 US11286538B2 (en) 2017-02-20 2018-02-19 Method for manufacturing grain-oriented electrical steel sheet
RU2019126202A RU2716052C1 (ru) 2017-02-20 2018-02-19 Способ изготовления текстурированных листов из электротехнической стали
CN201880011415.5A CN110291214A (zh) 2017-02-20 2018-02-19 方向性电磁钢板的制造方法
KR1020197023477A KR102295735B1 (ko) 2017-02-20 2018-02-19 방향성 전기 강판의 제조 방법
JP2018568655A JP6512386B2 (ja) 2017-02-20 2018-02-19 方向性電磁鋼板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017028836 2017-02-20
JP2017-028836 2017-02-20

Publications (1)

Publication Number Publication Date
WO2018151296A1 true WO2018151296A1 (ja) 2018-08-23

Family

ID=63169417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005761 WO2018151296A1 (ja) 2017-02-20 2018-02-19 方向性電磁鋼板の製造方法

Country Status (7)

Country Link
US (1) US11286538B2 (ja)
EP (1) EP3584331A4 (ja)
JP (1) JP6512386B2 (ja)
KR (1) KR102295735B1 (ja)
CN (1) CN110291214A (ja)
RU (1) RU2716052C1 (ja)
WO (1) WO2018151296A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381589B (zh) * 2021-11-26 2024-04-16 安阳钢铁股份有限公司 一种环保经济型货架用钢的制备方法
EP4365319A1 (en) * 2022-11-03 2024-05-08 Thyssenkrupp Electrical Steel Gmbh Grain-oriented electrical steel strip and method for its production
CN116005078A (zh) * 2023-01-14 2023-04-25 重庆大学 一种层状异构组织高强钢的制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105956A (ja) * 1991-07-25 1993-04-27 Kawasaki Steel Corp 板幅方向に均一な磁気特性を有する一方向性けい素鋼板の製造方法
WO1998046802A1 (en) * 1997-04-16 1998-10-22 Acciai Speciali Terni S.P.A. New process for the production of grain oriented electrical steel from thin slabs
JP2000129356A (ja) 1998-10-28 2000-05-09 Kawasaki Steel Corp 方向性電磁鋼板の製造方法
JP2001303214A (ja) * 2000-04-25 2001-10-31 Kawasaki Steel Corp 高周波磁気特性に優れた方向性電磁鋼板およびその製造方法
JP2002212639A (ja) 2001-01-12 2002-07-31 Nippon Steel Corp 磁気特性に優れた一方向性珪素鋼板の製造方法
JP2008031495A (ja) * 2006-07-26 2008-02-14 Jfe Steel Kk 一方向性電磁鋼板の製造方法
JP2008069391A (ja) * 2006-09-13 2008-03-27 Nippon Steel Corp 高磁束密度方向性珪素鋼板の製造方法
WO2010057913A1 (en) * 2008-11-18 2010-05-27 Centro Sviluppo Materiali S.P.A. Process for the production of grain-oriented magnetic sheet starting from thin slab
JP2013512332A (ja) * 2009-11-25 2013-04-11 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ 方向性電磁鋼帯を製造する方法およびそれにより製造された方向性電磁鋼

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2965526A (en) * 1958-10-03 1960-12-20 Westinghouse Electric Corp Method of heat treating silicon steel
US4478653A (en) 1983-03-10 1984-10-23 Armco Inc. Process for producing grain-oriented silicon steel
JP2883226B2 (ja) 1991-06-27 1999-04-19 川崎製鉄株式会社 磁気特性の極めて優れた薄方向性けい素鋼板の製造方法
NL1007739C2 (nl) 1997-12-08 1999-06-09 Hoogovens Staal Bv Werkwijze en inrichting voor het vervaardigen van een stalen band met hoge sterkte.
IT1284268B1 (it) 1996-08-30 1998-05-14 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, con elevate caratteristiche magnetiche, a partire da
US6309473B1 (en) 1998-10-09 2001-10-30 Kawasaki Steel Corporation Method of making grain-oriented magnetic steel sheet having low iron loss
US6322635B1 (en) 1998-10-27 2001-11-27 Kawasaki Steel Corporation Electromagnetic steel sheet and process for producing the same
DE60231581D1 (de) 2001-01-19 2009-04-30 Jfe Steel Corp Korngerichtetes elektomagnetisches stahlblech mit hervorragenden magnetischen eigenschaften ohne untergrundfilm mit forsterit als primärkomponente und herstellungsverfahren dafür.
EP1279747B1 (en) * 2001-07-24 2013-11-27 JFE Steel Corporation A method of manufacturing grain-oriented electrical steel sheets
JP4923821B2 (ja) * 2006-07-26 2012-04-25 Jfeスチール株式会社 一方向性電磁鋼板およびその製造方法
WO2010110217A1 (ja) * 2009-03-23 2010-09-30 新日本製鐵株式会社 方向性電磁鋼板の製造方法、巻き鉄心用方向性電磁鋼板、及び巻き鉄心
EP2578706B1 (en) 2010-05-25 2016-06-08 Nippon Steel & Sumitomo Metal Corporation Method of manufacturing grain-oriented electrical steel sheet
RU2539274C2 (ru) 2010-06-18 2015-01-20 ДжФЕ СТИЛ КОРПОРЕЙШН Способ изготовления листа из текстурированной электротехнической стали
RU2509164C1 (ru) 2010-09-10 2014-03-10 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из текстурированной электротехнической стали и способ его производства
DE102011054004A1 (de) * 2011-09-28 2013-03-28 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten, für elektrotechnische Anwendungen bestimmten Elektrobands oder -blechs
JP5672273B2 (ja) * 2012-07-26 2015-02-18 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR101651797B1 (ko) 2012-12-28 2016-08-26 제이에프이 스틸 가부시키가이샤 방향성 전기 강판의 제조 방법
JP6132103B2 (ja) * 2014-04-10 2017-05-24 Jfeスチール株式会社 方向性電磁鋼板の製造方法
BR112017017403B1 (pt) 2015-02-13 2021-03-09 Jfe Steel Corporation chapa de aço elétrico de grão orientado e método para produzir a mesma
JP6455468B2 (ja) * 2016-03-09 2019-01-23 Jfeスチール株式会社 方向性電磁鋼板の製造方法
BR112019008260B1 (pt) * 2016-11-01 2022-10-04 Jfe Steel Corporation Método para produzir lâmina de aço elétrico de grão orientado
RU2710243C1 (ru) 2016-11-01 2019-12-25 ДжФЕ СТИЛ КОРПОРЕЙШН Способ производства текстурированной электротехнической листовой стали

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105956A (ja) * 1991-07-25 1993-04-27 Kawasaki Steel Corp 板幅方向に均一な磁気特性を有する一方向性けい素鋼板の製造方法
WO1998046802A1 (en) * 1997-04-16 1998-10-22 Acciai Speciali Terni S.P.A. New process for the production of grain oriented electrical steel from thin slabs
JP2000129356A (ja) 1998-10-28 2000-05-09 Kawasaki Steel Corp 方向性電磁鋼板の製造方法
JP2001303214A (ja) * 2000-04-25 2001-10-31 Kawasaki Steel Corp 高周波磁気特性に優れた方向性電磁鋼板およびその製造方法
JP2002212639A (ja) 2001-01-12 2002-07-31 Nippon Steel Corp 磁気特性に優れた一方向性珪素鋼板の製造方法
JP2008031495A (ja) * 2006-07-26 2008-02-14 Jfe Steel Kk 一方向性電磁鋼板の製造方法
JP2008069391A (ja) * 2006-09-13 2008-03-27 Nippon Steel Corp 高磁束密度方向性珪素鋼板の製造方法
WO2010057913A1 (en) * 2008-11-18 2010-05-27 Centro Sviluppo Materiali S.P.A. Process for the production of grain-oriented magnetic sheet starting from thin slab
JP2013512332A (ja) * 2009-11-25 2013-04-11 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ 方向性電磁鋼帯を製造する方法およびそれにより製造された方向性電磁鋼

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584331A4

Also Published As

Publication number Publication date
KR20190107072A (ko) 2019-09-18
CN110291214A (zh) 2019-09-27
JPWO2018151296A1 (ja) 2019-06-27
EP3584331A1 (en) 2019-12-25
KR102295735B1 (ko) 2021-08-30
EP3584331A4 (en) 2020-01-08
US11286538B2 (en) 2022-03-29
US20200040419A1 (en) 2020-02-06
JP6512386B2 (ja) 2019-05-15
RU2716052C1 (ru) 2020-03-05

Similar Documents

Publication Publication Date Title
EP2878687B1 (en) Method for producing grain-oriented electrical steel sheet
CA2900111C (en) Method for producing grain-oriented electrical steel sheet
CN108699621B (zh) 取向性电磁钢板的制造方法
JP6631724B2 (ja) 方向性電磁鋼板の製造方法
EP3214188B1 (en) Production method for oriented grain-electromagnetic steel sheet
JP2015200002A (ja) 方向性電磁鋼板の製造方法
JP6512386B2 (ja) 方向性電磁鋼板の製造方法
JP6813143B1 (ja) 方向性電磁鋼板の製造方法
JP6856179B1 (ja) 方向性電磁鋼板の製造方法
JP6418226B2 (ja) 方向性電磁鋼板の製造方法
JP6631725B2 (ja) 方向性電磁鋼板の製造方法
JP6947147B2 (ja) 方向性電磁鋼板の製造方法
JP6607176B2 (ja) 方向性電磁鋼板の製造方法
JP6866901B2 (ja) 方向性電磁鋼板の製造方法
JP7338511B2 (ja) 方向性電磁鋼板の製造方法
JP6866869B2 (ja) 方向性電磁鋼板の製造方法
JP6544344B2 (ja) 方向性電磁鋼板の製造方法
JP2018090851A (ja) 方向性電磁鋼板の製造方法
JP2011111653A (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18755029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568655

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197023477

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018755029

Country of ref document: EP