WO2018150841A1 - 細胞培養方法、及び細胞培養システム - Google Patents

細胞培養方法、及び細胞培養システム Download PDF

Info

Publication number
WO2018150841A1
WO2018150841A1 PCT/JP2018/002317 JP2018002317W WO2018150841A1 WO 2018150841 A1 WO2018150841 A1 WO 2018150841A1 JP 2018002317 W JP2018002317 W JP 2018002317W WO 2018150841 A1 WO2018150841 A1 WO 2018150841A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
ethylene
copolymer
laminin
cells
Prior art date
Application number
PCT/JP2018/002317
Other languages
English (en)
French (fr)
Inventor
貴彦 戸谷
洋佑 松岡
郷史 田中
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to CN201880012633.0A priority Critical patent/CN110312787B/zh
Priority to US16/486,212 priority patent/US20200056148A1/en
Priority to EP18754360.8A priority patent/EP3584309A4/en
Priority to KR1020197022645A priority patent/KR102360048B1/ko
Publication of WO2018150841A1 publication Critical patent/WO2018150841A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/52Fibronectin; Laminin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue

Definitions

  • the present invention relates to a cell culturing technique, and more particularly to a cell culturing method and a cell culturing system for culturing by adhering a cell to a culture vessel.
  • a pretreatment is required to coat the culture surface of the culture container with a cell adhesion factor such as laminin.
  • laminin a cell adhesion factor
  • the laminin solution is placed in a culture vessel and allowed to stand at 37 ° C. for 1 hour or longer to coat laminin, the laminin solution is removed from the culture vessel, and the cells and medium are placed in the culture vessel.
  • cell adhesion culture was performed.
  • the medium contains miscellaneous proteins, and the culture surface of the culture vessel is covered with a protein such as albumin.
  • the culture surface is made of a hydrophilic material, laminin and albumin are exchange-adsorbed on the culture surface, so that laminin is coated on the culture surface.
  • albumin or the like is hydrophobically bonded to the culture surface, so that it cannot be exchanged with laminin and cannot be coated with laminin.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a cell culture method and a cell culture system capable of suitably culturing adherent cells without coating a culture container with laminin.
  • the cell culture method of the present invention is a cell culture method in which cells are adhered to a culture vessel and cultured, and at least a part of the culture surface of the culture vessel has a contact angle of 84 ° or less.
  • polyethylene polypropylene, polymethylpentene, cyclic olefin polymer, cyclic olefin copolymer, polyvinyl chloride, polyurethane, polyester, polyamide, ionomer, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene- Acrylic acid copolymer, ethylene-methyl acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polymethyl methacrylate, From polydimethylsiloxane and fluorine resin And a culture medium containing laminin or a fragment thereof as a cell adhesion factor and the cells are contained in the culture vessel, which is selected from a group selected from the above group and subjected to radiation treatment or hydrophilization treatment, The cell is cultured.
  • the cell culture system of the present invention is a cell culture system for culturing with cells adhered to a culture container, wherein at least a part of the culture surface of the culture container has a contact angle of 84 ° or less and polyethylene.
  • the cell culture system of the present invention is a cell culture system for culturing with cells adhered to a culture container, wherein at least a part of the culture surface of the culture container has a contact angle of 84 ° or less and polyethylene.
  • the present invention it is possible to provide a cell culture method and a cell culture system capable of suitably culturing adherent cells without coating laminin on a culture vessel.
  • FIG. 7 is a diagram showing the treatment conditions, contact angle, number of days of culture, and cell adhesion results for the culture surface of the culture vessel in Comparative Examples 1 to 4 and Examples 1 to 9.
  • FIG. 6 is a diagram showing the treatment conditions, contact angle, culture days, and cell adhesion results for the culture surface of the culture vessel in Examples 10 to 11.
  • FIG. 7 is a diagram showing the treatment conditions, contact angle, culture days, and cell adhesion results for the culture surface of the culture vessel in Examples 10 to 11.
  • FIG. 6 is a view showing a micrograph of the culture results (culture surface state) in the culture containers of Comparative Examples 1 to 4.
  • FIG. 3 is a view showing a micrograph of the culture results (culture surface state) using the culture containers of Examples 1 to 4.
  • FIG. 10 is a view showing micrographs of culture results (culture surface state) in the culture containers of Examples 5 to 9. It is a figure which shows the microscope picture of the culture result (state of a culture surface) by the culture container of Example 10.
  • FIG. It is a figure which shows the microscope picture of the culture result (state of a culture surface) by the culture container of Example 11.
  • the cell culturing method of the present embodiment is a cell culturing method in which cells are attached to a culture vessel and cultured, and at least a part of the culture surface of the culture vessel has a contact angle of 84 ° or less, and polyethylene, polypropylene , Polymethylpentene, cyclic olefin polymer, cyclic olefin copolymer, polyvinyl chloride, polyurethane, polyester, polyamide, ionomer, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-acrylic acid copolymer, ethylene -Methyl acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polymethyl methacrylate, polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polymethyl methacrylate, poly
  • the culture surface of the culture vessel is a surface inside the culture vessel where cells are adhered and cultured.
  • the contact angle is an angle formed by the liquid surface and the solid surface where the surface of the stationary liquid contacts the solid wall, and is also referred to as a static contact angle. When the contact angle is large, the hydrophobicity of the surface is strong, and when the contact angle is small, the hydrophilicity of the surface is strong.
  • the culture surface of the culture vessel is formed using a substrate selected from the various materials described above. It is also preferable to form the entire culture surface using these substrates. Furthermore, it is also preferable to form the whole culture container using these base materials.
  • a culture container using these base materials it is possible to suitably manufacture a flexible bag-shaped (bag shape) culture container for culturing adherent cells. If such a flexible bag-shaped culture container is used, it is possible to greatly change the liquid thickness of the medium in the culture container.
  • the culture surface of the culture container is treated so that the contact angle is 84 ° or less. It is also preferable to treat the entire culture surface so that the contact angle is 84 ° or less.
  • the culture surface of the culture vessel can be treated using either excimer irradiation or hydrophilization treatment by corona treatment, or sterilization by radiation treatment, or a combination thereof.
  • the degree of hydrophilization can be adjusted by changing conditions such as the treatment speed for excimer irradiation and the number of treatments for corona treatment.
  • the radiation treatment either electron beam treatment or ⁇ ray treatment can be suitably used.
  • the processing speed is preferably 1 to 10 mm / second, preferably 12 to 8 mm / second at an irradiation distance of 5 millimeters, for example. More preferred. Further, when the contact angle is reduced to 84 ° or less by corona treatment, for example, the distance between the electrodes is 5 millimeters, the applied current is 3.5 A, and the table moving speed is 5 m / min. preferable.
  • the contact angle of the culture surface of the culture vessel is preferably 40 ° or more and 84 ° or less. This is because if the contact angle is within this range, adherent cells can be more suitably adhered to the culture surface.
  • the culture surface of the culture vessel is formed of polyethylene terephthalate
  • the radiation treatment or hydrophilization treatment is not performed, even if the contact angle is 84 ° or less, It was not possible to culture the cells containing the laminin or a fragment thereof and the cells in an adherent culture. The reason is considered as follows.
  • Polyethylene terephthalate has a large number of polar ester bonds in the main chain skeleton, and its apparent hydrophilicity is improved, and its contact angle is lower than that of other resins such as polyethylene.
  • the degree of freedom of the portion is low, and most of them are buried in the resin, so that the adsorption reaction of albumin cannot be affected.
  • the hydrophobic bond of albumin can be hindered by adding a hydroxyl group or a carboxyl group to the outermost surface.
  • polyethylene terephthalate described in the present specification and claims can be generally those commercially available as “PET”, such as isophthalic acid, naphthalenedicarboxylic acid, 1,4-butanediol, Those containing auxiliary components such as propylene glycol, neopentyl glycol, and CHDM (cyclohexanedimethanol) are also included.
  • PET polyethylene terephthalate
  • auxiliary components such as propylene glycol, neopentyl glycol, and CHDM (cyclohexanedimethanol) are also included.
  • the cell cultured by the cell culture method of this embodiment will not be specifically limited if it is an adhesion cell, A pluripotent stem cell (iPS cell etc.), an embryonic stem cell (ES cell), etc. can be mentioned. According to the cell culture method of this embodiment, these cells can be suitably cultured by adhering to the culture surface.
  • adhesion factor in addition to laminin or a fragment thereof, adhesion proteins such as fibronectin and fibrinogen can be used.
  • laminin fragment for example, laminin 511-E8 can be preferably used.
  • laminin is adsorbed to the culture surface of the culture container by storing the medium and cells containing laminin (or a fragment thereof) in the culture container formed as described above. Can do. Therefore, prior to cell culture, the cells can be cultured by adhering the cells to the culture surface of the culture container without coating laminin on the culture surface of the culture container. The coating can be omitted, and the production and quality control of the laminin-coated culture vessel can be omitted.
  • a cell culture system is a cell culture system for culturing by adhering cells to a culture container, wherein at least a part of the culture surface of the culture container has a contact angle of 84 ° or less, and Polyethylene, polypropylene, polymethylpentene, cyclic olefin polymer, cyclic olefin copolymer, polyvinyl chloride, polyurethane, polyester, polyamide, ionomer, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-acrylic acid copolymer Polymer, ethylene-methyl acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polymethyl methacrylate, polydimethylsiloxane, Group of fluororesin A culture vessel formed of a substrate that has been selected and
  • the culture container 10 and the medium container 20 are connected by a tube 30, and a pump 40 is attached to the tube 30. It can be configured.
  • the adherent cells 1 are adhered and cultured.
  • the culture medium container 20 is filled with the culture medium 2 containing laminin, and the culture medium 2 containing laminin is supplied to the culture container 10 via the tube 30 by driving the pump 40.
  • the culture surface of the culture vessel 10 is formed using any one of the above-mentioned various substrates or a combination thereof, and has been subjected to a hydrophilic treatment or the like so that the contact angle becomes 84 ° or less.
  • a hydrophilic treatment or the like so that the contact angle becomes 84 ° or less.
  • laminin contained in the laminin-containing medium 2 transferred from the medium container 20 to the culture container 10 can be obtained without coating the culture surface of the culture container 10 with laminin. Since it can be adsorbed on the culture surface of the culture vessel 10, the adherent cells 1 can be adhered to the culture surface and suitably cultured.
  • the culture vessel 10 can be formed by sealing a thermoplastic resin sheet by means such as heat sealing, and can also be formed by various molding methods such as blow molding. Moreover, it is preferable that the culture container 10 consists of a member which has gas permeability. Specifically, the oxygen permeability coefficient is 400 ml ⁇ mm / m 2 ⁇ day ⁇ atm (37 ° C-80% RH) or more, and the carbon dioxide permeability coefficient is 1200 ml ⁇ mm / m 2 ⁇ day ⁇ atm (37 ° C-80%).
  • the oxygen permeability coefficient is 1000 ml ⁇ mm / m 2 ⁇ day ⁇ atm (37 ° C.-80% RH) or more, and the carbon dioxide permeability coefficient is 3000 ml ⁇ mm / m 2 ⁇ day ⁇ atm. More preferably (37 ° C.-80% RH) or higher. If the culture vessel 10 has such gas permeability, excellent cell growth efficiency can be obtained. Furthermore, it is preferable that a part or all of the culture vessel 10 has transparency so that the contents can be confirmed. Moreover, it is preferable that the culture container 10 in this embodiment shall be formed using the flexible member.
  • the medium container 20 is a container for storing the laminin-containing medium 2 to be injected into the culture container 10.
  • the laminin-containing medium 2 can be prepared by mixing the medium and laminin or a fragment thereof.
  • the tube 30 may be a commonly used one, such as silicone rubber, soft vinyl chloride resin, polybutadiene resin, ethylene-vinyl acetate copolymer, chlorinated polyethylene resin, polyurethane-based thermoplastic elastomer, polyester-based, for example.
  • Thermoplastic elastomers silicone-based thermoplastic elastomers, styrene-based elastomers such as SBS (styrene, butadiene, styrene), SIS (styrene, isoprene, styrene), SEBS (styrene, ethylene, butylene, styrene), SEPS (styrene, ethylene) ⁇ Propylene / styrene) or the like can be used. These materials are excellent in gas permeability.
  • a peristaltic pump capable of transferring the laminin-containing medium 2 from the medium container 20 to the culture container 10 by squeezing the tube 30 can be suitably used.
  • the cell culture system according to the embodiment of the present invention has, as a modification thereof, at least a part of the culture surface of the culture container, a contact angle of 84 ° or less, and polyethylene, polypropylene, polymethylpentene, cyclic olefin.
  • a culture vessel formed of a base material that has been treated, a culture medium container that contains a culture medium, and a laminin supply container that contains laminin or a fragment thereof as a cell adhesion factor. It is also preferable that the cells are cultured by transferring to the culture vessel, injecting the cells into the culture vessel, and transferring laminin or
  • the culture container 10, the medium container 20a, and the laminin supply container 50 are connected by a tube 30a.
  • the pump 40 and the pump 40a can be attached to the 30a.
  • the medium 3 (without laminin) is transferred from the medium container 20a to the culture container 10 via the tube 30a, and by driving the pump 40a, the laminin is supplied from the laminin supply container 50. 4 is transferred to the culture vessel 10 through the tube 30a, thereby supplying the culture vessel 10 with the laminin concentration adjusted medium 5.
  • the pump 40 and the pump 40a can be driven simultaneously, and when the pump 40 is driven, the branch portion of the tube 30a connected to the laminin supply container 50 is closed with a clip or the like, and the pump 40a is driven.
  • the culture medium 3 and the laminin 4 can be transferred, respectively, with the branch portion of the tube 30a connected to the culture medium container 20a closed with a clip or the like.
  • a pump may be attached to the branch part of the tube 30a connected to the culture container 10, and each of the culture medium 3 and the laminin 4 may be transferred by one pump.
  • 199 ml of medium 3 (not including laminin) accommodated in the medium container 20a and laminin 4 (for example, laminin prepared to a concentration of 0.1 mg / ml) accommodated in the laminin supply container 50 1 ml of the solution) can be transferred to the culture vessel 10 by driving each pump, and the laminin concentration adjusted medium 5 having a concentration of 0.5 ⁇ g / ml can be supplied to the culture vessel 10.
  • the laminin concentration per liquid 1 cm and the area can be adjusted to 0.5 ⁇ g / cm 2 .
  • the laminin solution prepared to a concentration of 0.1 mg / ml This can be done by transferring 1 ml of the medium and 399 ml of the medium 3 to the culture vessel 10.
  • the degree of cell adhesion may be weakened during the culture.
  • laminin 4 from laminin supply container 50 can be added to culture container 10 to increase the strength of cell adhesion.
  • the concentration of laminin in the laminin supply container 50 is high, the liquid amount of the laminin solution to be sent out becomes extremely small, and there is a concern that the accuracy at the time of liquid feeding by driving the pump is lowered.
  • the culture vessel 10 of the culture area 200 cm 2 want a concentration of laminin and 0.5 [mu] g / cm 2, laminin required amount becomes 0.1 mg. That is, when the concentration of laminin accommodated in the laminin supply container 50 is larger than 0.1 mg / ml, the amount of liquid to be fed is less than 1 ml, which makes it difficult to feed accurately with a general-purpose pump. For this reason, it is preferable that the concentration of laminin in the laminin supply container 50 is 0.1 mg / ml or less.
  • the other points can be the same as those of the cell culture method of the present embodiment described above.
  • the laminin concentration on the culture surface of the culture vessel 10 can be adjusted by separately transferring the medium 3 and laminin 4 to the culture vessel 10. It becomes possible to flexibly adjust the culture environment of the adherent cells 1. This is an effect that cannot be obtained when a conventional culture vessel coated with laminin is used.
  • the cell culture method and cell culture system of the present embodiment it is possible to appropriately culture adherent cells without coating the culture container with laminin.
  • the concentration of laminin adsorbed on the culture surface of the culture vessel can be adjusted, and the culture environment of adherent cells can be adjusted flexibly.
  • the cells were cultured by the cell culture method of the present embodiment by performing treatment so that the contact angles of the culture surface of the culture vessel formed using various materials had various values. Specifically, it is as follows.
  • each culture vessel except Comparative Example 4 is hydrophilized with an excimer irradiation device (manufactured by M.D. Com), and a batch-type corona treatment device (Kasuga Electric Co., Ltd.).
  • the treatment was performed using either a hydrophilic treatment by a company) or an electron beam treatment, or a combination thereof.
  • the electron beam processing was carried out by requesting Raje Industries Co., Ltd.
  • the degree of hydrophilization can be adjusted by changing conditions such as the treatment speed for excimer irradiation and the treatment frequency for corona treatment. By adjusting these conditions, a culture vessel having a culture surface with a contact angle shown in FIGS.
  • the excimer irradiation was 12 V
  • the irradiation distance was 5 mm
  • the corona treatment was an electrode distance of 5 mm
  • the applied current was 3.5 A
  • the table moving speed was 5 m / min.
  • the adherent cells used are iPS cells (1231A3 strain).
  • the medium used was StemFit AK02N (Part No. RCAK02N, manufactured by Ajinomoto Co., Inc.).
  • Each culture vessel was injected with the above medium containing 10 mM Rho-binding kinase inhibitor; Y-27632 (Part No. 255-200511, manufactured by Wako Pure Chemical Industries, Ltd.) and 0.5 mg / ml laminin 511-E8 (Part No. 892012, manufactured by Nippi Co., Ltd.) was added to each culture vessel so that the concentration was 0.5 ⁇ g / cm 2 .
  • a cell suspension containing iPS cells was injected and cultured at 37 ° C. for 7 days.
  • the medium was 1.5 ml and the cell suspension was 5 ⁇ l.
  • the number of cells seeded was approximately 1.3 ⁇ 10 4 cells.
  • the medium was replaced with a Y-27632-free medium, and thereafter the medium was changed every day.
  • Comparative Examples 1 to 3 if the culture vessel is made of polyethylene (PE) or cyclic olefin copolymer (COC) and the contact angle of the culture surface is larger than 84 °, the adherent cells can be appropriately cultured. There wasn't. Further, in Comparative Example 4, the adherent cells could not be appropriately cultured in a culture vessel made of polyethylene terephthalate that had not been subjected to any radiation treatment or hydrophilization treatment.
  • PE polyethylene
  • COC cyclic olefin copolymer
  • the culture vessel is made of polyethylene (PE), polyethylene terephthalate (PET), or cyclic olefin copolymer (COC), and has a contact angle of 84 ° or less on the culture surface.
  • PE polyethylene
  • PET polyethylene terephthalate
  • COC cyclic olefin copolymer
  • Examples 10 and 11 it is a culture vessel made of polyethylene (PE) or polyethylene terephthalate (PET), the culture surface has a contact angle of 84 ° or less, and is subjected to radiation treatment or hydrophilization treatment.
  • laminin concentration 0.125 ⁇ g / cm 2, 0.5 ⁇ g / cm 2, in any case of 4.0 [mu] g / cm 2, it was possible to culture adherent cells.
  • the present invention is not limited to the above-described embodiments and examples, and it goes without saying that various modifications can be made within the scope of the present invention.
  • iPS cells are used as adherent cells in the above-described examples
  • the present invention is not limited to this, and other cells can be used as long as they are adherent cells.
  • the type of medium and the like can be changed as appropriate.
  • the present invention can be suitably used when a large amount of adherent cells are cultured using a culture vessel.
  • Adherent cells 2 Medium containing laminin 3 Medium (without laminin) 4 Laminin 5 Laminin Concentration Medium 10 Culture Container 20, 20a Medium Container 30, 30a Tube 40, 40a Pump 50 Laminin Supply Container

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Transplantation (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

培養容器の培養面の少なくとも一部を、接触角が84°以下で、かつ、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状オレフィンポリマー、環状オレフィンコポリマー、ポリ塩化ビニル、ポリウレタン、ポリメタクリル酸メチル、ポリエステル、ポリアミド、アイオノマー、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体等からなる群より選択され、かつ、放射線処理又は親水化処理がなされた基材で形成し、培養容器に、細胞接着因子としてのラミニン又はそのフラグメントを含有する培地と細胞とを収容して、接着細胞を培養することによって、培養容器にラミニンをコーティングすることなく、接着細胞を好適に培養することが可能な細胞培養方法及び細胞培養システムを提供することを可能とする。

Description

細胞培養方法、及び細胞培養システム
 本発明は、細胞の培養技術に関し、特に細胞を培養容器に接着させて培養する細胞培養方法、及び細胞培養システムに関する。
 近年、医薬品の生産や、遺伝子治療、再生医療、免疫療法等の分野において、細胞や組織、微生物などを人工的な環境下で効率良く大量に培養することが求められている。
 このような状況において、培養容器に細胞と培地を注入して、細胞を培養することが行われている。
 通常、多能性幹細胞(iPS細胞など)や胚性幹細胞(ES細胞)を培養容器で接着培養する場合には、培養容器の培養面にラミニンなどの細胞接着因子をコーティングする前処理が必要とされている(特許文献1参照)。具体的には、例えば、培養容器にラミニン溶液を入れて、37℃で1時間以上静置させてラミニンのコーティングを行った後、培養容器からラミニン溶液を除去し、細胞と培地を培養容器に入れて、細胞の接着培養が行われていた。
特開2015-178526号公報
 しかしながら、このように細胞を接着培養するために、培養容器にラミニンをコーティングしなければならないことは煩雑であるという問題があった。また、ラミニンコーティング済みの培養容器を供給する場合には、その製造や品質管理が大変であるという問題があった。
 そこで、本発明者らは、培養容器にラミニンをコーティングすることなく、ラミニンを培地に混合させて培養することで、細胞を培養容器に接着させて培養できるかについて、研究を行った。
 その結果、疎水性材料からなる培養容器を用いた場合、ラミニンを培地に混合させて培養しても、細胞を培養容器に接着させて培養することはできなかった。その理由は以下のように推測される。
 図1に示すように、培地には雑多なタンパク質が含まれており、培養容器の培養面は、アルブミンなどのタンパク質に覆われた状態となっている。このとき、培養面が親水性材料からなる場合には、ラミニンとアルブミンなどとが培養面に交換吸着することで、ラミニンが培養面にコーティングされると考えられる。一方、培養面が疎水性材料からなる場合には、アルブミンなどが培養面に疎水結合するためにラミニンと交換吸着できず、ラミニンを培養面にコーティングできなかったと考えられる。
 ここで、特許文献1に記載の発明では、培養容器にラミニンがコーティングされるが、ラミニンを添加した培地を用いて細胞を培養することについても記載がある。
 しかしながら、これを実現するための具体的な構成については示されておらず、どのような特性の培養容器を用いれば、ラミニンを添加した培地を用いて細胞を培養することができるのかについては、検討されていなかった。
 本発明は、上記事情に鑑みなされたものであり、培養容器にラミニンをコーティングすることなく、接着細胞を好適に培養することが可能な細胞培養方法及び細胞培養システムの提供を目的とする。
 上記目的を達成するため、本発明の細胞培養方法は、細胞を培養容器に接着させて培養する細胞培養方法であって、前記培養容器の培養面の少なくとも一部を、接触角が84°以下で、かつ、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状オレフィンポリマー、環状オレフィンコポリマー、ポリ塩化ビニル、ポリウレタン、ポリエステル、ポリアミド、アイオノマー、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリジメチルシロキサン、フッ素系樹脂からなる群より選択され、かつ、放射線処理又は親水化処理がなされた基材で形成し、前記培養容器に、細胞接着因子としてのラミニン又はそのフラグメントを含有する培地と前記細胞とを収容して、前記細胞を培養する構成としてある。
 また、本発明の細胞培養システムは、細胞を培養容器に接着させて培養する細胞培養システムであって、前記培養容器の培養面の少なくとも一部を、接触角が84°以下で、かつ、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状オレフィンポリマー、環状オレフィンコポリマー、ポリ塩化ビニル、ポリウレタン、ポリエステル、ポリアミド、アイオノマー、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリジメチルシロキサン、フッ素系樹脂からなる群より選択され、かつ、放射線処理又は親水化処理がなされた基材で形成された培養容器と、細胞接着因子としてのラミニン又はそのフラグメントを含有する培地を収容する培地容器と、を備え、前記培地容器からの前記培地の前記培養容器への移送、及び、前記培養容器への前記細胞の注入を行って、前記細胞の培養が行われる構成としてある。
 また、本発明の細胞培養システムは、細胞を培養容器に接着させて培養する細胞培養システムであって、前記培養容器の培養面の少なくとも一部を、接触角が84°以下で、かつ、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状オレフィンポリマー、環状オレフィンコポリマー、ポリ塩化ビニル、ポリウレタン、ポリエステル、ポリアミド、アイオノマー、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリジメチルシロキサン、フッ素系樹脂からなる群より選択され、かつ、放射線処理又は親水化処理がなされた基材で形成された培養容器と、培地を収容する培地容器と、細胞接着因子としてのラミニン又はそのフラグメントを収容するラミニン供給容器と、を備え、前記培地容器からの前記培地の前記培養容器への移送、前記培養容器への前記細胞の注入、及び、前記ラミニン供給容器からのラミニン又はそのフラグメントの前記培養容器への移送を行って、前記細胞の培養が行われる構成としてある。
 本発明によれば、培養容器にラミニンをコーティングすることなく、接着細胞を好適に培養することができる細胞培養方法及び細胞培養システムの提供が可能となる。
本発明の細胞培養方法を疎水性の培養面を有する培養容器に適用できない理由についての説明図である。 本発明の実施形態に係る細胞培養システムの概略構成を示す説明図である。 本発明の実施形態に係る細胞培養システムの変形例の概略構成を示す説明図である。 比較例1~4及び実施例1~9における培養容器の培養面の処理条件、接触角、培養日数、及び細胞接着の結果を示す図である。 実施例10~11における培養容器の培養面の処理条件、接触角、培養日数、及び細胞接着の結果を示す図である。 比較例1~4の培養容器による培養結果(培養面の状態)の顕微鏡写真を示す図である。 実施例1~4の培養容器による培養結果(培養面の状態)の顕微鏡写真を示す図である。 実施例5~9の培養容器による培養結果(培養面の状態)の顕微鏡写真を示す図である。 実施例10の培養容器による培養結果(培養面の状態)の顕微鏡写真を示す図である。 実施例11の培養容器による培養結果(培養面の状態)の顕微鏡写真を示す図である。
 以下、本発明の細胞培養方法及び細胞培養システムの実施形態について詳細に説明する。
 本実施形態の細胞培養方法は、細胞を培養容器に接着させて培養する細胞培養方法であって、培養容器の培養面の少なくとも一部を、接触角が84°以下で、かつ、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状オレフィンポリマー、環状オレフィンコポリマー、ポリ塩化ビニル、ポリウレタン、ポリエステル、ポリアミド、アイオノマー、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリジメチルシロキサン、フッ素系樹脂からなる群より選択され、かつ、放射線処理又は親水化処理がなされた基材で形成し、培養容器に、細胞接着因子としてのラミニン又はそのフラグメントを含有する培地と細胞とを収容して、細胞を培養することを特徴とする。
 培養容器の培養面とは、細胞を接着して培養する、培養容器内の表面である。
 接触角とは、静止した液体の表面が固体壁に接するところで液面と固体面がなす角であり、静的接触角とも称する。接触角が大きい場合には表面の疎水性が強く、接触角が小さい場合には表面の親水性が強いという関係がある。
 本実施形態の細胞培養方法において、培養容器の培養面の少なくとも一部は、上記の各種材料から選択された基材を用いて形成される。また、培養面の全部をこれらの基材を用いて形成することも好ましい。さらに、培養容器の全体をこれらの基材を用いて形成することも好ましい。これらの基材を用いて培養容器を形成することで、接着細胞を培養するための柔軟な袋状(バッグ形状)の培養容器を好適に製造することが可能である。このような柔軟な袋状の培養容器を用いれば、培養容器内において培地の液厚を大きく変化させることが可能である。
 また、本実施形態の細胞培養方法において、培養容器の培養面の少なくとも一部は、接触角が84°以下となるように処理される。また、培養面の全部を接触角が84°以下となるように処理することも好ましい。
 具体的には、培養容器の培養面に対して、エキシマ照射又はコロナ処理による親水化処理、又は放射線処理による滅菌のいずれか、又はこれらの組み合わせを用いて処理することができる。このとき、エキシマ照射は処理速度、コロナ処理は処理回数などの条件を変更することにより、親水化の程度を調整することができる。
 また、放射線処理は、電子線処理、又はγ線処理のいずれかを好適に用いることができる。
 エキシマ照射により接触角が84°以下となるように処理する場合、例えば、12V、照射距離5ミリメートルで、処理速度を1~10mm/秒とすることが好ましく、2~8mm/秒とすることがより好ましい。また、コロナ処理により接触角が84°以下となるように処理する場合、例えば、電極間距離5ミリメートル、印可電流3.5A、テーブル移動速度を5m/分で、1~3回程度行うことが好ましい。
 また、本実施形態の細胞培養方法において、培養容器の培養面の接触角は、40°以上84°以下であることが好ましい。接触角がこの範囲内であれば、培養面に接着細胞をより好適に接着させることができるためである。
 ここで、特に、培養容器の培養面をポリエチレンテレフタレートで形成する場合には、放射線処理又は親水化処理をしなければ、接触角が84°以下であっても、培養容器に、細胞接着因子としてのラミニン又はそのフラグメントを含有する培地と細胞とを収容して、細胞を接着培養することはできなかった。その理由は、以下のように考察される。
 ポリエチレンテレフタレートは主鎖骨格に極性を持ったエステル結合を多数有しており、見かけ上の親水性が向上して、その接触角はポリエチレンなど他の樹脂と比較して低くなっているが、親水部の自由度は低く、多くが樹脂中に埋もれているためにアルブミンの吸着反応に影響することができない。
 一方、ポリエチレンテレフタレートに対して親水化処理を行えば、その最表面に水酸基やカルボキシル基が付与されることでアルブミンの疎水結合を妨害できる。また、ポリエチレンテレフタレートに対して放射線処理を行えば、樹脂内部の分子鎖の切断・開裂により分子の運動性が上がるため、親水基が最表面へと移動することができるようになり、アルブミンの疎水結合を妨害できるようになると考えられる。
 なお、本明細書及び特許請求の範囲に記載のポリエチレンテレフタレートは、一般的に「PET」として市販されているものを用いることができ、例えばイソフタル酸、ナフタレンジカルボン酸、1,4-ブタンジオール、プロピレングリコール、ネオペンチルグリコール、CHDM(シクロヘキサンジメタノール)などの補助成分を含有するものも含まれる。
 本実施形態の細胞培養方法により培養する細胞は、接着細胞であれば特に限定されないが、多能性幹細胞(iPS細胞など)や胚性幹細胞(ES細胞)等を挙げることができる。
 本実施形態の細胞培養方法によれば、これらの細胞を培養面に接着して好適に培養することが可能である。
 本実施形態の細胞培養方法において、細胞接着因子としては、ラミニン又はそのフラグメントのほか、フィブロネクチン、フィブリノーゲン等の接着タンパクを用いることができる。ラミニンのフラグメントとしては、例えばラミニン511-E8を好適に用いることができる。
 本実施形態の細胞培養方法によれば、上記のように形成した培養容器に、ラミニン(又はそのフラグメント)を含有する培地と細胞を収容することによって、ラミニンを培養容器の培養面に吸着させることができる。
 このため、細胞培養に先立って、培養容器の培養面にラミニンをコーティングすることなく、細胞を培養容器の培養面に接着させて培養することができるため、従来の煩雑な培養容器へのラミニンのコーティングを省略できると共に、ラミニンコーティング済みの培養容器の製造や品質管理を省略することが可能となる。
 本発明の実施形態に係る細胞培養システムは、細胞を培養容器に接着させて培養する細胞培養システムであって、培養容器の培養面の少なくとも一部を、接触角が84°以下で、かつ、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状オレフィンポリマー、環状オレフィンコポリマー、ポリ塩化ビニル、ポリウレタン、ポリエステル、ポリアミド、アイオノマー、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリジメチルシロキサン、フッ素系樹脂からなる群より選択され、かつ、放射線処理又は親水化処理がなされた基材で形成された培養容器と、細胞接着因子としてのラミニン又はそのフラグメントを含有する培地を収容する培地容器とを備え、培地容器からの培地の培養容器への移送、及び、培養容器への細胞の注入を行って、細胞の培養が行われることを特徴とする。
 具体的には、例えば図2において模式的に示すように、本実施形態の細胞培養システムは、培養容器10と培地容器20とがチューブ30により接続され、このチューブ30にポンプ40が取り付けられた構成とすることができる。
 培養容器10の培養面では、接着細胞1が接着して培養される。培地容器20にはラミニン入り培地2が充填されており、ポンプ40を駆動させることで、ラミニン入り培地2がチューブ30を介して、培養容器10に供給される。
 培養容器10の培養面は、上記の各種基材のいずれか又はその組み合わせを用いて形成され、接触角が84°以下となるように親水化処理等がなされたものである。なお、培養面の一部のみをこのように形成して処理することで、当該一部のみで接着細胞を培養することもできる。
 本実施形態の細胞培養システムをこのような構成すれば、培養容器10の培養面にラミニンをコーティングしなくても、培地容器20から培養容器10に移送されたラミニン入り培地2に含まれるラミニンを、培養容器10の培養面に吸着させることができるため、接着細胞1を培養面に接着させて好適に培養することが可能である。
 培養容器10は、熱可塑性樹脂シートをヒートシールなどの手段でシールすることで形成することができ、またブロー成形等の種々の成形方法によって形成することもできる。
 また、培養容器10は、ガス透過性を有する部材からなるものであることが好ましい。具体的には、酸素透過係数が400ml・mm/m・day・atm(37℃-80%RH)以上、二酸化炭素透過係数が1200ml・mm/m・day・atm(37℃-80%RH)以上のものであることが好ましく、酸素透過係数が1000ml・mm/m・day・atm(37℃-80%RH)以上、二酸化炭素透過係数が3000ml・mm/m・day・atm(37℃-80%RH)以上のものであることがより好ましい。培養容器10がこのようなガス透過性を有すれば、優れた細胞増殖効率を得ることができる。
 さらに、培養容器10は、内容物を確認できるように、一部又は全部が透明性を有することが好ましい。また、本実施形態における培養容器10は、可撓性部材を用いて形成されたものとすることが好ましい。
 培地容器20は、培養容器10に注入するためのラミニン入り培地2を収容する容器である。ラミニン入り培地2は、培地とラミニン又はそのフラグメントとを混合することで作成することができる。
 チューブ30は、一般に常用されているものを用いることができ、例えば、シリコーンゴム、軟質塩化ビニル樹脂、ポリブタジエン樹脂、エチレン-酢酸ビニル共重合体、塩素化ポリエチレン樹脂、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、シリコーン系熱可塑性エラストマー、スチレン系エラストマー、例えば、SBS(スチレン・ブタジエン・スチレン)、SIS(スチレン・イソプレン・スチレン)、SEBS(スチレン・エチレン・ブチレン・スチレン)、SEPS(スチレン・エチレン・プロピレン・スチレン)等を用いて形成されたものを使用することができる。これらの材料は、ガス透過性に優れている。
 ポンプ40としては、チューブ30をしごくことによって、培地容器20から培養容器10にラミニン入り培地2を移送できるペリスタルティック方式のポンプを好適に用いることができる。
 また、本発明の実施形態に係る細胞培養システムは、その変形例として、培養容器の培養面の少なくとも一部を、接触角が84°以下で、かつ、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状オレフィンポリマー、環状オレフィンコポリマー、ポリ塩化ビニル、ポリウレタン、ポリエステル、ポリアミド、アイオノマー、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリジメチルシロキサン、フッ素系樹脂からなる群より選択され、かつ、放射線処理又は親水化処理がなされた基材で形成された培養容器と、培地を収容する培地容器と、細胞接着因子としてのラミニン又はそのフラグメントを収容するラミニン供給容器とを備え、培地容器からの培地の培養容器への移送、培養容器への細胞の注入、及び、ラミニン供給容器からのラミニン又はそのフラグメントの培養容器への移送を行って、細胞の培養が行われることを特徴とするものとすることも好ましい。
 具体的には、例えば図3において模式的に示すように、本実施形態の細胞培養システムの変形例は、培養容器10と培地容器20aとラミニン供給容器50とがチューブ30aにより接続され、このチューブ30aにポンプ40とポンプ40aとを取り付けて構成することができる。
 そして、ポンプ40を駆動させることにより、培地容器20aから培地3(ラミニンを含まない)をチューブ30aを介して培養容器10に移送し、またポンプ40aを駆動させることにより、ラミニン供給容器50からラミニン4をチューブ30aを介して培養容器10に移送することによって、培養容器10にラミニン濃度調整培地5を供給する。
 ポンプ40とポンプ40aは、同時に駆動させることができるほか、ポンプ40を駆動させるときに、ラミニン供給容器50に接続されたチューブ30aの分岐部分をクリップなどで閉じた状態とし、またポンプ40aを駆動させるときに、培地容器20aに接続されたチューブ30aの分岐部分をクリップなどで閉じた状態として、それぞれ培地3とラミニン4の移送を行うこともできる。また、培養容器10に接続されたチューブ30aの分岐部分にポンプを取り付けて、1つのポンプで培地3とラミニン4のそれぞれの移送を行っても良い。
 具体的には、例えば培地容器20aに収容されている培地3(ラミニンを含まない)199mlと、ラミニン供給容器50に収容されているラミニン4(例えば、濃度0.1mg/mlに調製されたラミニン溶液)1mlとを、それぞれポンプ駆動により、培養容器10に移送して、培養容器10に、濃度が0.5μg/mlのラミニン濃度調整培地5を供給することができる。培養容器10における培養面の面積が200cmの場合、液の厚み1cm、面積当たりのラミニン濃度を0.5μg/cmとなるよう調整することができる。
 また、この面積あたりのラミニンの濃度を変えたくないが、高密度で細胞を培養したい等の理由で、仮に液の厚みを倍にしたいときは、濃度0.1mg/mlに調製されたラミニン溶液を1mlと、培地3を399mlで培養容器10に移送することによって、これを行うことができる。
 さらに、培養途中で細胞の接着の程度が弱まる場合がある。そのような場合には、ラミニン供給容器50からラミニン4を培養容器10に追加して、細胞の接着の強度を増加させることができる。
 ここで、ラミニン供給容器50におけるラミニンの濃度が高濃度であると、送り出すラミニン溶液の液量が極めて小さくなり、ポンプ駆動による送液時の精度が低下する懸念がある。例えば、培養面積200cmの培養容器10においてラミニンの濃度を0.5μg/cmとしたい場合、必要なラミニン量は0.1mgとなる。すなわち、ラミニン供給容器50に収容されているラミニンの濃度が0.1mg/mlより大きい場合、送液量は1ml未満となり、汎用のポンプで精度良く送液するのが困難な液量となる。このため、ラミニン供給容器50におけるラミニンの濃度は、0.1mg/ml以下とすることが好ましい。
 本実施形態の細胞培養方法の変形例において、その他の点については、上述した本実施形態の細胞培養方法と同様のものとすることができる。
 本実施形態の細胞培養システムをこの変形例のように構成すれば、培地3とラミニン4を別個に培養容器10に移送することによって、培養容器10の培養面におけるラミニン濃度を調整することができ、接着細胞1の培養環境を柔軟に調整することが可能となる。これは、従来のラミニンがコーティングされている培養容器を用いる場合には、得ることができない効果となっている。
 以上説明したように、本実施形態の細胞培養方法及び細胞培養システムによれば、培養容器にラミニンをコーティングすることなく、接着細胞を好適に培養することが可能となる。また、培養容器の培養面に吸着させるラミニンの濃度を調整することができ、接着細胞の培養環境を柔軟に調整することも可能である。
 以下、本実施形態を評価するために行った試験について説明する。
 各種材料を用いて形成された培養容器の培養面の接触角が様々な値となるように処理を行って、本実施形態の細胞培養方法による細胞培養を行った。具体的には、以下の通りである。
[培養容器]
 培養容器として、ポリエチレン(PE,宇部丸善ポリエチレン株式会社製,品名ユメリット125FN)をフィルムに成膜した後にディッシュ型に加工したもの、環状オレフィンコポリマー(COC,ポリプラスチック株式会社製,品名TOPAS8007F-04)をフィルムに成膜した後にディッシュ型に加工したもの、ポリエチレンテレフタレート(PET,SKケミカル株式会社製,品名BR8040)を射出成形してディッシュ型に形成したものを用意した。PE、COCのフィルムのディッシュ型への加工は、フィルムの端を折り、インパルスシーラーにて溶着することによって行った。
[培養面の処理]
 図4及び図5に示されるように、比較例4を除く各々の培養容器に対し、エキシマ照射装置(株式会社エム・ディ・コム製)による親水化処理、バッチ式コロナ処理装置(春日電機株式会社製)による親水化処理、又は電子線処理のいずれか、又はそれらの組み合わせを用いて処理を行った。電子線処理は、ラジエ工業株式会社に依頼して行った。
 各処理において、エキシマ照射は処理速度、コロナ処理は処理回数などの条件を変更することによって親水化の程度を調整することができる。これらの条件を調整することによって、図4及び図5に示される接触角の培養面を有する培養容器を用意した。
 なお、エキシマ照射は12V、照射距離5mm、コロナ処理は電極間距離5mm、印可電流3.5A、テーブル移動速度を5m/minとした。
[接触角の測定]
 接触角の測定には、固液界面解析システムDropMaster 700(協和界面科学株式会社製)を使用した。接触角は、フィルム上に純水3μlを滴下して測定した。
[細胞培養方法]
 使用した接着細胞は、iPS細胞(1231A3株)である。
 使用した培地は、StemFit AK02N(品番RCAK02N,味の素株式会社製)である。
 各培養容器に、10mMのRho結合キナーゼ阻害剤;Y-27632(品番253-00511,和光純薬工業株式会社製)を含む上記培地を注入すると共に、0.5mg/mlラミニン511-E8(品番892012,株式会社ニッピ製)を各培養容器に0.5μg/cmとなるように加えた。その後、iPS細胞を含む細胞懸濁液を注入して、37℃で7日間培養を行った。このとき、培地は1.5ml、細胞懸濁液5μlであった。播種した細胞数は、およそ1.3×10cellsであった。また、培養開始から1日経過後に、培地をY-27632不含有の培地に交換して、その後毎日培地交換を行った。
[接着性の評価]
 培養1日、6日、又は7日後における細胞の接着状態を顕微鏡にて観察して、細胞の接着・伸展が見られるか否かを基準として、細胞の接着性を評価した。
 なお、通常、培養容器における培養面に接着細胞を培養可能な適切な処理が行われている場合、細胞は1日で接着する。また、細胞が接着しない場合は、その後日数が経過しても接着しないことから、比較例1~4では、培養1日後のみで各培養容器の培養適性(細胞接着の可否)を判断した。
[ラミニンの濃度の影響]
 ラミニンの濃度が、それぞれ0.125μg/cm、0.5μg/cm、4.0μg/cmとなるように各培養容器にラミニン511-E8を添加した以外は、上記の手順で細胞培養を行った。
 以上のように細胞培養を行った結果を、図4及び図5において、細胞を接着培養できた場合を○、細胞を接着培養できなかった場合を×で示した。また、図6~10において、培養面の状態を撮影した顕微鏡写真を示した。
 比較例1~3において、ポリエチレン(PE)又は環状オレフィンコポリマー(COC)からなる培養容器であって、その培養面の接触角が84°より大きいものでは、接着細胞を適切に培養することができなかった。また、比較例4において、ポリエチレンテレフタレートからなる培養容器であって、放射線処理、親水化処理のいずれもなされていないものでは、接着細胞を適切に培養することができなかった。
 これに対し、実施例1~9において、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、又は環状オレフィンコポリマー(COC)からなる培養容器であって、その培養面の接触角が84°以下のもので、かつ、放射線処理又は親水化処理がなされたものは、接着細胞を培養することができた。
 また、実施例10、11において、ポリエチレン(PE)又はポリエチレンテレフタレート(PET)からなる培養容器であって、その培養面の接触角が84°以下のもので、かつ、放射線処理又は親水化処理がなされたものは、ラミニン濃度が0.125μg/cm、0.5μg/cm、4.0μg/cmのいずれの場合でも、接着細胞を培養することができた。
 本発明は、以上の実施形態や実施例に限定されるものではなく、本発明の範囲内において、種々の変更実施が可能であることは言うまでもない。
 例えば、上記実施例では接着細胞としてiPS細胞を用いているが、これに限定されるものではなく、接着細胞であればその他の細胞を用いることができる。また、培地の種類等も適宜変更することが可能である。
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。
 本発明は、培養容器を用いて、接着細胞を大量培養する場合に好適に利用することが可能である。
1 接着細胞
2 ラミニン入り培地
3 培地(ラミニンを含まない)
4 ラミニン
5 ラミニン濃度調整培地
10 培養容器
20,20a 培地容器
30,30a チューブ
40,40a ポンプ
50 ラミニン供給容器

Claims (7)

  1.  細胞を培養容器に接着させて培養する細胞培養方法であって、
     前記培養容器の培養面の少なくとも一部を、接触角が84°以下で、かつ、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状オレフィンポリマー、環状オレフィンコポリマー、ポリ塩化ビニル、ポリウレタン、ポリエステル、ポリアミド、アイオノマー、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリジメチルシロキサン、フッ素系樹脂からなる群より選択され、かつ、放射線処理又は親水化処理がなされた基材で形成し、
     前記培養容器に、細胞接着因子としてのラミニン又はそのフラグメントを含有する培地と前記細胞とを収容して、前記細胞を培養する
     ことを特徴とする細胞培養方法。
  2.  前記基材が、放射線処理又は親水化処理がなされた、ポリエチレン、環状オレフィンコポリマー、又はポリエチレンテレフタレートのいずれかであることを特徴とする請求項1記載の細胞培養方法。
  3.  前記細胞が、多能性幹細胞、胚性幹細胞、又はそれらの分化細胞であることを特徴とする請求項1又は2記載の細胞培養方法。
  4.  前記培養容器により閉鎖系で前記細胞を培養することを特徴とする請求項1~3のいずれかに記載の細胞培養方法。
  5.  細胞を培養容器に接着させて培養する細胞培養システムであって、
     前記培養容器の培養面の少なくとも一部を、接触角が84°以下で、かつ、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状オレフィンポリマー、環状オレフィンコポリマー、ポリ塩化ビニル、ポリウレタン、ポリエステル、ポリアミド、アイオノマー、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリジメチルシロキサン、フッ素系樹脂からなる群より選択され、かつ、放射線処理又は親水化処理がなされた基材で形成された培養容器と、
     細胞接着因子としてのラミニン又はそのフラグメントを含有する培地を収容する培地容器と、を備え、
     前記培地容器からの前記培地の前記培養容器への移送、及び、前記培養容器への前記細胞の注入を行って、前記細胞の培養が行われる
     ことを特徴とする細胞培養システム。
  6.  細胞を培養容器に接着させて培養する細胞培養システムであって、
     前記培養容器の培養面の少なくとも一部を、接触角が84°以下で、かつ、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状オレフィンポリマー、環状オレフィンコポリマー、ポリ塩化ビニル、ポリウレタン、ポリエステル、ポリアミド、アイオノマー、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリジメチルシロキサン、フッ素系樹脂からなる群より選択され、かつ、放射線処理又は親水化処理がなされた基材で形成された培養容器と、
     培地を収容する培地容器と、
     細胞接着因子としてのラミニン又はそのフラグメントを収容するラミニン供給容器と、を備え、
     前記培地容器からの前記培地の前記培養容器への移送、前記培養容器への前記細胞の注入、及び、前記ラミニン供給容器からのラミニン又はそのフラグメントの前記培養容器への移送を行って、前記細胞の培養が行われる
     ことを特徴とする細胞培養システム。
  7.  前記ラミニン供給容器に収容されるラミニンの濃度が、0.1mg/ml以下であることを特徴とする請求項6記載の細胞培養システム。
PCT/JP2018/002317 2017-02-20 2018-01-25 細胞培養方法、及び細胞培養システム WO2018150841A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880012633.0A CN110312787B (zh) 2017-02-20 2018-01-25 细胞培养方法以及细胞培养系统
US16/486,212 US20200056148A1 (en) 2017-02-20 2018-01-25 Cell culture method and cell culture system
EP18754360.8A EP3584309A4 (en) 2017-02-20 2018-01-25 CELL CULTURE METHOD AND CELL CULTURE SYSTEM
KR1020197022645A KR102360048B1 (ko) 2017-02-20 2018-01-25 세포 배양 방법 및 세포 배양 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017029163A JP6957893B2 (ja) 2017-02-20 2017-02-20 細胞培養方法、及び細胞培養システム
JP2017-029163 2017-02-20

Publications (1)

Publication Number Publication Date
WO2018150841A1 true WO2018150841A1 (ja) 2018-08-23

Family

ID=63170599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002317 WO2018150841A1 (ja) 2017-02-20 2018-01-25 細胞培養方法、及び細胞培養システム

Country Status (6)

Country Link
US (1) US20200056148A1 (ja)
EP (1) EP3584309A4 (ja)
JP (1) JP6957893B2 (ja)
KR (1) KR102360048B1 (ja)
CN (1) CN110312787B (ja)
WO (1) WO2018150841A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6801728B2 (ja) * 2019-03-08 2020-12-16 住友ベークライト株式会社 分析用デバイス

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023875A1 (ja) * 2005-08-23 2007-03-01 Oriental Yeast Co., Ltd. ラミニン5を利用した間葉系幹細胞の培養技術
JP2007508015A (ja) * 2003-10-10 2007-04-05 ゲ・ミン・ルイ ヒト角膜内皮細胞および角膜細胞移植術のための細胞の取得および培養方法
WO2009123349A1 (ja) * 2008-03-31 2009-10-08 オリエンタル酵母工業株式会社 多能性幹細胞を増殖させる方法
WO2014103534A1 (ja) * 2012-12-28 2014-07-03 国立大学法人大阪大学 コラーゲン結合性分子を付加した改変ラミニンおよびその利用
JP2015178526A (ja) 2011-04-08 2015-10-08 国立大学法人大阪大学 改変ラミニンおよびその利用
JP2015216913A (ja) * 2014-05-21 2015-12-07 大日本印刷株式会社 細胞培養容器の管理方法
WO2016067629A1 (ja) * 2014-10-31 2016-05-06 京都府公立大学法人 ラミニンによる網膜および神経の新規治療
WO2017082220A1 (ja) * 2015-11-10 2017-05-18 国立大学法人京都大学 ラミニンフラグメント含有培地を用いる細胞培養方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605734B2 (ja) * 1999-06-21 2011-01-05 ザ ジェネラル ホスピタル コーポレイション 臓器補助装置のための細胞培養システム及び方法
EP2128659B1 (en) * 2007-02-09 2017-04-05 Mitsubishi Rayon Co. Ltd. Transparent molded body and antireflective member using the same
AU2009215516B2 (en) * 2008-02-21 2014-12-18 Janssen Biotech Inc. Methods, surface modified plates and compositions for cell attachment, cultivation and detachment
US20100129910A1 (en) * 2008-07-02 2010-05-27 Denis Evseenko Cell matrix related compositions and their use for generating embryoid bodies
JP6200621B2 (ja) * 2015-02-25 2017-09-20 荏原実業株式会社 細胞担持用基材及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508015A (ja) * 2003-10-10 2007-04-05 ゲ・ミン・ルイ ヒト角膜内皮細胞および角膜細胞移植術のための細胞の取得および培養方法
WO2007023875A1 (ja) * 2005-08-23 2007-03-01 Oriental Yeast Co., Ltd. ラミニン5を利用した間葉系幹細胞の培養技術
WO2009123349A1 (ja) * 2008-03-31 2009-10-08 オリエンタル酵母工業株式会社 多能性幹細胞を増殖させる方法
JP2015178526A (ja) 2011-04-08 2015-10-08 国立大学法人大阪大学 改変ラミニンおよびその利用
WO2014103534A1 (ja) * 2012-12-28 2014-07-03 国立大学法人大阪大学 コラーゲン結合性分子を付加した改変ラミニンおよびその利用
JP2015216913A (ja) * 2014-05-21 2015-12-07 大日本印刷株式会社 細胞培養容器の管理方法
WO2016067629A1 (ja) * 2014-10-31 2016-05-06 京都府公立大学法人 ラミニンによる網膜および神経の新規治療
WO2017082220A1 (ja) * 2015-11-10 2017-05-18 国立大学法人京都大学 ラミニンフラグメント含有培地を用いる細胞培養方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAKER S.E. ET AL.: "Morphogenetic effects of soluble laminin-5 on cultured epithelial cells and tissue explants", EXPERIMENTAL CELL RESEARCH, vol. 228, no. 2, 1 November 1996 (1996-11-01), pages 262 - 270, XP002041008, Retrieved from the Internet <URL:https://doi.org/10.1006/excr.1996.0325> *
See also references of EP3584309A4
TAMADA, Y. ET AL.: "Fibroblast growth on polymer surfaces and biosynthesis of collagen", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, vol. 28, no. 7, July 1994 (1994-07-01), pages 783 - 789, XP055538953, Retrieved from the Internet <URL:DOI:10.1002/jbm.820280705> *

Also Published As

Publication number Publication date
CN110312787B (zh) 2024-03-01
JP2018134007A (ja) 2018-08-30
KR20190099323A (ko) 2019-08-26
JP6957893B2 (ja) 2021-11-02
CN110312787A (zh) 2019-10-08
EP3584309A1 (en) 2019-12-25
KR102360048B1 (ko) 2022-02-07
EP3584309A4 (en) 2020-11-25
US20200056148A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
JP5776162B2 (ja) 接着細胞用培養容器、及び接着細胞用培養容器の製造方法
WO2008023771A1 (fr) RÉcipient DE CULTURE, ET PROCÉDÉ D&#39;INTRODUCTION DE GÈNE ET PROCÉDÉ DE CULTURE CELLULairE UTILISANT LE RÉcipient
JPH02501529A (ja) 細胞培養装置用の生体適合性ポリオルガノシロキサン組成物
JP6431341B2 (ja) 接着性細胞の培養方法
EP2700707B1 (en) Cell culture method and cell culture kit
WO2013069490A1 (ja) 細胞培養容器の製造方法
WO2018150841A1 (ja) 細胞培養方法、及び細胞培養システム
CN112074597B (zh) 培养容器基材、培养容器、以及培养容器基材的制造方法
WO2018135289A1 (ja) 培養容器、及び細胞培養方法
JPH06181740A (ja) 培養用容器及びその製造方法
WO2018066287A1 (ja) 細胞培養容器、細胞培養システム、細胞培養方法、及び細胞培養容器の製造方法
US20090117636A1 (en) Method and apparatus for accelerating growth of e. coli by applying electric field
JP2021141820A (ja) 袋状培養容器
JP2006042810A (ja) 超薄型マルチウェルプレートの製造法
KR101985914B1 (ko) 배양 용기 및 배양 용기의 제조 방법
JP2001197883A (ja) 培養用容器
JP2018139500A (ja) 培養容器、及び培養容器の製造方法
JP2007267673A (ja) 細胞培養基材
JP2009027945A (ja) 内面が親水化された袋状容器の製造方法
Ashok et al. Reagent‐Free Covalent Immobilization of Biomolecules in a Microfluidic Organ‐On‐A‐Chip
JP2021500031A (ja) 高度細胞接着を有するポリマー製細胞培養表面
JPH074225B2 (ja) 培養用バック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197022645

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018754360

Country of ref document: EP