WO2018150806A1 - オイルミスト抑制剤、それを含む油剤およびオイルミストの低減方法 - Google Patents

オイルミスト抑制剤、それを含む油剤およびオイルミストの低減方法 Download PDF

Info

Publication number
WO2018150806A1
WO2018150806A1 PCT/JP2018/001487 JP2018001487W WO2018150806A1 WO 2018150806 A1 WO2018150806 A1 WO 2018150806A1 JP 2018001487 W JP2018001487 W JP 2018001487W WO 2018150806 A1 WO2018150806 A1 WO 2018150806A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
component
silicone
oil mist
kinematic viscosity
Prior art date
Application number
PCT/JP2018/001487
Other languages
English (en)
French (fr)
Inventor
裕之 稲垣
恵一 秋永
直司 川村
Original Assignee
東レ・ダウコーニング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ・ダウコーニング株式会社 filed Critical 東レ・ダウコーニング株式会社
Priority to JP2018568056A priority Critical patent/JPWO2018150806A1/ja
Priority to CN201880012895.7A priority patent/CN110582604A/zh
Priority to EP18754007.5A priority patent/EP3584363A4/en
Priority to US16/485,876 priority patent/US11414547B2/en
Priority to KR1020197025883A priority patent/KR102465478B1/ko
Publication of WO2018150806A1 publication Critical patent/WO2018150806A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/693Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural or synthetic rubber, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • C08L2207/324Liquid component is low molecular weight polymer
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/46Textile oils
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to an oil mist inhibitor used in an oil agent, and more specifically, an oil mist inhibitor suitable for a fiber treatment oil, a spinning oil or a fabric treatment oil, an oil containing the same, and the same
  • the present invention relates to a method for reducing oil mist.
  • mist formation When a release coating agent or the like is applied to a substrate by a rotating body such as a roll, there is a problem of mist formation in which the coating agent to be applied scatters in a mist or aerosol form with the rotational movement or translational movement of the substrate.
  • the mist and aerosol particles may adversely affect manufacturing operations due to contamination of the working environment, and may have an adverse industrial hygiene and safety impact on workers working near the coating apparatus.
  • oil agent for cutting and grinding such as a drill
  • the oil agent is sheared by a workpiece or a tool when used, and is physically refined to generate oil agent particles (oil mist) floating in the air.
  • oil mists a mist having a large particle size aggregates (reliquefies) in a relatively short time, but a fine mist is released into the atmosphere before the aggregation proceeds.
  • the inside of the factory is contaminated with scattered oil, causing a problem in the work environment, and the workers involved in the work may be adversely affected in terms of industrial hygiene and safety.
  • Patent Documents 1 to 4 propose silicone-based mist preventing agents used for coating agents by rotating bodies such as rolls, and these mist preventing agents are premised on curing. A certain effect can be realized with respect to prevention of mist generation derived from a rotating body such as a coating agent or a roll.
  • a rotating body such as a coating agent or a roll.
  • oil mist is generated by the action of force different from the rotational movement and translational movement during coating, These mist inhibitors cannot effectively suppress the generation of oil mist.
  • oil agents generally have a lower kinematic viscosity than coating agents, do not have curability, and are used in oil agents that are required to penetrate and immerse into substrates, especially for fiber treatment and fabric treatment.
  • mist preventive agent When the mist preventive agent is applied, it is not uniformly mixed with these oil agents, so that the generation of oil mist cannot be effectively suppressed, and there is a problem that it may become an obstacle to fiber treatment and fabric treatment.
  • Patent Document 5 and Patent Document 6 propose reducing oil mist by adding silicone particles to cutting oil or the like.
  • the silicone particles are inevitably contained in the oil agent, solid silicone particles adhere to the base material, and the treatment effect by the desired oil agent is hindered or the occurrence of a liquid reservoir or the like occurs.
  • the oil mist preventive agent cannot be applied to the oil.
  • oil agents used for fiber treatment, spinning treatment, and fabric treatment similarly to the above, since these oil agents are not mixed uniformly, there is a problem that the generation of oil mist cannot be effectively suppressed.
  • Patent Document 7 discloses a personal care composition containing a mucous silicone fluid, but the problems and effects that the silicone fluid attempts to solve are essentially different from oil agent treatment and oil mist suppression. No such problem is described or suggested.
  • the object of the present invention is an oil agent treatment for penetration and immersion into a base material, particularly when applied to an oil agent used for fiber treatment, spinning treatment, and fabric treatment. Oil mist that effectively suppresses oil mist and does not impair the purpose and processing effect of oil agent treatment, an oil agent containing the same, and a method for reducing oil mist using the same .
  • the present invention pays attention to the fact that in the oil agent used for the fiber treatment, the spinning treatment, and the fabric treatment, the action of the force that causes the generation of oil mist is essentially different. did. In other words, in rolls and the like, mist is generated due to scattering of the coating agent and refinement of the oil agent due to shearing stress associated with rotation and cutting in the drill and the like.
  • silicones have the property of imparting viscoelasticity to the oil agent itself by mixing with the oil agent and effectively increasing the lamellar length of the oil agent.
  • the present inventors have found that the above problems can be solved by using a fluid composition as an oil mist inhibitor, and have reached the present invention. That is, The following characteristics: i) By adding 1.0 mass% of the silicone fluid composition to a dimethylpolysiloxane oil having a kinematic viscosity of 10.0 mm 2 / s at 25 ° C., the maximum lamella length of the dimethylpolysiloxane oil after the addition is increased.
  • the present invention is “ [1] An oil mist inhibitor that is a silicone fluid composition having the following properties i) and ii). i) By adding 1.0 mass% of the silicone fluid composition to a dimethylpolysiloxane oil having a kinematic viscosity of 10.0 mm 2 / s at 25 ° C., the maximum lamella length of the dimethylpolysiloxane oil after the addition is increased. Property to increase by 5% or more; ii) Properties that are homogeneously miscible with dimethylpolysiloxane oil having a kinematic viscosity of 10.0 mm 2 / s at 25 ° C.
  • the increase in maximum lamella length in property i) of the silicone fluid composition is 10 to 10
  • the oil mist inhibitor of [1] which is in the range of 100%.
  • the silicone fluid composition described above (A) 1 to 100 parts by mass of a silicone compound selected from the following component (A1), component (A2), component (A3) or a mixture of two or more of these: (A1) T unit represented by R 1 SiO 1.5 (wherein R 1 is a monovalent hydrocarbon group optionally substituted with a halogen atom) in the molecule and SiO 2.0 One or more branched siloxane units selected from Q units, and (R 2 2 SiO 1.0 ) n (wherein R 2 is a monovalent hydrocarbon group optionally substituted with a halogen atom, an alkoxy group, or A branched organopolysiloxane having a chain polysiloxane structure represented by a silanol group and n is a number in the range of 2 to 1000), (A2) in the presence of a hydrosilylation reaction catalyst (a1) a cyclic or linear organohydrogenpolysiloxane; (a2) A polydimethyls
  • (A3) a silicone gum having a kinematic viscosity or plasticity of 1,000,000 to 20,000,000 mm 2 / s at 25 ° C.
  • the nonpolar silicone oil (B) is selected from the group consisting of linear polydimethylsiloxane, octamethylcyclotetrasiloxane, and decamethylcyclopentasiloxane having a kinematic viscosity of 1 to 10 mm 2 / s at 25 ° C.
  • the oil mist inhibitor according to [4] or [5] which is one or more types.
  • (A3) a silicone gum having a kinematic viscosity or plasticity of 1,000,000 to 20,000,000 mm 2 / s at 25 ° C.
  • a mixture of the silicone compound (A) and the nonpolar silicone oil (B) wherein the silicone fluid composition is further characterized in that both are uniformly mixed, Use of an oil mist inhibitor having the following properties i) and ii).
  • the oil according to [8] which is a fiber treatment oil, a spinning oil, or a fabric treatment oil.
  • a method for reducing oil mist comprising a step of adding the oil mist inhibitor according to any one of [1] to [6] to an oil agent, and a step of applying the oil agent to another substrate.
  • oil mist suppressant of the present invention when applied to an oil agent for the purpose of penetrating and immersing into a base material, particularly an oil agent used for fiber treatment, spinning treatment, and fabric treatment, the purpose and treatment of the oil agent treatment Without impairing the effect, oil mist generated from the oil agent can be effectively suppressed when the treatment with these oil agents is performed. Furthermore, the oil agent containing the oil mist inhibitor of this invention and the reduction method of oil mist using the same can be provided.
  • the silicone fluid composition that is the oil mist inhibitor of the present invention will be described. Since the silicone fluid composition has a property of imparting viscoelasticity to the oil agent by mixing with the oil agent and effectively increasing the maximum lamella length of the oil agent, the oil agent used for fiber treatment, spinning treatment, and fabric treatment When applied to the above, there is an advantage that oil mist generated by a force such as tensile stress acting on the oil is effectively suppressed, and the purpose and effect of the oil treatment are not substantially impaired.
  • Such a silicone fluid composition may be a single silicone compound as long as it meets the above requirements on properties, but it is viscoelastic to the oil from the viewpoint of miscibility with the oil and handling operability as an oil mist inhibitor.
  • a silicone fluid that is a mixture of a specific silicone compound that imparts a kinematic viscosity at 25 ° C. having a kinematic viscosity of 1 to 1000 mm 2 / s and uniformly mixed with a non-polar silicone oil having a lower kinematic viscosity than the above silicone compound
  • the use of the composition is also suitable.
  • the above-mentioned silicone fluid composition has the first property of increasing the maximum lamella length of the mixed oil.
  • the property is that 1.0 mass of the silicone fluid composition is added to a dimethylpolysiloxane oil having a kinematic viscosity of 10.0 mm 2 / s at 25 ° C. (hereinafter sometimes referred to as “reference dimethylpolysiloxane oil”).
  • % Addition can be objectively defined as the property of increasing the maximum lamella length of the dimethylpolysiloxane oil after addition by 5% or more, and the increase amount ( ⁇ L%) of the maximum lamella length is: (L0): Maximum lamella length of dimethylpolysiloxane oil having a kinematic viscosity of 10.0 mm 2 / s at 25 ° C. (L1): 10 at 25 ° C. after addition of 1.0% by mass of the silicone fluid composition.
  • the lamella length of the oil is a value measured by a ring method using an automatic surface tension meter or the like at room temperature (25 ° C.).
  • dimethylpolysiloxane after the maximum lamella length of dimethylpolysiloxane oil as a reference is 2.7 mm and a silicone fluid composition is added to the dimethylpolysiloxane oil to a concentration of 1.0% by mass
  • the silicone fluid composition with the above properties can increase the maximum lamellar length for oils other than dimethylpolysiloxane oil as a reference, thereby adding viscoelasticity to the oil and suppressing oil mist.
  • addition amount other than 1.0 mass% can be selected according to the kind of oil agent of a compounding destination, and the target oil mist inhibitory effect. .
  • the increase amount of the maximum lamella length specified by the above method is preferably in the range of 5 to 100%, more preferably 10 to 100%, A range of 20 to 80% is particularly preferable.
  • the amount of increase in the maximum lamella length is less than 5% when 1.0% by mass of a certain silicone fluid composition is added to the above-mentioned dimethylpolysiloxane oil, the effect of imparting viscoelasticity to the oil is not good. In some cases, sufficient oil mist suppression effect may not be realized.
  • the effect of imparting viscoelasticity to the oil agent becomes excessive, and depending on the type of oil agent and the purpose of treatment, the treatment effect of the target oil agent may be impaired. Is preferably controlled carefully.
  • the viscoelasticity imparting effect on the oil agent may be realized by adding a large amount, but generally an oil mist inhibitor. It is uneconomical to add a large amount, and if the amount added is large, the purpose and treatment effect of the original oil agent treatment may not be sufficiently realized, which is not preferable.
  • the above property i) is the maximum when a specific amount (1.0% by mass) of a silicone fluid composition is added to dimethylpolysiloxane oil based on the main characteristics of the silicone fluid composition according to the present invention.
  • the silicone fluid composition that is objectively defined as the amount of increase in lamella length and that satisfies this property may be an additive amount other than 1.0% by mass (for example, an additive amount of less than 1.0% by mass, (It may be used in an amount of 1.0% by mass or more) or different oils, that is, oils that are silicone oils other than the above-mentioned dimethylpolysiloxane oil, non-silicone oils or mixtures thereof without any limitation be able to.
  • silicone oils having different kinematic viscosities may be blended in an addition amount other than 1.0% by mass.
  • Liquid oils other than silicone oils for example, hydrocarbon oils, ester oils, higher alcohols, etc.
  • an oil agent that is a mixture thereof may be blended in an amount other than 1.0 mass%, and is not limited at all.
  • the silicone fluid composition described above has a second property of having a uniform miscibility with the oil agent at least a certain amount or more.
  • the property is objectively defined as a property of uniformly mixing when 1.0% by mass of the silicone fluid composition is added to dimethylpolysiloxane oil having a kinematic viscosity of 10.0 mm 2 / s at 25 ° C. Can do.
  • “homogeneously mixed” means that the standard dimethylpolysiloxane oil and the silicone fluid composition form a substantially homogeneous phase by ordinary mechanical means such as stirring or diffusion between liquid phases. This does not include solid foreign matter, visible fine particle gel, or phase separation in the mixture.
  • the silicone fluid composition cannot form a substantially homogeneous phase when added in an amount of 1.0% by mass relative to the reference dimethylpolysiloxane oil is not limited to the reference dimethylpolysiloxane oil. It means that the homogeneous miscibility with the oil is insufficient.
  • a silicone fluid composition is used as an oil mist inhibitor, it is not sufficiently miscible with the oil agent, so that the effect of imparting viscoelasticity to the oil agent becomes insufficient, and the solid or gel in the oil agent
  • the desired treatment effect may be hindered.
  • the handling workability as an oil mist inhibitor is inferior.
  • the above property ii) is uniform when a specific amount (1.0% by mass) of a silicone fluid composition is added to dimethylpolysiloxane oil based on the main characteristics of the silicone fluid composition according to the present invention.
  • the silicone fluid composition is objectively defined as the presence or absence of miscibility, and the silicone fluid composition satisfying the properties is added in an amount other than 1.0% by mass (for example, an additive amount less than 1.0% by mass).
  • a different oil agent that is, an oil agent that is a silicone oil other than the above-mentioned dimethylpolysiloxane oil, a non-silicone oil or a mixture thereof, It can be applied without any restrictions.
  • the addition amount is less than 1.0% by mass so that a desired oil mist suppression effect can be realized. If so, the silicone fluid composition that is an oil mist inhibitor of the present invention imparts viscoelasticity to the oil agent and has the technical effect of suppressing oil mist. realizable.
  • the silicone fluid composition according to the present invention preferably has high uniform miscibility with the oil.
  • the silicone fluid composition according to the present invention is 1.0% by mass or more, for example, 5.0% by mass to 50.0% by mass with respect to the dimethylpolysiloxane oil used as a reference ( Even if the amount to be a substantially 1: 1 mixture) is added, the standard dimethylpolysiloxane oil and the silicone fluid composition become substantially uniform by normal mechanical means such as stirring or diffusion between liquid phases. It preferably has a property of forming a phase.
  • Such a silicone fluid composition is generally excellent in uniform miscibility with oils other than the above-mentioned dimethylpolysiloxane oil, and is particularly used for fiber treatment, spinning treatment, and fabric treatment. It can be easily blended into a wide range of oils.
  • the type of the silicone fluid composition according to the present invention is not particularly limited as long as it has the above properties, and may be one type or two or more types of silicones. From the viewpoint of technical effects and handling workability, a silicone compound having a specific high viscoelasticity-imparting effect is used alone, or it is a homogeneous mixture of the silicone compound and a specific low kinematic viscosity nonpolar silicone oil. Is preferred. Specifically, a silicone compound having a high viscoelasticity imparting effect and having a relatively low viscosity can be used alone.
  • the silicone compound with a high viscoelasticity imparting effect has a high kinematic viscosity or insufficient fluidity, handling workability at the time of blending and miscibility with the oil may decrease,
  • the technical effect and handling workability as an oil mist inhibitor can be realized as the whole silicone fluid composition.
  • the silicone fluid composition according to the present invention comprises (A) the following component (A1), component (A2), component (A3), or a mixture of two or more of these silicone compounds 1 to 100: Parts by mass, (A1) In the molecule, one or more selected from T unit represented by R 1 SiO 1.5 (wherein R 1 is a monovalent hydrocarbon group) and Q unit represented by SiO 2.0 A branched siloxane unit, and (R 2 2 SiO 1.0 ) n (wherein R 2 is a monovalent hydrocarbon group, alkoxy group or silanol group, and n is a number in the range of 2 to 1000).
  • a branched organopolysiloxane having a chain-like polysiloxane structure (A2) in the presence of a hydrosilylation reaction catalyst (a1) a cyclic or linear organohydrogenpolysiloxane; (a2) A polydimethylsiloxane having an alkenyl group at least at both ends of the molecular chain, wherein the number of moles of the alkenyl group in component (a1) relative to 1 mole of silicon-bonded hydrogen atoms in component (a2) is 0.9-1 Crosslinkable organopolysiloxane obtained by reacting in the range of.
  • (A3) a silicone gum having a kinematic viscosity or plasticity of 1,000,000 to 20,000,000 mm 2 / s at 25 ° C.
  • the silicone fluid composition is a mixture of a silicone compound (A) and a nonpolar silicone oil (B), it is further characterized in that both are uniformly mixed.
  • the component (A) is a silicone compound selected from the component (A1), the component (A2), the component (A3) or a mixture of two or more of these, and is said to extend the maximum lamella length relative to the oil agent. It has the common property of giving viscoelasticity in the form. As described above, these silicone compounds (A) can be used alone. On the other hand, if these components are generally poorly mixed with the oil agent in general, or have a very high kinematic viscosity and poor handling operability as an oil mist inhibitor, a mixture of non-polar silicone oils with low kinematic viscosity And can be used as preferred.
  • Component (A1) is a T unit represented by R 1 SiO 1.5 (wherein R 1 is a monovalent hydrocarbon group optionally substituted with a halogen atom) and SiO 2.0 in the molecule.
  • One or more branched siloxane units selected from the represented Q units, and (R 2 2 SiO 1.0 ) n (wherein R 2 is a monovalent hydrocarbon group optionally substituted with a halogen atom, A branched organopolysiloxane having a chain polysiloxane structure represented by an alkoxy group or a silanol group, and n is a number in the range of 2 to 1000, and branched by a T-branch or Q-branch structure It has a chain polysiloxane structure.
  • R 1 or R 2 in the formula is a monovalent hydrocarbon group which may be substituted with a halogen atom, and preferably a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, An alkyl group having 1 to 12 carbon atoms such as a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group and a dodecyl group; an alkenyl group having 2 to 12 carbon atoms such as a vinyl group, an allyl group and a hexenyl group; a phenyl group, Aryl groups having 6 to 12 carbon atoms such as tolyl group, xyl group and naphthyl group; aralkyl groups having 7 to 12 carbon atoms such as benzyl group and phenethyl group; 3-chloropropy
  • N in the formula represents the degree of polymerization of the (R 2 2 SiO 1.0 ) n portion representing a chain polysiloxane structure extending from the branch unit, and is preferably a number in the range of 2 to 1000. A number in the range of ⁇ 500 or a number in the range of 100 to 300 is particularly preferred.
  • a suitable component (A1) is represented by one or more SiO 2.0 in the molecule, each end of the molecular chain being sealed with a trimethylsiloxy unit (M unit) or a dimethylvinylsiloxy unit ( Mvi unit).
  • the kinematic viscosity of component (A1) is in the range of 10,000 to 100,000 mm 2 / s at 25 ° C., it is not in the form of a mixture with component (B), but component (A1) alone suppresses oil mist.
  • It is preferably used as an agent, and is useful in that it can be mixed with an oil agent relatively easily and uniformly to achieve a desired oil mist suppressing effect. In addition, if desired, it does not prevent forming a mixture with an oil agent.
  • Component (A2) is a crosslinkable organopolysiloxane that gives a mucous silicone fluid, and is known in a technical field different from oil mist inhibitors (for example, JP 2013-503878 A). The use of is not described or suggested, nor is the technical problem in common with the present invention.
  • Component (A2) is used in the presence of a hydrosilylation reaction catalyst.
  • a1 a cyclic or linear organohydrogenpolysiloxane;
  • a2) A polydimethylsiloxane having an alkenyl group at least at both ends of the molecular chain, wherein the number of moles of the alkenyl group in component (a1) relative to 1 mole of silicon-bonded hydrogen atoms in component (a2) is 0.9-1 .2 is a crosslinkable organopolysiloxane obtained by reacting in the range of 2 and the reaction ratio of the alkenyl group bonded to the silicon atom at the end of the molecular chain and the hydrogen atom is around 1.0.
  • Such component (A2) is obtained by mixing the above raw material components (a1) and (a2) with silicon in component (a2) in the presence of a hydrosilylation reaction catalyst in the nonpolar silicone oil as component (B2).
  • a hydrosilylation reaction catalyst in the nonpolar silicone oil as component (B2).
  • a crosslinkable organopolysiloxane obtained by reacting in the range where the number of moles of alkenyl group in component (a1) per atom-bonded hydrogen atom is 0.9 to 1.2.
  • Component (a1) is a cyclic or straight-chain organohydrogenpolysiloxane, and forms a crosslinked structure with component (a2) by a hydrosilylation reaction.
  • Such an organohydrogenpolysiloxane is preferably an organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule.
  • the bonding position of the silicon atom-bonded hydrogen atom in the component (a1) is not limited, and examples thereof include molecular chain terminals and / or molecular chain side chains.
  • Examples of the silicon atom-bonded organic group in the component (a1) include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, etc.
  • Examples of the halogen-substituted alkyl group such as chloropropyl group and 3,3,3-trifluoropropyl group are exemplified, and a methyl group is preferable.
  • Component (a1) may be cyclic, and is an organohydrogencyclosiloxane having at least two silicon-bonded hydrogen atoms on the siloxane ring, and having a siloxane polymerization degree (g) of 3 to 8. Illustrated. Note that the formula [(CH 3 ) HSiO] g1 (g1 is a number in the range of 3 to 8) or the formula [(CH 3 ) 2 SiO] g2 [(CH 3 ) HSiO] g3 (g2 + g3 is in the range of 3 to 8) A preferred example is methylhydrogencyclosiloxane, which is a number, and each of g2 and g3 is a number> 0).
  • Component (a1) may be a chain, and is a dimethylhydrogensiloxy-capped dimethylpolysiloxane, a dimethylhydrogensiloxy-capped dimethylsiloxane / methylhydrogensiloxane copolymer, a trimethylsiloxy-capped methylhydrogenpolysiloxane, Trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, siloxane unit represented by (CH 3 ) 3 SiO 1/2 and siloxane unit represented by H (CH 3 ) 2 SiO 1/2 and SiO 4/2
  • An organopolysiloxane composed of a siloxane unit represented by the formula is exemplified, and a linear methylhydrogen polysiloxane is preferred.
  • Component (a2) is a polydimethylsiloxane having an alkenyl group at least at both ends of the molecular chain.
  • the average siloxane chain length between the crosslinking points Is a component that can perform a long molecular design and achieves a moderate crosslinking density as a whole for the resulting crosslinkable organopolysiloxane.
  • Such polydimethylsiloxane preferably has only about 0 to 2 alkenyl groups in the siloxane side chain.
  • the siloxane side chain is substantially free of alkenyl groups. It is preferably polydimethylsiloxane having no alkenyl group.
  • alkenyl group alkenyl groups having 2 to 12 carbon atoms such as vinyl group, allyl group, and hexenyl group, and are preferable.
  • Suitable component (a2) can be selected from vinyl functional end-capped polydimethylsiloxane (vinyl siloxane) or hexenyl functional end-capped polydimethylsiloxane (hexenyl siloxane), in particular the siloxane of the polydimethylsiloxane moiety. Those having a polymerization degree in the range of 50 to 200,000 are preferred. More preferably, component (a2) can be selected from those having the formula (CH 2 ⁇ CH) Me 2 SiO (Me 2 SiO) dp SiMe 2 (CH ⁇ CH 2 ), where Me is It is a methyl group and dp is the degree of polymerization. In one embodiment, dp is at least 50, preferably 4000 or more, particularly preferably 6000 or more, or 9000 or more.
  • the hydrosilylation reaction catalyst is a catalyst that promotes crosslinking by a hydrosilylation reaction between the component (a1) and the component (a2), and examples thereof include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts, and are platinum-based catalysts. Is preferred.
  • platinum-based catalyst include fine platinum powder, chloroplatinic acid, an alcohol solution of chloroplatinic acid, a platinum-alkenylsiloxane complex, a platinum-olefin complex, and a platinum-carbonyl complex, preferably a platinum-alkenylsiloxane complex. is there.
  • 1,3-divinyl-1,1,3,3-tetramethyldisiloxane is preferred because the platinum-alkenylsiloxane complex has good stability.
  • stimulates hydrosilylation reaction you may use non-platinum type metal catalysts, such as iron, ruthenium, and iron / cobalt.
  • the amount of the hydrosilylation reaction catalyst used is an amount effective for accelerating the crosslinking reaction for obtaining the crosslinkable organopolysiloxane.
  • the amount of the catalyst metal is within the range of 0.01 to 500 ppm with respect to 100 parts by mass of the crosslinkable organopolysiloxane obtained as the sum of the mass between the component (a1) and the component (a2). It is preferable that the amount be in the range of 0.01 to 100 ppm, and it is particularly preferable that the amount be in the range of 0.01 to 50 ppm.
  • Component (A2) of the present invention comprises the above raw material components (a1) and (a2) as alkenyl groups (SiVi) in component (a1) per mole of silicon atom-bonded hydrogen atoms (SiH) in component (a2). It is characterized in that it is crosslinked in the range of 0.9 to 1.2, preferably 0.95 to 1.15.
  • the substance amount ratio represented by [SiVi] / [SiH] may be approximately in the vicinity of 1.0, and is most preferably designed in a range of 1.0 to 1.15 so that SiVi is slightly excessive. preferable.
  • the crosslinkable organopolysiloxane has an advantage that the reactive functional group reacts with substantially the same amount of substance, and therefore no excessive reactive functional group that causes deterioration of the oil agent or the like remains in the molecule.
  • the component (A2) of the present invention is preferably reacted in a nonpolar silicone oil having a kinematic viscosity of 1 to 1000 mm 2 / s at 25 ° C., which will be described later.
  • the component (a1) which is the raw material in the component (B) in the presence of the hydrosilylation reaction catalyst so that the component (A2) obtained by the crosslinking reaction has a concentration of the component (A) of the desired silicone fluid in advance.
  • component (a2) may be subjected to a cross-linking reaction, and component (a1) and component (a2) which are a part of component (B) raw materials are subjected to a cross-linking reaction and added to the mixed composition containing component (A2)
  • component (B) may be added.
  • the composition which consists of such a component (A2) and a component (B) is marketed as Dow Corning (R) 3901 Liquid Satin Blend etc.
  • Component (A3) is a silicone gum having a kinematic viscosity or plasticity of 1,000,000 to 20,000,000 mm 2 / s at 25 ° C., and has a very high molecular weight. It is a component that imparts viscoelasticity to a composition or an oil containing the composition and realizes a mucous behavior.
  • Silicone gum is a polydimethylsiloxane gum having a high degree of polymerization mainly composed of dimethylsiloxy units (D units), and may have other reactive functional groups and branch units in the molecule. Further, the molecular chain terminals, trimethylsiloxy units (M units), it is preferably sealed with dimethylvinylsiloxy units (M Vi units) or dimethylhydroxysiloxy unit (M OH units).
  • D units dimethylsiloxy units
  • M units trimethylsiloxy units
  • M Vi units dimethylvinylsiloxy units
  • M OH units dimethylhydroxysiloxy unit
  • Such polydimethylsiloxane gum has a molecular weight sufficient to give a kinematic viscosity of at least 1,000,000 mm 2 / s at 25 ° C., or alternatively 2,000,000 mm 2 / s at 25 ° C., It may have a kinematic viscosity at 25 ° C. of 1,000,000 to 20,000,000 mm 2 / s.
  • the molecular weight of the polydimethylsiloxane gum may have a very high degree of polymerization, it is difficult to measure kinematic viscosity, and it may have a plasticity.
  • component (A3) silicone gum, has a Williams plasticity of at least 40, generally in the range of 40-200, as measured by American Society for Testing and Materials (ASTM) Test Method 926. It may have a molecular weight.
  • silicone gum is well-known, and many are marketed. For example, it is commercially available as DOW CORNING (R) 1501 FLUID.
  • the component (B) is a component that functions as a carrier fluid for the component (A), and may be preferably used as a solvent for the crosslinking reaction as in the component (A2).
  • Such component (B) is a nonpolar silicone oil having a kinematic viscosity of 1 to 1000 mm 2 / s at 25 ° C.
  • the component (B) is different from the component (A) and does not correspond to the component (A1) or the component (A2).
  • Such nonpolar silicone oil may be volatile.
  • Nonpolar silicone oils suitable as component (B) include hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6) and the like.
  • Volatile cyclic dimethylpolysiloxane molecular chain both ends trimethylsiloxy group-blocked dimethylpolysiloxane having a kinematic viscosity of 1 to 1000 mm 2 / s at 25 ° C., molecular chain both ends trimethylsiloxy group-blocked methylphenylpolysiloxane, both ends of molecular chain Trimethylsiloxy group-capped dimethylsiloxane / methylphenylsiloxane copolymer, molecular chain both ends trimethylsiloxy group-capped diphenylpolysiloxane, molecular chain both ends trimethylsiloxy group-capped dimethylsiloxane / diphenylsiloxane copolymer, g Methylpentaphenyltrisiloxane, phenyl (trimethylsiloxy) siloxane, molecular chain both ends trimethylsiloxy group-blocked methylalkylpol
  • Nonpolar silicone oil as the component (B) preferably does not have reactive functional groups, the industrially preferred, a linear or cyclic methylpolysiloxane, 1 at 25 °C ⁇ 1000mm 2 / It has a kinematic viscosity of s. If desired, the kinematic viscosity at 25 ° C. of the nonpolar silicone oil may be in the range of 1 to 500 mm 2 / s and is preferred. In particular, in terms of affinity with the above component (A), handling workability, and industrial productivity, a linear or cyclic nonpolar material having a kinematic viscosity of 1 to 100 mm 2 / s at 25 ° C.
  • the silicone fluid composition of the present invention may be the component (A) alone, the above-mentioned silicone compound as the component (A), and, if necessary, the non-polar silicone oil of the carrier fluid as the component (B). It may be a mixture. In the case of a mixture, it can be obtained by mixing uniformly using mechanical force with equipment such as a homomixer, paddle mixer, Henschel mixer, homodisper, colloid mill, propeller stirrer, vacuum kneader, etc. As in (A2), the crosslinking reactive raw material component can be obtained as a uniform mixture by using the component (B) as a carrier fluid for the reaction solvent and crosslinking reaction product.
  • the component (A) is the above component (A1) having a kinematic viscosity in the range of 10,000 to 100,000 mm 2 / s at 25 ° C.
  • the component (A1) may be used alone as the silicone fluid composition of the present invention.
  • the silicone fluid composition of the present invention is a mixture of the above-mentioned silicone compound as component (A) and the non-polar silicone oil of carrier fluid as component (B), the ratio is determined by the resulting silicone fluid composition As long as the product can achieve the above-mentioned properties, it is not particularly limited. However, from the viewpoint of handling workability as an oil mist inhibitor and technical effects, 5 to 20 parts by mass of component (A) and component (B) The amount is preferably 95 to 80 parts by mass, more preferably 5 to 15 parts by mass of component (A) and 95 to 85 parts by mass of component (B). In particular, when the component (A) is a silicone compound that is the component (A2) or the component (A3), the silicone fluid composition of the present invention is preferably the above mixture.
  • Such kinematic viscosity of the silicone fluid composition are not particularly limited, from the viewpoint of handlability and technical effect of the oil mist inhibitors, 100 at 25 °C ⁇ 1,000,000mm 2 / The range of s is preferable, and the range of 500 to 1500,000 mm 2 / s is more preferable.
  • the silicone fluid composition of the present invention is uniformly mixed with an oil agent and functions as an oil mist inhibitor by imparting viscoelasticity to the oil agent to be blended.
  • some known silicone-based mist suppressants have the effect of thickening oil agents and coating agents and simply increasing kinematic viscosity.
  • the oil mist does not function effectively due to the tensile stress on the oil, and the technical effect as an oil mist inhibitor that is the object of the present invention May not be realized or may be insufficient. That is, the thickening effect of the oil agent in the silicone fluid composition of the present invention does not constitute the main technical solution, and it is preferable that the change in the viscosity of the oil agent is slight.
  • the present invention is characterized in that the silicone fluid composition is used as an oil mist inhibitor.
  • the preferred form is as described for the silicone fluid above, (A) 1 to 100 parts by mass of a silicone compound selected from the following component (A1), component (A2), component (A3) or a mixture of two or more of these: (A1) T unit represented by R 1 SiO 1.5 (wherein R 1 is a monovalent hydrocarbon group optionally substituted with a halogen atom) in the molecule and SiO 2.0 One or more branched siloxane units selected from Q units, and (R 2 2 SiO 1.0 ) n (wherein R 2 is a monovalent hydrocarbon group optionally substituted with a halogen atom, an alkoxy group, or A branched organopolysiloxane having a chain polysiloxane structure represented by a silanol group and n is a number in the range of 2 to 1000), (A2) in the presence
  • (A3) a silicone gum having a kinematic viscosity or plasticity of 1,000,000 to 20,000,000 mm 2 / s at 25 ° C.
  • a silicone fluid composition comprising the following properties i) and ii) as an oil mist inhibitor:
  • the silicone fluid composition is a mixture of the silicone compound (A) and the nonpolar silicone oil (B), it is further characterized in that both are mixed substantially uniformly.
  • the present invention further provides an oil containing an oil mist inhibitor comprising the above-described silicone fluid composition.
  • the oil agent used as the object of the oil mist inhibitor of this invention is not specifically limited, Especially, they are a fiber processing oil agent, a spinning oil agent, or a fabric processing oil agent. These oil agents tend to be subject to tensile stress and tear stress to the oil agent during processing, and by using the oil mist inhibitor of the present invention, there is an actual benefit that oil mist generated in the treatment process can be extremely effectively suppressed. is there.
  • the base oil of the oil agent may be one usually used for the above-mentioned use, and may be one kind or a mixture of two or more kinds.
  • natural animal and vegetable oils and fats, semi-synthetic oils and fats, hydrocarbon oils, polyglycols, phenyl ethers, ester oils, silicone oils, fluorine-based oils, and the like can be mentioned.
  • silicone oils or ester oils having a kinematic viscosity at 25 ° C. in the range of 1 to 1000 mm 2 / s are suitable.
  • polydimethylsiloxane having a kinematic viscosity at 25 ° C. in the range of 1 to 1000 mm 2 / s is preferable, and one kind or a mixture of two or more kinds may be used.
  • Examples of the fiber to be treated with the oil containing the oil mist inhibitor include polyester-based elastic fiber, polyamide-based elastic fiber, polyolefin-based elastic fiber, and polyurethane-based elastic fiber, but are not particularly limited.
  • the addition amount of the oil mist inhibitor of the present invention is preferably 0.001 to 10% by mass, more preferably 0.01 to 3% by mass. Even if the addition amount of the oil mist inhibitor exceeds the above upper limit, the oil mist suppression effect may not be further improved. Moreover, if the addition amount is less than the above lower limit value, the effect of suppressing the generation of oil mist may not be sufficiently obtained, and it is uneconomical.
  • the method for preparing the oil may be a conventionally known method and is not particularly limited. Moreover, the conventionally well-known method of those skilled in the art can be especially used for the processing method of the fiber, spinning, fabric, etc. by an oil agent without a restriction
  • the oil agent can contain conventionally known additives as required.
  • the additives include organically modified silicone oils other than the silicone compound of the present invention, silicone resins, oiliness improvers, extreme pressure agents, organic acid salts, antioxidants, lubricants, film thickeners, rust preventives, antifoaming agents.
  • the oil agent can contain an oil mist inhibitor made of a high molecular weight organic compound as long as the effects of the present invention are not impaired. What is necessary is just to adjust the compounding quantity of an additive suitably in the range which does not inhibit the effect of this invention according to a conventionally well-known method.
  • oil mist inhibitor of the present invention and the oil containing the same will be described in detail with reference to examples.
  • the maximum lamella length (unit: mm) of the oil after addition of the oil or various oil mist suppressants is 25 ° C. using an automatic surface tension meter (model No. K-12, manufactured by KRUSS) and a ring radius of 9. Measurement was performed using a platinum ring having a diameter of 545 mm and a wire diameter of 0.27 mm. The pulling speed of the platinum ring was 3 mm / min.
  • Kininematic viscosity The viscosity (kinematic viscosity) of the oil after addition of the oil or various oil mist inhibitors is measured at room temperature (25 ° C.) using an Ubbelohde capillary kinematic viscometer.
  • Silicone fluid composition No.1 Dow Corning® 3901 Liquid Satin Blend ((A2) Mixture of (b1) dimethylpolysiloxane (2 mm 2 / s) of slightly crosslinkable organopolysiloxane; (a2) Pasty composition containing about 6% by mass of component)
  • Silicone fluid composition No.2 Dow Corning (R) 1501 fluid ((A3) (b2) Decamethylpentacyclosiloxane mixture of silicone gum having plasticity; (a3) Liquid composition containing about 15% by mass of component) Silicone fluid composition No.
  • Silicone fluid composition No.4 Dow Corning (R) 9040 elastomer blend (Dimethylpolysiloxane 1,4-hexadiene crosslinked product (b2) decamethylpentacyclosiloxane mixture; pasty composition containing about 12% by mass of the crosslinked product (solid content)) ⁇ Silicone fluid composition No. 5: Polyether modified finely crosslinkable organopolysiloxane (kinematic viscosity: 10,000 mm 2 / s)
  • Examples 1 to 3 and Comparative Example 1 Evaluation methods
  • Each silicone fluid composition described above was added to the following oil agent so that the concentration (% by mass) described in Table 1 and Table 2 was obtained, and after mixing uniformly, the maximum lamellar length before and after the addition was measured.
  • the dimethylpolysiloxane oil having a kinematic viscosity of 10.0 mm 2 / s at 25 ° C. is the dimethylpolysiloxane oil used as a reference in the present invention.
  • the concentration is 0% by mass. It represents the maximum lamellar length (L0) of the oil agent itself before adding the product.
  • dimethylpolysiloxane oil having a kinematic viscosity of 10.0mm 2 /s,100.0mm 2 /s,1000.0mm 2 / s at 25 ° C. including the Dow Corning Corporation, widely available in the market ing.
  • the oil mist inhibitor of the present invention has the maximum lamella length of the dimethylpolysiloxane oil as a reference in the present invention. It has the property of increasing by 5% or more. As shown in Examples 2-1 and 3-1, it has the property of increasing the maximum lamellar length even when added to other oils. Further, as shown in Example 1-1-2 to Example 1-1-5, even when the addition amount is changed, the oil has the property of increasing the maximum lamella length. In either case, the change in the kinematic viscosity of the oil agent was slight, and the handling workability of the oil agent after blending did not change significantly.
  • the oil mist suppressor of the present invention can add viscoelasticity to the oil agent without adversely affecting its handling workability and processing effect by adding desired amounts to various oil agents, and the oil agent has a tensile stress. It is expected that oil mist generated by the action can be effectively suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lubricants (AREA)

Abstract

[課題]油剤による処理を行う際に油剤から発生するオイルミストを効果的に抑制し、かつ、油剤処理の目的及び処理効果を損なうことのないオイルミスト抑制剤、それを含む油剤、およびそれを用いたオイルミストの低減方法を提供する。[解決手段]25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルと均一に混和可能なシリコーン流体組成物からなるオイルミスト抑制剤であって、当該シリコーン流体組成物を1.0質量%添加することにより、添加後の当該ジメチルポリシロキサンオイルの最大ラメラ長を5%以上増加させる性質を有するもの。

Description

オイルミスト抑制剤、それを含む油剤およびオイルミストの低減方法
 本発明は、油剤に用いるオイルミスト抑制剤に関するものであり、詳しくは、繊維処理用油剤、紡糸用油剤または布帛処理用油剤に好適なオイルミスト抑制剤、それを含む油剤、およびそれを用いたオイルミストの低減方法に関する。
 ロール等の回転体による剥離コーティング剤等の基材への塗布時には、当該回転運動または基材の並進運動に伴って、塗布されるコーティング剤が霧状ないしエアロゾル状に飛散するミスト化の問題が知られている。このミストとエアロゾルの粒子は、作業環境の汚染等で製造作業に悪影響を及ぼす上、コーティング装置の近くで働く作業員に対して産業衛生上および安全上の悪影響が及ぶ場合がある。
同様に、ドリル等の切削・研削加工用の油剤においては、その使用時に油剤は加工物あるいは工具によってせん断を受け、物理的に微細化されて空気中を漂う油剤粒子(オイルミスト)を発生する。これらのオイルミストのうち、粒径の大きいミストは比較的短時間で凝集(再液化)するが、微細なミストは凝集が進行する前に大気中に開放されることとなる。その結果として工場内は飛散した油で汚れ、また作業環境上の問題となる他、当該作業に携わる作業員に産業衛生上および安全上の悪影響が及ぶ場合がある。
かかる課題を解決すべく、特許文献1~4には、ロール等の回転体によるコーティング剤に用いられるシリコーン系のミスト防止剤が提案されており、これらのミスト防止剤は、硬化を前提としたコーティング剤やロール等の回転体に由来するミスト発生防止について一定の効果を実現することができる。しかしながら、繊維処理、紡糸処理や布帛処理のように繊維状乃至伸縮性のある基材の油剤処理の場合、コーティング時の回転運動や並進運動とは異なる力の働きでオイルミストが発生するため、これらのミスト防止剤ではオイルミストの発生を効果的に抑制できない。加えて、油剤はコーティング剤に比べて一般的に低動粘度であり、硬化性を有さず、基材への浸透と浸漬が求められる油剤処理、特に繊維処理や布帛処理に用いる油剤にこれらのミスト防止剤を適用した場合、これらの油剤と均一に混和しないために、オイルミストの発生を効果的に抑制できず、繊維処理や布帛処理の障害となりうるという問題がある。
一方、特許文献5および特許文献6には、シリコーン粒子を切削油等に添加することによりオイルミストを低減することが提案されている。しかしながら、当該方法では、必然的にシリコーン粒子が油剤に含まれるため、基材上に固体状のシリコーン粒子が付着してしまい、所望とする油剤による処理効果を阻害したり、液溜等の発生に伴う不均一な処理や不良品の発生の原因となるため、工業上、当該オイルミスト防止剤を油剤に適用できない場面が多数存在する。また、繊維処理や紡糸処理、布帛処理に用いる油剤に適用した場合、上記同様に、これらの油剤と均一に混和しないために、オイルミストの発生を効果的に抑制できないという問題がある。
このため、低動粘度かつ硬化性を有しない油剤、特に繊維処理や紡糸処理、布帛処理に用いる油剤にも不利益を生じることなく適用することができ、かつ、当該処理に伴うオイルミストの発生を効果的に抑制しうるオイルミスト抑制剤が求められていた。
一方、特許文献7には粘液性シリコーン流体を含むパーソナルケア組成物が開示されているが、当該シリコーン流体が解決しようとする課題および効果は、油剤処理やオイルミスト抑制とは本質的に異なるものであり、そのような課題は何ら記載も示唆もされていない。
特開2004-501262号公報 特開2004-501264号公報 特開2010-502778号公報 特開2006-336023号公報 特開2014-055265号公報 特開2016-027180号公報 特表2013-503878号公報
 本発明の目的は、基材への浸透や浸漬を目的とする油剤処理、特に、繊維処理や紡糸処理、布帛処理に用いる油剤に適用した場合、これらの油剤による処理を行う際に油剤から発生するオイルミストを効果的に抑制し、かつ、油剤処理の目的及び処理効果を損なうことのないオイルミスト抑制剤、それを含む油剤、およびそれを用いたオイルミストの低減方法を提供するものである。
 本発明らは上記課題を解決すべく鋭意検討した結果、上記の繊維処理や紡糸処理、布帛処理に用いる油剤においては、オイルミストの発生の原因となる力の作用が本質的に異なることに着目した。すなわち、ロール等においては回転運動や並進運動、さらには、ドリル等においては回転・切削に伴うせん断応力に起因してコーティング剤の飛散や油剤の微細化が起こることでミストが発生するが、繊維状で柔軟性を有する繊維処理や紡糸処理、布帛処理の場面では、油剤に対する引っ張り応力(すなわち、伸縮方向に対して垂直に油剤を引き裂く力)が作用するため、繊維状の基材に浸透する前の油剤が、当該基材上で当該引っ張り応力によって微細化され、オイルミストとして飛散していると考えられる。当該技術的考察に基づき、本発明者らは、上記課題を解決するため、油剤自身に粘弾性を付与することができ、かつ、油剤との均一混和性を有するシリコーン流体組成物をオイルミスト抑制剤として用いることを新たに考案した。
上記の新たに見出した課題および解決手段に基づき、本発明者らは、油剤と混和してその油剤のラメラ長を効果的に増加させることで油剤自身に粘弾性を付与する性質を持ったシリコーン流体組成物をオイルミスト抑制剤に用いることで上記課題を解決できることを見出し、本発明に到達した。すなわち、
以下の特性:
i) 25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルに当該シリコーン流体組成物を1.0質量%添加することにより、添加後の当該ジメチルポリシロキサンオイルの最大ラメラ長を5%以上増加させる性質;
ii) 25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルと均一に混和可能な性質
を有するシリコーン流体組成物をオイルミスト抑制剤として用いることにより、上記課題を効果的に解決できることを見出し、本発明に到達した。なお、上記特性i)はシリコーン流体組成物の性質を特定するために、25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルを用いているものであって、本発明のオイルミスト抑制剤が、他の油剤にも有効に機能することは言うまでもない。
すなわち、本発明は、「
[1] 以下のi)およびii)の性質を備えたシリコーン流体組成物であるオイルミスト抑制剤。
i) 25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルに当該シリコーン流体組成物を1.0質量%添加することにより、添加後の当該ジメチルポリシロキサンオイルの最大ラメラ長を5%以上増加させる性質;
ii) 25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルと均一に混和可能な性質
[2] 前記のシリコーン流体組成物の性質i)における最大ラメラ長の増加量が10~100%の範囲である、[1]のオイルミスト抑制剤。
[3] 繊維処理用油剤、紡糸用油剤または布帛処理用油剤に用いられることを特徴とする、[1]または[2]に記載のオイルミスト抑制剤。
[4] 前記のシリコーン流体組成物が、
(A)以下の成分(A1)、成分(A2)、成分(A3)またはこれらの2種類以上の混合物から選ばれるシリコーン化合物 1~100質量部、
(A1)分子内にRSiO1.5(式中、Rはハロゲン原子で置換されていても良い一価の炭化水素基)で表されるT単位およびSiO2.0で表されるQ単位から選ばれる1個以上の分岐シロキサン単位、および(R SiO1.0(式中、Rはハロゲン原子で置換されていてもよい一価の炭化水素基、アルコキシ基またはシラノール基であり、nは2~1000の範囲の数)で表される鎖状のポリシロキサン構造を備えた、分岐状オルガノポリシロキサン、
(A2)ヒドロシリル化反応触媒の存在下で
(a1)環状または直鎖状のオルガノハイドロジェンポリシロキサンと、
  (a2)少なくとも分子鎖両末端にアルケニル基を有するポリジメチルシロキサンとを、成分(a2)中の珪素原子結合水素原子1モルに対する成分(a1)中のアルケニル基のモル数が0.9~1.2となる範囲で反応させることによって得られた架橋性オルガノポリシロキサン、
(A3)25℃で、1,000,000~20,000,000mm2/sの動粘度または可塑度を有するシリコーンガム
および、
(B)25℃で1~1000mm2/sの動粘度を有する非極性シリコーンオイル(ただし、上記の成分(A1)または成分(A2)に該当するものを除く)99~0質量部を含有してなり、
当該シリコーン流体組成物がシリコーン化合物(A)と非極性シリコーンオイル(B)との混合物である場合には、両者が均一に混和していることをさらなる特徴とする、[1]~[3]のいずれか1項に記載のオイルミスト抑制剤。
[5]非極性シリコーンオイル(B)が、25℃で1~100mm2/sの動粘度を有する、鎖状または環状の非極性シリコーンオイルである、[4]に記載のオイルミスト抑制剤。
[6]非極性シリコーンオイル(B)が、25℃で1~10mm2/sの動粘度を有する鎖状のポリジメチルシロキサン、オクタメチルシクロテトラシロキサン、およびデカメチルシクロペンタシロキサンからなる群から選ばれる1種類以上である、[4]または[5]に記載のオイルミスト抑制剤。
[7](A)以下の成分(A1)、成分(A2)、成分(A3)またはこれらの2種類以上の混合物から選ばれるシリコーン化合物 1~100質量部、
(A1)分子内にRSiO1.5(式中、Rはハロゲン原子で置換されていても良い一価の炭化水素基)で表されるT単位およびSiO2.0で表されるQ単位から選ばれる1個以上の分岐シロキサン単位、および(R SiO1.0(式中、Rはハロゲン原子で置換されていてもよい一価の炭化水素基、アルコキシ基またはシラノール基であり、nは2~1000の範囲の数)で表される鎖状のポリシロキサン構造を備えた、分岐状オルガノポリシロキサン、
(A2)ヒドロシリル化反応触媒の存在下で
(a1)環状または直鎖状のオルガノハイドロジェンポリシロキサンと、
  (a2)少なくとも分子鎖両末端にアルケニル基を有するポリジメチルシロキサンとを、成分(a2)中の珪素原子結合水素原子1モルに対する成分(a1)中のアルケニル基のモル数が0.9~1.2となる範囲で反応させることによって得られた架橋性オルガノポリシロキサン、
(A3)25℃で、1,000,000~20,000,000mm2/sの動粘度または可塑度を有するシリコーンガム
および、
(B)25℃で1~1000mm2/sの動粘度を有する非極性シリコーンオイル(ただし、上記の成分(A1)または成分(A2)に該当するものを除く)99~0質量部を含有してなり、かつ
上記のシリコーン化合物(A)と非極性シリコーンオイル(B)との混合物である場合には、両者が均一に混和していることをさらなる特徴とするシリコーン流体組成物であって、以下のi)およびii)の性質を備えたもののオイルミスト抑制剤としての使用。
i) 25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルに当該シリコーン流体組成物を1.0質量%添加することにより、添加後の当該ジメチルポリシロキサンオイルの最大ラメラ長を5%以上増加させる性質;
ii) 25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルと均一に混和可能な性質
[8][1]~[6]のいずれか1項に記載のオイルミスト抑制剤を含有する、油剤。
[9]繊維処理用油剤、紡糸用油剤または布帛処理用油剤である、[8]に記載の油剤。
[10][1]~[6]のいずれか1項に記載のオイルミスト抑制剤を油剤に添加する工程、および
当該油剤を他の基材に塗布する工程を含む、オイルミストの低減方法。
[11]他の基材が繊維、紡糸または布帛である、[10]に記載のオイルミストの低減方法。」
本発明のオイルミスト抑制剤を用いることにより、基材への浸透や浸漬を目的とする油剤処理、特に、繊維処理や紡糸処理、布帛処理に用いる油剤に適用した場合、油剤処理の目的及び処理効果を損なうことなく、これらの油剤による処理を行う際に油剤から発生するオイルミストを効果的に抑制することができる。さらに、本発明のオイルミスト抑制剤を含む油剤、およびそれを用いたオイルミストの低減方法を提供することができる。
本発明のオイルミスト抑制剤である、シリコーン流体組成物について説明する。当該シリコーン流体組成物は、油剤と混和してその油剤の最大ラメラ長を効果的に増加させることで油剤自身に粘弾性を付与する性質を有するため、繊維処理や紡糸処理、布帛処理に用いる油剤に適用した場合、油剤に引っ張り応力等の力が作用することで発生するオイルミストを効果的に抑制し、かつ、油剤処理の目的及び処理効果を実質的に損なわないという利点がある。なお、かかるシリコーン流体組成物は当該性質上の要件を満たせば、単独のシリコーン化合物であってもよいが、油剤との混和性およびオイルミスト抑制剤として取扱作業性の見地から、油剤に粘弾性を付与する特定のシリコーン化合物を25℃で1~1000mm2/sの動粘度を有し、上記のシリコーン化合物に比べて低動粘度の非極性シリコーンオイルと均一に混和させた混合物であるシリコーン流体組成物の使用も好適である。
[性質i):油剤の最大ラメラ長の増加効果]
上記のシリコーン流体組成物は、混和させた油剤の最大ラメラ長を増加させることを第一の性質とする。当該性質は、25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイル(以下、「基準とするジメチルポリシロキサンオイル」ということがある)に当該シリコーン流体組成物を1.0質量%添加することにより、添加後の当該ジメチルポリシロキサンオイルの最大ラメラ長を5%以上増加させる性質として客観的に規定することができ、最大ラメラ長の増加量(△L%)は、
(L0):25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルの最大ラメラ長
(L1):シリコーン流体組成物を1.0質量%添加した後の、上記25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルの最大ラメラ長
に対して、
△L% = (L1-L0)/L0 ×100 (%)
として定義される。ここで、油剤のラメラ長は室温(25℃)において、自動表面張力計等を用いてリング法により測定される値である。また、基準とするジメチルポリシロキサンオイルは、25℃で約10.0mm2/sの動粘度を有するジメチルポリシロキサンオイル(規格品)であれば特に制限されるものではなく、当該粘度(=25℃で約10.0mm2/sの動粘度)を規格値とするジメチルポリシロキサンオイルは市場において広く市販されている。
例えば、基準とするジメチルポリシロキサンオイルの最大ラメラ長が2.7mmであり、あるシリコーン流体組成物を当該ジメチルポリシロキサンオイルに1.0質量%の濃度となるように添加した後のジメチルポリシロキサンオイルの最大ラメラ長が3.5mmであるとき、△L% = (3.5-2.7)/2.7 ×100 (%)=29.62・・・(%)と計算することができ、当該性質を備えたシリコーン流体組成物は基準とするジメチルポリシロキサンオイル以外の油剤に対しても、その最大ラメラ長を増加させることで油剤に粘弾性を付与し、オイルミストを抑制する効果を有する。なお、オイルミスト抑制剤として上記のシリコーン流体組成物を利用する場合、配合先の油剤の種類や目的とするオイルミスト抑制効果に応じ、1.0質量%以外の添加量を選択できることは言うまでもない。
ここで、オイルミスト抑制効果を効率よく実現するためには、上記の方法で特定される最大ラメラ長の増加量が5~100%の範囲であることが好ましく、10~100%がより好ましく、20~80%の範囲であることが特に好ましい。あるシリコーン流体組成物を上記の基準とするジメチルポリシロキサンオイルに1.0質量%添加したときの最大ラメラ長の増加量が5%未満である場合には、油剤に対する粘弾性の付与効果が不十分となり、十分なオイルミスト抑制効果が実現できない場合がある。また、最大ラメラ長の増加量が極度に大きい場合、油剤に対する粘弾性の付与効果が過大となり、油剤の種類及び処理目的によっては、目的とする油剤の処理効果を損なう場合があるため、添加量を慎重にコントロールすることが好ましい。なお、油剤に対する粘弾性の付与効果が不十分なシリコーン流体組成物であっても、大量に添加することで油剤に対する粘弾性の付与効果を実現できる場合があるが、一般的にオイルミスト抑制剤を大量に添加することは不経済であり、かつ、添加量が多くなる場合には本来の油剤処理の目的及び処理効果が十分に実現できなくなる場合があり、好ましくない。
なお、上記の性質i)は、本発明にかかるシリコーン流体組成物の主要な特性を基準となるジメチルポリシロキサンオイルに特定量(1.0質量%)のシリコーン流体組成物を添加した場合の最大ラメラ長の増加量として客観的に規定したものであり、当該性質を満たすシリコーン流体組成物は、1.0質量%以外の添加量(例えば、1.0質量%未満の添加量であってもよく、1.0質量%以上の使用量であってもよい)または異なる油剤、すなわち、上記の基準となるジメチルポリシロキサンオイル以外のシリコーンオイル、非シリコーンオイルまたはそれらの混合物である油剤に、何ら制限なく適用することができる。例えば、動粘度の異なる1種類または2種類以上のシリコーンオイルに1.0質量%以外の添加量で配合してもよく、シリコーンオイル以外の液状油剤(例えば炭化水素油、エステル油、高級アルコール等)や、その混合物である油剤に1.0質量%以外の添加量で配合するものであってもよく、何ら制約されるものではない。
[性質ii):油剤との均一混和性]
上記のシリコーン流体組成物は、少なくとも一定以上、油剤との均一混和性を有することを第二の性質とする。当該性質は、25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルに当該シリコーン流体組成物を1.0質量%添加した場合、均一に混和する性質として客観的に規定することができる。ここで、「均一に混和する」とは、攪拌等の通常の機械的手段または液相間の拡散により、基準とするジメチルポリシロキサンオイルとシリコーン流体組成物が実質的な均一相を形成することを意味するものであり、混合物中に固体状の異物や目視可能な微粒子状のゲル、相分離を生じる場合を含まない。当該シリコーン流体組成物が、基準とするジメチルポリシロキサンオイルに対して1.0質量%添加したときに実質的な均一相を形成できないことは、基準とするジメチルポリシロキサンオイルだけでなく、他の油剤との均一混和性も不十分であることを意味する。このようなシリコーン流体組成物は、オイルミスト抑制剤として使用した場合に、油剤と十分に混和しないため、前記の油剤に対する粘弾性の付与効果が不十分となるほか、油剤中に固形状ないしゲル状の異物が生じる原因となったり、油剤の分離の原因となったりする場合があり、特に、繊維処理や紡糸処理、布帛処理に用いる油剤に適用した場合、所望の処理効果を妨げる場合がある。さらに、油剤と十分に混和しない場合、オイルミスト抑制剤としての取扱作業性に劣る結果になる。
なお、上記の性質ii)は、本発明にかかるシリコーン流体組成物の主要な特性を基準となるジメチルポリシロキサンオイルに特定量(1.0質量%)のシリコーン流体組成物を添加した場合の均一混和性の有無として客観的に規定したものであり、シリコーン流体組成物は、当該性質を満たすシリコーン流体組成物は、1.0質量%以外の添加量(例えば、1.0質量%未満の添加量であってもよく、1.0質量%以上の使用量であってもよい)または異なる油剤、すなわち、上記の基準となるジメチルポリシロキサンオイル以外のシリコーンオイル、非シリコーンオイルまたはそれらの混合物である油剤に、何ら制限なく適用することができる。例えば、基準となるジメチルポリシロキサンオイルに比べてシリコーン流体組成物が均一に混和しにくい性質を備えた油剤であっても、所望のオイルミスト抑制効果を実現できる程度の1.0質量%未満の添加量であれば十分に均一に混和可能な場合があり、本発明のオイルミスト抑制剤であるシリコーン流体組成物は、当該油剤に対しても粘弾性を付与してオイルミストの抑制という技術的効果を実現できる。
なお、取扱作業性の見地から、本発明にかかるシリコーン流体組成物は油剤との均一混和性が高いことが好ましい。具体的には、本発明にかかるシリコーン流体組成物は、基準となるジメチルポリシロキサンオイルに対して、1.0質量%以上となる量、例えば、5.0質量%~50.0質量%(実質的な1:1混合物)となる量を添加しても、攪拌等の通常の機械的手段または液相間の拡散により、基準とするジメチルポリシロキサンオイルとシリコーン流体組成物が実質的な均一相を形成する性質を備えていることが好ましい。このようなシリコーン流体組成物は、上記の基準とするジメチルポリシロキサンオイル以外の油剤との均一混和性にも優れていることが一般的であり、特に、繊維処理や紡糸処理、布帛処理に用いる幅広い油剤に容易に配合することができる。
[シリコーン流体組成物]
本発明にかかるシリコーン流体組成物は、上記の性質を備える限り、特にその種類が限定されるものではなく、1種類または2種類以上のシリコーン類であってもよいが、オイルミスト抑制剤としての技術的効果および取扱作業性の見地から、特定の高い粘弾性付与効果を備えたシリコーン化合物を単独で用いるか、当該シリコーン化合物と特定の低動粘度の非極性シリコーンオイルとの均一混合物であることが好ましい。具体的には、高い粘弾性付与効果を備えたシリコーン化合物であって、比較的粘度が低いものは単独で用いることもできる。一方、高い粘弾性付与効果を備えたシリコーン化合物が高動粘度であったりその流動性が不十分であったりすると、配合時の取扱作業性や油剤との混和性が低下する場合があるが、低動粘度の非極性シリコーンオイルとの混合物を予め調製することで、シリコーン流体組成物全体として、オイルミスト抑制剤としての技術的効果および取扱作業性を実現することができる。
具体的には、本発明にかかるシリコーン流体組成物は、(A)以下の成分(A1)、成分(A2)、成分(A3)またはこれらの2種類以上の混合物から選ばれるシリコーン化合物 1~100質量部、
(A1)分子内にRSiO1.5(式中、Rは一価の炭化水素基)で表されるT単位およびSiO2.0で表されるQ単位から選ばれる1個以上の分岐シロキサン単位、および(R SiO1.0(式中、Rは一価の炭化水素基、アルコキシ基またはシラノール基であり、nは2~1000の範囲の数)で表される鎖状のポリシロキサン構造を備えた、分岐状オルガノポリシロキサン、
(A2)ヒドロシリル化反応触媒の存在下で
(a1)環状または直鎖状のオルガノハイドロジェンポリシロキサンと、
  (a2)少なくとも分子鎖両末端にアルケニル基を有するポリジメチルシロキサンとを、成分(a2)中の珪素原子結合水素原子1モルに対する成分(a1)中のアルケニル基のモル数が0.9~1.2となる範囲で反応させることによって得られた架橋性オルガノポリシロキサン、
(A3)25℃で、1,000,000~20,000,000mm2/sの動粘度または可塑度を有するシリコーンガム
および、
(B)25℃で1~1000mm2/sの動粘度を有する非極性シリコーンオイル(ただし、上記の成分(A1)または成分(A2)に該当するものを除く)99~0質量部を含有してなることを特徴とする。ただし、当該シリコーン流体組成物がシリコーン化合物(A)と非極性シリコーンオイル(B)との混合物である場合には、両者が均一に混和していることをさらなる特徴とする。
[シリコーン化合物(A)]
上記の成分(A)は、成分(A1)、成分(A2)、成分(A3)またはこれらの2種類以上の混合物から選ばれるシリコーン化合物であり、油剤に対し、その最大ラメラ長を伸張するという形で粘弾性を付与するという共通した性質を備えている。上記のとおり、これらのシリコーン化合物(A)は単独で用いることも可能である。一方、これらの成分が単独では一般に油剤との均一混和性に劣ったり、動粘度が非常に高くオイルミスト抑制剤としての取り扱い作業性に劣る場合には、低動粘度の非極性シリコーンオイルの混合物として用いることができ、かつ、好ましい。
[(A1)分岐状オルガノポリシロキサン]
成分(A1)は、分子内にRSiO1.5(式中、Rはハロゲン原子で置換されていてもよい一価の炭化水素基)で表されるT単位およびSiO2.0で表されるQ単位から選ばれる1個以上の分岐シロキサン単位、および(R SiO1.0(式中、Rはハロゲン原子で置換されていてもよい一価の炭化水素基、アルコキシ基またはシラノール基であり、nは2~1000の範囲の数)で表される鎖状のポリシロキサン構造を備えた、分岐状オルガノポリシロキサンであり、T分岐またはQ分岐構造により分岐された鎖状のポリシロキサン構造を備えることを特徴とする。
式中のRまたはRは、ハロゲン原子で置換されていてもよい一価の炭化水素基であり、好適には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等の炭素数1~12のアルキル基;ビニル基、アリル基、ヘキセニル基等の炭素数2~12のアルケニル基;フェニル基、トリル基、キシル基、ナフチル基等の炭素数6~12のアリール基;ベンジル基、フェネチル基等の炭素数7~12のアラルキル基;3-クロロプロピル基、3,3,3-トリフロロプロピル基等のハロゲン置換の前記アルキル基が例示され、工業的に好ましくは、メチル基、フェニル基またはビニル基である。
式中のnは、分岐単位から伸びた鎖状のポリシロキサン構造を表す(R SiO1.0部分の重合度であり、2~1000の範囲の数であることが好ましく、2~500の範囲の数あるいは100~300の範囲の数であることが特に好ましい。分岐単位から伸びた鎖状のポリシロキサン構造は環状構造を形成している場合を含め、同一分子内に少なくとも複数存在するが、特にnが前記上限を超える場合には、動粘度が過大となって取扱作業性が低下する場合がある。
好適な成分(A1)は、分子鎖の各末端がトリメチルシロキシ単位(M単位)またはジメチルビニルシロキシ単位(Mvi単位)で封止され、分子内に1個以上のSiO2.0で表されるQ単位から選ばれる1個以上の分岐シロキサン単位を備えた分岐状ジメチルポリシロキサンであり、その好適な動粘度は25℃において1,000~100,000mm2/sの範囲である。特に、成分(A1)の動粘度が25℃において10,000~100,000mm2/sの範囲にある場合、成分(B)との混合物の形態ではなく、成分(A1)単独でオイルミスト抑制剤として用いることが好ましく、油剤と比較的容易に均一に混和し、所望のオイルミスト抑制効果を実現できる点で有用である。なお、所望により、油剤との混合物を形成することは妨げられるものではない。
[(A2)架橋性オルガノポリシロキサン]
成分(A2)は、粘液性シリコーン流体を与える架橋性オルガノポリシロキサンであり、オイルミスト抑制剤と異なる技術分野(例えば、特表2013-503878号公報)で知られているが、オイルミスト抑制剤としての使用は記載も示唆もされておらず、また、本発明と技術的課題が共通するものでもない。
成分(A2)は、ヒドロシリル化反応触媒の存在下で
(a1)環状または直鎖状のオルガノハイドロジェンポリシロキサンと、
  (a2)少なくとも分子鎖両末端にアルケニル基を有するポリジメチルシロキサンとを、成分(a2)中の珪素原子結合水素原子1モルに対する成分(a1)中のアルケニル基のモル数が0.9~1.2となる範囲で反応させることによって得られた架橋性オルガノポリシロキサンであり、分子鎖末端の珪素原子に結合したアルケニル基および水素原子の反応比が1.0付近にあるため、分子全体として微架橋構造を有し、架橋性オルガノポリシロキサンでありながら、成分(B)である非極性シリコーンオイルと均一な混和物を形成しやすく、かつ、配合後の油剤の粘弾性を効果的に改善できる利点を有する。
このような成分(A2)は、成分(B2)である非極性シリコーンオイル中で、ヒドロシリル化反応触媒の存在下、上記の原料成分(a1)および(a2)を、成分(a2)中の珪素原子結合水素原子1モルに対する成分(a1)中のアルケニル基のモル数が0.9~1.2となる範囲、で反応させることによって得られた架橋性オルガノポリシロキサンであることが特に好適であり、予め非極性シリコーンオイル中で架橋反応を行うことによって、得られるシリコーン流体組成物全体の均一混和性が著しく改善される利点がある。
成分(a1)は、環状または直鎖状のオルガノハイドロジェンポリシロキサンであり、ヒドロシリル化反応により、成分(a2)と架橋構造を形成する。このようなオルガノハイドロジェンポリシロキサンは、好適には、一分子中にケイ素原子結合水素原子を少なくとも2個有するオルガノポリシロキサンである。成分(a1)中のケイ素原子結合水素原子の結合位置は限定されず、分子鎖末端および/または分子鎖側鎖が例示される。成分(a1)中のケイ素原子結合有機基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等の炭素数1~12のアルキル基;フェニル基、トリル基、キシル基、ナフチル基等の炭素数6~12のアリール基;ベンジル基、フェネチル基等の炭素数7~12のアラルキル基;3-クロロプロピル基、3,3,3-トリフロロプロピル基等のハロゲン置換の前記アルキル基が例示され、好ましくは、メチル基である。
成分(a1)は、環状であってよく、シロキサン環上に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンシクロシロキサンであって、シロキサン重合度(g)が3~8であるものが例示される。なお、式[(CH)HSiO]g1(g1は3~8の範囲の数)または式[(CHSiO]g2[(CH)HSiO]g3(g2+g3は3~8の範囲の数であり、g2,g3は各々>0の数)である、メチルハイドロジェンシクロシロキサンが好適に例示される。
成分(a1)は、鎖状であってよく、ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、(CH)SiO1/2で示されるシロキサン単位とH(CH)SiO1/2で示されるシロキサン単位とSiO4/2で示されるシロキサン単位からなるオルガノポリシロキサンが例示され、好ましくは、直鎖状のメチルハイドロジェンポリシロキサンである。
成分(a2)は、少なくとも分子鎖両末端にアルケニル基を有するポリジメチルシロキサンであり、シロキサン分子の両端に成分(a1)との反応点を有することで、架橋点間の平均的なシロキサン鎖長が長い分子設計を行うことができ、得られる架橋性オルガノポリシロキサンについて、全体的に緩やかな架橋密度を実現する成分である。このようなポリジメチルシロキサンは、シロキサン側鎖に0~2個程度のアルケニル基しか有しないことが好ましく、本発明の架橋性オルガノポリシロキサンをオイルミスト抑制剤として用いる場合、シロキサン側鎖に実質的にアルケニル基を有しないポリジメチルシロキサンであることが好ましい。なお、アルケニル基は、ビニル基、アリル基、ヘキセニル基等の炭素数2~12のアルケニル基が例示され、かつ、好適である。
好適な成分(a2)は、ビニル官能性末端封鎖ポリジメチルシロキサン(ビニルシロキサン)又はヘキセニル官能性末端封鎖ポリジメチルシロキサン(へキセニルシロキサン)から選択することができ、特に、ポリジメチルシロキサン部分のシロキサン重合度が50~200000の範囲であるものが好ましい。より好適には、成分(a2)は、式(CH=CH)MeSiO(MeSiO)dpSiMe(CH=CH)を有するものから選択することができ、式中、Meはメチル基であり、dpは重合度である。1つの実施形態では、dpは少なくとも50であり、4000以上であることが好ましく、6000以上、又は9000以上であることが特に好ましい。
ヒドロシリル化反応触媒は、成分(a1)と成分(a2)間のヒドロシリル化反応による架橋を促進する触媒であり、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示され、白金系触媒であることが好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体が例示され、好ましくは、白金-アルケニルシロキサン錯体である。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンであることが好ましい。なお、ヒドロシリル化反応を促進する触媒としては、鉄、ルテニウム、鉄/コバルトなどの非白金系金属触媒を用いてもよい。
ヒドロシリル化反応触媒の使用量は、架橋性オルガノポリシロキサンを得るための架橋反応を促進するために有効な量である。具体的には、成分(a1)と成分(a2)間の質量の和として得られる架橋性オルガノポリシロキサン100質量部に対して、触媒金属が0.01~500ppmの範囲内となる量であることが好ましく、さらには、0.01~100ppmの範囲内となる量であることが好ましく、特には、0.01~50ppmの範囲内となる量であることが好ましい。
本発明の成分(A2)は、上記の原料成分(a1)および(a2)を、成分(a2)中の珪素原子結合水素原子(SiH)1モルに対する成分(a1)中のアルケニル基(SiVi)のモル数が0.9~1.2となる範囲、好適には0.95~1.15となる範囲で架橋させてなることを特徴とする。[SiVi]/[SiH]で表される物質量比は、ほぼ1.0近傍であってよく、若干SiViが過剰となるように1.0~1.15となる範囲で設計することが最も好ましい。当該架橋性オルガノポリシロキサンは反応性官能基がほぼ等しい物質量で反応するため、油剤等の劣化の原因となる過剰な反応性官能基が分子中に残留しないという利点を有する。
本発明の成分(A2)は、後述する(B)25℃で1~1000mm2/sの動粘度を有する非極性シリコーンオイル中で反応させることが好ましい。この場合、架橋反応により得られる成分(A2)が予め所望のシリコーン流体の成分(A)の濃度となるように、ヒドロシリル化反応触媒の存在下、成分(B)中で原料である成分(a1)および成分(a2)を架橋反応させてもよく、一部の成分(B)原料である成分(a1)および成分(a2)を架橋反応させ、成分(A2)を含む混合組成物中に追加の成分(B)を添加しても良い。なお、このような成分(A2)と成分(B)からなる組成物は、Dow Corning(R) 3901 Liquid Satin Blend等として市販されている。
[(A3)シリコーンガム]
成分(A3)は、25℃で、1,000,000~20,000,000mm2/sの動粘度または可塑度を有するシリコーンガムであり、非常に高分子量であるため、それを含むシリコーン流体組成物またはそれを配合した油剤に粘弾性を付与し、粘液性の挙動を実現する成分である。
シリコーンガムは主にジメチルシロキシ単位(D単位)から構成される高重合度のポリジメチルシロキサンガムであり、分子中に他の反応性官能基や分岐単位を有しても良い。また、分子鎖末端は、トリメチルシロキシ単位(M単位)、ジメチルビニルシロキシ単位(MVi単位)またはジメチルヒドロキシシロキシ単位(MOH単位)で封止されていることが好ましい。このようなポリジメチルシロキサンガムは25℃で少なくとも1,000,000mm2/s、又はあるいは25℃で2,000,000mm2/sの動粘度を与えるのに十分な分子量を有するものであり、25℃で1,000,000~20,000,000mm2/sの動粘度を有するものであってよい。あるいは、ポリジメチルシロキサンガムの分子量は、極めて高重合度であって、動粘度の測定が困難であり、可塑度を有するものであってもよい。たとえば、成分(A3)であるシリコーンガムは、米国材料試験協会(ASTM)試験法926により測定されるように、少なくとも40のウィリアムス可塑度、一般的には、40~200の範囲の可塑度を有する分子量を有するものであって良い。
なお、シリコーンガムの調製方法は周知であり、多くは市販されている。たとえば、DOW CORNING(R) 1501 FLUIDとして市販されている。
[(B)担体流体である非極性シリコーンオイル]
成分(B)は、上記の成分(A)の担体流体として機能する成分であり、上記の成分(A2)のように、架橋反応時の溶媒として利用してもよく、かつ好ましい。このような成分(B)は、25℃で1~1000mm2/sの動粘度を有する非極性シリコーンオイルである。ただし、成分(B)は成分(A)と異なるものであり、上記の成分(A1)または成分(A2)に該当しない。また、このような非極性シリコーンオイルは、揮発性を有するものであっても良い。
成分(B)として好適な非極性シリコーンオイルは、ヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)等の揮発性環状ジメチルポリシロキサン;25℃で1~1000mm2/sの動粘度を有する分子鎖両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖メチルフェニルポリシロキサン,分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体,分子鎖両末端トリメチルシロキシ基封鎖ジフェニルポリシロキサン,分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体,トリメチルペンタフェニルトリシロキサン、フェニル(トリメチルシロキシ)シロキサン、分子鎖両末端トリメチルシロキシ基封鎖メチルアルキルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン・メチルアルキルシロキサン共重合体,分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチル(3,3,3-トリフルオロプロピル)シロキサン共重合体、α,ω-ジヒドロキシポリジメチルシロキサンから選ばれる1種類または2種類以上の混合物である。
成分(B)である非極性シリコーンオイルは、反応性官能基を有しないことが好ましく、工業的に好適には、鎖状または環状のメチルポリシロキサンであって、25℃で1~1000mm2/sの動粘度を有するものである。所望により、当該非極性シリコーンオイルの25℃における動粘度は1~500mm2/sの範囲であってよく、かつ、好ましい。特に、上記の成分(A)との親和性、取扱作業性および工業的な生産可能性の点からは、25℃で1~100mm2/sの動粘度を有する、鎖状または環状の非極性シリコーンオイルであり、25℃で1~10mm2/sの動粘度を有する鎖状のポリジメチルシロキサン、オクタメチルシクロテトラシロキサン、およびデカメチルシクロペンタシロキサンからなる群から選ばれる1種類以上が最も好適かつ安価な担体流体である。
[シリコーン流体組成物の好適な調製]
本発明のシリコーン流体組成物は、成分(A)単独であってもよく、成分(A)である上記のシリコーン化合物 および、必要に応じて成分(B)である担体流体の非極性シリコーンオイルの混合物であってもよい。混合物の場合、ホモミキサー、パドルミキサー、ヘンシェルミキサー、ホモディスパー、コロイドミル、プロペラ攪拌機、真空式練合機等の装置により、機械力を用いて均一に混合することで得ることができるほか、成分(A2)のように、架橋反応性の原料成分を成分(B)を反応溶媒兼架橋反応物の担体流体として用いることにより、均一混合物として得ることもできる。
オイルミスト抑制剤としての取扱作業性および技術的効果の見地から、成分(A)が、動粘度が25℃において10,000~100,000mm2/sの範囲にある上記の成分(A1)である場合には、当該成分(A1)を単独で本発明のシリコーン流体組成物として用いてよい。
一方、本発明のシリコーン流体組成物が、成分(A)である上記のシリコーン化合物 および成分(B)である担体流体の非極性シリコーンオイルの混合物である場合、その比率は、得られるシリコーン流体組成物が上記の特性を実現できる限り、特に制限されるものではないが、オイルミスト抑制剤としての取扱作業性および技術的効果の見地から、成分(A)5~20質量部および成分(B)95~80質量部であることが好ましく、成分(A)5~15質量部および成分(B)95~85質量部であることがより好ましい。特に成分(A)が上記の成分(A2)または成分(A3)であるシリコーン化合物である場合、本発明のシリコーン流体組成物は上記の混合物であることが好ましい。
このようなシリコーン流体組成物の動粘度は、特に制限されるものではないが、オイルミスト抑制剤としての取扱作業性および技術的効果の見地から、25℃で100~1,000,000mm2/sの範囲であることが好ましく、500~1500,000mm2/sの範囲であることがより好ましい。
[増粘性との関係]
本発明のシリコーン流体組成物は油剤と均一に混和し、配合先の油剤に粘弾性を付与することでオイルミスト抑制剤として機能する。一方、一部の公知のシリコーン系ミスト抑制剤は油剤やコーティング剤を増粘させ、単純に動粘度を増加させる効果を有するが、かかる増粘効果を有するものであっても、油剤に粘弾性を付与し、その最大ラメラ長を伸張する効果を欠く場合には、油剤に対する引っ張り応力に起因するオイルミストには有効に機能せず、本発明の目的であるオイルミスト抑制剤としての技術的効果が実現できない、あるいは不十分となる場合がある。すなわち、本発明のシリコーン流体組成物において油剤の増粘効果は、主たる技術的解決手段を構成するものではなく、油剤の粘度の変化が僅かであることが好ましい。
[上記のシリコーン流体組成物のオイルミスト抑制剤としての使用]
本発明は、上記のシリコーン流体組成物をオイルミスト抑制剤として使用することを特徴とする。その好適な形態は、上記のシリコーン流体について説明したとおりであって、
(A)以下の成分(A1)、成分(A2)、成分(A3)またはこれらの2種類以上の混合物から選ばれるシリコーン化合物 1~100質量部、
(A1)分子内にRSiO1.5(式中、Rはハロゲン原子で置換されていても良い一価の炭化水素基)で表されるT単位およびSiO2.0で表されるQ単位から選ばれる1個以上の分岐シロキサン単位、および(R SiO1.0(式中、Rはハロゲン原子で置換されていてもよい一価の炭化水素基、アルコキシ基またはシラノール基であり、nは2~1000の範囲の数)で表される鎖状のポリシロキサン構造を備えた、分岐状オルガノポリシロキサン、
(A2)ヒドロシリル化反応触媒の存在下で
(a1)環状または直鎖状のオルガノハイドロジェンポリシロキサンと、
  (a2)少なくとも分子鎖両末端にアルケニル基を有するポリジメチルシロキサンとを、成分(a2)中の珪素原子結合水素原子1モルに対する成分(a1)中のアルケニル基のモル数が0.9~1.2となる範囲で反応させることによって得られた架橋性オルガノポリシロキサン、
(A3)25℃で、1,000,000~20,000,000mm2/sの動粘度または可塑度を有するシリコーンガム
および、
(B)25℃で1~1000mm2/sの動粘度を有する非極性シリコーンオイル(ただし、上記の成分(A1)または成分(A2)に該当するものを除く)99~0質量部を含有してなるシリコーン流体組成物であって、以下のi)およびii)の性質を備えたもののオイルミスト抑制剤としての使用、である。ただし、シリコーン流体組成物が当該シリコーン化合物(A)と非極性シリコーンオイル(B)との混合物である場合、両者が実質的に均一に混和していることをさらなる特徴とする。
i) 25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルに当該シリコーン流体組成物を1.0質量%添加することにより、添加後の当該ジメチルポリシロキサンオイルの最大ラメラ長を5%以上増加させる性質;
ii) 25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルと均一に混和可能な性質
[油剤]
 本発明はさらに、上述したシリコーン流体組成物からなるオイルミスト抑制剤を含有する油剤を提供する。本発明のオイルミスト抑制剤の対象となる油剤は、特に限定されるものではないが、特には、繊維処理用油剤、紡糸用油剤または布帛処理用油剤である。これらの油剤は、処理時に油剤に対する引っ張り応力や引き裂き応力が作用しやすい傾向があり、本発明のオイルミスト抑制剤を用いることで、処理工程に発生するオイルミストを極めて効果的に抑制できる実益がある。
より詳細には、繊維の生産に用いる紡糸用の油剤であり、紡糸に用いる油剤処理時に油剤に対する力が作用する場合のオイルミスト抑制剤である。該油剤の基油は、上記用途に通常使用されるものであればよく、1種類又は2種類以上の混合物であってよい。例えば、天然動植物油脂類及び半合成油脂、炭化水素油、ポリグリコール、フェニルエーテル、エステル油、シリコーン油、及びフッ素系油剤等が挙げられる。特に、25℃における動粘度が1~1000mm2/sの範囲にあるシリコーン油またはエステル油が好適である。工業的には、25℃における動粘度が1~1000mm2/sの範囲にあるポリジメチルシロキサンが好ましく、1種類又は2種類以上の混合物であっても良い。
オイルミスト抑制剤を含有する油剤により処理される繊維の種類としてはポリエステル系弾性繊維、ポリアミド系弾性繊維、ポリオレフィン系弾性繊維、ポリウレタン系弾性繊維等が挙げられるが、特に限定されるものではない。
油剤中、本発明のオイルミスト抑制剤の添加量は、0.001~10質量%が好ましく、より好ましくは0.01~3質量%である。オイルミスト抑制剤の添加量が上記上限値を超えてもオイルミスト抑制効果はそれ以上向上しない場合がある。また、添加量が上記下限値未満では、オイルミストの発生を抑制する効果が十分得られない場合があるほか、不経済である。油剤の調製方法は、従来公知の方法に従えばよく、特に制限されるものでない。また、油剤による繊維、紡糸、布帛等の処理方法は、当業者の従来公知の方法を特に制限なく用いることができる。
油剤は必要に応じて従来公知の添加剤を含むことができる。該添加剤としては、本発明のシリコーン化合物以外の有機変性シリコーンオイル、シリコーン樹脂、油性向上剤、極圧剤、有機酸塩、酸化防止剤、潤滑剤、増膜剤、防錆剤、消泡剤、金属不活化剤、非イオン性界面活性剤や高級アルコールに代表されるつなぎ剤、イオン性界面活性剤に代表される帯電防止剤、濡れ性向上剤、紫外線吸収剤、酸化防止剤、平滑剤、帯電防止剤、防腐剤等が挙げられる。また、油剤は、本発明の効果を阻害しない範囲において、高分子量の有機化合物からなるオイルミスト抑制剤を含むことができる。添加剤の配合量は、従来公知の方法に従い、本発明の効果を阻害しない範囲において適宜調整すればよい。
 本発明のオイルミスト抑制剤およびそれを含む油剤を実施例により詳細に説明する。
(油剤の最大ラメラ長)
 油剤または各種オイルミスト抑制剤を添加した後の油剤の最大ラメラ長(単位:mm)は、自動表面張力計(型番K-12、KRUSS社製)を用いて、25℃かつ、リング半径9.545mm、線径0.27mmの白金リングを用いて測定した。白金リングの引き上げ速度は、3mm/minで行った。
(動粘度)
油剤または各種オイルミスト抑制剤を添加した後の油剤の粘度(動粘度)は、ウベローデ型毛細管動粘度測定計を用いて、常温(25℃)で測定されたものである。
オイルミスト抑制剤としての評価にあたって、以下のシリコーン流体組成物(以下、「オイルミスト抑制剤」)を評価に用いた。
・シリコーン流体組成物No.1:Dow Corning(R) 3901 Liquid Satin Blend
((a2)微架橋性オルガノポリシロキサンの(b1)ジメチルポリシロキサン(2mm2/s)混合物;(a2)成分を約6質量%含有するペースト状組成物)

・シリコーン流体組成物No.2:Dow Corning(R) 1501 fluid
((a3)可塑度を有するシリコーンガムの(b2)デカメチルペンタシクロシロキサン混合物;(a3)成分を約15質量%含有する液状組成物)

・シリコーン流体組成物No.3: (a1)Q単位(SiO4/2)で分岐した構造を有し、各分子鎖末端がビニルジメチルシロキシ基で封鎖された構造を有する分岐状ジメチルポリシロキサン(動粘度:40,000mm2/s)

・シリコーン流体組成物No.4:Dow Corning(R) 9040 elastomer blend
(ジメチルポリシロキサンの1,4-ヘキサジエン架橋物の(b2)デカメチルペンタシクロシロキサン混合物;前記架橋物(固形分)を約12質量%含有するペースト状組成物)

・シリコーン流体組成物No.5:ポリエーテル変性した微架橋性オルガノポリシロキサン(動粘度:10,000mm2/s)
[実施例1~3および比較例1]
(評価方法)
以下の油剤に対し、表1および表2に記載の濃度(質量%)となるように、上記の各シリコーン流体組成物を添加し、均一に混合した後、添加前後の最大ラメラ長を測定した。なお、25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルは、本発明における基準とするジメチルポリシロキサンオイルであり、表1において濃度0質量%であることは、シリコーン流体組成物を添加する前の油剤それ自体の最大ラメラ長(L0)を表す。シリコーン流体組成物が油剤と均一に相溶しない場合は「×」と評価した。また、25℃で10.0mm2/s,100.0mm2/s,1000.0mm2/sの動粘度を有するジメチルポリシロキサンオイルは、東レ・ダウコーニング株式会社をはじめ、市場において広く市販されている。

・シリコーンオイル(10mm2/s):25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイル(=基準となるジメチルポリシロキサンオイル)
・シリコーンオイル(100mm2/s):25℃で100.0mm2/sの動粘度を有するジメチルポリシロキサンオイル
・シリコーンオイル(1000mm2/s):25℃で1000.0mm2/sの動粘度を有するジメチルポリシロキサンオイル
Figure JPOXMLDOC01-appb-T000001


Figure JPOXMLDOC01-appb-T000002
実施例1-1-1、実施例1-2-1および実施例1-3-1に示すとおり、本発明のオイルミスト抑制剤は本発明における基準とするジメチルポリシロキサンオイルの最大ラメラ長を5%以上増加させる性質を有しており、実施例2-1、実施例3-1に示すとおり、他の油剤に添加しても最大ラメラ長を増加させる性質を有する。また、実施例1-1-2~実施例1-1-5に示すとおり、添加量を変化させても、油剤の最大ラメラ長を増加させる性質を有する。なお、いずれの場合でもあっても、油剤の動粘度の変化は僅かであり、配合後の油剤の取扱作業性は大きく変化しなかった。したがって、本発明のオイルミスト抑制剤は、各種油剤に所望の量を添加することで、その取扱作業性や処理効果に悪影響を及ぼすことなく、油剤に粘弾性を付与し、油剤に引っ張り応力が作用することで発生するオイルミストを効果的に抑制できることが期待される。
一方、比較例1-1、比較例1-2に明示するとおり、他のシリコーン流体組成物は油剤の最大ラメラ長を全く増加させないものであるか、油剤との相溶性を有しないものである。このため、これらの成分は、引っ張り応力に由来するオイルミストの抑制剤として機能しないか、油剤と均一に混和しないので、所望とする油剤処理に悪影響を与える場合がある。

Claims (11)

  1. 以下のi)およびii)の性質を備えたシリコーン流体組成物であるオイルミスト抑制剤。
    i) 25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルに当該シリコーン流体組成物を1.0質量%添加することにより、添加後の当該ジメチルポリシロキサンオイルの最大ラメラ長を5%以上増加させる性質;
    ii) 25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルと均一に混和可能な性質
  2. 前記のシリコーン流体組成物の性質i)における最大ラメラ長の増加量が10~100%の範囲である、請求項1のオイルミスト抑制剤。
  3. 繊維処理用油剤、紡糸用油剤または布帛処理用油剤に用いられることを特徴とする、請求項1または請求項2に記載のオイルミスト抑制剤。
  4. 前記のシリコーン流体組成物が、
    (A)以下の成分(A1)、成分(A2)、成分(A3)またはこれらの2種類以上の混合物から選ばれるシリコーン化合物 1~100質量部、
    (A1)分子内にRSiO1.5(式中、Rはハロゲン原子で置換されていても良い一価の炭化水素基)で表されるT単位およびSiO2.0で表されるQ単位から選ばれる1個以上の分岐シロキサン単位、および(R SiO1.0(式中、Rはハロゲン原子で置換されていてもよい一価の炭化水素基、アルコキシ基またはシラノール基であり、nは2~1000の範囲の数)で表される鎖状のポリシロキサン構造を備えた、分岐状オルガノポリシロキサン、
    (A2)ヒドロシリル化反応触媒の存在下で
    (a1)環状または直鎖状のオルガノハイドロジェンポリシロキサンと、
      (a2)少なくとも分子鎖両末端にアルケニル基を有するポリジメチルシロキサンとを、成分(a2)中の珪素原子結合水素原子1モルに対する成分(a1)中のアルケニル基のモル数が0.9~1.2となる範囲で反応させることによって得られた架橋性オルガノポリシロキサン、
    (A3)25℃で、1,000,000~20,000,000mm2/sの動粘度または可塑度を有するシリコーンガム
    および、
    (B)25℃で1~1000mm2/sの動粘度を有する非極性シリコーンオイル(ただし、上記の成分(A1)または成分(A2)に該当するものを除く)99~0質量部を含有してなり、
    当該シリコーン流体組成物がシリコーン化合物(A)と非極性シリコーンオイル(B)との混合物である場合には、両者が均一に混和していることをさらなる特徴とする、請求項1~請求項3のいずれか1項に記載のオイルミスト抑制剤。
  5. 非極性シリコーンオイル(B)が、25℃で1~100mm2/sの動粘度を有する、鎖状または環状の非極性シリコーンオイルである、請求項4に記載のオイルミスト抑制剤。
  6. 非極性シリコーンオイル(B)が、25℃で1~10mm2/sの動粘度を有する鎖状のポリジメチルシロキサン、オクタメチルシクロテトラシロキサン、およびデカメチルシクロペンタシロキサンからなる群から選ばれる1種類以上である、請求項4または請求項5に記載のオイルミスト抑制剤。
  7. (A)以下の成分(A1)、成分(A2)、成分(A3)またはこれらの2種類以上の混合物から選ばれるシリコーン化合物 1~100質量部、
    (A1)分子内にRSiO1.5(式中、Rはハロゲン原子で置換されていても良い一価の炭化水素基)で表されるT単位およびSiO2.0で表されるQ単位から選ばれる1個以上の分岐シロキサン単位、および(R SiO1.0(式中、Rはハロゲン原子で置換されていてもよい一価の炭化水素基、アルコキシ基またはシラノール基であり、nは2~1000の範囲の数)で表される鎖状のポリシロキサン構造を備えた、分岐状オルガノポリシロキサン、
    (A2)ヒドロシリル化反応触媒の存在下で
    (a1)環状または直鎖状のオルガノハイドロジェンポリシロキサンと、
      (a2)少なくとも分子鎖両末端にアルケニル基を有するポリジメチルシロキサンとを、成分(a2)中の珪素原子結合水素原子1モルに対する成分(a1)中のアルケニル基のモル数が0.9~1.2となる範囲で反応させることによって得られた架橋性オルガノポリシロキサン、
    (A3)25℃で、1,000,000~20,000,000mm2/sの動粘度または可塑度を有するシリコーンガム
    および、
    (B)25℃で1~1000mm2/sの動粘度を有する非極性シリコーンオイル(ただし、上記の成分(A1)または成分(A2)に該当するものを除く)99~0質量部を含有してなり、かつ
    上記のシリコーン化合物(A)と非極性シリコーンオイル(B)との混合物である場合には、両者が均一に混和していることをさらなる特徴とするシリコーン流体組成物であって、以下のi)およびii)の性質を備えたもののオイルミスト抑制剤としての使用。
    i) 25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルに当該シリコーン流体組成物を1.0質量%添加することにより、添加後の当該ジメチルポリシロキサンオイルの最大ラメラ長を5%以上増加させる性質;
    ii) 25℃で10.0mm2/sの動粘度を有するジメチルポリシロキサンオイルと均一に混和可能な性質
  8. 請求項1~請求項6のいずれか1項に記載のオイルミスト抑制剤を含有する、油剤。
  9. 繊維処理用油剤、紡糸用油剤または布帛処理用油剤である、請求項8に記載の油剤。
  10. 請求項1~請求項6のいずれか1項に記載のオイルミスト抑制剤を油剤に添加する工程、および
    当該油剤を他の基材に塗布する工程を含む、オイルミストの低減方法。
  11. 他の基材が繊維、紡糸または布帛である、請求項10に記載のオイルミストの低減方法。
PCT/JP2018/001487 2017-02-17 2018-01-19 オイルミスト抑制剤、それを含む油剤およびオイルミストの低減方法 WO2018150806A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018568056A JPWO2018150806A1 (ja) 2017-02-17 2018-01-19 オイルミスト抑制剤、それを含む油剤およびオイルミストの低減方法
CN201880012895.7A CN110582604A (zh) 2017-02-17 2018-01-19 油雾抑制剂、含有油雾抑制剂的润滑剂及油雾减少方法
EP18754007.5A EP3584363A4 (en) 2017-02-17 2018-01-19 OIL MIST PREVENTION, LUBRICANT THEREFORE, AND OIL MIST REDUCTION PROCESS
US16/485,876 US11414547B2 (en) 2017-02-17 2018-01-19 Oil mist inhibitor, lubricant containing same, and oil mist reduction method
KR1020197025883A KR102465478B1 (ko) 2017-02-17 2018-01-19 오일 미스트 억제제, 그것을 포함하는 유제 및 오일 미스트 저감 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-028213 2017-02-17
JP2017028213 2017-02-17

Publications (1)

Publication Number Publication Date
WO2018150806A1 true WO2018150806A1 (ja) 2018-08-23

Family

ID=63170232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001487 WO2018150806A1 (ja) 2017-02-17 2018-01-19 オイルミスト抑制剤、それを含む油剤およびオイルミストの低減方法

Country Status (6)

Country Link
US (1) US11414547B2 (ja)
EP (1) EP3584363A4 (ja)
JP (1) JPWO2018150806A1 (ja)
KR (1) KR102465478B1 (ja)
CN (1) CN110582604A (ja)
WO (1) WO2018150806A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722805A4 (en) * 2017-12-06 2021-09-15 Showa Denko K.K. METHOD OF TESTING LUBRICATING OIL COMPOSITION AND METHOD OF PREPARING LUBRICATING OIL COMPOSITION

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158938A (ja) * 1996-11-19 1998-06-16 Matsumoto Yushi Seiyaku Co Ltd 弾性繊維の油剤付与方法
JP2004501264A (ja) 2000-06-22 2004-01-15 ダウ・コーニング・コーポレイション シリコーンミスト抑制剤組成物含有コーティング
JP2004501262A (ja) 2000-06-22 2004-01-15 ダウ・コーニング・コーポレイション シリコーンミスト抑制剤組成物を含有するシリコーンコーティング
JP2006336023A (ja) 1994-12-09 2006-12-14 Dow Corning Corp エーロゾル抑制剤組成物と硬化性シリコーンコーティング組成物の製造方法
JP2010502778A (ja) 2006-09-01 2010-01-28 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド ミスト化防止成分を有する組成物
JP2010528152A (ja) * 2007-05-25 2010-08-19 ダウ・コーニング・コーポレイション 剥離コーティング組成物およびその調製方法
JP2013503878A (ja) 2009-09-03 2013-02-04 ダウ コーニング コーポレーション 粘液性シリコーン流体を含むパーソナルケア組成物
JP2013249472A (ja) * 2007-06-21 2013-12-12 Bluestar Silicones France Sas ロール装置を用いて軟質支持体を架橋性液状シリコーン組成物でコーティングする際のミストの出現を防止する方法
JP2014055265A (ja) 2012-09-13 2014-03-27 Shin Etsu Chem Co Ltd オイルミスト抑制剤
JP2016027180A (ja) 2015-11-12 2016-02-18 信越化学工業株式会社 オイルミスト抑制剤

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3030305A (en) * 1959-10-06 1962-04-17 B B Chem Co Lubricant coating compositions
US4105569A (en) * 1977-02-07 1978-08-08 George A. Goulston Co., Ltd. Yarn finish formulation
DE50201143D1 (de) * 2001-07-19 2004-11-04 Wacker Chemie Gmbh Verzweigte Organosiloxan(co)polymere und deren Verwendung als Antimisting Additive für Siliconbeschichtungszusammensetzungen
US7649071B2 (en) 2006-09-01 2010-01-19 Momentive Performance Materials Inc. Branched polysiloxane composition
CN102224188B (zh) * 2008-11-26 2013-03-27 道康宁东丽株式会社 无溶剂的形成固化的剥离涂层的有机基聚硅氧烷组合物和具有固化的剥离涂层的片材形式的基底
US10113036B2 (en) 2014-06-23 2018-10-30 Shin-Etsu Chemical Co., Ltd. Crosslinked organopolysiloxane and method for producing same, mist suppressant, and solvent-free silicone composition for release paper
JP6603951B1 (ja) 2017-12-06 2019-11-13 昭和電工株式会社 潤滑油組成物の検査方法および潤滑油組成物の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336023A (ja) 1994-12-09 2006-12-14 Dow Corning Corp エーロゾル抑制剤組成物と硬化性シリコーンコーティング組成物の製造方法
JPH10158938A (ja) * 1996-11-19 1998-06-16 Matsumoto Yushi Seiyaku Co Ltd 弾性繊維の油剤付与方法
JP2004501264A (ja) 2000-06-22 2004-01-15 ダウ・コーニング・コーポレイション シリコーンミスト抑制剤組成物含有コーティング
JP2004501262A (ja) 2000-06-22 2004-01-15 ダウ・コーニング・コーポレイション シリコーンミスト抑制剤組成物を含有するシリコーンコーティング
JP2010502778A (ja) 2006-09-01 2010-01-28 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド ミスト化防止成分を有する組成物
JP2014088556A (ja) * 2006-09-01 2014-05-15 Momentive Performance Materials Inc ミスト化防止成分を有する組成物
JP2010528152A (ja) * 2007-05-25 2010-08-19 ダウ・コーニング・コーポレイション 剥離コーティング組成物およびその調製方法
JP2013249472A (ja) * 2007-06-21 2013-12-12 Bluestar Silicones France Sas ロール装置を用いて軟質支持体を架橋性液状シリコーン組成物でコーティングする際のミストの出現を防止する方法
JP2013503878A (ja) 2009-09-03 2013-02-04 ダウ コーニング コーポレーション 粘液性シリコーン流体を含むパーソナルケア組成物
JP2014055265A (ja) 2012-09-13 2014-03-27 Shin Etsu Chem Co Ltd オイルミスト抑制剤
JP2016027180A (ja) 2015-11-12 2016-02-18 信越化学工業株式会社 オイルミスト抑制剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584363A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722805A4 (en) * 2017-12-06 2021-09-15 Showa Denko K.K. METHOD OF TESTING LUBRICATING OIL COMPOSITION AND METHOD OF PREPARING LUBRICATING OIL COMPOSITION
US11220652B2 (en) 2017-12-06 2022-01-11 Showa Denko K.K. Method for inspecting lubricating oil composition and method for producing lubricating oil composition

Also Published As

Publication number Publication date
US11414547B2 (en) 2022-08-16
KR20190111109A (ko) 2019-10-01
US20200056042A1 (en) 2020-02-20
JPWO2018150806A1 (ja) 2019-12-12
CN110582604A (zh) 2019-12-17
KR102465478B1 (ko) 2022-11-11
EP3584363A4 (en) 2020-12-30
EP3584363A1 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
JP5490539B2 (ja) シリコーンポリマーエマルション
CN103946446B (zh) 氨基官能有机硅乳液
EP0124235B1 (en) Polyorganosiloxane compositions
JP5926879B2 (ja) シール部材形成用硬化性液状シリコーンゴム組成物およびシール部材
GB1562993A (en) Organosiloxane composition for liquid injection moulding
US10232288B2 (en) Defoamer oil compound, production method therefor, and defoamer composition
KR102465478B1 (ko) 오일 미스트 억제제, 그것을 포함하는 유제 및 오일 미스트 저감 방법
EP1426413B1 (en) Hydrophilic polyorganosiloxane composition
JP2011057951A (ja) エマルジョン、その製造方法、および架橋性シリコーン組成物
EP3613720A1 (en) Water absorption preventing material for inorganic porous material, method for modifying concrete, and concrete
KR20220123407A (ko) 수성 실리콘 엘라스토머의 수분산물인 섬유 처리제 및 피막
JP3676042B2 (ja) 泡抑制剤組成物
JP6069006B2 (ja) 高い親水性を有するシリコーン印象材
CN108997929B (zh) 有机硅乳液组合物及混合物
JP7359861B2 (ja) シリコーンエラストマー組成物及びエラストマー材料
CN114174383B (zh) 缩合固化型硅酮水分散物及其制备方法以及硅酮皮膜
JP7321982B2 (ja) ミラブル型シリコーンゴム組成物及びシリコーンゴム硬化物
JP5882865B2 (ja) オイルミスト抑制剤
EP4268922A1 (en) Silicone-based defoamer composition
JP2023055188A (ja) シリコーンエマルジョン組成物及び該組成物を用いた剥離被膜の製造方法
JP2019077735A (ja) シリコーン組成物、シリコーンゴム硬化物、及び電力ケーブル
CN116457408A (zh) 有机硅系消泡剂用油复配物及其制造方法、以及包含有机硅系消泡剂用油复配物的消泡剂
JP6033390B2 (ja) オイルミスト抑制剤
JP4866691B2 (ja) 水中油型シリコーンエマルジョン金型用離型剤
JP2022085603A (ja) ミラブル型シリコーンゴム組成物及びシリコーンゴム硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018568056

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197025883

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018754007

Country of ref document: EP

Effective date: 20190917