WO2018150615A1 - 基板処理装置、反応管、半導体装置の製造方法及びプログラム - Google Patents

基板処理装置、反応管、半導体装置の製造方法及びプログラム Download PDF

Info

Publication number
WO2018150615A1
WO2018150615A1 PCT/JP2017/032706 JP2017032706W WO2018150615A1 WO 2018150615 A1 WO2018150615 A1 WO 2018150615A1 JP 2017032706 W JP2017032706 W JP 2017032706W WO 2018150615 A1 WO2018150615 A1 WO 2018150615A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reaction tube
gap
processing chamber
chamber
Prior art date
Application number
PCT/JP2017/032706
Other languages
English (en)
French (fr)
Inventor
周平 西堂
隆史 佐々木
吉田 秀成
優作 岡嶋
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to JP2019500180A priority Critical patent/JP6782350B2/ja
Priority to CN201780082079.9A priority patent/CN110121764A/zh
Priority to KR1020187011352A priority patent/KR102238585B1/ko
Publication of WO2018150615A1 publication Critical patent/WO2018150615A1/ja
Priority to US16/507,930 priority patent/US10961625B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a substrate processing apparatus, a reaction tube, a semiconductor device manufacturing method, and a program.
  • a vertical apparatus As an example of a substrate processing apparatus or a semiconductor manufacturing apparatus, a vertical apparatus is known.
  • the vertical apparatus has a boat as a substrate holding member that holds substrates (wafers) in multiple stages in a reaction tube, and batch-processes the substrates in a processing chamber in the reaction tube while holding the plurality of substrates (for example, see Patent Documents 1 and 2).
  • the pressure loss on the exhaust side (downstream of the wafer) in the reaction tube is large, so that the processing gas velocity distribution is not uniform between the wafers, and the degree of acceleration of decomposition of the processing gas may be different. .
  • a difference in film thickness may occur between the upper and lower wafers due to the difference in the degree of decomposition that occurs while passing through the wafer.
  • the processing gas velocity distribution between the wafers can be made uniform.
  • the block diagram of the controller of the substrate processing apparatus which concerns on embodiment. It is a figure which shows the analysis result which shows the mode of the flow of the gas in the reaction tube of embodiment.
  • the substrate processing apparatus in the embodiment is configured as an example of a semiconductor manufacturing apparatus used for manufacturing a semiconductor device.
  • the processing furnace 202 has a heater 207 as a heating means (heating mechanism).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • the heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) the processing gas with heat.
  • a reaction tube 203 constituting a reaction vessel (processing vessel) concentrically with the heater 207 is disposed.
  • the reaction tube 203 is made of a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC).
  • the reaction tube 203 is formed in a ceiling shape in which the lower end is opened and the upper end is closed with a flat wall.
  • a cylindrical part 209 formed in a cylindrical shape, a nozzle arrangement chamber 222 defined between the cylindrical part 209 and the reaction tube 203, and a gas supply port formed in the cylindrical part 209
  • a gas supply slit 235, a first gas exhaust port 236 formed in the cylindrical portion 209, and a second gas exhaust port 237 formed in the cylindrical portion 209 and formed below the first gas exhaust port 236 are provided.
  • the cylinder part 209 is formed in the shape of a ceiling with the lower end opened and the upper end closed with a flat wall. Further, the cylindrical portion 209 is provided so as to surround the wafer 200 in the immediate vicinity of the wafer 200.
  • a processing chamber 201 is formed inside the cylindrical portion 209 of the reaction tube 203.
  • the processing chamber 201 is configured to process a wafer 200 as a substrate. Further, the processing chamber 201 is configured to accommodate a boat 217 as a substrate holder that can hold the wafers 200 in a state where the wafers 200 are arranged in a plurality of stages in a vertical orientation in a horizontal posture.
  • the lower end of the reaction tube 203 is supported by a cylindrical manifold 226.
  • the manifold 226 is made of a metal such as nickel alloy or stainless steel, or is made of a heat resistant material such as quartz or SiC.
  • a flange is formed at the upper end portion of the manifold 226, and the lower end portion of the reaction tube 203 is installed and supported on the flange.
  • An airtight member 220 such as an O-ring is interposed between the flange and the lower end portion of the reaction tube 203 to keep the inside of the reaction tube 203 airtight.
  • a seal cap 219 is attached to the opening at the lower end of the manifold 226 through an airtight member 220 such as an O-ring, so that the opening at the lower end of the reaction tube 203, that is, the opening of the manifold 226 is airtight. It is supposed to close.
  • the seal cap 219 is made of a metal such as a nickel alloy or stainless steel, and is formed in a disk shape.
  • the seal cap 219 may be configured to cover the outside with a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC).
  • a boat support 218 that supports the boat 217 is provided on the seal cap 219.
  • the boat support 218 is made of a heat-resistant material such as quartz or SiC, and functions as a heat insulating portion and is a support that supports the boat.
  • the boat 217 is erected on the boat support 218.
  • the boat 217 is made of a heat resistant material such as quartz or SiC.
  • the boat 217 has a bottom plate that can be mounted on the boat support base 218 and a top plate disposed above, and has a configuration in which three to four columns are installed between the bottom plate and the top plate. ing. A plurality of wafers 200 are held on the boat 217.
  • the plurality of wafers 200 are loaded in multiple stages in the tube axis direction of the reaction tube 203 in a state where the wafers 200 are kept in a horizontal posture while being spaced apart from each other at the center, and are supported on the support column of the boat 217.
  • a boat rotation mechanism 267 for rotating the boat is provided on the side of the seal cap 219 opposite to the processing chamber 201.
  • a rotation shaft 265 of the boat rotation mechanism 267 passes through the seal cap and is connected to the boat support base 218.
  • the boat rotation mechanism 267 rotates the boat 217 via the boat support base 218 to rotate the wafer 200. .
  • the seal cap 219 is moved up and down in the vertical direction by a boat elevator 115 as an elevating mechanism provided outside the reaction tube 203, so that the boat 217 can be carried into and out of the processing chamber 201.
  • nozzle support portions 350 a to 350 d that support nozzles 340 a to 340 d as gas nozzles for supplying a processing gas into the processing chamber 201 are installed so as to penetrate the manifold 226.
  • four nozzle support portions 350a to 350d are installed.
  • the nozzle support portions 350a to 350d are made of a material such as nickel alloy or stainless steel.
  • Gas supply pipes 310a to 310c for supplying gas into the processing chamber 201 are connected to one ends of the nozzle support portions 350a to 350c on the reaction tube 203 side, respectively.
  • a gas supply pipe 310d for supplying gas to a gap S formed between the reaction tube 203 and the cylindrical portion 209 is connected to one end of the nozzle support portion 350d on the reaction tube 203 side.
  • nozzles 340a to 340d are connected to the other ends of the nozzle support portions 350a to 350d, respectively.
  • the nozzles 340a to 340d are made of a heat resistant material such as quartz or SiC.
  • the gas supply pipe 310a includes, in order from the upstream direction, a first processing gas supply source 360a that supplies a first processing gas, a mass flow controller (MFC) 320a that is a flow rate controller (flow rate control unit), and a valve 330a that is an on-off valve.
  • a second processing gas supply source 360b for supplying a second processing gas, an MFC 320b, and a valve 330b are provided in order from the upstream direction.
  • the gas supply pipe 310c is provided with a third processing gas supply source 360c, an MFC 320c, and a valve 330c for supplying a third processing gas in order from the upstream direction.
  • an inert gas supply source 360d for supplying an inert gas, an MFC 320d, and a valve 330d are provided in order from the upstream direction.
  • Gas supply pipes 310e and 310f for supplying an inert gas are connected to the downstream sides of the valves 330a and 330b of the gas supply pipes 310a and 310b, respectively.
  • the gas supply pipes 310e and 310f are provided with MFCs 320e and 320f and valves 330e and 330f, respectively, in order from the upstream direction.
  • the first process gas supply system is mainly configured by the gas supply pipe 310a, the MFC 320a, and the valve 330a.
  • the first process gas supply source 360a, the nozzle support part 350a, and the nozzle 340a may be included in the first process gas supply system.
  • a second processing gas supply system is mainly configured by the gas supply pipe 310b, the MFC 320b, and the valve 330b.
  • the second process gas supply source 360b, the nozzle support part 350b, and the nozzle 340b may be included in the second process gas supply system.
  • a third processing gas supply system is mainly configured by the gas supply pipe 310c, the MFC 320c, and the valve 330c.
  • the third processing gas supply source 360c, the nozzle support 350c, and the nozzle 340c may be included in the third processing gas supply system.
  • an inert gas supply system is mainly configured by the gas supply pipe 310d, the MFC 320d, and the valve 330d.
  • the inert gas supply source 360d, the nozzle support part 350d, and the nozzle 340d may be included in the inert gas supply system.
  • processing gas when only the first processing gas is included, when only the second processing gas is included, when only the third processing gas is included, only the inert gas is included. Or all of them.
  • an inert gas is included when only the first processing gas supply system is included, when only the second processing gas supply system is included, or when only the third processing gas supply system is included. It may include only the supply system or all of them.
  • An exhaust port 230 is formed in the reaction tube 203.
  • the exhaust port 230 is formed below the second gas exhaust port 237 and is connected to the exhaust pipe 231.
  • the exhaust pipe 231 is evacuated via a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit).
  • a vacuum pump 246 serving as an exhaust device is connected, and the processing chamber 201 can be evacuated so that the pressure in the processing chamber 201 becomes a predetermined pressure (degree of vacuum).
  • the exhaust pipe 231 on the downstream side of the vacuum pump 246 is connected to a waste gas treatment device (not shown) or the like.
  • the APC valve 244 can open and close the valve to stop evacuation / evacuation in the processing chamber 201, and further adjust the valve opening to adjust conductance to adjust the pressure in the processing chamber 201. It is an open / close valve.
  • An exhaust system that functions as an exhaust unit is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245. Note that the vacuum pump 246 may be included in the exhaust system.
  • a temperature sensor (not shown) as a temperature detector is installed in the reaction tube 203. By adjusting the power supplied to the heater 207 based on the temperature information detected by the temperature sensor, the temperature in the processing chamber 201 is increased.
  • the temperature is configured to have a desired temperature distribution.
  • the boat 217 in a state where a plurality of batch-processed wafers 200 are stacked on the boat 217, the boat 217 is inserted into the processing chamber 201 while being supported by the boat support 218, and the heater 207 is installed.
  • the wafer 200 inserted into the processing chamber 201 is heated to a predetermined temperature.
  • a plurality of gas supply slits 235 for supplying a processing gas into the processing chamber 201 are formed in the cylindrical portion 209.
  • the gas supply slit 235 communicates the nozzle arrangement chamber 222 and the processing chamber 201.
  • the nozzle arrangement chamber (supply buffer) 222 is formed between the outer surface of the cylindrical portion 209 and the inner surface of the reaction tube 203.
  • the wall of the nozzle arrangement chamber 222 is formed concentrically with the reaction tube 203 as a part of the wall of the reaction tube 203. Further, the wall of the nozzle arrangement chamber 222 is formed concentrically with the cylinder part 209 as a part of the wall of the cylinder part 209.
  • the nozzle arrangement chamber 222 has a ceiling shape in which the lower end is opened and a part (or all) of the upper end is closed with a flat plate. Further, the upper end of the ceiling portion of the nozzle arrangement chamber 222 is the same height as the upper end of the ceiling portion of the tube portion 209.
  • the cylinder portion 209 and the ceiling portion of the reaction tube 203 are integrally formed.
  • cylindrical portion 209 is disposed concentrically with the reaction tube 203, and a gap S is formed between the cylindrical portion 209 and the reaction tube 203.
  • an inner wall 248 that divides the inner space of the nozzle arrangement chamber 222 into a plurality of spaces is formed inside the nozzle arrangement chamber 222.
  • the inner wall 248 is formed of the same material as that of the reaction tube 203, and is formed of a heat resistant material such as quartz or SiC, for example.
  • the two inner walls 248 that divide the inside of the nozzle arrangement chamber 222 are provided so as to divide the nozzle arrangement chamber 222 from the lower end side to the upper end side to form three isolated spaces.
  • nozzles 340a to 340c are installed in each space of the nozzle arrangement chamber 222. Since the nozzles 340 a to 340 c are installed in independent spaces by the inner wall 248, it is possible to suppress the processing gas supplied from the nozzles 340 a to 340 c from being mixed in the nozzle arrangement chamber 222. With such a configuration, it is possible to prevent the processing gas from being mixed in the nozzle arrangement chamber 222 to form a thin film or to generate a by-product.
  • a nozzle 340d is installed in the gap S between the tube portion 209 and the reaction tube 203 along the length direction (vertical direction).
  • the gap S is formed in an annular shape so as to surround the cylindrical portion 209 in a sectional view.
  • the width of the gap S is larger than the width W (FIG. 5) of the gap between the cylindrical portion 209 and the wafer 200.
  • the width of the gap S is set to be larger than twice W.
  • the nozzles 340a to 340c are provided above the lower part in the nozzle arrangement chamber 222, and the nozzle 340d is provided above the lower part in the gap S along the length direction (vertical direction).
  • the nozzles 340a to 340d are each configured as an I-shaped long nozzle.
  • Gas supply holes 234a to 234d for supplying gas are provided on the side surfaces of the nozzles 340a to 340d, respectively.
  • the gas supply holes 234a to 234c are opened to face the center of the reaction tube 203, and the gas supply holes 234d are opened to face the circumferential direction of the reaction tube 203.
  • the nozzle arrangement chamber 222 is provided with the three nozzles 340 a to 340 c so that a plurality of types of gases can be supplied into the processing chamber 201.
  • a nozzle 340d is provided in the gap S so that an inert gas (purge gas) can be supplied into the gap S.
  • a first gas exhaust port 236 is formed on the other side of the cylinder portion 209 facing the one side where the nozzle arrangement chamber 222 is formed.
  • the first gas exhaust port 236 is arranged so as to sandwich an area where the wafer 200 of the processing chamber 201 is accommodated between the first gas exhaust port 236 and the nozzle arrangement chamber 222.
  • the first gas exhaust port 236 is formed in a region (wafer region) from the lower end side to the upper end side where the wafer 200 is accommodated in the processing chamber 201.
  • a second gas exhaust port 237 is formed on the side surface of the cylindrical portion 209 below the first gas exhaust port 236. Further, the exhaust pipe 231 opens in the same direction as the second gas exhaust port 237 at a position near the lower end of the reaction tube 203.
  • the first gas exhaust port 236, the second gas exhaust port 237, and the exhaust port 237 are provided on the side opposite to the gas supply slit as viewed from the center of the cylindrical portion 209. That is, the first gas exhaust port 236 is a gas exhaust port that communicates the processing chamber 201 with the gap S and exhausts the atmosphere in the processing chamber 201 to the gap S.
  • the gas exhausted from the first gas exhaust port 236 passes from the exhaust pipe 231 to the outside of the reaction tube 203 via the exhaust port 230 via the gap S on the back side of the cylindrical portion 209 (between the cylindrical portion 209 and the reaction tube 203). Is exhausted.
  • the second gas exhaust port 237 exhausts the atmosphere (mainly purge gas) below the processing chamber 201 to the gap S.
  • the gas after passing through the wafer is exhausted through the entire back side of the cylindrical portion, thereby reducing the difference between the pressure in the exhaust portion and the pressure in the wafer region and minimizing the pressure loss. it can.
  • the pressure in the wafer region can be lowered with a minimum pressure loss, the flow velocity in the wafer region can be increased, and the loading effect can be reduced.
  • FIG. 4 is a diagram showing the configuration of the gas supply slit 235, and the description of the boat 217 and the like is omitted.
  • the gas supply slits 235 are formed in a matrix of a plurality of rows and columns in the vertical and horizontal directions.
  • a plurality of horizontally long slits are formed in the vertical direction facing each space partitioned by the inner wall 248 in the nozzle arrangement chamber 222.
  • the gas supply efficiency can be improved.
  • the gas supply slit 235 may be formed in a horizontally long shape except for a connecting portion between the inner wall 248 and the cylindrical portion 209, so that the gas supply efficiency is improved.
  • the number of rows of gas supply slits 235 is the same as the number of partitioned spaces. In the present embodiment, three rows of gas supply slits 235 are formed corresponding to the three partitioned spaces.
  • the gas supply holes 234a to 234c, the corresponding gas supply slit 235, and the first gas exhaust port 236 are on a straight line, and each straight line passes through the approximate center of the processing chamber 201.
  • the gas supply slit 235 is formed smoothly so that the edges as the four corners are curved.
  • R scribing or the like By performing R scribing or the like on the edge part to make it curved, it is possible to suppress stagnation of gas around the edge part, to suppress film formation on the edge part, and to be formed on the edge part. The film peeling of the film can be suppressed.
  • an opening 256 for installing the nozzles 340a to 340c in the nozzle arrangement chamber 222 is formed at the lower end of the side surface of the cylinder portion 209 on the nozzle arrangement chamber 222 side.
  • the nozzles 340a to 340c are fixed to the manifold 226 in a state where the nozzles 340a to 340c are attached to the nozzle support portions 350a to 350c at the lower ends thereof.
  • the nozzle support portions 350a to 350c have a two-piece configuration including a portion where the nozzles 340a to 340c are mounted in advance and a portion fixed to the manifold 226 in advance.
  • the nozzles are installed by inserting the nozzles 340a to 340c into the spaces from below the opening 256, fitting the two pieces, and fixing them with bolts or the like.
  • a component (not shown) for finely adjusting the position and angle can be used as appropriate.
  • the inner wall 248 in the nozzle arrangement chamber 222 is formed from the ceiling of the nozzle arrangement chamber 222 to the upper part of the lower end of the reaction tube 203. Specifically, the lower end of the inner wall 248 is formed below the upper end of the opening 256. The lower end of the inner wall 248 is formed as a region above the lower end portion of the reaction tube 203 and below the upper end portion of the nozzle support portion 350.
  • the gas supply slits 235 are formed so as to be arranged between adjacent wafers 200 mounted in a plurality of stages on the boat 217 accommodated in the processing chamber 201.
  • the boat 217 will be omitted.
  • the gas supply holes 234a to 234c of the nozzles 340a to 340c are preferably formed in the central part of the vertical width of each gas supply slit 235 so as to correspond to each gas supply slit 235 one by one.
  • each of the 26 gas supply holes 234a to 234c may be formed.
  • the gas supply slit 235 and the gas supply holes 234a to 234c are preferably formed by the number of wafers 200 to be mounted + 1.
  • the first gas exhaust port 236 is formed in the wafer region of the cylindrical portion 209, and the processing chamber 201 and the gap S communicate with each other.
  • the second gas exhaust port 237 is formed from a position higher than the upper end of the gas exhaust port 230 to a position higher than the lower end of the exhaust port 230.
  • the controller 280 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • an input / output device 122 configured as a touch panel or the like is connected to the controller 280.
  • the storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner.
  • the process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 280 to execute each procedure in the substrate processing process described later, and functions as a program.
  • process recipes, control programs, and the like are collectively referred to simply as programs.
  • program When the term “program” is used in this specification, it may include only a process recipe alone, only a control program alone, or both.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d is connected to the above-described MFCs 320a to 320f, valves 330a to 330f, pressure sensor 245, APC valve 244, vacuum pump 246, heater 207, temperature sensor, boat rotation mechanism 267, boat elevator 115, and the like. .
  • the CPU 121a is configured to read and execute a control program from the storage device 121c, and to read a process recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rates of various gases by the MFCs 320a to 320f, the opening and closing operations of the valves 330a to 330f, the opening and closing operations of the APC valve 244, and the pressure by the APC valve 244 based on the pressure sensor 245 in accordance with the contents of the read process recipe.
  • the controller 280 is not limited to being configured as a dedicated computer, and may be configured as a general-purpose computer.
  • an external storage device for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory
  • the controller 280 of this embodiment can be configured by installing a program on a general-purpose computer.
  • the means for supplying the program to the computer is not limited to supplying the program via the external storage device 123.
  • the program may be supplied without using the external storage device 123 by using communication means such as the Internet or a dedicated line.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the substrate processing apparatus is controlled by the controller 280.
  • a boat 217 on which a predetermined number of wafers 200 are placed is inserted into the reaction tube 203, and the reaction tube 203 is airtightly closed by the seal cap 219.
  • the wafer 200 is heated and a processing gas is supplied into the reaction tube 203, so that the wafer 200 is subjected to heat treatment such as heating.
  • NH 3 gas as the first processing gas, HCDS gas as the second processing gas, and N 2 gas as the third processing gas are alternately supplied (HCDS gas supply ⁇ N 2 purge ⁇ NH 3 gas supply). ⁇ the N 2 purge is repeated a predetermined number of times the cycle as one cycle) by, forming a SiN film on the wafer 200.
  • the processing conditions are, for example, as follows. Temperature of wafer 200: 100 to 600 ° C. Processing chamber pressure: 1 to 3000 PaHCDS gas supply flow rate: 1 to 2000 sccm NH 3 gas supply flow rate: 100 to 10000 sccm N 2 gas supply flow rate: 10 to 10000 sccm SiN film thickness: 0.2 to 10 nm
  • HCDS gas is supplied into the processing chamber 201 from the gas supply pipe 310b of the second processing gas supply system through the gas supply hole 234b of the nozzle 340b and the gas supply slit 235.
  • the valves 330b and 330f the supply of the HCDS gas into the processing chamber 201 from the gas supply pipe 310b is started together with the carrier gas.
  • the opening degree of the APC valve 244 is adjusted to maintain the pressure in the processing chamber 201 at a predetermined pressure.
  • the valve 330b is closed and the supply of HCDS gas is stopped.
  • the HCDS gas supplied into the processing chamber 201 is supplied to the wafer 200, flows in parallel on the wafer 200, and then flows from the upper part to the lower part through the gap S through the first gas exhaust port 236.
  • the exhaust pipe 231 is exhausted through the exhaust port 237 and the exhaust port 230.
  • the HCDS gas can be prevented from flowing into the gas supply pipes 310a, 310c, and 310d.
  • the processing chamber 201 is evacuated to remove HCDS gas, reaction products, and the like remaining in the processing chamber 201.
  • inert gas such as N 2 is supplied into the processing chamber 201 and the gap S from the gas supply pipes 310a, 310b, 310c, and 310d and purged, the residual gas from the processing chamber 201 and the gap S is removed. The effect to do can be further enhanced.
  • NH 3 gas gas is supplied into the processing chamber 201 from the gas supply pipe 310a of the first processing gas supply system through the gas supply hole 234a and the gas supply slit 235 of the nozzle 340a.
  • the valves 330a and 330e the supply of NH 3 gas into the processing chamber 201 from the gas supply pipe 310a is started together with the carrier gas.
  • the opening degree of the APC valve 244 is adjusted to maintain the pressure in the processing chamber 201 at a predetermined pressure.
  • the valve 330a is closed and the supply of NH 3 gas is stopped.
  • the NH 3 gas supplied into the processing chamber 201 is supplied to the wafer 200, flows in parallel on the wafer 200, and then flows from the upper part to the lower part through the gap S through the first gas exhaust port 236.
  • the gas is exhausted from the exhaust pipe 231 through the gas exhaust port 237 and the exhaust port 230.
  • the processing chamber 201 is evacuated to remove NH 3 gas, reaction products, and the like remaining in the processing chamber 201. .
  • inert gas such as N 2 is supplied into the processing chamber 201 and the gap S from the gas supply pipes 310a, 310b, 310c, and 310d and purged, the residual gas from the processing chamber 201 and the gap S is removed. The effect to do can be further enhanced.
  • the boat 217 is unloaded from the reaction tube 203 by the reverse procedure of the above-described operation.
  • the wafer 200 is transferred from the boat 217 to the pod of the transfer shelf by a wafer transfer device (not shown), the pod is transferred from the transfer shelf to the pod stage by the pod transfer device, and the housing is transferred by the external transfer device. It is carried out of the body.
  • the nozzle arrangement chamber 222 is divided into three spaces, but may be divided into two spaces or may be divided into four or more spaces. Depending on the number of nozzles required for the desired thermochemical treatment, the number of compartments can be varied. If the gases do not react with each other, a plurality of nozzles may be arranged in one section. Although one nozzle 340d is disposed in the gap S between the cylindrical portion 209 and the reaction tube 203, the present invention is not limited to this, and two or more nozzles may be disposed.
  • each nozzle shape can be changed.
  • the gas supply holes of the nozzle are not limited to the pores provided for each wafer, and may be slits extending across a plurality of wafers in the longitudinal direction of the nozzle.
  • the processing gas is diffused in the space, and the processing gas is uniformly distributed from each gas supply slit. May be able to be supplied.
  • the nozzle may be a simple pipe having a length that does not reach the position of the lowermost gas supply slit and having an open end.
  • the nozzle arrangement chamber 222 is not limited to a wall having a common wall with the cylindrical portion on the inner peripheral side thereof, and all of the inner peripheral side may be open to the processing chamber 201. Similarly, the nozzle arrangement chamber 222 is not limited to having a common wall with the reaction tube on the outer peripheral side, and may have a unique wall. For example, the nozzle arrangement chamber 222 can be constituted by a pocket in which a cylindrical portion is expanded outward.
  • (A) It is possible to make the velocity distribution between the wafers uniform by minimizing the pressure loss downstream of the wafer. That is, the pressure loss can be minimized by exhausting the gas after passing through the wafer through the back side of the cylindrical portion, thereby reducing the pressure in the wafer region and lowering the pressure in the wafer region. As a result, the flow velocity in the wafer region can be increased and the loading effect can be mitigated.
  • the ratio of the gas flowing into the wafer surface can be increased.
  • the gas inflow rate of about 6% can be improved to about 50% by using it.
  • FIG. 7 is a diagram showing the result of analyzing the gas flow using the reaction tube 203 in the present embodiment.
  • the gas supplied from the nozzle 340 passes between the wafers 200 in the processing chamber 201 and passes through the first gas exhaust port 236, the back side of the cylindrical portion 209, and the second gas exhaust port 237.
  • the exhaust gas is exhausted from the exhaust pipe 231. That is, it was confirmed that by forming the first gas exhaust port 236 from the lower end side of the wafer 200 to the wafer region on the upper end side, the gas passage cross-sectional area is increased, so that the pressure loss can be reduced.
  • FIG. 8A is a diagram showing the pressure distribution in the reaction tube in the comparative example
  • FIG. 8B is a diagram showing the pressure distribution in the reaction tube 203 in the present embodiment.
  • the reaction tube in the comparative example shown in FIG. 8A is different from the reaction tube in the present embodiment in the configuration of the gas exhaust port formed in the cylindrical portion.
  • a gas exhaust slit having the same shape as the gas supply slit is provided at a position corresponding to the gas supply slit.
  • the pressure in the wafer region is 15 Pa due to pressure loss even if the pressure is set to 5 Pa by the exhaust part of the APC valve 244, the pressure sensor 245, the vacuum pump 246, and the like. turn into.
  • the pressure in the wafer region can be 10 Pa even if it is set to 5 Pa by the exhaust part, and the pressure loss is lower than that in the comparative example. 5 Pa could be reduced.
  • the flow velocity on the wafer is inversely proportional to the pressure on the wafer, it is confirmed that the flow velocity on the wafer of the reaction tube in this embodiment is 1.5 times the flow velocity on the wafer of the reaction tube in the comparative example. It was done.
  • FIG. 9 is a diagram comparing the flow velocity distribution at the center of the wafer when the film forming process is performed using the reaction tube in the present embodiment and the reaction tube in the comparative example.
  • FIG. 10 is a diagram showing a comparison of raw material partial pressure distributions when film formation is performed using the reaction tube in the present embodiment and the reaction tube in the comparative example.
  • the gas velocity distribution at the upper and lower wafer centers was ⁇ 8.07%, and the flow velocity distribution was not uniform. That is, in the comparative example, a pressure loss occurs, and the flow velocity of the lower wafer is larger than that of the upper wafer.
  • the raw material partial pressure distribution at the wafer center in the upper and lower stages is ⁇ 1.65%, and the upper wafer is thicker than the lower wafer.
  • Examples of the film forming process performed by the substrate processing apparatus include CVD, PVD, ALD, Epi, other processes for forming an oxide film and a nitride film, and processes for forming a film containing a metal. Further, annealing treatment, oxidation treatment, diffusion treatment or the like may be performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

反応管内の処理ガスの速度分布をウエハ間で均一にする技術が開示される。装置は、複数枚の基板を保持する基板保持具と、反応管内部に設置され、基板保持具を収容して基板を処理する処理室を有する筒部と、反応管と筒部との間隙を区画して設けられたノズル配置室と、ノズル配置室内に配置され、処理室内に処理ガスを供給するガスノズルと、ノズル配置室と処理室とが連通するように筒部に形成されるガス供給口と、間隙と処理室とを連通させるように筒部に形成され、処理室内の雰囲気を間隙に排気するガス排気口と、反応管に接続され、間隙内の雰囲気を排気する排気部と、を備える。

Description

基板処理装置、反応管、半導体装置の製造方法及びプログラム
 本発明は、基板処理装置、反応管、半導体装置の製造方法及びプログラムに関する。
 基板処理装置若しくは半導体製造装置の一例として、縦型装置が知られている。縦型装置は、反応管内に、基板(ウエハ)を多段に保持する基板保持部材としてのボートを有し、この複数の基板を保持した状態で反応管内の処理室にて基板をバッチ処理する(例えば特許文献1及び2参照)。
特開2010-147432号公報 国際特開第2015/041376号公報
 しかしながら、縦型装置では、反応管内における排気側(ウエハ下流)における圧力損失が大きく、そのために処理ガスの速度分布がウエハ間で均一ではなくなり、処理ガスの分解の促進度合が異なることがあった。このため、ウエハを通過している間に生じる分解度合いの差によって、上下段のウエハ間で膜厚差が生じてしまうということがあった。
 本発明は、ウエハ間の処理ガスの速度分布を均一とすることが可能な技術を提供することを目的とする。
 本発明の一態様によれば、
 複数枚の基板を保持する基板保持具(217)と、
 反応管内部に設置され、前記基板保持具を収容して前記基板を処理する処理室を有する筒部(209)と、
 前記反応管と前記筒部との間隙を区画して設けられたノズル配置室(222)と、
 前記ノズル配置室内に配置され、前記処理室内に処理ガスを供給するガスノズル(340a-340c)と、
 前記ノズル配置室と前記処理室とが連通するように前記筒部に形成されるガス供給口(235)と、
 前記間隙と前記処理室とを連通させるように前記筒部に形成され、前記処理室内の雰囲気を前記間隙に排気するガス排気口(236,237)と、
 前記反応管に接続され、前記間隙内の雰囲気を排気する排気部(230,231)と、を備える技術が提供される。
 本発明によれば、ウエハ間の処理ガスの速度分布を均一とすることができる。
実施形態に係る基板処理装置の縦型処理炉の縦断面図である。 実施形態に係る基板処理装置の反応管の横断面図である。 実施形態に係る基板処理装置の反応管の斜視断面図である。 実施形態に係る基板処理装置の反応管部分の縦断面図である。 実施形態に係る基板処理装置の反応管の上部を拡大した拡大図である。 実施形態に係る基板処理装置のコントローラのブロック図。 実施形態の反応管内のガスの流れの様子を示す解析結果を示す図である。 実施形態に係る基板処理装置と比較例に係る基板処理装置の反応管内の圧力分布を示す図である。 本実施形態に係る基板処理装置と比較例に係る基板処理装置の反応管内のウエハ中心のガス速度分布を示す図である。 本実施形態に係る基板処理装置と比較例に係る基板処理装置の反応管内のウエハ中心の原料分圧分布を示す図である。
 以下、本発明の実施形態について、図1を用いて説明する。実施形態における基板処理装置は、半導体装置の製造に使用される半導体製造装置の一例として構成されている。
 図1に示すように、処理炉202は加熱手段(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、処理ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
 ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成する反応管203が配設されている。反応管203は、例えば石英(SiO2)または炭化シリコン(SiC)等の耐熱性材料により構成されている。反応管203は、下端部が開放され、上端部が平坦状の壁体で閉塞された有天井の形状で形成されている。反応管203の内部には、円筒状に形成された筒部209と、筒部209と反応管203の間に区画されたノズル配置室222と、筒部209に形成されたガス供給口としてのガス供給スリット235と、筒部209に形成された第1ガス排気口236と、筒部209に形成され、第1ガス排気口236の下方に形成された第2ガス排気口237を備えている。筒部209は、下端部が開放され、上端部が平坦状の壁体で閉塞された有天井の形状で形成されている。また、筒部209は、ウエハ200の直近にウエハ200を囲むように設けられている。反応管203の筒部209の内部には、処理室201が形成されている。処理室201は、基板としてのウエハ200を処理可能に構成されている。また、処理室201は、ウエハ200を水平姿勢で垂直方向に多段に整列した状態で保持可能な基板保持具としてのボート217を収容可能に構成されている。
 反応管203の下端は、円筒体状のマニホールド226によって支持されている。マニホールド226は、例えばニッケル合金やステンレス等の金属で構成されるか、若しくは石英またはSiC等の耐熱性材料で構成されている。マニホールド226の上端部にはフランジが形成されており、このフランジ上に反応管203の下端部を設置して支持する。このフランジと反応管203の下端部との間にはOリング等の気密部材220を介在させて反応管203内を気密状態にしている。
 マニホールド226の下端の開口部には、シールキャップ219がOリング等の気密部材220を介して気密に取り付けられており、反応管203の下端の開口部側、すなわちマニホールド226の開口部を気密に塞ぐようになっている。シールキャップ219は、例えばニッケル合金やステンレス等の金属で構成され、円盤状に形成されている。シールキャップ219は、石英(SiO2)または炭化シリコン(SiC)等の耐熱性材料でその外側を覆うように構成されてもよい。
 シールキャップ219上にはボート217を支持するボート支持台218が設けられている。ボート支持台218は、例えば石英やSiC等の耐熱性材料で構成され断熱部として機能すると共にボートを支持する支持体となっている。ボート217は、ボート支持台218上に立設されている。ボート217は例えば石英やSiC等の耐熱性材料で構成されている。ボート217はボート支持台218に搭載可能な底板と、上方に配置された天板とを有しており、底板と天板との間に3~4本の支柱が架設された構成を有している。ボート217には複数枚のウエハ200が保持されている。複数枚のウエハ200は、互いに一定の間隔をあけながら水平姿勢を保持しかつ互いに中心を揃えた状態で反応管203の管軸方向に多段に積載されボート217の支柱に支持されている。
 シールキャップ219の処理室201と反対側にはボートを回転させるボート回転機構267が設けられている。ボート回転機構267の回転軸265はシールキャップを貫通してボート支持台218に接続されており、ボート回転機構267によって、ボート支持台218を介してボート217を回転させることでウエハ200を回転させる。
 シールキャップ219は反応管203の外部に設けられた昇降機構としてのボートエレベータ115によって垂直方向に昇降され、これによりボート217を処理室201内に対し搬入搬出することが可能となっている。
 マニホールド226には、処理室201内に処理ガスを供給するガスノズルとしてのノズル340a~340dを支持するノズル支持部350a~350dが、マニホールド226を貫通するようにして設置されている。ここでは、4本のノズル支持部350a~350dが設置されている。ノズル支持部350a~350dは、例えばニッケル合金やステンレス等の材料により構成されている。ノズル支持部350a~350cの反応管203側の一端には処理室201内へガスを供給するガス供給管310a~310cがそれぞれ接続されている。また、ノズル支持部350dの反応管203側の一端には反応管203と筒部209の間に形成される間隙Sへガスを供給するガス供給管310dが接続されている。また、ノズル支持部350a~350dの他端にはノズル340a~340dがそれぞれ接続されている。ノズル340a~340dは、例えば石英またはSiC等の耐熱性材料により構成されている。
 ガス供給管310aには、上流方向から順に、第1処理ガスを供給する第1処理ガス供給源360a、流量制御器(流量制御部)であるマスフローコントローラ(MFC)320aおよび開閉弁であるバルブ330aがそれぞれ設けられている。ガス供給管310bには、上流方向から順に、第2処理ガスを供給する第2処理ガス供給源360b、MFC320bおよびバルブ330bがそれぞれ設けられている。ガス供給管310cには、上流方向から順に、第3処理ガスを供給する第3処理ガス供給源360c、MFC320cおよびバルブ330cがそれぞれ設けられている。ガス供給管310dには、上流方向から順に、不活性ガスを供給する不活性ガス供給源360d、MFC320dおよびバルブ330dがそれぞれ設けられている。ガス供給管310a,310bのバルブ330a,330bよりも下流側には、不活性ガスを供給するガス供給管310e,310fがそれぞれ接続されている。ガス供給管310e,310fには、上流方向から順に、MFC320e,320fおよびバルブ330e,330fがそれぞれ設けられている。
 主に、ガス供給管310a、MFC320a、バルブ330aにより第1処理ガス供給系が構成される。第1処理ガス供給源360a、ノズル支持部350a、ノズル340aを第1処理ガス供給系に含めて考えても良い。また、主に、ガス供給管310b、MFC320b、バルブ330bにより第2処理ガス供給系が構成される。第2処理ガス供給源360b、ノズル支持部350b、ノズル340bを第2処理ガス供給系に含めて考えても良い。また、主に、ガス供給管310c、MFC320c、バルブ330cにより第3処理ガス供給系が構成される。第3処理ガス供給源360c、ノズル支持部350c、ノズル340cを第3処理ガス供給系に含めて考えても良い。また、主に、ガス供給管310d、MFC320d、バルブ330dにより不活性ガス供給系が構成される。不活性ガス供給源360d、ノズル支持部350d、ノズル340dを不活性ガス供給系に含めて考えても良い。なお、本明細書において、処理ガスという言葉を用いた場合は、第1処理ガスのみを含む場合、第2処理ガスのみを含む場合、第3処理ガスのみを含む場合、不活性ガスのみを含む場合、もしくはそれら全てを含む場合がある。また、処理ガス供給系という言葉を用いた場合は、第1処理ガス供給系のみを含む場合、第2処理ガス供給系のみを含む場合、第3処理ガス供給系のみを含む場合、不活性ガス供給系のみを含む場合、もしくはそれら全てを含む場合がある。
 反応管203には排気口230が形成されている。排気口230は、第2ガス排気口237よりも下方に形成され、排気管231に接続されている。排気管231には処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して真空排気装置としての真空ポンプ246が接続されており、処理室201内の圧力が所定の圧力(真空度)となるよう真空排気し得るように構成されている。真空ポンプ246の下流側の排気管231は廃ガス処理装置(図示せず)等に接続されている。なお、APCバルブ244は、弁を開閉して処理室201内の真空排気・真空排気停止ができ、更に弁開度を調節してコンダクタンスを調整して処理室201内の圧力調整をできるようになっている開閉弁である。主に、排気管231、APCバルブ244、圧力センサ245により排気部として機能する排気系が構成される。なお、真空ポンプ246を排気系に含めてもよい。
 反応管203内には温度検出器としての温度センサ(不図示)が設置されており、温度センサにより検出された温度情報に基づきヒータ207への供給電力を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。
 以上の処理炉202では、バッチ処理される複数枚のウエハ200がボート217に対し多段に積載された状態において、ボート217がボート支持台218で支持されながら処理室201に挿入され、ヒータ207が処理室201に挿入されたウエハ200を所定の温度に加熱するようになっている。
 次に、本実施形態にて好適に用いられる反応管203の構成について、図2~図5を参照して説明する。なお、図3においては、ノズル340、ボート217等の記載を省略している。
 図2及び図3に示すように、筒部209には、処理室201内に処理ガスを供給するためのガス供給スリット235が複数形成されている。ガス供給スリット235は、ノズル配置室222と処理室201とを連通している。ノズル配置室(供給バッファ)222は、筒部209の外面と反応管203の内面の間に区画して形成されている。ノズル配置室222の壁は、反応管203の壁の一部として、反応管203と同心円状に形成されている。また、ノズル配置室222の壁は、筒部209の壁の一部として、筒部209と同心円状に形成されている。このような構成により、ウエハ表面に流入するガスの割合を高くすることができる。また、ノズル配置室222は、下端部が開放され、上端の一部(もしくは全部)が平坦状の板で閉塞された有天井の形状で構成されている。また、ノズル配置室222の天井部の上端は筒部209の天井部の上端と同じ高さである。筒部209と反応管203の天井部は一体に構成されている。
 また、筒部209は、反応管203と同心円状に配設され、筒部209と反応管203の間には、間隙Sが形成されている。
 図2及び図3に示すように、ノズル配置室222の内部には、ノズル配置室222内空間を複数の空間に区画する内壁248が形成されている。内壁248は、反応管203と同一材料で形成され、例えば、石英またはSiC等の耐熱性材料から形成されている。
 ノズル配置室222内を区画する2つの内壁248は、ノズル配置室222を下端側から上端側に至るまで区画し、それぞれ隔離した3つの空間を形成するように設けられている。ノズル配置室222の各空間には、ノズル340a~340cがそれぞれ設置されている。内壁248により、各ノズル340a~340cはそれぞれ独立した空間内に設置されるため、各ノズル340a~340cから供給される処理ガスがノズル配置室222内で混ざり合う事を抑制することができる。このような構成により、ノズル配置室222内で処理ガスが混ざり合って薄膜が形成されたり、副生成物が生成されたりすることを抑制することができる。
 また、筒部209と反応管203の間の間隙Sには、その長さ方向(上下方向)に沿ってノズル340dが設置されている。間隙Sは、断面視において、筒部209を囲うように環状に形成されている。間隙Sの幅は、筒部209とウェハ200の間の隙間の幅W(図5)よりも大きい。一例として、間隙Sの幅はWの2倍より大きく設定される。
 ノズル340a~340cはノズル配置室222内の下部より上部に、ノズル340dは間隙S内の下部より上部に、その長さ方向(上下方向)に沿って設けられている。ノズル340a~340dは、I字型のロングノズルとしてそれぞれ構成されている。ノズル340a~340dの側面には、ガスを供給するガス供給孔234a~234dがそれぞれ設けられている。ガス供給孔234a~234cは、それぞれ反応管203の中心を向くように開口し、ガス供給孔234dは、反応管203の周方向を向くように開口している。このように、ノズル配置室222には、3本のノズル340a~340cが設けられており、処理室201内へ複数種類のガスを供給することができるように構成されている。また、間隙Sには、ノズル340dが設けられており、間隙S内へ不活性ガス(パージガス)を供給することができるように構成されている。このような構成により、筒部裏側を効率的にパージすることができ、筒部裏側のガスの滞留が抑制され、パージ時間を短縮することができる。さらに、筒部裏側のガスの滞留が抑制されることにより、パーティクルを低減することができる。また、筒部裏側からパージガスを供給することにより、高圧プロセス時の処理室201内の昇圧をアシストすることができる。
 筒部209のノズル配置室222が形成された一側面に対向する他側面に、第1ガス排気口236が形成される。第1ガス排気口236は、ノズル配置室222との間に処理室201のウエハ200が収容される領域を挟むように配置されている。そして第1ガス排気口236は、処理室201のウエハ200が収容される下端側から上端側に至るまでの領域(ウエハ領域)に形成されている。また、筒部209の第1ガス排気口236の下方の側面に、第2ガス排気口237が形成されている。また排気管231は、反応管203の下端寄りの位置で、第2ガス排気口237と同じ方向に開口している。このように、第1ガス排気口236、第2ガス排気口237及び排気口237は、筒部209の中心からみて、ガス供給スリットとは反対側に設けられる。つまり、第1ガス排気口236は、処理室201と間隙Sとを連通し、処理室201内の雰囲気を間隙Sに排気するガス排気口である。第1ガス排気口236から排気されたガスは、筒部209の裏側(筒部209と反応管203の間)の間隙Sを経由して排気口230を介して排気管231から反応管203外へ排気される。また第2ガス排気口237は、処理室201下方の雰囲気(主にパージガス)を間隙Sへ排気する。このような構成により、ウエハ通過後のガスが筒部裏側全体を経由して排気することにより、排気部の圧力とウエハ領域の圧力との差を小さくして圧力損失を最小限とすることができる。そして、最小限の圧力損失により、ウエハ領域の圧力を下げることができ、ウエハ領域の流速を上げ、ローディング効果を緩和することができる。
 図4は、ガス供給スリット235の構成を示す図であって、ボート217等の記載は省略している。図4に示すように、ガス供給スリット235は、上下左右方向に複数段、複数列のマトリクス状に形成されている。ノズル配置室222内の内壁248で区画された各空間それぞれに対向した横長のスリットが上下方向に複数形成されている。
 好適には、ガス供給スリット235の筒部209周方向の長さはノズル配置室222内の各空間の周方向の長さと同じにするとガス供給効率が向上するので良い。また、好適には、ガス供給スリット235は、内壁248と筒部209との連結部分を除いて横長に、縦複数段に形成するとガス供給効率が向上するので良い。また、好適には、ガス供給スリット235の列数は区画された空間と同じ数に形成される。本実施形態では、3つの区画された空間に対応して、3列のガス供給スリット235が形成されている。言い換えれば、ガス供給孔234a~234c、対応するガス供給スリット235及び第1ガス排気口236は直線上にあり、それぞれの直線は処理室201の略中心を通る。
 ガス供給スリット235は、四隅としてのエッジ部が曲面を描くように滑らかに形成されている。エッジ部にRがけ等を行い、曲面状にすることにより、エッジ部周縁のガスのよどみを抑制することができ、エッジ部の膜の形成を抑制することができ、さらに、エッジ部に形成される膜の膜剥がれを抑制することができる。
 また、筒部209のノズル配置室222側の側面の下端には、ノズル340a~340cをノズル配置室222内に設置するための開口部256が形成されている。ノズル340a~340cは、その下端にノズル支持部350a~350cに装着された状態でマニホールド226に固定される。ノズル支持部350a~350cは、予めノズル340a~340cが装着される部分と、予めマニホールド226に固定される部分との2ピース構成になっている。ノズルの設置は、開口部256の下方から各空間にノズル340a~340cを挿入し、2ピースを嵌合させた上でボルト等で固定することで行われる。なお位置や角度を微調整する部品(不図示)が適宜用いられうる。
 ノズル配置室222内の内壁248は、ノズル配置室222の天井部から反応管203の下端部上部まで形成されている。具体的には、内壁248の下端は、開口部256の上端よりも下側まで形成される。内壁248の下端は、反応管203の下端部よりも上側であって、ノズル支持部350の上端部よりも下側になる領域として形成されている。
 図5に示すように、ガス供給スリット235は、処理室201に収容された状態のボート217に複数段載置された、隣り合うウエハ200とウエハ200との間にそれぞれ配置されるように形成されている。図5では、ボート217を省略して説明する。好適には、ボート217に載置可能な最下段のウエハ200とその下側に隣り合うボート217の底板との間、各ウエハ200間、及び、最上段のウエハ200とその上側に隣り合うボート217の天板との間に対し1段ずつ対向するように形成されると良い。
 ノズル340a~340cのガス供給孔234a~234cは各ガス供給スリット235に対し1個ずつ対応するように、各ガス供給スリット235の縦幅の中央部分に形成すると良い。例えば、ガス供給スリット235が26個形成されているときは、それぞれ26個のガス供給孔234a~234cが形成されると良い。すなわち、ガス供給スリット235とガス供給孔234a~234cは、載置されるウエハ200の枚数+1個形成されると良い。
 一方、第1ガス排気口236は、筒部209のウエハ領域に形成され、処理室201と間隙Sが連通している。第2ガス排気口237は、ガス排気口230の上端よりも高い位置から排気口230の下端よりも高い位置まで形成されている。このようなスリット構成とすることにより、各ウエハ200上にウエハ200に平行な処理ガスの流れを形成することができる(図5矢印参照)。ウエハ200の外側を迂回するガスの流れを抑制するため、筒部209とウェハ200の間の隙間の幅Wは、ボート217を安全に挿入し回転させることができる範囲で最小に設定されうる。
 図6に示すように、制御部(制御手段)であるコントローラ280は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ280には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ280に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC320a~320f、バルブ330a~330f、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ、ボート回転機構267、ボートエレベータ115等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからプロセスレシピを読み出すように構成されている。CPU121aは、読み出したプロセスレシピの内容に沿うように、MFC320a~320fによる各種ガスの流量調整動作、バルブ330a~330fの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサに基づくヒータ207の温度調整動作、ボート回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。
 コントローラ280は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていてもよい。例えば、上述のプログラムを格納した外部記憶装置(例えば、ハードディスク等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123を用意し、この外部記憶装置123を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態のコントローラ280を構成することができる。但し、コンピュータにプログラムを供給するための手段は、外部記憶装置123を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置123を介さずにプログラムを供給するようにしてもよい。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。
 次に、本発明に関わる基板処理装置の動作概要について説明する。なお、基板処理装置は、コントローラ280により制御される。
 所定枚数のウエハ200が載置されたボート217が反応管203内に挿入され、シールキャップ219により、反応管203が気密に閉塞される。気密に閉塞された反応管203内では、ウエハ200が加熱されると共に、処理ガスが反応管203内に供給され、ウエハ200に加熱等の熱処理がなされる。
 熱処理として、例えば、第1処理ガスとしてNH3ガスと、第2処理ガスとしてHCDSガスと、第3処理ガスとしてN2ガスとを交互供給する(HCDSガス供給→N2パージ→NH3ガス供給→N2パージを1サイクルとしてこのサイクルを所定回数繰り返す)ことにより、ウエハ200上にSiN膜を形成する。処理条件は、例えば下記のとおりである。ウエハ200の温度:100~600℃処理室内圧力:1~3000PaHCDSガス供給流量:1~2000sccmNH3ガス供給流量:100~10000sccmN2ガス供給流量:10~10000sccmSiN膜の膜厚:0.2~10nm
 まず、第2処理ガス供給系のガス供給管310bよりノズル340bのガス供給孔234b、ガス供給スリット235を介して処理室201内にHCDSガスを供給する。具体的には、バルブ330b、330fを開けることにより、キャリアガスと共に、ガス供給管310bからHCDSガスの処理室201内への供給を開始する。このとき、APCバルブ244の開度を調整して、処理室201内の圧力を所定の圧力に維持する。所定時間が経過したら、バルブ330bを閉じ、HCDSガスの供給を停止する。
 処理室201内に供給されたHCDSガスは、ウエハ200に供給され、ウエハ200上を平行に流れた後、第1ガス排気口236を通って間隙Sを上部から下部へと流れ、第2ガス排気口237、排気口230を介して排気管231から排気される。
 なお、処理室201内にHCDSガスを供給する間、ガス供給管310aに接続される不活性ガス供給管のバルブ330eおよびガス供給管310c,310dのバルブ330c,330dを開けてN2等の不活性ガスを流すと、ガス供給管310a,310c,310d内にHCDSガスが回り込むのを防ぐことができる。
 バルブ330bを閉じ、処理室201内へのHCDSガスの供給を停止した後は、処理室201内を排気し、処理室201内に残留しているHCDSガスや反応生成物等を排除する。この時、ガス供給管310a,310b,310c,310dからN2等の不活性ガスをそれぞれ処理室201内及び間隙Sに供給してパージすると、処理室201内及び間隙Sからの残留ガスを排除する効果をさらに高めることができる。
 次に、第1処理ガス供給系のガス供給管310aよりノズル340aのガス供給孔234a、ガス供給スリット235を介して処理室201内にNH3ガスガスを供給する。具体的には、バルブ330a、330eを開けることにより、キャリアガスと共に、ガス供給管310aからNH3ガスの処理室201内への供給を開始する。このとき、APCバルブ244の開度を調整して、処理室201内の圧力を所定の圧力に維持する。所定時間が経過したら、バルブ330aを閉じ、NH3ガスの供給を停止する。
 処理室201内に供給されたNH3ガスは、ウエハ200に供給され、ウエハ200上を平行に流れた後、第1ガス排気口236を通って間隙Sを上部から下部へと流れ、第2ガス排気口237、排気口230を介して排気管231から排気される。
 なお、処理室201内にNH3ガスを供給する間、ガス供給管310bに接続される不活性ガス供給管のバルブ330fおよびバルブ330c,330dを開けてN2等の不活性ガスを流すと、ガス供給管310b,310c,310d内にNH3ガスが回り込むのを防ぐことができる。
 バルブ330aを閉じ、処理室201内へのNH3ガスの供給を停止した後は、処理室201内を排気し、処理室201内に残留しているNH3ガスや反応生成物等を排除する。この時、ガス供給管310a,310b,310c,310dからN2等の不活性ガスをそれぞれ処理室201内及び間隙Sに供給してパージすると、処理室201内及び間隙Sからの残留ガスを排除する効果をさらに高めることができる。
 ウエハ200の処理が完了すると、上記した動作の逆の手順により、ボート217が反応管203内から搬出される。ウエハ200は、図示しないウエハ移載機により、ボート217から移載棚のポッドに移載され、ポッドは、ポッド搬送機により、移載棚からポッドステージに移載され、外部搬送装置により、筐体の外部に搬出される。
 上述の実施形態では、第1処理ガスと第2処理ガスとを交互に供給する場合について説明したが、本発明は、第1処理ガスと第2処理ガスとを同時に供給する場合にも適用することができる。
 上述の実施形態においては、ノズル配置室222を3つの空間に区画したが、2つの空間に区画しても良いし、4つ以上の空間に区画しても良い。所望の熱化学処理に必要なノズルの本数に合わせて、区画する空間の数は変更されうる。また、互いに反応しないガスであれば、1つの区間に複数のノズルを配置しても良い。ノズル340dは筒部209と反応管203の間隙Sに1つ配置したが、これに限らず2つ以上のノズルを配置しても良い。
 また、ノズルの形状を各々変更されうる。例えば、ノズルのガス供給孔は、ウエハ毎に設けられる細孔に限らず、ノズルの長手方向に複数のウエハを跨って延伸するようなスリットでもよい。また、中央の空間に設置されるノズルのガス供給孔をウエハ200ではなくノズル配置室の側壁に向けて開口させることにより、処理ガスを空間内で拡散させ、各ガス供給スリットから均一に処理ガスを供給させることができる場合がある。更に、ノズルは、最も下のガス供給スリットの位置に届かない長さの、先端が開口した単なるパイプでもよい。
 ノズル配置室222は、その内周側に筒部と共通の壁を有するものに限らず、その内周側の全てが処理室201に対して開口していても良い。同様にノズル配置室222は、その外周側に反応管と共通の壁を有するものに限らず、独自の壁を有しても良い。例えば、ノズル配置室222は筒部を外側に膨らませたポケットにより構成することができる。
 本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
 (a)ウエハ下流における圧力損失を最小限としてウエハ間の速度分布を均一とすることが可能となる。すなわち、ウエハ通過後のガスが筒部裏側を経由して排気されることにより圧力損失を最小限とすることができ、これにより、ウエハ領域の圧力を下げることができ、ウエハ領域の圧力を下げることで、ウエハ領域の流速を上げ、ローディング効果を緩和することができる。
 (b)反応管と筒部との間にノズル配置室を設け、反応管を真円の筒形状に保つことで、反応管の肉厚を薄くすることができ、処理室の容積を小さくすることができる。また、溶接箇所を減らして反応管の製造を容易にすることができ、かつ強度を上げることができ、処理室内の昇温時間を短くすることが可能となる。
 (c)ウエハ直近にウエハを囲むように筒部を設けることで、ウエハ表面に流入するガスの割合を高くすることができる。例えば、本実施形態における筒部を用いない場合にはガス流入率が6%程度だったものが、用いることで50%程度まで向上させることができる。
 (d)筒部の裏側にパージ用のノズルを設け、筒部裏側を効率的にパージすることにより、筒部裏のガスの滞留が抑制され、パージ時間を短縮することができる。また、筒部裏のガスの滞留が抑制されることにより、パーティクルを低減することができる。
 (e)筒部の裏側にパージ用のノズルを設けることにより、高圧プロセス時の昇圧をアシストすることができる。
 <実験例>
 図7は、本実施形態における反応管203を用いてガスの流れを解析した結果を示す図である。図7に示されているように、ノズル340から供給されたガスは処理室201内のウエハ200間を通過して第1ガス排気口236、筒部209の裏側、第2ガス排気口237を経由して排気管231から排気されている。すなわち、第1ガス排気口236をウエハ200の下端側から上端側のウエハ領域にかけて形成することにより、ガスの通過断面積が大きくなるため、圧力損失を減らすことができることが確認された。
 図8(A)は、比較例における反応管内の圧力分布を示す図であって、図8(B)は、本実施形態における反応管203内の圧力分布を示す図である。図8(A)に示す比較例における反応管は、本実施形態における反応管と筒部に形成されるガス排気口の構成が異なる。比較例における反応管では、ガス供給スリットに対応する位置にガス供給スリットと同形状のガス排気スリットが設けられている。
 比較例における反応管では、図8(A)に示すように、APCバルブ244、圧力センサ245、真空ポンプ246等の排気部により5Paに設定しても、圧力損失によってウエハ領域の圧力は15Paとなってしまう。一方、図8(B)に示すように、本実施形態における反応管では、排気部により5Paに設定しても、ウエハ領域の圧力を10Paとすることができ、比較例に比べて圧力損失を5Pa減らすことができた。ここで、ウエハ上の流速はウエハ上の圧力に反比例するため、本実施形態における反応管のウエハ上の流速は、比較例における反応管のウエハ上の流速の1.5倍となることが確認された。
 図9は、本実施形態における反応管と比較例における反応管を用いてそれぞれ成膜処理を行った際のウエハ中心の流速分布を比較して示す図である。図10は、本実施形態における反応管と比較例における反応管を用いてそれぞれ成膜処理を行った際の原料分圧分布を比較して示す図である。
 大容量のウエハを処理する場合、ガスの流速が大きいほど副生成物の掃気の効率が向上し、面内のローディングエフェクト等が改善されるため、望ましい。
 図9に示すように、比較例における反応管を用いた場合には、上下段のウエハ中心のガス速度分布は±8.07%となり、流速分布が均一にならなかった。すなわち、比較例では、圧力損失が生じてしまい、上段のウエハよりも下段のウエハの方が流速が大きくなってしまっていた。また、図10に示すように、上下段においてウエハ中心の原料分圧分布は±1.65%となり、上段のウエハが下段のウエハに比べて膜厚が厚くなってしまっていた。
 一方、図9に示すように、本実施形態における反応管を用いた場合には、ウエハ中心のガス速度分布は±2.95%に向上し、比較例と同条件により実験を行った場合であっても、流速が比較例と比べて速くなった。すなわち、比較例に比べて圧力損失が低減することにより、流速が上がると同時に流速の均一性も向上した。また、図10に示すように、上下段においてウエハ中心の原料分圧分布は±0.96%となり、成膜ガスの分解の促進度合が上段と下段でほぼ均一となって、ウエハ面間の膜厚均一性が向上した。
 基板処理装置で行われる成膜処理には、例えば、CVD、PVD、ALD、Epi、その他酸化膜、窒化膜を形成する処理、金属を含む膜を形成する処理がある。更に、アニール処理、酸化処理、拡散処理等の処理でも構わない。
 以上、本発明の種々の典型的な実施形態及び実施例を説明してきたが、本発明はそれらの実施形態及び実施例に限定されず、適宜組み合わせて用いることもできる。
10 基板処理装置121 コントローラ200 ウエハ(基板)201 処理室203 反応管209 筒部217 ボート222 ノズル配置室230 排気口235 ガス供給スリット236 第1ガス排気口237 第2ガス排気口340 ノズル

Claims (14)

  1.  複数枚の基板を保持する基板保持具と、
     反応管内部に設置され、前記基板保持具を収容して前記基板を処理する処理室を有する筒部と、
     前記筒部に近接してその延伸方向に沿って配置され、前記処理室内に処理ガスを供給するガス供給部と、
     前記ガス供給部と前記処理室とが連通するように形成されるガス供給口と、
     前記反応管と前記筒部との間隙と、前記処理室とを連通させるように前記筒部に形成され、前記処理室内の雰囲気を前記間隙に排気するガス排気口と、
     前記反応管に接続され、前記間隙内の雰囲気を排気する排気部と、を備える基板処理装置。
  2.  前記反応管は上端が閉塞され、前記排気部は、前記ガス排気口よりも下方の位置で前記反応管に接続される請求項1記載の基板処理装置。
  3.  前記筒部の前記ガス排気口よりも下方の位置に、前記処理室下方の雰囲気を排気する第2ガス排気口が形成される請求項2記載の基板処理装置。
  4.  前記ガス排気口から排気されたガスは、前記筒部裏の前記間隙を経由して前記排気部から前記反応管外に排気される請求項3記載の基板処理装置。
  5.  前記筒部は上端が閉塞されている請求項4記載の基板処理装置。
  6.  前記ガス排気口及び前記前記排気部は、前記筒部の中心からみて、前記ガス供給口とは反対側に設けられる請求項2記載の基板処理装置。
  7.  前記ガス供給部は、前記間隙を区画して設けられたバッファ室を有し、前記ガス供給口は、前記バッファ室の内周側の壁である前記筒部に設けられる請求項6記載の基板処理装置。
  8.  前記ガス供給部は、前記ノズル配置室内に配置され、前記処理室内に処理ガスを供給するガスノズルを有する請求項7記載の基板処理装置。
  9.  前記ガス供給孔は、前記ガス排気口と対面する位置に設けられる請求項8記載の基板処理装置。
  10.  前記ノズル配置室を除く前記間隙の全体を使って前記処理室内の雰囲気を前記ガス排気口から前記排気部へ排気することで、所定の直径の前記反応管に対して、前記ガス排気口と前記排気部との間の圧力損失を最小化した請求項7記載の基板処理装置。
  11.  前記間隙に不活性ガスを供給するガスノズルを前記筒部裏の前記間隙に設置する請求項7記載の装置。
  12.  基板処理装置で用いられる反応管であって、
     反応管内部に設置され、複数の基板を保持する基板保持具を収容して前記基板を処理する処理室を有する筒部と、
     前記反応管と前記筒部との間隙を区画して設けられ、前記処理室内に処理ガスを供給するガスノズルを配置するノズル配置室と、
     前記ノズル配置室と前記処理室とが連通するように前記筒部に形成されるガス供給口と、
     前記間隙と前記処理室とを連通させるように前記筒部に形成され、前記処理室内の雰囲気を前記間隙に排気するガス排気口と、
     前記反応管に形成され、前記間隙内の雰囲気を排気する排気部に接続される排気口と、を備える反応管。
  13.  反応管内部に設置される筒部内の処理室内に複数枚の基板を保持する基板保持具を搬送する工程と、
     前記反応管と前記筒部との間隙を区画して設けられたノズル配置室内に配置されたガスノズルから前記ノズル配置室と前記処理室とが連通するように前記筒部に形成されるガス供給口を介して前記処理室内に処理ガスを供給する工程と、
     前記間隙と前記処理室とを連通させるように前記筒部に形成されるガス排気口から前記処理室内の雰囲気を前記間隙に排気し、前記間隙に排気された前記雰囲気を前記反応管に接続される排気部から前記反応管外に排気する工程と、を備える半導体装置の製造方法。
  14.  基板処理装置の反応管内部に設置される筒部内の処理室内に複数枚の基板を保持する基板保持具を搬送する手順と、
     前記反応管と前記筒部との間隙を区画して設けられたノズル配置室内に配置されたガスノズルから前記ノズル配置室と前記処理室とが連通するように前記筒部に形成されるガス供給口を介して前記処理室内に処理ガスを供給する手順と、
     前記間隙と前記処理室とを連通させるように前記筒部に形成されるガス排気口から前記処理室内の雰囲気を前記間隙に排気し、前記間隙に排気された前記雰囲気を前記反応管に接続される排気部から前記反応管外に排気する手順と、をコンピュータによって前記基板処理装置に実行させるプログラム。
PCT/JP2017/032706 2017-02-15 2017-09-11 基板処理装置、反応管、半導体装置の製造方法及びプログラム WO2018150615A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019500180A JP6782350B2 (ja) 2017-02-15 2017-09-11 基板処理装置、反応管、半導体装置の製造方法及びプログラム
CN201780082079.9A CN110121764A (zh) 2017-02-15 2017-09-11 衬底处理装置、反应管、半导体器件的制造方法及程序
KR1020187011352A KR102238585B1 (ko) 2017-02-15 2017-09-11 기판 처리 장치, 반응관, 반도체 장치의 제조 방법 및 프로그램
US16/507,930 US10961625B2 (en) 2017-02-15 2019-07-10 Substrate processing apparatus, reaction tube and method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-026179 2017-02-15
JP2017026179 2017-02-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/507,930 Continuation US10961625B2 (en) 2017-02-15 2019-07-10 Substrate processing apparatus, reaction tube and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2018150615A1 true WO2018150615A1 (ja) 2018-08-23

Family

ID=63170250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032706 WO2018150615A1 (ja) 2017-02-15 2017-09-11 基板処理装置、反応管、半導体装置の製造方法及びプログラム

Country Status (6)

Country Link
US (1) US10961625B2 (ja)
JP (1) JP6782350B2 (ja)
KR (1) KR102238585B1 (ja)
CN (1) CN110121764A (ja)
TW (1) TWI657501B (ja)
WO (1) WO2018150615A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112349631A (zh) * 2020-11-04 2021-02-09 长江存储科技有限责任公司 一种输气管道、半导体机台
CN112349619A (zh) * 2019-08-09 2021-02-09 株式会社国际电气 基板处理装置、半导体器件的制造方法、基板保持器具及记录介质
JP2021028977A (ja) * 2020-09-25 2021-02-25 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及び基板保持具
JP2023047087A (ja) * 2021-09-24 2023-04-05 株式会社Kokusai Electric ガス供給システム、基板処理装置、半導体装置の製造方法及びプログラム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138087A1 (ja) * 2016-02-09 2017-08-17 株式会社日立国際電気 基板処理装置および半導体装置の製造方法
JP6548349B2 (ja) * 2016-03-28 2019-07-24 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法および記録媒体
WO2019058553A1 (ja) * 2017-09-25 2019-03-28 株式会社Kokusai Electric 基板処理装置、石英反応管、クリーニング方法並びにプログラム
KR20230113657A (ko) * 2018-03-23 2023-07-31 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
KR20210043810A (ko) * 2019-10-14 2021-04-22 삼성전자주식회사 반도체 제조 장비
KR102635384B1 (ko) 2020-11-23 2024-02-14 세메스 주식회사 기판 처리 장치
KR102573602B1 (ko) 2020-11-23 2023-09-01 세메스 주식회사 기판 처리 장치
CN112466794B (zh) * 2020-11-24 2021-12-03 长江存储科技有限责任公司 薄膜沉积装置及晶舟组件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080101A (ja) * 2003-01-08 2006-03-23 Hitachi Kokusai Electric Inc 半導体製造装置
WO2015041376A1 (ja) * 2014-09-30 2015-03-26 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および反応管
JP2015183224A (ja) * 2014-03-24 2015-10-22 株式会社日立国際電気 反応管、基板処理装置及び半導体装置の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297179A (ja) * 1994-04-28 1995-11-10 Matsushita Electric Ind Co Ltd 熱処理炉の排気方法および熱処理炉
JP2000294511A (ja) * 1999-04-09 2000-10-20 Ftl:Kk 半導体装置の製造装置
WO2004027846A1 (ja) * 2002-09-20 2004-04-01 Hitachi Kokusai Electric Inc. 基板処理装置および半導体装置の製造方法
JP5184329B2 (ja) 2008-12-22 2013-04-17 株式会社日立国際電気 基板処理装置、基板処理方法及び半導体装置の製造方法
JP5658463B2 (ja) * 2009-02-27 2015-01-28 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
KR20150041376A (ko) 2013-10-08 2015-04-16 송보경 플렉시블필름 코팅용 화학적 기상 증착장치
KR102138985B1 (ko) * 2015-09-04 2020-07-28 가부시키가이샤 코쿠사이 엘렉트릭 반응관, 기판 처리 장치 및 반도체 장치의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080101A (ja) * 2003-01-08 2006-03-23 Hitachi Kokusai Electric Inc 半導体製造装置
JP2015183224A (ja) * 2014-03-24 2015-10-22 株式会社日立国際電気 反応管、基板処理装置及び半導体装置の製造方法
WO2015041376A1 (ja) * 2014-09-30 2015-03-26 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および反応管

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112349619A (zh) * 2019-08-09 2021-02-09 株式会社国际电气 基板处理装置、半导体器件的制造方法、基板保持器具及记录介质
JP2021028977A (ja) * 2020-09-25 2021-02-25 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及び基板保持具
JP7048690B2 (ja) 2020-09-25 2022-04-05 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及び基板保持具
CN112349631A (zh) * 2020-11-04 2021-02-09 长江存储科技有限责任公司 一种输气管道、半导体机台
JP2023047087A (ja) * 2021-09-24 2023-04-05 株式会社Kokusai Electric ガス供給システム、基板処理装置、半導体装置の製造方法及びプログラム
JP7344944B2 (ja) 2021-09-24 2023-09-14 株式会社Kokusai Electric ガス供給システム、基板処理装置、半導体装置の製造方法及びプログラム

Also Published As

Publication number Publication date
JPWO2018150615A1 (ja) 2019-11-07
US20190330738A1 (en) 2019-10-31
KR20180121867A (ko) 2018-11-09
KR102238585B1 (ko) 2021-04-09
US10961625B2 (en) 2021-03-30
TW201834064A (zh) 2018-09-16
TWI657501B (zh) 2019-04-21
CN110121764A (zh) 2019-08-13
JP6782350B2 (ja) 2020-11-11

Similar Documents

Publication Publication Date Title
WO2018150615A1 (ja) 基板処理装置、反応管、半導体装置の製造方法及びプログラム
US20210159083A1 (en) Substrate processing device, manufacturing method for semiconductor device, and reaction tube
KR102165123B1 (ko) 기판 처리 장치, 반응관, 반도체 장치의 제조 방법 및 기록 매체
TWI764225B (zh) 基板處理裝置、半導體裝置之製造方法、基板保持器具及程式
JP2018078323A (ja) 基板処理装置
JP2023028955A (ja) 基板処理装置および半導体装置の製造方法
JP6867496B2 (ja) 基板処理装置、反応管、基板処理方法、および、半導体装置の製造方法
US11898247B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
JP7048690B2 (ja) 基板処理装置、半導体装置の製造方法及び基板保持具
WO2022049675A1 (ja) 基板保持具、基板処理装置及び半導体装置の製造方法
US20220119949A1 (en) Substrate processing apparatus, recording medium, and method of processing substrate
CN115315790A (zh) 基板处理装置、半导体装置的制造方法、存储介质和内管

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187011352

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019500180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896825

Country of ref document: EP

Kind code of ref document: A1