WO2018149957A1 - Verfahren zum Kodieren eines plattenartigen Werkstücks, Verfahren zum Identifizieren eines plattenartigen Werkstücks, Strahlungsbearbeitungsvorrichtung und Kodiersystem - Google Patents

Verfahren zum Kodieren eines plattenartigen Werkstücks, Verfahren zum Identifizieren eines plattenartigen Werkstücks, Strahlungsbearbeitungsvorrichtung und Kodiersystem Download PDF

Info

Publication number
WO2018149957A1
WO2018149957A1 PCT/EP2018/053867 EP2018053867W WO2018149957A1 WO 2018149957 A1 WO2018149957 A1 WO 2018149957A1 EP 2018053867 W EP2018053867 W EP 2018053867W WO 2018149957 A1 WO2018149957 A1 WO 2018149957A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
coding
magnetic layer
radiation
laser
Prior art date
Application number
PCT/EP2018/053867
Other languages
English (en)
French (fr)
Inventor
Andreas Popp
Berthold Schmidt
Klaus Bauer
Eberhard Wahl
Original Assignee
Trumpf Werkzeugmaschinen Gmbh + Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Werkzeugmaschinen Gmbh + Co. Kg filed Critical Trumpf Werkzeugmaschinen Gmbh + Co. Kg
Publication of WO2018149957A1 publication Critical patent/WO2018149957A1/de
Priority to US16/537,661 priority Critical patent/US11370063B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/146Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels

Definitions

  • the invention relates to methods for encoding a plate-like workpiece, in particular a sheet, a method for identifying a plate-like workpiece, a radiation processing device and a coding system.
  • a plate-like workpiece in particular a sheet
  • a method for identifying a plate-like workpiece a radiation processing device
  • a coding system In order to identify and track products, it is known to provide the products with a readable code.
  • a method for encoding plate-like workpieces is known for example from DE 10 2014 210 611 AI.
  • a visible code is applied to the workpiece.
  • the problem here is that a post-processing of these components, eg. As by powder coating, grinding and deburring, causes the previously applied laser marking is no longer present or at least damaged, so that the workpieces can then no longer be tracked or identified.
  • DE 102 48 142 B3 describes a method for producing a magnetically scannable coding in a metallic component by generating permanent microstructural changes by means of a radiation source, which by changing the lattice structure and incorporation of ions, a change in the magnetic conductivity in the irradiated areas compared to the non-irradiated areas of the Causes component.
  • the process is limited to only a few materials that can be magnetized in this way.
  • the coding achieved in this way can only be read out with very complex reading heads.
  • the method according to the invention comprises:
  • the magnetic layer comprises magnetic particles, in particular ferromagnetic or paramagnetic particles, and covers the surface of the workpiece at least in the coding region.
  • the magnetic particles are randomly distributed in the magnetic layer.
  • the surface of the workpiece is melted in the coding region.
  • the magnetic particles of the magnetic layer are absorbed in the molten area and firmly integrated.
  • the incorporation of the magnetic particles into the base material according to the invention causes a change in the remanence properties of the workpiece. In this way, a coding of the workpiece can be generated.
  • the coding can be activated by temporarily exposing the coded workpiece to a magnetic field, so that the magnetic moments are aligned at least in the coding region. For this an external magnetic field near the coding area can be created. Due to the different remanence properties of the base material and the melted-in magnetic particles of the magnetic layer, the fused magnetic layer retains a different remanence flux density after removing the external magnetic field, in particular by at least a few microtesla larger or smaller than the remanent flux density of the base material of the workpiece so that the coding is readable. This "activation" of the coding can also be done later, so z. B. after a surface treatment, for. As a coating or heat treatment done.
  • the workpiece comprises a magnetizable base material. It is particularly advantageous if the base material of the workpiece or the magnetic layer is ferromagnetic or ferrimagnetic, since these materials have magnetic domains. From the combination of the statistical distribution of the magnetic domains of the base material or the magnetic layer, which is different for each workpiece, and the distribution of the magnetic particles within a range to be read later (read area), an individual (unique) coding pattern (mag can be read in particular with simple portable readers, even if the workpiece is folded or has been subjected to a surface treatment.
  • the magnetic layer is applied in the form of a film or a paste or sprayed by means of a nozzle.
  • a particularly preferred variant of the method according to the invention provides that for melting the magnetic layer with the base material, the surface of the workpiece is irradiated with laser radiation.
  • the laser radiation is focused by means of a laser optical system through the magnetic layer on the workpiece surface.
  • the laser optics can be part of a laser marking machines or laser processing machines.
  • the laser optics is designed for emitting and focusing laser radiation and preferably movable relative to the workpiece.
  • the laser beam is moved over the coding area (coding area is scanned) so that laser radiation is applied to the workpiece in the area to be marked (coding area).
  • a modulated laser beam or a continuous wave laser beam (continous wave) can be used.
  • the laser beam scans the coding region by means of a scanning device, in particular a galvanometer scanner or MEMS mirror, a flying optics or a robot.
  • Galvanometer scanners are highly dynamic multi-turn actuators with high resolution, good repeatability and good drift values.
  • Flying optics ie devices in which the workpiece to be machined is stationary on a workpiece support while the laser optics is moving in three axes, are known, for example, from 2D laser cutting devices.
  • Removal of the unmelted portions of the magnetic layer may be accomplished, for example, by milling, brushing or scraping.
  • the magnetic layer includes neodymium, samarium, chromium dioxide or iron oxide particles.
  • the magnetic layer includes at least one material that acts as a diffusion barrier to the base material of the workpiece, and / or additional process steps are provided to create a diffusion barrier between the fused magnetic layer and the base material of the workpiece.
  • a diffusion barrier is a barrier layer with low diffusion rate into consideration. This can z. B. be a layer of nickel or a nickel alloy.
  • a magnetic layer is used whose remanent flux density differs from the remanent flux density of the workpiece by at least a few microtesla.
  • a ferromagnetic, in particular strongly ferromagnetic workpiece e.g. From structural steel
  • a only slightly ferromagnetic workpiece for example, certain stainless steel alloys, it may be advantageous to melt magnetic particles having a higher remanence flux density than the workpiece and thus stand out from the weakly ferromagnetic workpiece by an increased magnetic field.
  • the workpiece is subjected to a surface treatment, in particular painting, powder coating, grinding or deburring.
  • the surface treatment thus takes place after the coding of the workpiece.
  • the coding is then under the coating and is no longer visible. In this way, the workpiece can be provided with an inconspicuous coding.
  • the coded workpiece is not demagnetized, for example, by being heated above the Curie temperature.
  • the workpiece is provided with a marking for positioning a sensor for reading the coding.
  • the readout region it is also possible to select the readout region so that it extends over the entire workpiece or at least over the entire length or width of the workpiece, or to repeat the coding along the entire length and / or width, so that the coding un - depending on the start positioning of the reader can be read with the sensor.
  • the invention also relates to a method for identifying a plate-like workpiece, in particular a sheet, comprising: encoding the workpiece by means of a previously described method; Storing the coding in a memory device; Reading the coding by measuring the local distribution of the magnetization in a readout area; and comparing the stored coding and the read coding.
  • magnetic signals i.a., magnetic flux density
  • a readout area including the coding area so that the difference of the magnetization inside and outside the coding area can be detected.
  • the coding region can comprise several non-contiguous subregions ("islands"), between which there are regions without reaction material, so that a more complex coding can also be realized.
  • the workpiece can be identified on the basis of the comparison of the stored coding and the code that has been read out
  • the coding can be carried out at any desired time, in particular also repeatedly, for example in order to track the workpiece via different machining processes or different dispatch stations.
  • the reading of the coding of the workpiece by means of a mobile device wherein by means of a Hall sensor, the magnetic field strength and by means of another sensor, in particular an acceleration sensor and / or a gyro sensor, the movement of the mobile device relative is detected to the workpiece.
  • the sensors are integrated in the mobile device or together with the mobile device in a portable reader.
  • the result of the comparison is preferably displayed on the mobile device.
  • the read encoding can also be sent via the Internet for evaluation to a computer.
  • location data can also be determined by means of a GPS receiver in order to enable traceability of the workpiece.
  • the data for the storage of the coding are determined by an initial read-out process (preceding the actual read-out process). This can be done, for example, directly after encoding by means of a stationary or mobile reader.
  • the invention also relates to a radiation processing device having a radiation unit, in particular a laser processing head, for acting on a workpiece with radiation, in particular laser radiation, and with a device for removing a magnetic layer applied to the workpiece.
  • a radiation processing device having a radiation unit, in particular a laser processing head, for acting on a workpiece with radiation, in particular laser radiation, and with a device for removing a magnetic layer applied to the workpiece.
  • the device for removing the magnetic layer preferably comprises a cutting tool, in particular a milling tool, or a scraping tool or brush.
  • the invention also relates to a coding system for coding and identifying a plate-like workpiece, in particular by means of a previously described method.
  • the coding system comprises a coating device for applying a magnetic layer, a radiation processing device described above for encoding the workpiece by fusing the magnetic layer to the base material of the workpiece in the coding region and a reading device for reading the coding.
  • the reader is portable.
  • a “portable reading device” is understood to be a mobile handheld device that is set up to read out magnetic signals, such as, for example, a smartphone or a tablet computer.
  • the coding system comprises a memory device (eg a database) for storing the coding (signature data) and a comparison device for comparing codes.
  • a memory device eg a database
  • the coding signature data
  • a comparison device for comparing codes.
  • the workpiece can be identified (especially at a later time and at a location other than the coding location).
  • a particularly compact arrangement results if the reading device and / or a further reading device and / or the coating device and / or the device for removing the magnetic layer are integrated in the radiation processing device.
  • the radiation processing device is a laser processing machine with a workpiece support and a laser processing head that can be positioned relative to the workpiece support, that the laser processing machine has a first operating mode for shaping, in particular for cutting and / or welding, a plate-like workpiece and that the laser processing machine has a second operating mode for encoding the workpiece.
  • the laser processing machine may be part of a flat bed machine, in particular for processing plate-like metallic workpieces.
  • the flatbed machine may be configured to perform further processing steps on the workpiece, such. As stamping and / or bending and / or drilling and / or threading and / or the surface pre- or post-treatment and / or heating or cooling and / or the application of the magnetic layer.
  • the laser processing machine comprises a control device, wherein the control device is adapted to set the intensity of the laser radiation generated by the laser processing head in the second operating mode so that the magnetic layer is fused with the base material by irradiation of the workpiece in the coding region with the laser beam.
  • the control device is set up to reduce the intensity of the laser radiation in the second operating mode with respect to the intensity in the first operating mode, for example by reducing the power and / or by widening the laser beam.
  • the control device controls the movement of the laser processing head.
  • the control device is equipped for this purpose with a corresponding computer program product.
  • the invention therefore also relates to a computer program product with a stored program code for data processing suitable electronic control device for a previously described coding system, wherein the computer program product contains control commands, which cause the control device to carry out the method described above.
  • the reading device preferably has a Hall sensor with which the signal strength of the magnetic flux density emanating from the workpiece can be detected.
  • the reading device may have an acceleration sensor and / or a gyrosensor and / or a GPS receiver. In this way, the position and orientation of the workpiece relative to the reader can be determined.
  • the coding system has access to the Internet via LAN, WiFi, etc.
  • Fig. 1 shows a coding system according to the invention with a radiation processing device and a workpiece located in the coding process.
  • Fig. 2 shows a workpiece coded by means of the method according to the invention and a signal course determined by a reading device as a function of the position of the reading device for a workpiece made of stainless steel.
  • Fig. 3 shows a portable reading device and comparison and storage device for a coding system according to the invention.
  • the radiation processing device 1 comprises a radiation unit 2 (for example in the form of a laser processing head), with which a workpiece 4 arranged on a workpiece support 5 can be exposed to radiation 3.
  • the radiation unit 2 is designed to scan at least a portion of the workpiece 4. This can be done by means of a deflection device (eg MEMS mirror), the radiation 3 is directed to different areas of the workpiece 4 or in that the radiation unit 2 and the workpiece holder 5 are moved relative to each other, as shown in FIG. 1 indicated by the arrows.
  • the radiation unit 2 can be equipped with an objective 6.
  • the workpiece 4 consists of a base material whose magnetic properties are to be changed by a coding.
  • a coding region 13 is defined, in which magnetic material is to be fused with the base material.
  • the coding region 13 preferably has a size in the microscopic range.
  • the workpiece 4 is first coated by means of a coating device 8 with a magnetic layer 7, wherein the coated region must include the coding region 13.
  • the magnetic layer comprises magnetic particles which are fused by irradiation of the workpiece 4 in the coding region 13 with the base material.
  • Wavelength and intensity of the radiation 3 are chosen so that the radiation 3 penetrates the magnetic layer 7 and melts the surface 4 of the workpiece 1, so that magnetic particles of the magnetic layer 7 merge with the surface of the workpiece 4.
  • the intensity, focus and beam width of the radiation 3 can be controlled by means of a control device 23.
  • the parts of the magnetic layer 7 not fused with the base material are removed from the surface of the workpiece 4 by a means 9 for removing the magnetic layer, for example by brushing or milling tools.
  • the material of the magnetic layer 7 and the material of the workpiece 4 are coordinated so that the Remanen manufactureenschaften the two materials differ from each other, so that the melting of the magnetic particles in the workpiece 4, a local change in the remanence of the workpiece 4 results.
  • the magnetic field 19 emanating from the workpiece 4 (in particular from the coding region 13) can be read out by means of a reading device 11 and stored as signature data in a memory device 22 (database).
  • the area which is read out by the reading device 11 preferably has an extension in the cm range.
  • the reader 11 may be fixedly integrated in the radiation processing device 1; however, a portable reader can also be used.
  • FIG. 2 shows the workpiece 1, in which magnetic particles are fused in the coding region 13.
  • the magnetic signal in the coding region 13 is increased or decreased by the melting of the magnetic particles.
  • FIG. 2 shows a course of the magnetic flux density B shown as an example for a workpiece made of stainless steel as a function of the position of the reading device 11, the magnetic signal is increased by the coding according to the invention.
  • the magnetic flux density can be reduced, for example, for a workpiece made of a highly ferromagnetic structural steel by the coding according to the invention.
  • the coding can be read there again, for example to identify the workpiece.
  • a portable reader 15 can be used, as shown in Fig. 3.
  • the coding is read out via the reading device 15, for example by means of Hall sensors 17, which are installed in a mobile device 18, for example a smartphone or a tablet computer.
  • the reading device 15 is moved to read the coding at a distance of a few cm over the workpiece 4 away.
  • the mobile device 18 must be brought to the correct position on or above the workpiece 4, this is helpful rich when a mark is placed on the workpiece 4 or a rule is specified where the coding is to be applied (eg "always lower left corner").
  • the portable reading device 15 is guided with the Hall sensors 17 over the workpiece 4, the movement can be detected via a further sensor 21 (gyrosensor and / or acceleration sensor), so that the signal is dependent on the location (here along the example Direction x) can be specified.
  • the portable reader 15 has a GPS receiver 20, in addition, when reading the fingerprint, the location of the workpiece 4 can be determined and over the Internet z. B. transmitted to a product vendor.
  • a comparison device 16 for example, in the form of an app that is connected to a database via the Internet
  • this unique fingerprint can be checked for authenticity.
  • the data of the sensors 17, 20, 21 are to, preferably via W-LAN, transmitted to the comparison device 16 and compared there with the stored in the memory device 22 signature data. In this way, the workpiece 4 can be identified and stored in the memory device 22 properties of the workpiece 4 are verified.
  • the magnetic coding according to the invention can be over-painted or powder-coated without affecting its readability.
  • Radiation unit in particular laser processing head with laser optics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

Das erfindungsgemäße Verfahren zum Kodieren eines plattenartigen Werkstücks (4), insbesondere eines Blechs, umfasst: Festlegen eines Kodierbereichs (13); Aufbringen einer Magnetschicht (7), auf die Oberfläche des Werkstücks (4); Verschmelzen von Teilen der Magnetschicht (7) mit der Oberfläche des Werkstücks (4) durch Beaufschlagen des Werkstücks (4) mit Strahlung (3) innerhalb des Kodierbereichs (13); Abkühlen des Werkstücks (4); Entfernen der nicht ver- schmolzenen Teile der Magnetschicht (7). Das erfindungsgemäße Verfahren erlaubt es, Werkstücke unabhängig von eventuell durchgeführten oder später durchzuführenden Oberflächenbehandlungen auf einfache Weise nachverfolgbar zu machen.

Description

Verfahren zum Kodieren eines plattenartigen Werkstücks, Verfahren zum Identifizieren eines plattenartigen Werkstücks, Strahlungsbearbei- tungsvorrichtung und Kodiersystem
Hintergrund der Erfindung
Die Erfindung betrifft Verfahren zum Kodieren eines plattenartigen Werkstücks, insbesondere eines Blechs, ein Verfahren zum Identifizieren eines plattenartigen Werkstücks, eine Strahlungsbearbeitungsvorrichtung und ein Kodiersystem. Um Produkte identifizieren und nachverfolgen zu können, ist es bekannt, die Produkte mit einem auslesbaren Code zu versehen.
Ein Verfahren zum Kodieren von plattenartigen Werkstücken ist beispielsweise bekannt aus DE 10 2014 210 611 AI . Mittels einer Laserbeschriftungsmaschine wird ein sichtbarer Code auf das Werkstück aufgebracht. Problematisch hierbei ist, dass eine Nachbearbeitung dieser Bauteile, z. B. mittels Pulverbeschichtung, Schleifen und Entgraten, dazu führt, dass die vorher aufgebrachte Laserbeschriftung nicht mehr vorhanden oder zumindest beschädigt ist, so dass die Werkstücke dann nicht mehr nachverfolgt oder identifiziert werden können.
DE 102 48 142 B3 beschreibt ein Verfahren zur Herstellung einer magnetisch abtastbaren Kodierung in einem metallischen Bauelement durch Erzeugung bleibender Gefügeveränderungen mittels einer Strahlenquelle, die durch Veränderung der Gitterstruktur und Einlagerung von Ionen eine Änderung der magnetischen Leitfähigkeit in den bestrahlten Bereichen gegenüber den nicht bestrahlten Bereichen des Bauteils hervorruft. Das Verfahren ist aber beschränkt auf nur wenige Materialien, die sich auf diese Weise magnetisieren lassen . Zudem ist die so erzielte Kodierung nur mit sehr aufwändigen Leseköpfen auslesbar.
Aufgabe der Erfindung
Es ist Aufgabe der Erfindung, ein Verfahren zur Kodierung und Identifizierung, eine Strahlungsbearbeitungsvorrichtung und eine Kodiersystem vorzuschlagen, die es erlauben, Werkstücke unabhängig von eventuell durchgeführten oder später durchzuführenden Oberflächenbehandlungen auf einfache Weise nachverfolgbar zu machen.
Beschreibung der Erfindung
Diese Aufgabe wird erfindungsgemäß durch ein Kodierverfahren gemäß Patentanspruch 1, ein Verfahren zum Identifizieren gemäß Anspruch 7 eine Strahlungs- bearbeitungsvorrichtung gemäß Anspruch 9 und ein Kodiersystem gemäß Anspruch 11 gelöst.
Das erfindungsgemäße Verfahren umfasst:
• Festlegen eines Kodierbereichs
• Aufbringen einer Magnetschicht auf die Oberfläche des Werkstücks;
• Verschmelzen von Teilen der Magnetschicht mit der Oberfläche des Werkstücks durch Beaufschlagen des Werkstücks mit Strahlung innerhalb des Kodierbereichs;
• Abkühlen des Werkstücks;
• Entfernen der nicht verschmolzenen Teile der Magnetschicht.
Die Magnetschicht umfasst magnetische Partikel, insbesondere ferromagnetische oder paramagnetische Partikel und bedeckt die Oberfläche des Werkstücks zumindest im Kodierbereich. Die magnetischen Partikel sind in der Magnetschicht statistisch verteilt. Durch die Bestrahlung des Werkstücks wird im Kodierbereich die Oberfläche des Werkstücks aufgeschmolzen. Beim Wiedererstarren werden die magnetischen Partikel der Magnetschicht im aufgeschmolzenen Bereich aufgenommen und fest integriert. Durch die erfindungsgemäße Einlagerung der magnetischen Partikel im Grundmaterial wird eine Änderung der Remanenzeigenschaften des Werkstücks bewirkt wird. Auf diese Weise kann eine Kodierung des Werkstücks erzeugt werden.
Die Kodierung kann aktiviert werden, indem das kodierte Werkstück kurzzeitig einem magnetischem Feld ausgesetzt wird, so dass die magnetischen Momente zumindest im Kodierbereich ausgerichtet werden. Dafür kann ein externes Magnetfeld in der Nähe des Kodierbereichs angelegt werden. Aufgrund der unterschiedlichen Remanenzeigenschaften des Grundmaterials und der eingeschmolzenen magnetischen Partikel der Magnetschicht behält die verschmolzene Magnetschicht nach Entfernen des externen Magnetfeldes eine andere Remanenzflussdichte, insbesonder eine um zumindest einige Mikrotesla größere oder kleinere, als die Remanenzflussdichte des Grundmaterials des Werkstücks, so dass die Kodierung auslesbar ist. Diese "Aktivierung" der Kodierung kann auch noch nachträglich, also z. B. nach einer Oberflächenbehandlung, z. B. einer Be- schichtung oder Wärmebehandlung, erfolgen.
Bei einer speziellen Variante des erfindungsgemäßen Verfahrens umfasst das Werkstück ein magnetisierbares Grundmaterial. Besonders vorteilhaft ist es, wenn das Grundmaterial des Werkstücks oder die Magnetschicht ferromagnetisch oder ferrimagnetisch ist, da diese Materialien magnetische Domänen aufweisen. Aus der Kombination der statistischen Verteilung der magnetischen Domänen des Grundwerkstoffs bzw. der Magnetschicht, die für jedes Werkstück unterschiedlich ist, und der Verteilung der Magnetpartikel innerhalb eines später auszulesenden Bereichs (Auslesebereich) entsteht ein individuelles (einzigartiges) Kodiermuster (mag . Fingerabdruck), welches insbesondere mit einfachen portablen Lesegeräten ausgelesen werden kann, auch wenn das Werkstück gefalzt ist oder einer Oberflächenbehandlung unterzogen wurde. Bei paramagnetischen Materialien (z. B. Aluminium) oder diamagnetischen Materialien wird aufgrund des Fehlens von magnetischen Domänen zwar kein einzigartiges Kodiermuster erzeugt, aufgrund der voneinander abweichenden Remanenzwerte bzw. Magnetisierungswerte des Grundmaterial von den entsprechenden Werten der magnetischen Partikel ist mit dem erfindungsgemäßen Verfahren dennoch eine Kodierung möglich. Je nachdem ob bzw. wie stark ferromagnetisch das Material des Werkstücks bzw. der Magnetschicht ist, wird durch die integrierten magnetischen Partikel das magnetische Signal erhöht oder verringert.
Vorzugsweise wird die Magnetschicht in Form einer Folie oder einer Paste aufgebracht oder mittels einer Düse aufgesprüht.
Eine besonders bevorzugte Variante des erfindungsgemäßen Verfahrens sieht vor, dass zum Verschmelzen der Magnetschicht mit dem Grundmaterial die Oberfläche des Werkstücks mit Laserstrahlung bestrahlt wird. Alternativ kann auch Strahlung im IR- oder Mikrowellenbereich mit einer Intensität verwendet werden, die ausreicht, die Oberfläche des Werkstücks durch die Magnetschicht hindurch aufzuschmelzen. Vorzugsweise wird die Laserstrahlung mittels einer Laseroptik durch die Magnetschicht hindurch auf die Werkstückoberfläche fokussiert. Die Laseroptik kann dabei ein Teil einer Lasermarkierungsmaschinen oder Laserbearbeitungsmaschinen sein. Die Laseroptik ist zum Aussenden und Fokussieren von Laserstrahlung ausgebildet und vorzugsweise relativ zum Werkstück verfahrbar. Zum Kodieren des Werkstücks wird der Laserstrahl über den Kodierbereich hinwegbewegt (Kodierbereich wird abgescannt), so dass das Werkstück in dem zu kennzeichnenden Bereich (Kodierbereich) mit Laserstrahlung beaufschlagt wird. Dabei kann eine modulierter Laserstrahl oder ein Dauerstrichlaserstrahl (continous wa- ve) verwendet werden.
Bei einer speziellen Variante des erfindungsgemäßen Verfahrens scannt der Laserstrahl mittels einer Scanvorrichtung, insbesondere eines Galvanometer- Scanners oder MEMS-Spiegel, einer fliegenden Optik oder eines Roboters den Kodierbereich ab. Galvanometer-Scanner sind hochdynamische Drehantriebe, die eine hohe Auflösung, eine gute Wiederholgenauigkeit und gute Driftwerte aufweisen. Fliegende Optiken, also Vorrichtungen, bei denen das zu bearbeitende Werkstück unbewegt auf einer Werkstückauflage liegt, während sich die Laseroptik in drei Achsen bewegt, sind bspw. bekannt von 2D-Laserschneid- vorrichtungen.
Das Entfernen der nicht verschmolzenen Teile der Magnetschicht kann beispielsweise durch Abfräsen, Abbürsten oder Abschaben erfolgen.
Bei einer bevorzugten Variante beinhaltet die Magnetschicht Neodym-, Samarium-, Chromdioxid- oder Eisenoxidpartikel .
Bei einer bevorzugten Variante beinhaltet die Magnetschicht zumindest ein Material, das als Diffusionssperre zum Grundmaterial des Werkstücks fungiert, und/oder es werden zusätzliche Verfahrensschritte vorgesehen, um zwischen der eingeschmolzenen Magnetschicht und dem Grundmaterial des Werkstücks eine Diffusionssperre zu erzeugen. Damit wird die Kodierung länger haltbar und verliert nicht ihre Erkennbarkeit auf Grund von Vermischung der Materialien der ein- geschmolzenen Magnetschicht mit dem Grundmaterial des Werkstücks. Als Diffusionssperre kommt eine Barriereschicht mit geringer Diffusionsrate in Betracht. Das kann z. B. eine Schicht aus Nickel oder einer Nickellegierung sein.
Besonders bevorzugt ist es, dass eine Magnetschicht verwendet wird, deren Remanenzflussdichte sich von der Remanenzflussdichte des Werkstücks um zumindest einige Mikrotesla unterscheidet. Bei Verwendung eines ferromagnetischen, insbesondere stark ferromagnetischen Werkstücks z.B. aus Baustahl kann es beispielsweise vorteilhaft sein, magnetische Partikel einzuschmelzen, die eine geringere Remanenzflussdichte als das Werkstück aufweisen und sich so vom ferromagnetischen Werkstück durch ein reduziertes magnetisches Feld abheben. Bei Verwendung eines nur schwach ferromagnetischen Werkstücks, beispielsweise bestimmte Edelstahllegierungen kann es vorteilhaft sein, magnetische Partikel einzuschmelzen, die eine höhere Remanenzflussdichte als das Werkstück aufweisen und sich so vom schwach ferromagnetischen Werkstück durch ein erhöhtes magnetisches Feld abheben.
Bei einer speziellen Variante des erfindungsgemäßen Verfahrens wird nach dem Entfernen der Magnetschicht das Werkstück einer Oberflächenbehandlung, insbesondere Lackieren, Pulverbeschichten, Schleifen oder Entgraten, unterzogen. Die Oberflächenbehandlung erfolgt also nach dem Kodieren des Werkstücks. Im Falle einer Beschichtung befindet sich die Kodierung dann unter der Beschichtung und ist nicht mehr sichtbar. Auf diese Weise kann das Werkstück mit einer unauffälligen Kodierung versehen werden. Bei der Oberflächenbehandlung sollte beachtete werden, dass das kodierte Werkstück nicht entmagnetisiert wird, indem es beispielsweise über die Curie-Temperatur erwärmt wird.
Um das Auslesen der Kodierung zu vereinfachen, ist es vorteilhaft, wenn das Werkstück mit einer Markierung zur Positionierung eines Sensors zum Auslesen der Kodierung versehen wird . Es ist jedoch auch möglich, den Auslesebereich so zu wählen, dass er sich über das gesamte Werkstück oder zumindest über die gesamte Länge oder Breite des Werkstücks erstreckt, oder die Kodierung entlang der gesamten Länge und/oder Breite zu wiederholen, so dass die Kodierung un- abhängig von der Startpositionierung des Lesegeräts mit dem Sensors ausgelesen werden kann.
Die Erfindung betrifft auch ein Verfahren zum Identifizieren eines plattenartigen Werkstückes, insbesondere eines Blechs, umfassend : Kodieren des Werkstücks mittels eines zuvor beschriebenen Verfahrens; Speicherung der Kodierung in einer Speichereinrichtung; Auslesen der Kodierung durch Messung der örtlichen Verteilung der Magnetisierung in einem Auslesebereich; und Vergleich der gespeicherten Kodierung und der ausgelesenen Kodierung. Beim Auslesen der Kodierung werden magnetische Signale (i.A. magnetische Flussdichte) aus einem Auslesebereich, der den Kodierbereich umfasst, detektiert, so dass der Unterschied der Magnetisierung innerhalb und außerhalb des Kodierbereichs ermittelt werden kann. Der Kodierbereich kann mehrere nicht zusammenhängende Teilbereiche („Inseln") umfassen, zwischen denen sich Bereiche ohne Reaktionsmaterial befinden, so dass auch eine komplexere Kodierung realisiert werden kann. Anhand des Vergleichs der gespeicherten Kodierung und der ausgelesenen Kodierung kann das Werkstück identifiziert werden. Das Auslesen der Kodierung kann zu beliebigen Zeitpunkten, insbesondere auch wiederholt, erfolgen, bspw. um das Werkstück über verschiedenen Bearbeitungsprozesse oder verschiedene Versandstationen zu verfolgen.
Bei einer besonders bevorzugten Variante des erfindungsgemäßen Verfahrens erfolgt das Auslesen der Kodierung des Werkstück mittels eines mobilen Geräts, wobei mittels eines Hall-Sensors die magnetische Feldstärke und mittels eines weiteren Sensors, insbesondere eines Beschleunigungssensors und/oder eines Gyrosensors, die Bewegung des mobilen Geräts relativ zum Werkstück detektiert wird. Die Sensoren sind in dem mobilen Gerät oder zusammen mit dem mobilen Gerät in einem portablen Lesegerät integriert. Das Ergebnis des Vergleichs wird vorzugsweise auf dem mobilen Gerät angezeigt. Die ausgelesene Kodierung kann zudem über das Internet zum Auswerten an einen Rechner gesandt werden. Zusätzlich können auch mittels eines GPS-Empfängers Ortsdaten ermittelt werden, um eine Rückverfolgung des Werkstücks zu ermöglichen. Bei einer speziellen Variante des erfindungsgemäßen Verfahrens werden die Daten für die Speicherung der Kodierung durch einen initialen (dem eigentlichen Ausleseprozess vorgeschalteten) Ausleseprozess ermittelt. Dies kann bspw. direkt nach der Kodierung erfolgen mittels eines stationären oder mobilen Lesegeräts.
Die Erfindung betrifft auch eine Strahlungsbearbeitungsvorrichtung mit einer Strahlungseinheit, insbesondere einem Laserbearbeitungskopf, zur Beaufschlagung eines Werkstücks mit Strahlung, insbesondere Laserstrahlung, und mit einer Einrichtung zum Entfernen einer auf das Werkstück aufgebrachten Magnetschicht.
Vorzugsweise umfasst die Einrichtung zum Entfernen der Magnetschicht ein spanendes Werkzeug, insbesondere eine Fräswerkzeug, oder einer schabendes Werkzeug oder Bürsten.
Die Erfindung betrifft auch ein Kodiersystem zum Kodieren und Identifizieren eines plattenartigen Werkstücks, insbesondere mittels eines zuvor beschriebenen Verfahrens. Das Kodiersystem umfasst eine Beschichtungseinrichtung zum Aufbringen einer Magnetschicht, eine zuvor beschriebene Strahlungsbearbeitungs- vorrichtung zum Kodieren des Werkstücks durch Verschmelzung der Magnetschicht mit dem Grundmaterial des Werkstücks im Kodierbereich und ein Lesegerät zum Auslesen der Kodierung.
Vorzugsweis ist das Lesegerät portabel . Unter einem „portablen Lesegerät" ist ein mobiles Handbediengerät zu verstehen, das dazu eingerichtet ist, magnetische Signale auszulesen, wie bspw. ein Smartphone oder ein Tablet-Computer.
Bei einer vorteilhaften Ausführungsform umfasst das erfindungsgemäße Kodiersystem eine Speichereinrichtung (z.B. eine Datenbank) zur Speicherung der Kodierung (Signatur-Daten) und eine Vergleichseinrichtung zum Vergleichen von Kodierungen. Auf diese Weise kann das Werkstück (insbesondere zu einem späteren Zeitpunkt und an einem anderen Ort als dem Kodierort) identifiziert werden. Eine besonders kompakte Anordnung ergibt sich, wenn das Lesegerät und/oder ein weiteres Lesegerät und/oder die Beschichtungseinrichtung und/oder die Einrichtung zum Entfernen der Magnetschicht in der Strahlungsbearbeitungsvorrich- tung integriert sind .
Eine besonders bevorzugte Ausführungsform sieht vor, dass die Strahlungsbear- beitungsvorrichtung eine Laserbearbeitungsmaschine ist mit einer Werkstückauflage und einem relativ zur Werkstückauflage positionierbaren Laserbearbeitungskopf mit einer Laseroptik, dass die Laserbearbeitungsmaschine einen ersten Betriebsmodus zur formenden Bearbeitung, insbesondere zum Schneiden und/oder Schweißen, eines plattenartigen Werkstücks aufweist, und dass die Laserbearbeitungsmaschine einen zweiten Betriebsmodus zum Kodieren des Werkstücks aufweist.
Die Laserbearbeitungsmaschine kann Teil einer Flachbettmaschine, insbesondere zur Bearbeitung von plattenartigen metallischen Werkstücken, sein. Die Flachbettmaschine kann ausgestaltet sein, weitere Bearbeitungsschritte an dem Werkstück vornehmen, wie z. B. Stanzen und/oder Biegen und/oder Bohren und/oder Gewindeschneiden und/oder die Oberfläche Vor- oder Nachbehandeln und/oder Erwärmen oder Abkühlen und/oder das Aufbringen der Magnetschicht.
Besonders vorteilhaft ist es, wenn die Laserbearbeitungsmaschine eine Steuereinrichtung umfasst, wobei die Steuereinrichtung dazu eingerichtet ist, im zweiten Betriebsmodus die Intensität der vom Laserbearbeitungskopfs erzeugten Laserstrahlung so einzustellen, dass durch Bestrahlung des Werkstücks im Kodierbereich mit dem Laserstrahl die Magnetschicht mit dem Grundmaterial verschmolzen wird . Insbesondere ist die Steuereinrichtung dazu eingerichtet, die Intensität der Laserstrahlung im zweiten Betriebsmodus gegenüber der Intensität im ersten Betriebsmodus zu verringern, bspw. durch Reduzierung der Leistung und/oder durch Aufweiten des Laserstrahls. Darüber hinaus steuert die Steuereinrichtung die Bewegung des Laserbearbeitungskopfes.
Die Steuereinrichtung ist dazu mit einem entsprechenden Computerprogrammprodukt ausgestattet. Die Erfindung betrifft daher auch ein Computerprogrammprodukt mit einem gespeicherten Programmcode für eine zur Datenverarbeitung geeignete elektronische Steuereinrichtung für ein zuvor beschriebenes Kodiersystem, wobei das Computerprogrammprodukt Steuerbefehle enthält, welche die Steuereinrichtung zur Durchführung des zuvor beschriebenen Verfahrens veranlassen.
Vorzugsweise weist das Lesegerät einen Hall-Sensor auf, mit dem die vom Werkstück ausgehende Signalstärke der magnetischen Flussdichte detektiert werden kann.
Zusätzlich kann das Lesegerät einen Beschleunigungssensor und/oder einen Gy- rosensor und/oder einen GPS-Empfänger aufweisen. Auf diese Weise kann die Position und Ausrichtung des Werkstücks gegenüber dem Lesegerät ermittelt werden.
Um eine Verbindung zu einer Datenbank herzustellen ist es darüber hinaus vorteilhaft, wenn das Kodiersystem einen Zugang zum Internet über LAN, WiFi usw. aufweist.
Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und der Zeichnung . Ebenso können die vorstehend genannten und die noch weiter ausgeführten Merkmale erfindungsgemäß jeweils einzeln für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung .
Detaillierte Beschreibung der Erfindung und Zeichnung
Fig . 1 zeigt ein erfindungsgemäßes Kodiersystem mit einer Strahlungsbearbei- tungsvorrichtung und einem im Kodierprozess befindlichen Werkstück.
Fig . 2 zeigt ein mittels des erfindungsgemäßen Verfahrens kodiertes Werkstück und einen durch ein Lesegerät ermittelten Signalverlauf in Abhängigkeit von der Position des Lesegeräts für ein Werkstück aus Edelstahl . Fig . 3 zeigt ein portables Lesegerät und Vergleichs- und Speichereinrichtung für ein erfindungsgemäßes Kodiersystem.
Fig. 1 zeigt ein erfindungsgemäßes Kodiersystem mit einer Strahlungsbearbei- tungsvorrichtung 1. Die Strahlungsbearbeitungsvorrichtung 1 umfasst eine Strahlungseinheit 2 (bspw. in Form eines Laserbearbeitungskopfes), mit der ein auf einer Werkstückauflage 5 angeordnetes Werkstück 4 mit Strahlung 3 beaufschlagt werden kann. Die Strahlungseinheit 2 ist dazu ausgebildet, zumindest einen Teilbereich des Werkstücks 4 abzuscannen. Dies kann dadurch erfolgen, dass mittels einer Umlenkeinrichtung (z. B. MEMS-Spiegel) die Strahlung 3 auf verschiedene Bereiche des Werkstücks 4 gerichtet wird oder dadurch, dass die Strahlungseinheit 2 und die Werkstückaufnahme 5 relativ zueinander verfahren werden, wie in Fig . 1 mittels der Pfeile angedeutet. Zur Fokussierung der Strahlung 3 kann die Strahlungseinheit 2 mit einem Objektiv 6 ausgestattet sein.
Das Werkstück 4 besteht aus einem Grundmaterial, dessen magnetische Eigenschaften durch eine Kodierung verändert werden sollen. Dazu wird ein Kodierbereich 13 festgelegt, in welchem magnetisches Material mit dem Grundmaterial verschmolzen werden soll. Der Kodierbereich 13 weist vorzugsweise eine Größe im mikroskopischen Bereich auf. Das Werkstück 4 wird zunächst mittels einer Beschichtungseinrichtung 8 mit einer Magnetschicht 7 beschichtet, wobei der beschichte Bereich den Kodierbereich 13 umfassen muss. Die Magnetschicht umfasst magnetische Partikel, die durch Bestrahlung des Werkstücks 4 im Kodierbereich 13 mit dem Grundmaterial verschmolzen werden. Wellenlänge und Intensität der Strahlung 3 werden dazu so gewählt, dass die Strahlung 3 die Magnetschicht 7 durchdringt und die Oberfläche 4 des Werkstücks 1 aufschmilzt, so dass Magnetpartikel der Magnetschicht 7 mit der Oberfläche des Werkstücks 4 verschmelzen. Die Intensität, Fokussierung und Strahlweite der Strahlung 3 kann mittels einer Steuereinrichtung 23 gesteuert werden .
Nach Abkühlen und Erstarren des aufgeschmolzenen Materials werden die nicht mit dem Grundmaterial verschmolzenen Teile der Magnetschicht 7 mittels einer Einrichtung 9 zum Entfernen der Magnetschicht von der Oberfläche des Werkstücks 4 entfernt, bspw. durch Bürst- oder Fräswerkzeuge. Das Material der Magnetschicht 7 und das Material des Werkstücks 4 werden so aufeinander abgestimmt, dass sich die Remanenzeigenschaften der beiden Materialien voneinander unterscheiden, so dass durch das Einschmelzen der Magnetpartikel in das Werkstück 4 sich eine lokale Veränderung der Remanenz des Werkstücks 4 ergibt. Somit wird eine magnetische Kodierung realisiert. Das vom Werkstück 4 (insbesondere vom Kodierbereich 13) ausgehende Magnetfeld 19 kann mittels eines Lesegeräts 11 ausgelesen und als Signatur-Daten in einer Speichereinrichtung 22 (Datenbank) abgelegt werden. Der Bereich, der vom Lesegerät 11 ausgelesen wird (Auslesebereich) hat vorzugsweise eine Ausdehnung im cm-Bereich.
Das Lesegerät 11 kann fest in der Strahlungsbearbeitungsvorrichtung 1 integriert sein; es kann jedoch auch ein portables Lesegerät verwendet werden.
Fig. 2 zeigt das Werkstück 1, bei dem im Kodierbereich 13 Magnetpartikel verschmolzen sind . Je nachdem ob bzw. wie stark das Grundmaterial des Werkstücks 4 magnetisch ist, wird durch das Einschmelzen der Magnetpartikel das magnetische Signal im Kodierbereich 13 erhöht oder verringert: In dem in Fig . 2 exemplarisch für ein Werkstück aus Edelstahl gezeigten Verlauf der magnetischen Flussdichte B in Abhängigkeit von der Position des Lesegeräts 11 ist durch die erfindungsgemäße Kodierung das magnetische Signal erhöht. Analog hierzu kann die magnetische Flussdichte bspw. für ein Werkstück aus einem stark fer- romagnetischen Baustahl durch die erfindungsgemäße Kodierung verringert werden.
Wird das kodierte Werkstück 4 nun bspw. zu einer anderen Arbeitsstation gebracht, kann die Kodierung dort erneut ausgelesen werden, bspw. um das Werkstück zu identifizieren . Dazu kann ein portables Lesegerät 15 verwendet werden, wie in Fig. 3 gezeigt. Das Auslesen der Kodierung erfolgt über das Lesegerät 15, bspw. mittels Hall-Sensoren 17, die in einem mobilen Gerät 18, beispielsweise einem Smartphone oder einem Tablet-Computer, verbaut sind . Das Lesegerät 15 wird zum Auslesen der Kodierung in einem Abstand von einigen cm über das Werkstück 4 hinweg bewegt. Das mobile Gerät 18 muss dabei an die richtige Position auf dem bzw. über dem Werkstück 4 gebracht werden, hierfür ist es hilf- reich, wenn eine Markierung auf dem Werkstück 4 angebracht wird oder eine Regel festgelegt wird, wo die Kodierung anzubringen ist (z.B. "immer linke untere Ecke"). Wird das portable Lesegerät 15 mit den Hall-Sensoren 17 über das Werkstück 4 geführt, kann die Bewegung über einen weiteren Sensor 21 (Gyrosensor und/oder Beschleunigungs-Sensor) erfasst werden, so dass das Signal in Abhängigkeit vom Ort (hier beispielhaft entlang der Richtung x) angegeben werden kann. Wenn das portable Lesegerät 15 über einen GPS-Empfänger 20 verfügt, kann darüber hinaus beim Auslesen des Fingerabdrucks der Standort des Werkstücks 4 ermittelt werden und über das Internet z. B. an einen Produktverkäufer übermittelt werden. Durch eine Vergleichseinrichtung 16 (bspw. in Form einer App, die mit einer Datenbank über das Internet verbunden ist) kann dieser einmalige Fingerabdruck auf Echtheit hin überprüft werden. Die Daten der Sensoren 17, 20, 21 werden dazu, vorzugsweise über W-LAN, an die Vergleichseinrichtung 16 übermittelt und dort mit den in der Speichereinrichtung 22 hinterlegten Signatur-Daten verglichen. Auf diese Weise kann das Werkstück 4 identifiziert und in der Speichereinrichtung 22 hinterlegte Eigenschaften des Werkstücks 4 verifiziert werden.
Die erfindungsgemäße magnetische Kodierung kann überlackiert oder pulverbeschichtet werden, ohne dass ihre Lesbarkeit beeinflusst wird .
Strahl ungsbearbeitungsvorrichtung
Strahlungseinheit, insbesondere Laserbearbeitungskopf mit Laseroptik
Strahlung, insbesondere Laserstrahl
Werkstück
Werkstückauflage
Objektiv
Magnetschicht
Beschichtungseinrichtung
Einrichtung zum Entfernen der Magnetschicht
Lesegerät zum Auslesen der Kodierung nach dem Kodiervorgang
Kodierbereich
portables Lesegerät
Vergleichseinrichtung
Hall-Sensoren
mobiles Gerät
vom Kodierbereich ausgehendes Magnetfeld/Feldlinien
GPS-Empfänger
weiterer Sensor (Gyrosensor/Beschleunigungssensor)
Speichereinrichtung/Datenbank
Steuereinrichtung

Claims

Patentansprüche
1. Verfahren zum Kodieren eines plattenartigen Werkstücks (4), insbesondere eines Blechs, umfassend :
• Festlegen eines Kodierbereichs (13);
• Aufbringen einer Magnetschicht (7) auf die Oberfläche des Werkstücks (4);
• Verschmelzen von Teilen der Magnetschicht (7) mit der Oberfläche des Werkstücks (4) durch Beaufschlagen des Werkstücks (4) mit Strahlung (3) innerhalb des Kodierbereichs (13);
• Abkühlen des Werkstücks (4);
• Entfernen der nicht verschmolzenen Teile der Magnetschicht (7).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Magnetschicht (7) in Form einer Folie oder einer Paste aufgebracht oder mittels einer Düse aufgesprüht wird .
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zum Verschmelzen der Magnetschicht (7) die Oberfläche des Werkstücks (4) mit Laserstrahlung (3) bestrahlt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Laserstrahlung (3) mittels einer Laseroptik durch die Magnetschicht (7) hindurch auf die Werkstückoberfläche fokussiert wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Magnetschicht (7) verwendet wird, deren Remanenzflussdichte sich von der Remanenzflussdichte des Werkstücks (4) um zumindest einige Mikrotesla unterscheidet.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach dem Entfernen der Magnetschicht (7) das Werkstück (4) einer Oberflächenbehandlung, insbesondere Lackieren, Pulverbeschichten, Schleifen oder Entgraten, unterzogen wird.
7. Verfahren zum Identifizieren von plattenartigen Werkstücken (4), insbesondere von Blechen, umfassend :
• Kodieren des Werkstücks (4) mittels eines Verfahrens gemäß einem der vorhergehenden Ansprüche;
• Speicherung der Kodierung in einer Speichereinrichtung (22);
• Auslesen der Kodierung durch Messung der örtlichen Verteilung der Magnetisierung in einem Auslesebereich;
• Vergleich der gespeicherten Kodierung und der ausgelesenen Kodierung.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Auslesen der Kodierung des Werkstück (4) mittels eines mobilen Geräts (18) erfolgt, wobei mittels eines Hall-Sensors (17) die magnetische Feldstärke und mittels eines weiteren Sensors (21), insbesondere eines Beschleunigungssensors und/oder Gyrosensors, die Bewegung des mobilen Geräts (18) relativ zum Werkstück detektiert wird .
9. Strahlungsbearbeitungsvorrichtung mit einer Strahlungseinheit zur Beaufschlagung eines Werkstücks mit Strahlung, insbesondere Laserstrahlung, und mit einer Einrichtung zum Entfernen einer auf das Werkstück aufgebrachten Magnetschicht.
Strahlungsbearbeitungsvorrichtung nach Anspruch 9 dadurch gekennzeichnet, dass die Einrichtung zum Entfernen der Magnetschicht ein spanendes Werkzeug, insbesondere eine Fräswerkzeug, oder einer schabendes Werkzeug oder Bürsten umfasst.
11. Kodiersystem zum Kodieren und Identifizieren eines plattenartigen Werkstücks (4), insbesondere mittels eines Verfahrens nach einem der Ansprüche 1 bis 10, umfassend :
eine Beschichtungseinrichtung zum Aufbringen einer Magnetschicht;
eine Strahlungsbearbeitungsvorrichtung gemäß Anspruch 13 oder 14 zum Kodieren des Werkstücks (4) durch Verschmelzung der Magnetschicht mit dem Grundmaterial des Werkstücks im Kodierbereich; und
ein Lesegerät (15) zum Auslesen der Kodierung.
12. Kodiersystem nach Anspruch 11, dadurch gekennzeichnet, dass es sich bei dem Lesegerät ein portables Lesegerät handelt.
13. Kodiersystem nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass das Kodiersystem eine Speichereinrichtung (22) zur Speicherung der Kodierung und eine Vergleichseinrichtung (16) zum Vergleichen von Kodierungen umfasst.
14. Kodiersystem nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass das Lesegerät und/oder ein weiteres Lesegerät (11) und/oder die Beschichtungseinrichtung zum Aufbringen der Magnetschicht und/oder die Einrichtung zum Entfernen der Magnetschicht in der Strahlungsbearbeitungsvorrichtung (1) integriert sind.
15. Kodiersystem nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet,
dass die Strahlungsbearbeitungsvorrichtung (1) eine Laserbearbeitungsmaschine ist, mit einer Werkstückauflage (5) und einem relativ zur Werkstückauflage (5) positionierbaren Laserbearbeitungskopf (2) mit einer Laseroptik; dass die Laserbearbeitungsmaschine einen ersten Betriebsmodus zur formenden Bearbeitung, insbesondere zum Schneiden und/oder Schweißen, eines plattenartigen Werkstücks (4) aufweist; und dass die Laserbearbeitungsmaschine einen zweiten Betriebsmodus zum Kodieren des Werkstücks (4) aufweist.
PCT/EP2018/053867 2017-02-17 2018-02-16 Verfahren zum Kodieren eines plattenartigen Werkstücks, Verfahren zum Identifizieren eines plattenartigen Werkstücks, Strahlungsbearbeitungsvorrichtung und Kodiersystem WO2018149957A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/537,661 US11370063B2 (en) 2017-02-17 2019-08-12 Encoding and identifying a plate-like workpiece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017202628.6 2017-02-17
DE102017202628.6A DE102017202628B4 (de) 2017-02-17 2017-02-17 Verfahren zum Kodieren eines plattenartigen Werkstücks, Verfahren zum Identifizieren eines plattenartigen Werkstücks, Strahlungsbearbeitungsvorrichtung und Kodiersystem

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/537,661 Continuation US11370063B2 (en) 2017-02-17 2019-08-12 Encoding and identifying a plate-like workpiece

Publications (1)

Publication Number Publication Date
WO2018149957A1 true WO2018149957A1 (de) 2018-08-23

Family

ID=61244604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/053867 WO2018149957A1 (de) 2017-02-17 2018-02-16 Verfahren zum Kodieren eines plattenartigen Werkstücks, Verfahren zum Identifizieren eines plattenartigen Werkstücks, Strahlungsbearbeitungsvorrichtung und Kodiersystem

Country Status (3)

Country Link
US (1) US11370063B2 (de)
DE (1) DE102017202628B4 (de)
WO (1) WO2018149957A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018217582A1 (de) * 2018-10-15 2020-04-16 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren und System zum Identifizieren eines Werkstücks

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1353063A (en) * 1970-06-16 1974-05-15 Fuji Photo Film Co Ltd Method of marking
EP0850779A1 (de) * 1996-12-27 1998-07-01 Omron Corporation Verfahren zur Beschriftung eines Gegenstands, dass ein Laserstrahl verwendet
EP1110660A2 (de) * 1999-11-23 2001-06-27 dmc2 Degussa Metals Catalysts Cerdec AG Zusammensetzungen zur Lasermarkierung und Verfahren zum Herstellen von glänzenden oxidationbeständigen Markierungen
US20010041214A1 (en) * 1999-04-01 2001-11-15 Brian Brogger System for retrospective identification and method of making articles for retrospective identification
US20030039765A1 (en) * 1997-03-21 2003-02-27 Hirotoshi Hayakawa Marking method and marking material
DE10248142B3 (de) 2002-10-16 2004-07-01 Kuhnke Gmbh Verfahren zur Herstellung einer magnetisch abtastbaren Codierung in einem metallischen Bauelement, sowie metallisches Bauelement mit einer magnetisch abtastbaren Codierung
EP1675040A1 (de) * 2004-12-23 2006-06-28 Siemens Aktiengesellschaft Markierung zur Erkennung eines Bauteils und ein Bauteil
US20070103512A1 (en) * 2005-11-08 2007-05-10 Seiko Epson Corporation Liquid ejection apparatus
DE102014210611A1 (de) 2014-06-04 2015-12-17 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Markieren eines DataMatrix-Codes auf einem Werkstück mittels eines Laserstrahls

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE363686B (de) 1969-11-06 1974-01-28 Dasy Int Sa
CA937280A (en) 1970-06-16 1973-11-20 Honjo Satoru Method of marking
JPS5572008A (en) 1978-11-25 1980-05-30 Hitachi Maxell Ltd Preparation of ferromagnetic powder
US4395628A (en) 1979-04-23 1983-07-26 Daniel Silverman Access security control
US4467172A (en) * 1983-01-03 1984-08-21 Jerry Ehrenwald Method and apparatus for laser engraving diamonds with permanent identification markings
DE3407813A1 (de) 1984-03-02 1985-09-12 Adrema Maschinenbau GmbH, 6148 Heppenheim Identifikationskarte sowie aufzeichnungsverfahren und vorrichtung zur durchfuehrung des aufzeichnungsverfahrens
US4837426A (en) 1987-01-16 1989-06-06 Rand, Mcnally & Company Object verification apparatus and method
DE3728622C1 (de) 1987-08-27 1988-05-19 Daimler Benz Ag Kennzeichnung von industriellen Erzeugnissen oder Einzelteilen davon
DE4003954C1 (de) 1990-02-09 1991-06-20 Petersen, Gabriela, 2153 Neu Wulmstorf, De
US5089060A (en) 1990-09-28 1992-02-18 General Motors Corporation Thermomagnetically patterned magnets and method of making same
DE4306209A1 (de) 1993-02-27 1994-09-01 Kiefer Anni Strichcode und Vorrichtung zum Lesen des Strichcodes
DE4444233A1 (de) 1994-12-13 1996-06-20 Zueblin Systemtechnik Verfahren und Vorrichtung zur Kennzeichnung von Objekten
JP3868019B2 (ja) 1995-12-07 2007-01-17 日立金属株式会社 複合磁性部材およびその製造方法
HUP9701312A3 (en) 1997-07-28 2000-06-28 Magyar Allamvasutak Reszvenyta Method for complex shaping of marks or a system of marks by means of modifying texture and inner stresses in materials and by non-destructive read-out of marks or packets of marks
DE19733786C1 (de) 1997-08-05 1999-06-24 Daimler Chrysler Ag Kennzeichnung von industriellen Erzeugnissen oder Einzelteilen davon
DE19806822C2 (de) 1998-02-18 2002-08-22 Meinen Ziegel & Co Gmbh Ausweiskarte, Verfahren zu ihrer Herstellung und Verfahren zum Lesen eines Codes auf einem Unterschriftsstreifen der Ausweiskarte
ES2153751B1 (es) 1998-09-21 2001-08-01 Gomez Gines Sanchez Almacen automatico.
DE19910880A1 (de) 1999-03-11 2000-09-14 Deckel Maho Gmbh Werkzeugmaschine für die Werkstückbearbeitung mit spanenden Werkzeugen und Laserstrahl
DE10017141A1 (de) 2000-04-06 2001-10-11 Schreiner Gmbh & Co Kg Kennzeichnungsträger, Verfahren zu dessen Herstellung und Verfahren zur Kennzeichnung eines Gegenstandes
AU2001276336A1 (en) 2000-06-02 2001-12-11 Wolfgang Bossert Flat material especially in the form of a sheet or a strip and device for writing on said material
DE10027574B4 (de) 2000-06-02 2012-11-22 Wolfgang Bossert Flächiges Material, insbesondere als blattförmiger Bogen oder Bahn
DE10058972B4 (de) 2000-11-28 2010-07-29 Wolfgang Bossert Flächiges Bogenmaterial zur Aufnahme einer Information
JP2002049900A (ja) 2000-08-01 2002-02-15 Hanex Co Ltd 電磁誘導タグを利用した物品の管理方法及び電磁誘導タグを利用した物品の管理システム
DE10102193A1 (de) 2001-01-16 2002-07-18 Volkswagen Ag Verfahren zum Aufbringen einer identifikationsnummer
DE10158403B4 (de) 2001-11-28 2010-10-07 Wolfgang Bossert Flächiges Bogenmaterial
EP1540570A2 (de) 2002-08-05 2005-06-15 Verification Security Corporation Antifälschungssystem mit strukturiertem magnetmuster
US8033457B2 (en) 2003-01-03 2011-10-11 American Express Travel Related Services Company, Inc. Metal-containing transaction card and method of making the same
WO2004063977A2 (en) 2003-01-03 2004-07-29 American Express Travel Related Services Company, Inc. Metal containing transaction card and method of making the same
DE10314631B4 (de) 2003-04-01 2014-02-27 Daniel Bossert Flächiges Bogenmaterial mit Individualinformation, Bogen und Verfahren zur Individualisierung eines blattförmigen Bogens.
AT500908A1 (de) 2003-06-17 2006-04-15 Hueck Folien Gmbh Sicherheitselement mit magnetischer codierung, verfahren und vorrichtung zu dessen herstellung und dessen verwendung
JP4570389B2 (ja) 2004-04-26 2010-10-27 アライ株式会社 レーザマーキングによる2次元コードの形成方法、及びレーザマーキング装置
WO2007133164A1 (en) 2006-05-11 2007-11-22 Singular Id Pte Ltd Identification tags, objects adapted to be identified, and related methods, devices and systems
DE202007018544U1 (de) 2007-06-30 2008-10-16 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Werkzeugmaschine mit einer Funktionseinheit mit Linearantrieb sowie entsprechender Linearantrieb
EP2248067B1 (de) * 2008-02-19 2020-03-25 Bilcare Technologies Singapore Pte. Ltd. Lesegerät zur identifizierung eines etiketts oder eines zur identifizierung geeigneten objekts, entsprechende verfahren und systeme
TWI422498B (zh) 2008-04-02 2014-01-11 Sicpa Holding Sa 使用液晶材料標記之識別法及鑑別法
DE102008028776A1 (de) 2008-06-17 2009-12-24 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Kennzeichnen eines Werkstücks beim Laserbearbeiten
DE102008033693A1 (de) 2008-07-17 2010-01-21 Giesecke & Devrient Gmbh Datenträger mit einem gedruckten magnetischen Sicherheitsmerkmal
DE102009056584B4 (de) 2009-12-01 2014-09-25 Gottfried Wilhelm Leibniz Universität Hannover Bauteil, Verfahren zum Einbringen von Informationen in ein Bauteil und Verfahren zum Ermitteln einer Belastungshistorie eines Bauteils
US20140187322A1 (en) 2010-06-18 2014-07-03 Alexander Luchinskiy Method of Interaction with a Computer, Smartphone or Computer Game
WO2012037955A1 (de) 2010-09-24 2012-03-29 Universität Stuttgart Nutzung der polarisation der wärmestrahlung zur detektion von 3d-strukturen
DE102010051394A1 (de) 2010-11-12 2012-05-16 V & M Deutschland Gmbh Verfahren zur Einzelstückverfolgung von Hohlkörpern aus Stahl
DE102012102855A1 (de) 2012-04-02 2013-10-02 Asg Luftfahrttechnik Und Sensorik Gmbh Verfahren und Anordnung zur Positionsbestimmung eines Bauteils sowie Sensor
DE102013005839A1 (de) 2013-04-04 2014-10-09 Giesecke & Devrient Gmbh Sicherheitselement für Wertdokumente
DE102013209526B4 (de) 2013-05-23 2015-04-30 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren, Computerprogrammprodukt und Vorrichtung zum Erkennen eines Schnittabrisses
DE102013210078B4 (de) 2013-05-29 2015-04-30 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Vorrichtung, Verfahren und Computerprogrammprodukt zur Bestimmung der Fokusposition eines Hochenergiestrahls
DE102013218421A1 (de) 2013-09-13 2015-04-02 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Vorrichtung und Verfahren zur Überwachung, insbesondere zur Regelung, eines Schneidprozesses
CA2928554C (en) 2013-10-25 2018-04-10 Cpi Card Group-Colorado, Inc. Multi-metal layered card
US10106880B2 (en) 2013-12-31 2018-10-23 The United States Of America, As Represented By The Secretary Of The Navy Modifying the surface chemistry of a material
DE102014203645B4 (de) 2014-02-28 2016-06-02 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren und Vorrichtung zum optischen Bestimmen eines Abstandes
WO2015183243A1 (en) 2014-05-27 2015-12-03 Rolith, Inc. Anti-counterfeiting features and methods of fabrication and detection
DE102015202732A1 (de) 2015-02-16 2016-08-18 Robert Bosch Gmbh Sensoranordnung zur Erfassung von Drehwinkeln an einem rotierenden Bauteil in einem Fahrzeug
DE202015002913U1 (de) 2015-04-22 2015-06-18 Daniel Bossert Prüfsystem
CN106313912A (zh) * 2015-07-03 2017-01-11 周利英 激光打标机
JP6151401B1 (ja) 2016-03-30 2017-06-21 京浜ラムテック株式会社 スパッタリングカソード、スパッタリング装置および成膜体の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1353063A (en) * 1970-06-16 1974-05-15 Fuji Photo Film Co Ltd Method of marking
EP0850779A1 (de) * 1996-12-27 1998-07-01 Omron Corporation Verfahren zur Beschriftung eines Gegenstands, dass ein Laserstrahl verwendet
US20030039765A1 (en) * 1997-03-21 2003-02-27 Hirotoshi Hayakawa Marking method and marking material
US20010041214A1 (en) * 1999-04-01 2001-11-15 Brian Brogger System for retrospective identification and method of making articles for retrospective identification
EP1110660A2 (de) * 1999-11-23 2001-06-27 dmc2 Degussa Metals Catalysts Cerdec AG Zusammensetzungen zur Lasermarkierung und Verfahren zum Herstellen von glänzenden oxidationbeständigen Markierungen
DE10248142B3 (de) 2002-10-16 2004-07-01 Kuhnke Gmbh Verfahren zur Herstellung einer magnetisch abtastbaren Codierung in einem metallischen Bauelement, sowie metallisches Bauelement mit einer magnetisch abtastbaren Codierung
EP1675040A1 (de) * 2004-12-23 2006-06-28 Siemens Aktiengesellschaft Markierung zur Erkennung eines Bauteils und ein Bauteil
US20070103512A1 (en) * 2005-11-08 2007-05-10 Seiko Epson Corporation Liquid ejection apparatus
DE102014210611A1 (de) 2014-06-04 2015-12-17 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Markieren eines DataMatrix-Codes auf einem Werkstück mittels eines Laserstrahls

Also Published As

Publication number Publication date
DE102017202628B4 (de) 2022-03-17
US20190358743A1 (en) 2019-11-28
DE102017202628A1 (de) 2018-08-23
US11370063B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
EP2144728B1 (de) Verfahren zum einbringen einer struktur in eine oberfläche eines transparenten werkstücks
EP3038786B1 (de) Verfahren zum feststellen von abweichungen einer ist-lage eines laserbearbeitungskopfes von seiner soll-lage sowie laserbearbeitungsmaschine zur durchführung des verfahrens
EP3488389B1 (de) Vorrichtung und verfahren zur erzeugung und detektieren einer fälschungssicheren identifikation
EP3145685B1 (de) Verfahren, einrichtung und laserplotter zum bearbeiten von werkstücken
EP2873471B1 (de) Verfahren und Laserbearbeitungsanlage zum Aufbringen einer unverlierbaren Kennzeichnen auf ein Werkstückes
DE102015224575A1 (de) Laserbearbeitungsvorrichtung
DE102016204905A1 (de) Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
DE102017218692A1 (de) Verfahren zum Kodieren und Identifizieren eines plattenartigen Werkstücks, Metallbearbeitungsmaschine und Verwendung einer Metallbearbeitungsmaschine
DE102017202628B4 (de) Verfahren zum Kodieren eines plattenartigen Werkstücks, Verfahren zum Identifizieren eines plattenartigen Werkstücks, Strahlungsbearbeitungsvorrichtung und Kodiersystem
DE102017202629B4 (de) Verfahren zum Kodieren eines plattenartigen Werkstückes, Verfahren zum Identifizieren eines plattenartigen Werkstückes, Kodiersystem zum Kodieren und Identifizieren eines plattenartigen Werkstücks
EP3135424B1 (de) Verfahren zum einbringen von strukturen in die oberfläche eines fahrzeugluftreifens
DE60032327T2 (de) Lasereinheit zur Markierung von Metallbändern
WO2017191008A1 (de) Verfahren zur ausbildung und detektion von sicherheitselementen auf der oberfläche eines bauteils oder in einem bauteil, und system zur detektion dieses sicherheitselements
DE102008028776A1 (de) Kennzeichnen eines Werkstücks beim Laserbearbeiten
WO2013041253A1 (de) Handgeführtes beschriftungssystem
DE102007056112A1 (de) Verfahren zum Bearbeiten von Graten an Werkstücken mittels Laserstrahlung
DE102017202630B4 (de) Bearbeitungsmaschine und maschinelles Verfahren zum Bearbeiten von plattenartigen Werkstücken
WO2022218810A1 (de) Verfahren und steuergerät zum steuern eines laser-bearbeitungsprozesses einer oberfläche eines werkstücks und bearbeitungssystem zum bearbeiten einer oberfläche eines werkstücks mittels eines laser-bearbeitungsprozesses
DE102015009950A1 (de) Verfahren und Vorrichtung zur Erzeugung eines Druckbildes auf einem Druckformrohling
DE2165831C3 (de) Vorrichtung zum Abtasten und Aufzeichnen einer Vorlage
DE3711905A1 (de) Vorrichtung zum behandeln von werkstoffbahnen, -tafeln o. dgl. werkstuecken mit laserstrahlung, insbesondere fuer in laengsrichtung gefoerderte kornorientierte elektrobleche
DE4220257A1 (de) Verfahren und Vorrichtung zum Beschriften und/oder Bearbeiten von Werkstücken mit einer Oberfläche unbekannter Form
EP2909035B1 (de) Vorrichtung zur laserpersonalisierung von sicherheitselementen
EP3898179A1 (de) Identifizierung von im 3d-druckverfahren erzeugten objekten
DE2336223A1 (de) Verfahren zur informationsuebertragung mittels elektronenstrahlanlagen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18705905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18705905

Country of ref document: EP

Kind code of ref document: A1