WO2018147461A1 - ポリウレタン弾性繊維、その製法、及びそれを含むギャザー部材 - Google Patents

ポリウレタン弾性繊維、その製法、及びそれを含むギャザー部材 Download PDF

Info

Publication number
WO2018147461A1
WO2018147461A1 PCT/JP2018/004899 JP2018004899W WO2018147461A1 WO 2018147461 A1 WO2018147461 A1 WO 2018147461A1 JP 2018004899 W JP2018004899 W JP 2018004899W WO 2018147461 A1 WO2018147461 A1 WO 2018147461A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane elastic
elastic fiber
polyurethane
titanium oxide
elastic fibers
Prior art date
Application number
PCT/JP2018/004899
Other languages
English (en)
French (fr)
Inventor
三崎 陽子
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN201880010402.6A priority Critical patent/CN110249084B/zh
Publication of WO2018147461A1 publication Critical patent/WO2018147461A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/94Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of other polycondensation products

Definitions

  • the present invention relates to a polyurethane elastic fiber that can be suitably used for elastic members such as sanitary products and medical products, a manufacturing method thereof, and a gather member including the same.
  • Absorbent articles typified by disposable diapers are known in which a pattern such as an animal or a character is displayed on the surface of the diaper in order to enhance the taste and design effect for infants and guardians.
  • disposable diapers are required to follow an excellent fit and active movement of the wearer in order to suppress the displacement of the diaper and prevent the excrement from leaking. For this reason, in the state which extended
  • titanium oxide is usually added to polyurethane elastic fibers in order to prevent yarn breakage in the diaper manufacturing process. This is because by adding titanium oxide, the coefficient of friction with various guides through which the yarn passes in the diaper manufacturing process is reduced, and yarn breakage in the process can be reduced. However, if the amount of titanium oxide exceeds a certain range, the coefficient of friction with the guide decreases, but the heat resistance decreases, so the polyurethane elastic fiber is bonded to a substrate such as a nonwoven fabric via an adhesive such as hot melt. When heated, physical properties deteriorate due to heat and thread breakage occurs.
  • titanium oxide has been used as a matting agent for polyurethane elastic fibers.
  • titanium oxide is generally made into a product through classification, drying, and pulverization in the final manufacturing process, but aggregated particles are formed during drying, and such coarse molecules remain. Since there is a problem that the dispersibility in the dispersion medium is deteriorated, it has been attempted to coat titanium oxide with a water-soluble coating agent. Since this technology adds titanium oxide as a matting agent, it is premised on the addition of a predetermined amount or more of titanium oxide. From the viewpoint of improving the design of diapers by increasing the transparency of the yarn, Content, particle size, specific surface area, etc. have not been studied.
  • Patent Documents 3 and 4 polyether ester fibers containing 0.01 to 3% by weight of titanium oxide having an average particle diameter of 0.01 to 2 ⁇ m are disclosed. Since heat resistance is inferior to polyurethane elastic fiber and recovery rate at the time of elongation is inferior, it is not suitable for diapers. In addition, the specific surface area relative to the average particle diameter is not clear. When the specific surface area becomes large with respect to the particle diameter, there is a problem that titanium oxide aggregates in the spinning process and yarn breakage occurs in the spinning process. As described above, the conventional polyurethane elastic fibers have not been able to suppress yarn breakage in the diaper manufacturing process and improve the design of the diaper.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and as a polyurethane elastic fiber used for gather members such as sanitary products and medical products represented by disposable diapers, sanitary products, medical products, etc.
  • a polyurethane elastic fiber used for gather members such as sanitary products and medical products represented by disposable diapers, sanitary products, medical products, etc.
  • the manufacturing process when elastic fibers are bonded to a substrate such as a nonwoven fabric with an adhesive such as hot melt, the occurrence of yarn breakage is suppressed due to excellent running properties and heat resistance, and the light transmittance is high. Therefore, in the product, polyurethane elastic fiber capable of obtaining hygienic products, medical products, etc. excellent in design without damaging the appearance of colors, patterns, characters, etc. applied to a substrate such as a nonwoven fabric, and its production method And a gather member including the same.
  • the present inventor has found that the above problems can be solved by specifying the content of titanium oxide, the dynamic friction coefficient, and the L value used in polyurethane elastic fibers.
  • the present invention has been completed.
  • the present invention is as follows. [1] A polyurethane elastic fiber containing 0.005 to 0.5% by weight of titanium oxide, Measured when a ceramic hook guide is inserted into the yarn travel path at a friction angle of 90 ° when the polyurethane elastic fiber yarn is running at a feed rate from the package of 50 m / min and a winding speed of 150 m / min.
  • the dynamic friction coefficient ( ⁇ d) of the polyurethane elastic fiber calculated by substituting into is 0.2 to 1.5, and A 10% polyurethane solution is prepared by adding 90 g of dimethylacetamide to 10 g of an aggregate of short fibers obtained by cutting the polyurethane elastic fiber into a length of 3 mm, and stirring at room temperature. Pour into a shaped container, leave it in a 50 ° C.
  • the polyurethane elastic fiber characterized by the above.
  • the polyurethane elastic fiber elastic fiber according to the present invention is bonded to a substrate such as a non-woven fabric with an adhesive such as hot melt by specifying the content of titanium oxide, the coefficient of dynamic friction, and the L value, the runnability and heat resistance Hygienic products that are superior in design and have excellent design properties, because the occurrence of yarn breakage is suppressed due to their excellent properties, and because the light transmittance is high, the appearance of colors, patterns, letters, etc. applied to substrates such as nonwoven fabrics is not impaired. Medical products can be obtained.
  • the polyurethane elastic fiber of this embodiment is a polyurethane elastic fiber containing 0.005 to 0.5% by weight of titanium oxide, Measured when a ceramic hook guide is inserted into the yarn travel path at a friction angle of 90 ° when the polyurethane elastic fiber yarn is running at a feed rate from the package of 50 m / min and a winding speed of 150 m / min.
  • the dynamic friction coefficient ( ⁇ d) of the polyurethane elastic fiber calculated by substituting into is 0.2 to 1.5, and 90 g of dimethylacetamide is added to 10 g of an aggregate of short fibers obtained by cutting the polyurethane elastic fiber into a length of 3 mm, and stirred at room temperature to prepare a uniform 10% polyurethane solution. Pour into a rectangular parallelepiped container, leave it to a uniform thickness, and leave it in a 50 ° C incubator until the dimethylacetamide completely evaporates.
  • the particle size of titanium oxide present in the polyurethane polymer before spinning of the polyurethane elastic fiber is preferably 0.015 to 0.5 ⁇ m, and the specific surface area is preferably 5 to 110 m 2 / g. .
  • the polyurethane elastic fiber in the present embodiment is composed of a soft segment portion made of polyether diol and organic diisocyanate and a hard segment portion made of organic diisocyanate and diamine or diol.
  • Examples of the polyalkylene ether diol in the polyurethane elastic fiber used in the present embodiment include straight chain alkylene groups having 2 to 6 carbon atoms such as polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and polyhexamethylene ether glycol.
  • organic diisocyanate compound in the polyurethane elastic fiber used in the present embodiment for example, all of aliphatic, alicyclic and aromatic diisocyanates which are dissolved or liquid under reaction conditions can be applied.
  • organic diisocyanate compound in the polyurethane elastic fiber used in the present embodiment for example, all of aliphatic, alicyclic and aromatic diisocyanates which are dissolved or liquid under reaction conditions can be applied.
  • Examples of the polyfunctional active hydrogen atom-containing compound that is a chain extender that reacts with an isocyanate group in the polyurethane elastic fiber used in the present embodiment include hydrazine, polyhydrazine, straight chain or branched having 2 to 10 carbon atoms.
  • Examples of the monofunctional active hydrogen atom that is a terminal terminator that reacts with an isocyanate group in the polyurethane elastic fiber used in the present embodiment include dialkylamines such as diethylamine and alkyl alcohols such as ethanol. These chain extenders and end terminators may be used alone or in combination of two or more. With respect to the reaction operation for the polyurethane formation of the polyurethane elastic fiber, a solventless solvent or a solvent such as dimethylformamide, dimethyl sulfoxide, dimethylacetamide may be used.
  • the polyurethane-based polymer of the polyurethane elastic fiber according to this embodiment is obtained by synthesizing a urethane intermediate polymer that becomes a soft segment by reacting polyalkylene ether diol with an organic diisocyanate in an excess number of moles relative to polyalkylene ether diol.
  • the polymer can be produced using a known technique such as polymerization of a hard segment with a chain extender and end-capping with a terminal terminator.
  • the number average molecular weight of the soft segment portion in the polyurethane elastic fiber is preferably 4500 or more and 6500 or less.
  • the proportion of the hard segment portion in the whole polyurethane increases, which may cause a decrease in viscosity stability of the polyurethane polymer, and further may cause yarn breakage in the spinning process, while exceeding 6500. If so, the proportion of the hard segment portion in the whole polyurethane is lowered, the heat resistance of the polyurethane elastic fiber is lowered, and the elastic performance of the polyurethane elastic fiber may be greatly lowered.
  • the number average molecular weight of the hard segment portion of the polyurethane is preferably 650 or more and 820 or less. When the number average molecular weight is less than 650, the recovery stress and heat resistance of the polyurethane elastic fiber may not be sufficient. On the other hand, when the number average molecular weight exceeds 820, sufficient elongation at break of the polyurethane elastic fiber cannot be obtained. Cutting may occur.
  • the amount of titanium oxide added to the polyurethane polymer composition is preferably 0.005 to 0.5% by weight, more preferably 0.005 to 0.5% by weight, based on polyurethane elastic fiber (weight of polyurethane elastic fiber including titanium oxide is 100% by weight). Is 0.01 to 0.35% by weight, more preferably 0.03 to 0.25% by weight.
  • the added amount of titanium oxide is less than 0.005% by weight, the coefficient of friction of the polyurethane elastic fiber is increased, and the occurrence rate of thread breakage in the diaper manufacturing process may be increased. If it exceeds the maximum, the transmittance of the yarn may be lowered, and the design of the diaper may be impaired.
  • the particle size of titanium oxide added to the polyurethane polymer composition is preferably 0.015 to 0.5 ⁇ m, more preferably 0.05 to 0.4 ⁇ m, and still more preferably 0.1 to 0.3 ⁇ m. is there.
  • the specific surface area of the titanium oxide particles added to the polyurethane polymer composition is preferably 5 to 110 m 2 / g, more preferably 6 to 40 m 2 / g, still more preferably 7 to 25 m 2 / g. .
  • the specific surface area of titanium oxide is smaller than 5 m 2 / g, the cost for classification of titanium oxide may increase.
  • the specific surface area exceeds 110 m 2 / g, aggregation of titanium oxide occurs during the spinning process of polyurethane elastic fiber. May occur and the spinning stability may be impaired.
  • Titanium oxide can be used in the form of powder, slurry or paste when added to the polyurethane solution.
  • the timing of addition is a method of adding at the time of polyurethane polymerization, a masterbatch containing titanium oxide is prepared in advance, a method of blending the masterbatch into the base polymer solution at the time of spinning, or a liquid material containing titanium oxide is prepared at the time of spinning.
  • Titanium oxide can be added by a general method such as a blending method.
  • the added titanium oxide is preferably added as a master batch of the solution from the viewpoint of uniform addition to the polyurethane solution.
  • the polyurethane polymer composition may contain various stabilizers and pigments in addition to titanium oxide.
  • various stabilizers and pigments in addition to titanium oxide.
  • light-proofing agents hindered phenolic agents, benzotriazole-based, benzophenone-based, phosphorus-based and various hindered amine-based antioxidants, inorganic substances such as iron oxide, zinc oxide, cerium oxide, magnesium oxide, carbon black and various pigments, Antibacterial agents, deodorants, antistatic agents, nitric oxide scavengers, thermal oxidation stabilizers, light stabilizers and the like containing silver, zinc, and these compounds may be added in combination.
  • the polyurethane polymer thus obtained can be formed into a fiber by a known dry spinning, melt spinning or wet spinning method to obtain a polyurethane elastic fiber.
  • a polyurethane polymer polymerized using different raw materials may be mixed and spun before spinning.
  • the number of single yarns of the polyurethane elastic fiber is not limited and may be either monofilament or multifilament. From the viewpoint of adhesion, the single yarn fineness is 5 to 35 dT (decitex), preferably 6 to 25 dT, more preferably 8 to 17 dT. A multifilament is preferred. If the single yarn fineness is less than 5 dT, yarn breakage may occur during spinning. If it exceeds 35 dT, solvent may remain in the yarn, and excessive production such as lowering the spinning speed due to solvent removal. Cost may be required.
  • the total fineness of the elastic fiber is preferably 10 to 3000 dt, preferably 40 to 1800 dT, more preferably 100 to 1300 dT.
  • the obtained polyurethane elastic fiber is usually treated by a known method such as roll oiling, guide oiling, spray oiling or the like before or after being wound around the paper tube package. May be.
  • the treatment agent to be used is not particularly limited, but polydimethylsiloxane, polyester-modified silicon, polyether-modified silicon, amino-modified silicon, mineral oil, mineral fine particles such as silica, colloidal alumina, talc, etc., higher fatty acid metal salt powder,
  • oils such as solid waxes at room temperature such as magnesium stearate, calcium stearate, higher aliphatic carboxylic acids, higher aliphatic alcohols, paraffin, polyethylene, etc. may be used alone or in any combination as necessary. Good.
  • carbon having a homo- or copolymerized polyalkylene ether diol and an OH group at the end A treating agent obtained by adding a mineral oil, dimethyl silicon, or a mixture of mineral oil and dimethyl silicon to a mixture of higher alcohols having a number of 8 to 25 may be used.
  • the adhesion rate of the treatment agent is preferably 2.0% by weight or less, more preferably 1.5% by weight or less, and still more preferably 1.0% by weight or less with respect to the weight of the polyurethane elastic fiber from the viewpoint of adhesiveness.
  • the dynamic friction coefficient ( ⁇ d) of the polyurethane elastic fiber thus obtained is preferably 0.2 to 1.5, more preferably 0.2 to 1.3, and still more preferably 0.2 to 1.0. is there.
  • the dynamic friction coefficient is less than 0.2, the polyurethane elastic fiber is unwound from the wound body, causing thread breakage in the diaper manufacturing process.
  • it exceeds 1.5 the diaper manufacturing process is in progress.
  • the coefficient of friction with the various guides arranged in the upper part increases, and the yarn breakage occurrence rate of the polyurethane elastic fiber increases.
  • the reflected light L value of a 100 ⁇ m thick film prepared by dissolving polyurethane elastic fibers in a solvent is preferably 50 or less, more preferably 30 or less, and even more preferably 20 or less. If the L value, which is reflected light, exceeds 50, when used in a gathered part of a disposable diaper, the design displayed on the nonwoven fabric is partially concealed and the design is remarkably impaired.
  • the dynamic friction coefficient ( ⁇ d) is obtained from the ratio of the yarn tension before and after the ceramic guide of the yarn traveling via the ceramic guide. That is, when the yarn is traveling at a delivery speed of 50 m / min from the package and a winding speed of 150 m / min, the ceramic hook guide is inserted into the yarn traveling path at a friction angle of 90 °. The yarn tension (T 1 ) and the yarn tension (T 2 ) on the output side are measured.
  • Titanium oxide particle size measurement method The average particle size of the primary particles of the titanium oxide raw material was obtained by measuring the particle size of 100 primary particles in the image using a transmission electron microscope and taking the average value. (Electron microscopy).
  • the wound body 1 of elastic fiber obtained by spinning is applied to the apparatus shown in FIG. 1, and the elastic fiber feed roll 2 is wound at a speed of 50 m / min and the elastic fiber is wound three times.
  • the pre-draft roll 3 was run at a speed of 80 m / min, and the take-up roll 4 was run at a speed of 85 m / min.
  • the polyurethane elastic fiber is cut to a length of 3 mm to produce an aggregate of polyurethane elastic fiber short fibers.
  • 90 g of dimethylacetamide was added to 10 g of the obtained short fiber aggregate and stirred at room temperature (for example, 3 hours) to prepare a uniform 10% polyurethane solution.
  • the gathered member produced by the above method is overlaid and fixed on the waterproof sheet on which the animal pattern has been printed in advance, and the design of the animal pattern is not damaged from the gathered member. Whether it was visible was determined according to the following criteria for 10 subjects: ⁇ : When the design is not impaired and there are 8 to 10 people who judge that the animal's handle looks beautiful ⁇ : When the design is not impaired and there are 6-7 people who judge that the animal's handle looks beautiful ⁇ : When the design is not impaired and there are 4-5 people who judge that the animal pattern looks beautiful. ⁇ : When the design is not impaired and there are three or less people who judge that the animal pattern looks beautiful.
  • the average value of the moving distance from the cut surface of the elastic fiber at both ends is 0 mm or more and less than 3 mm ⁇ : The average value of the moving distance from the cut surface of the elastic fiber at both ends is 3 mm or more and less than 5 mm ⁇ : The elastic fiber of both ends Average value of moving distance from cut surface is 5 mm or more and less than 10 mm ⁇ : Average value of moving distance from cut surface of elastic fiber at both ends is from 10 mm to less than 20 mm ⁇ : Average of moving distance from cut surface of elastic fiber at both ends Value is 20mm or more
  • Example 1 400 parts of polytetramethylene glycol (hereinafter abbreviated as PTMG) having a number average molecular weight (Mn) of 1800 and 91.7 parts of 4,4′-diphenylmethane diisocyanate (hereinafter abbreviated as MDI) were added in a dry nitrogen atmosphere. Then, the mixture was reacted at 80 ° C. for 3 hours with stirring to obtain a polyurethane prepolymer having an end capped with an isocyanate. After cooling to room temperature, 720 parts of dimethylacetamide was added and dissolved to prepare a polyurethane prepolymer solution.
  • PTMG polytetramethylene glycol
  • MDI 4,4′-diphenylmethane diisocyanate
  • the polyurethane solution A and the dispersion B were added so that the weight of titanium oxide was 0.005% by weight based on the polyurethane solid content, and mixed uniformly to obtain a spinning dope.
  • This spinning dope is discharged into a heated nitrogen gas temperature of 270 ° C. directly below the spinning nozzle using a spinning nozzle, and the winding speed is set under a draft of 1.15 between the goded roller and the winding bobbin.
  • a treatment agent mainly composed of dimethyl silicon was applied so as to be 1.0% with respect to the weight of the polyurethane elastic fiber, and then wound around a bobbin to obtain a polyurethane elastic fiber of 620 dtex (72 filaments).
  • Table 1 The results of various evaluation tests of the obtained polyurethane elastic fibers are shown in Table 1 below.
  • Example 2 The same operation as in Example 1 was carried out except that the weight of titanium oxide was added so as to be 0.01% by weight with respect to the polyurethane solid content.
  • Table 1 The results of various evaluation tests of the obtained polyurethane elastic fibers are shown in Table 1 below.
  • Example 3 The same operation as in Example 1 was performed except that the titanium oxide was added so that the weight of the titanium oxide was 0.25% by weight with respect to the polyurethane solid content.
  • Table 1 The results of various evaluation tests of the obtained polyurethane elastic fibers are shown in Table 1 below.
  • Example 4 The same operation as in Example 1 was carried out except that the titanium oxide was added so that the weight thereof was 0.5% by weight based on the polyurethane solid content.
  • Table 1 The results of various evaluation tests of the obtained polyurethane elastic fibers are shown in Table 1 below.
  • Example 5 Except that the average primary particle diameter of the titanium oxide used was 0.35 ⁇ m, the specific surface area was 6.5 m 2 / g, and the weight of titanium oxide was 0.25 wt% with respect to the polyurethane solid content. In the same manner as in Example 1. The results of various evaluation tests of the obtained polyurethane elastic fibers are shown in Table 1 below.
  • Example 6 Except that the average primary particle diameter of the titanium oxide used was 0.08 ⁇ m, the specific surface area was 30 m 2 / g, and the titanium oxide was added so that the weight of the titanium oxide was 0.25 wt% based on the polyurethane solid content. The same operation as in Example 1 was performed. The results of various evaluation tests of the obtained polyurethane elastic fibers are shown in Table 1 below.
  • Example 7 The same treatment as in Example 1 was performed except that the treatment agent containing dimethyl silicon as a main component was made 2.0% with respect to the weight of the polyurethane elastic fiber.
  • the results of various evaluation tests of the obtained polyurethane elastic fibers are shown in Table 1 below.
  • Example 8 The same procedure as in Example 1 was performed except that the treatment agent containing dimethyl silicon as a main component was 0.5% based on the weight of the polyurethane elastic fiber. The results of various evaluation tests of the obtained polyurethane elastic fibers are shown in Table 1 below.
  • Example 9 The same operation as in Example 3 was performed except that the average primary particle diameter of titanium oxide used was 0.013 ⁇ m and the specific surface area was 123 m 2 / g.
  • the results of various evaluation tests of the obtained polyurethane elastic fibers are shown in Table 1 below.
  • Example 10 The same procedure as in Example 3 was performed except that the average primary particle diameter of titanium oxide used was 0.52 ⁇ m and the specific surface area was 4.9 m 2 / g. The results of various evaluation tests of the obtained polyurethane elastic fibers are shown in Table 1 below.
  • Example 11 The same procedure as in Example 1 was performed except that the treatment agent containing dimethyl silicon as a main component was adjusted to 2.5% based on the weight of the polyurethane elastic fiber. The results of various evaluation tests of the obtained polyurethane elastic fibers are shown in Table 1 below.
  • Example 1 The same operation as in Example 1 was performed except that the titanium oxide was added so that the weight of the titanium oxide was 0.8% by weight based on the polyurethane solid content.
  • Table 1 The results of various evaluation tests of the obtained polyurethane elastic fibers are shown in Table 1 below.
  • Example 2 The same operation as in Example 1 was carried out except that the titanium oxide was added in an amount of 0.003% by weight based on the solid content of the polyurethane.
  • Table 1 The results of various evaluation tests of the obtained polyurethane elastic fibers are shown in Table 1 below.
  • Polyurethane elastic fiber of the present invention the occurrence of thread breakage during the manufacturing process of sanitary products, medical products, etc. is suppressed, and without impairing the appearance of colors, patterns, characters, etc. applied to substrates such as nonwoven fabrics, It improves the design of hygiene products and medical products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

使い捨てオムツ等のギャザー部材等に使用するポリウレタン弾性繊維として、ホットメルト等の接着剤により不織布等の基材に接着される際、走行性及び耐熱性に優れるために糸切れの発生が抑制され、また、光透過率が高いために、製品の色、柄、文字等の外観を損ねることがなく、デザイン性に優れた製品を得ることができるポリウレタン弾性繊維、その製法、及びそれを含むギャザー部材の提供。本発明に係るポリウレタン弾性繊維は、酸化チタンを0.005~0.5重量%含有するポリウレタン弾性繊維であって、特定走行条件下、糸の走行経路にセラミックフックガイドを摩擦角90°で挿入した際に測定した入力側の糸張力(T1)及び出力側の糸張力(T2)を式(1):動摩擦係数(μd)=ln(T2/T1)/0.5πに代入して算出されるポリウレタン弾性繊維の動摩擦係数(μd)が0.2~1.5であり、かつ、得られた糸の特定測定条件下での反射光のL値が50以下であることを特徴とする。

Description

ポリウレタン弾性繊維、その製法、及びそれを含むギャザー部材
 本発明は、衛生製品、医療品等の伸縮部材等に好適に利用しうるポリウレタン弾性繊維、その製法、及びそれを含むギャザー部材に関する。
 使い捨てオムツに代表される吸収性物品においては、幼児や保護者に対する嗜好性や意匠効果を高めるために、オムツの表面に動物やキャラクター等の図柄を表示したものが知られている。
 また、使い捨てオムツは、オムツのずれを抑え、排泄物を漏らさないようにするために優れたフィット性及び着用者の活発な動きに追従することが要求されている。このため、使い捨てオムツの胴回り等にポリウレタン弾性繊維を伸長した状態で、ホットメルト接着剤等により不織布に接着し、ギャザー部を構成している。
 よって、図柄を表示した不織布の上にポリウレタン弾性繊維を接着するため、糸の透明度が低いと、図柄を部分的に隠蔽してしまい、デザイン性を著しく損なうという問題がある。
 また、通常ポリウレタン弾性繊維は、オムツの製造工程における糸切れを防止するためにポリウレタン弾性繊維に酸化チタンが添加される。酸化チタンを添加することで、糸がオムツの製造工程において通過する各種ガイドとの摩擦係数が小さくなり、工程での糸切れ性が低減できるからである。しかしながら、酸化チタン量がある範囲を超えると、ガイドとの摩擦係数は小さくなるが、耐熱性が低下するため、ポリウレタン弾性繊維がホットメルト等の接着剤を介して不織布等の基材に接着される際に熱により物性が低下し、糸切れが発生する。また、酸化チタンを添加したポリウレタン弾性繊維を長期間使用することにより、オムツの製造工程中の糸道、すなわちポリウレタン弾性繊維が接する各種ガイドやローラー等を傷付け、その切削部分により糸切れが発生することもある。さらには、糸の透明度が低下してオムツのデザイン性を損なうという問題も生じる。他方、酸化チタン量が少なすぎると、糸の透明度が増すため、オムツのデザイン性は損なわれないが、糸とガイドの摩擦係数が高くなり、オムツ製造時に糸切れの発生率が高くなる。
 そもそも、従来酸化チタンはポリウレタン弾性繊維のつや消し剤として使用されてきた。以下の特許文献1又は2に記載されるように、酸化チタンは一般に最終製造工程で分級、乾燥、粉砕を経て製品とされるが、乾燥の際に凝集粒子が形成され、かかる粗大分子が残存して分散媒での分散性を悪化させるという問題があるため、酸化チタンを水溶性被覆剤で被覆することが試みられている。かかる技術は、酸化チタンをつや消し剤として添加するものであるから、所定量以上の酸化チタンの添加を前提としており、糸の透明度を増してオムツのデザイン性を向上させるという観点では、酸化チタンの含有量、粒径、比表面積等は検討されていない。
 以下の特許文献3又は4においては、平均粒径が0.01~2μmである酸化チタンが0.01~3重量%含有されたポリエーテルエステル繊維が開示されているものの、ポリエーテルエステル繊維はポリウレタン弾性繊維に比して耐熱性が劣り、また伸長時の回復率も劣るものであるから、そもそもオムツ用途には適していない。また、平均粒子径に対する比表面積が明らかでなない。粒子径に対して比表面積が大きくなると、紡糸工程で酸化チタンの凝集が起こり、紡糸工程で糸切れが発生するという問題がある。
 このように、従来のポリウレタン弾性繊維では、オムツの製造工程における糸切れを抑制するとともに、オムツのデザイン性の向上を実現できるものではなかった。
特開2002-363825号公報 特開2004-204393号公報 特開2009-91445号公報 特開2009-167541号公報
 本発明は、上記の従来技術の問題点に鑑みてなされたものであり、使い捨てオムツに代表される衛生製品や医療品等のギャザー部材等に使用するポリウレタン弾性繊維として、衛生製品、医療品等の製造工程において、弾性繊維がホットメルト等の接着剤により不織布等の基材に接着される際、走行性及び耐熱性に優れるために糸切れの発生が抑制され、また、光透過率が高いために、製品において、不織布等の基材に施した色、柄、文字等の外観を損ねることがなく、デザイン性に優れた衛生製品、医療品等を得ることができるポリウレタン弾性繊維、その製法、及びそれを含むギャザー部材を提供することである。
 本願発明者は、上記課題を解決すべく鋭意検討し実験を重ねた結果、ポリウレタン弾性繊維に使用される酸化チタンの含有量、動摩擦係数、L値を特定することで上記課題を解決できることを見出し、本発明を完成するに至ったものである。
 すなわち、本発明は以下の通りのものである。
 [1]酸化チタンを0.005~0.5重量%含有するポリウレタン弾性繊維であって、
 パッケージからの送り出し速度を50m/分、巻取り速度を150m/分で該ポリウレタン弾性繊維の糸を走行させている時に、糸の走行経路にセラミックフックガイドを摩擦角90°で挿入した際に測定した入力側の糸張力(T)及び出力側の糸張力(T)を下記式(1):
   動摩擦係数(μd)=ln(T/T)/0.5π
に代入して算出される該ポリウレタン弾性繊維の動摩擦係数(μd)が、0.2~1.5であり、かつ、
 該ポリウレタン弾性繊維を3mmの長さに切断した短繊維の集合体10gに、ジメチルアセトアミド90gを加え常温で撹拌して10%ポリウレタン溶液を作製し、該ポリウレタン溶液1gを、底面が10cm角の直方体形状の容器に流し入れ、50℃の恒温器内で放置してジメチルアセトアミドを蒸発させ、形成した厚さ100μmのフィルムを、黒板の上に載せ、分光光度計を用い、光源をD65/2℃として、測定した反射光のL値が、50以下である、
ことを特徴とする前記ポリウレタン弾性繊維。
 [2]処理剤の付着率が2.0重量%以下である、前記[1]に記載のポリウレタン弾性繊維。
 [3]前記[1]又は[2]に記載のポリウレタン弾性繊維を含むギャザー部材。
 [4]粒径0.015~0.5μm、かつ、比表面積5~110m2/gの酸化チタンを含有するポリウレタン重合体を紡糸する工程を含む、前記[1]又は[2]に記載のポリウレタン弾性繊維の製造方法。
 本発明に係るポリウレタン弾性繊維弾性繊維は、酸化チタンの含有量、動摩擦係数、L値を特定することで、ホットメルト等の接着剤により不織布等の基材に接着される際、走行性及び耐熱性に優れるために糸切れの発生が抑制され、また、光透過率が高いため、不織布等の基材に施した色、柄、文字等の外観を損ねることがなく、デザイン性に優れる衛生製品、医療品等を得ることができるものである。
糸揺れ試験の評価方法に使用した装置の概略図である。
 以下、本発明の実施形態を詳細に説明する。
 本実施形態のポリウレタン弾性繊維は、酸化チタンを0.005~0.5重量%含有するポリウレタン弾性繊維であって、
 パッケージからの送り出し速度を50m/分、巻取り速度を150m/分で該ポリウレタン弾性繊維の糸を走行させている時に、糸の走行経路にセラミックフックガイドを摩擦角90°で挿入した際に測定した入力側の糸張力(T)及び出力側の糸張力(T)を下記式(1):
   動摩擦係数(μd)=ln(T/T)/0.5π
に代入して算出される該ポリウレタン弾性繊維の動摩擦係数(μd)が、0.2~1.5であり、かつ、
 該ポリウレタン弾性繊維を3mmの長さに切断した短繊維の集合体10gに、ジメチルアセトアミド90gを加え常温で撹拌し、均一な10%ポリウレタン溶液を作製し、該ポリウレタン溶液1gを、底面が10cm角の直方体形状の容器に流し入れ、均一な厚みとなるよう静置し、50℃の恒温器内でジメチルアセトアミドが完全に蒸発するまで放置して、形成した厚さ100μmのフィルムを、黒板の上に載せ、市販の分光光度計を用い、光源をD65/2℃として、測定した反射光のL値が、50以下であることを特徴とする。
 前記ポリウレタン弾性繊維の紡糸前のポリウレタン重合体中に存在する酸化チタンの粒径は、好ましくは0.015~0.5μmであり、かつ、比表面積は、好ましくは5~110m2/gである。
 本実施形態におけるポリウレタン弾性繊維とは、ポリエーテルジオールと有機ジイソシアネートから成るソフトセグメント部分と、有機ジイソシアネートとジアミン若しくはジオールから成るハードセグメント部分とから構成される。
 本実施形態に用いるポリウレタン弾性繊維中のポリアルキレエーテルジオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール等の炭素数2~6のアルキレン基が直鎖状にエーテル結合したものを用いてもよいし、エチレン、プロピレン、テトラメチレン、ヘキサメチレン等の炭素数2~6の直鎖状のものと、1,2-プロピレン、3-メチルテトラメチレン、3-メチルペンタメチレン、2,2-ジメチルプロピレン等の炭素数2~10の分岐状のアルキレン基の2種以上がエーテル結合した、側鎖にメチル基を有している共重合ポリアルキレンエーテルジオールを用いてもよい。
 本実施形態に用いるポリウレタン弾性繊維中の有機ジイソシアネート化合物としては、例えば、脂肪族、脂環族及び芳香族のジイソシアネートの中で、反応条件下で溶解又は液状を示すものを全て適用することができる。例えば、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、メチレン-ビス(3-メチル-4-フェニルイソシアネート)、2,4-トリレンジイソシアネート、2、6-トリレンジイソシアネート、m-及びp-キシリレンジイソシアネート、α,α,α’,α’-テトラメチル-p-キシリレンジイソシアネート、m-及びp-フェニレンジイソシアネート、4,4’-ジメチル-1,3-キシリレンジイソシアネート、1-アルキルフェニレン-2,4及び2,6-ジイソシアネート、3-(α-イソシアネートエチル)フェニルイソシアネート、2,6-ジエチルフェニレン-1,4-ジイソシアネート、ジフェニル-ジメチルメタン-4,4-ジイソシアネート、ジフェニルエーテル-4,4’-ジイソシアネート、ナフチレン-1,5-ジイソシアネート、1,6-ヘキサメチレンジイソシアネート、メチレン-ビス(4-シクロヘキシルイソシアネート)、1,3-及び1,4-シクロヘキシレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、イソフォロンジイソシアネート等が挙げられる。これらのジイソシアネートは単独で使用されてもよいし、2種以上が併用されてもよい。反応性や伸長時応力から好ましくは、4,4’-ジフェニルメタンジイソシアネートである。
 本実施形態に用いるポリウレタン弾性繊維中のイソシアネート基と反応する鎖延長剤である多官能性活性水素原子含有化合物としては、例えば、ヒドラジン、ポリヒドラジン、炭素原子数2~10の直鎖または分岐した脂肪族、脂環族又は芳香族の活性水素を有するアミノ基若しくはヒドロキシル基を持つ化合物、例えば、エチレンジアミン、1,3-プロピレンジアミン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、N-メチルエチレンジアミン、N,N’-ジメチルエチレンジアミン、N-エチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N-イソプロピルエチレンジアミン、1,2-ジアミノプロパン、2-メチル-1,3-プロパンジアミン、3-メチル-1,5-ペンタンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、フェニレンジアミン、キシリレンジアミン、4,4’-ジアミノジフェニルメタン、ピペラジン、特開平5-155841号公報に記載されているウレア基を有するジアミン類等のジアミン、ヒドロキシルアミン、水、低分子量のグリコール、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、2,2-ジメチル-1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、ヘキサメチレングリコール、ジエチレングリコール、1,10-デカンジオール、1,3-ジメチロールシクロヘキサンおよび1,4-ジメチロールシクロヘキサン等を用いることができる。エチレンジアミン又は1,2-プロピレンジアミンが好ましい。
 本実施形態に用いるポリウレタン弾性繊維中のイソシアネート基と反応する末端停止剤である単官能性活性水素原子としては、例えば、ジエチルアミンのようなジアルキルアミン等やエタノールのようなアルキルアルコール等が用いられる。これらの鎖延長剤や末端停止剤は、単独で又は2種以上混合して用いてもよい。
 ポリウレタン弾性繊維のポリウレタン化の反応操作に関しては、無溶媒、又はジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド等の溶剤を用いてもよい。
 本実施形態に係るポリウレタン弾性繊維のポリウレタン系重合体は、ポリアルキレンエーテルジオールと、ポリアルキレンエーテルジオールに対して過剰のモル数の有機ジイソシアネートを反応させてソフトセグメントとなるウレタン中間重合体を合成後、鎖延長剤でハードセグメントを重合し、末端停止剤で末端封鎖するといった公知の技術を用いて製造することができる。
 ポリウレタン弾性繊維におけるソフトセグメント部分の数平均分子量は4500以上6500以下であることが好ましい。数平均分子量が4500未満では、ポリウレタン全体におけるハードセグメント部分の占める割合が増加し、ポリウレタン重合体の粘度安定性の低下、さらには紡糸工程での糸切れを引き起こすことがあり、他方、6500を超えると、ポリウレタン全体におけるハードセグメント部分の占める割合が低下し、ポリウレタン弾性繊維の耐熱性が低下、さらにはポリウレタン弾性繊維の弾性性能が大きく低下することがある。
 また、前記ポリウレタンのハードセグメント部分の数平均分子量は650以上820以下が好ましい。数平均分子量が650未満ではポリウレタン弾性繊維の回復時応力や耐熱性は十分ではないことがあり、他方、820超ではポリウレタン弾性繊維の十分な破断伸度が得られず、オムツの製造工程で糸切れが発生することがある。
 ポリウレタン重合体組成物に添加する酸化チタンの量は、ポリウレタン弾性繊維基準(酸化チタンを含めたポリウレタン弾性繊維の重量を100重量%)で、0.005~0.5重量%が好ましく、より好ましくは0.01~0.35重量%であり、さらに好ましくは0.03~0.25重量%である。酸化チタンの添加量が0.005重量%を下回ると、ポリウレタン弾性繊維の摩擦係数が高くなり、オムツ製造工程での糸切れの発生率が高くなることがあり、他方、0.5重量%を超えると、糸の透過率が低くなり、オムツのデザイン性を損なうことがある。
 ポリウレタン重合体組成物に添加する酸化チタンの粒径は、0.015~0.5μmが好ましく、より好ましくは0.05~0.4μmであり、さらに好ましくは、0.1~0.3μmである。酸化チタンの粒径が0.015μmより小さい場合、ポリウレタン弾性繊維の紡糸工程中で酸化チタンの凝集が起こり、紡糸安定性が損なわれることがあり、他方、0.5μmを超えると、耐熱性が低下し、オムツ製造工程での糸切れ発生率が高くなることがある。
 また、ポリウレタン重合体組成物に添加する酸化チタン粒子の比表面積は5~110m2/gであることが好ましく、より好ましくは6~40m2/g、さらに好ましくは7~25m2/gである。酸化チタンの比表面積が5m2/gより小さい場合、酸化チタンの分級にかかるコストが高くなることがあり、他方、110m2/gを超えると、ポリウレタン弾性繊維の紡糸工程中で酸化チタンの凝集が起こり、紡糸安定性が損なわれることがある。
 酸化チタンのポリウレタン溶液への添加方法としては、任意の方法が採用できる。酸化チタンはポリウレタン溶液へ添加する際には、粉末状、スラリー状又はペースト状などの状態で使用できる。添加するタイミングは、ポリウレタン重合時に添加する方法、酸化チタンを含むマスターバッチを予め作っておき、紡糸時にベースポリマー溶液にマスターバッチをブレンドする方法、あるいは酸化チタンを含む液状体を作っておき紡糸時にブレンドする方法など一般的な方法で酸化チタンを添加させることができる。混合について、その代表的な方法としては、スタティックミキサーによる方法、攪拌による方法、ホモミキサーによる方法、2軸押し出し機を用いる方法など各種の手段が採用できる。ここで、添加される酸化チタンは、ポリウレタン溶液への均一な添加を行う観点から、溶液のマスターバッチにして添加することが好ましい。
 ポリウレタン重合体組成物には、酸化チタンの他、各種安定剤や顔料などが含有されていてもよい。例えば、耐光剤、ヒンダードフェノール系薬剤やベンゾトリアゾール系、ベンゾフェノン系、リン系及び各種ヒンダードアミン系の酸化防止剤、酸化鉄、酸化亜鉛、酸化セリウム、酸化マグネシウム等の無機物、カーボンブラック及び各種顔料、銀や亜鉛やこれらの化合物などを含む抗菌剤や消臭剤、帯電防止剤、酸化窒素捕捉剤、熱酸化安定剤、光安定剤等を併用して添加してもよい。
 このようにして得られたポリウレタン重合体は、公知の乾式紡糸、溶融紡糸又は湿式紡糸法等で繊維状に成形し、ポリウレタン弾性繊維を得ることができる。また、異なる原料を用いて重合したポリウレタン重合体を紡糸の前段階で混合して紡糸してもよい。
 ポリウレタン弾性繊維の単糸数は限定されず、モノフィラメント又はマルチフィラメントのいずれでもよいが、接着性の観点から、単糸繊度が5~35dT(デシテックス)、好ましくは6~25dT、さらに好ましくは8~17dTであるマルチフィラメントが好ましい。単糸繊度が5dTを下回ると、紡糸時に糸切れが生じることがあり、35dTを超えると、糸中に溶媒が残留する可能性があり、脱溶媒のために紡速を下げる等、過剰な生産コストを要する場合がある。
 弾性繊維の総繊度は10~3000dtが好ましく、好ましくは40~1800dT、さらに好ましくは100~1300dTである。総繊度が10dTを下回るとオムツ等に使用された場合のフィット感が十分でないことがあり、3000dTを超えると、糸の直径が大きくなるために多量のホットメルト接着剤を要し、風合いが硬くなる、あるいはコストが高くなる等のデメリットが生じることがある。
 得られたポリウレタン弾性繊維は、通常、紙管パッケージに巻き取る前又は後に、ロールオイリング、ガイドオイリング、スプレーオイリング等の公知の方法によって処理剤を付与されるが、処理剤を付与しないで巻き取ってもよい。
 使用する処理剤は特に限定されないが、ポリジメチルシロキサン、ポリエステル変性シリコン、ポリエーテル変性シリコン、アミノ変性シリコン、鉱物油、鉱物性微粒子、例えば、シリカ、コロイダルアルミナ、タルク等、高級脂肪酸金属塩粉末、例えば、ステアリン酸マグネシウム、ステアリン酸カルシウム等、高級脂肪族カルボン酸、高級脂肪族アルコール、パラフィン、ポリエチレン等の常温で固形状ワックス等の油剤を単独、又は必要に応じて任意に組合せて付与してもよい。また、ホットメルトを介した不織布との接着性及び巻糸体からの解舒性、おむつ製造工程中の摩擦性向上を目的として、ホモ又は共重合ポリアルキレンエーテルジオールと末端にOH基を有する炭素数が8~25の高級アルコールの混合物に鉱物油、ジメチルシリコン、又は鉱物油とジメチルシリコンとの混合物を添加した処理剤を使用してもよい。処理剤の付着率は、接着性の観点から、ポリウレタン弾性繊維の重量に対して2.0重量%以下が好ましく、1.5重量%以下がより好ましく、1.0重量%以下がさらに好ましい。
 このようにして得られたポリウレタン弾性繊維の動摩擦係数(μd)は、0.2~1.5が好ましく、より好ましくは0.2~1.3、さらに好ましくは0.2~1.0である。動摩擦係数が0.2未満の場合は、ポリウレタン弾性繊維の巻糸体からの巻崩れが生じて、オムツの製造工程上の糸切れ原因となり、他方、1.5を超えるとオムツの製造工程中に配置された各種ガイドとの摩擦係数が高くなり、ポリウレタン弾性繊維の糸切れ発生率が高くなる。
 また、ポリウレタン弾性繊維を溶剤に溶解させて作製した厚さ100μmのフィルムの反射光L値は50以下であることが好ましく、より好ましくは30以下、さらに好ましくは20以下である。反射光であるL値が50を超えると、使い捨てオムツのギャザー部に使用した場合、不織布に表示した図柄を部分的に隠蔽してデザイン性を著しく損なうため、好ましくない。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(1)動摩擦係数の測定方法
 セラミックガイドを経由して走行している糸のセラミックガイドの前後の糸張力の比から動摩擦係数(μd)を求める。すなわち、パッケージからの送り出し速度を50m/分、巻取り速度を150m/分で糸を走行させている時に、糸の走行経路にセラミックフックガイドを摩擦角90°で挿入した際の、入力側の糸張力(T)、出力側の糸張力(T)を測定する。動摩擦係数(μd)は、下記式(1):
   動摩擦係数(μd)=ln(T/T)/0.5π
により算出される。尚、摩擦角90°を確保するために糸道に摩擦抵抗の低い各種ガイド、回転ロール等を使用してもよい。μdが小さい程、セラミックフックガイドとの摩擦が少なく良好である。
(2)酸化チタンの粒径測定方法
 酸化チタン原料の一次粒子の平均粒径は、透過型電子顕微鏡を用い、画像中の一次粒子100個の粒子径を測定し、その平均値を取ったものである(電子顕微鏡法)。
(3)酸化チタン粒子の比表面積の測定方法
 酸化チタン粒子の比表面積は、窒素吸着によるBET一点法にて測定したものである。装置はユアサアイオニクス社製モノソーブ又はQuantachrome  Instruments社製Monosorb型番MS-22を用いた。
(4)おむつ製造工程における糸切れ評価方法
 紡糸によって得られた弾性繊維の巻糸体1を、図1の装置にかけ、弾性繊維送り出しロール2を、速度50m/分、弾性繊維を3回巻きつけたプレドラフトロール3を、速度80m/分、巻き取りロール4を、速度85m/分の条件で走行させた。観察部位5での弾性繊維の挙動を3分間目視観察し、以下の評価基準で評価した:
  ◎◎:糸揺れ幅が0mm以上~2mm未満
  ◎:糸揺れ幅が2mm以上~4mm未満
  ○:糸揺れ幅が4mm以上~6mm未満
  △:糸揺れ幅が6mm以上
  ×:糸切れ
(5)フィルムの作製方法
 ポリウレタン弾性繊維を3mmの長さに切断して、ポリウレタン弾性繊維の短繊維の集合体を作製する。得られた短繊維の集合体10gにジメチルアセトアミド90gを加え常温で撹拌し(例えば、3時間)、均一な10%ポリウレタン溶液を作製した。底面10cm角の直方体金属製容器に10%ポリウレタン溶液を1g流し入れ、均一な厚みとなるよう水平に調整した後、静置し50℃の恒温器中にジメチルアセトアミドが完全に蒸発するまで(例えば、24時間)放置し、厚さ100μmのフィルムを形成した。
(6)L値の測定方法
 日本電色工業株式会社製Spectro Color Meter SQ2000を用い、光源をD65/2℃として、先に形成した厚さ100μmのフィルムを黒板の上に載せ、反射光のL値を測定した。
(7)ギャザー部のデザイン性評価方法
 弾性繊維を5mmの間隔で平行に3本並べ、弾性繊維の元の長さに対して3倍になるように伸長し、160℃で溶融させたヘンケルジャパン(社)製ディスポメルト5434を伸張させた弾性繊維に、繊維1本当たり0.03g/mとなるようにサンツール(社)製のコームガンで塗布し、幅方向5cm、目付17g/mの旭化成せんい(社)製不織布、エルタスガード(登録商標)2枚で挟み込み、その上からローラーにて圧着し、ギャザー部材を作製した。
 予め動物の柄が印刷された防水シートの上に上記方法で作製したギャザー部材を伸び切の状態で重ねて固定し、その際にギャザー部材の上から動物の柄がデザイン性を損なわれず、きれいに見えるかどうかについて、被験者10人を対象として下記基準で判定した:
   ◎:デザイン性が損なわれず、動物の柄がきれいに見えると判断した人が8~10人の場合
   ○:デザイン性が損なわれず、動物の柄がきれいに見えると判断した人が6~7人の場合
   △:デザイン性が損なわれず、動物の柄がきれいに見えると判断した人が4~5人の場合
   ×:デザイン性が損なわれず、動物の柄がきれいに見えると判断した人が3人以下の場合
(8)ギャザー部における弾性繊維と不織布の間の接着性評価方法
 前記(7)で作製したギャザー部材を、たるみがなくなるまで伸張した状態で長さ40cmに切断した。切断したギャザー部材の不織布をたるみがない状態で、30cmの板に固定した。この際、不織布の切断面の両端を板の裏側に折り返した状態にし、切断面を市販のテープで板の裏側に固定した。次に、市販のカッターナイフで不織布の折り返し部分、すなわち板の両端部から中心に向かって7.5cmのところで不織布の上から3本の弾性繊維を、弾性繊維の長さ方向に対して直角に、各弾性繊維の全幅を含む3mmの長さで、2カ所(計6カ所)切断した。その後、不織布を板に固定した状態で40℃の恒温槽に6時間放置し、弾性繊維の切断部から弾性繊維が板の中心に向かって移動した距離をそれぞれ測定し、切断部した2カ所の弾性繊維の移動距離を平均して、下記基準で接着性を判定した。
  ◎◎:両端の弾性繊維の切断面からの移動距離の平均値が0mm以上3mm未満
   ◎:両端の弾性繊維の切断面からの移動距離の平均値が3mm以上5mm未満
   ○:両端の弾性繊維の切断面からの移動距離の平均値が5mm以上10mm未満
   △:両端の弾性繊維の切断面からの移動距離の平均値が10mm以上20mm未満
   ×:両端の弾性繊維の切断面からの移動距離の平均値が20mm以上
[実施例1]
 数平均分子量(Mn)1800のポリテトラメチレングリコール(以下、PTMGと略記する。)400部と4,4’-ジフェニルメタンジイソシアネート(以下、MDIと略記する。)91.7部とを、乾燥窒素雰囲気下、80℃で3時間、攪拌下で反応させて、末端がイソシアネートでキャップされたポリウレタンプレポリマーを得た。これを室温に冷却した後、ジメチルアセトアミド720部を加え溶解してポリウレタンプレポリマー溶液を調製した。次いで、エチレンジアミン5.41部及びジエチルアミン0.80部をジメチルアセトアミド390部に溶解した溶液を調製し、この溶液を、上記ポリウレタンプレポリマー溶液に室温下で添加して、粘度4500ポイズ(30℃)、31重量%のポリウレタン溶液Aを得た。
 次いで、ポリウレタン溶液Aに、市販の酸化チタン(平均一次粒子径0.3μm、比表面積12m/g)及びDMAcを添加し、酸化チタンのマスターバッチ分散液を調製した。これを、分散液B(酸化チタン10重量%、固形分のポリウレタン21重量%、合計31重量%)とした。
 ポリウレタン溶液Aと分散液Bを、酸化チタンの重量がポリウレタン固形分に対して0.005重量%になるように加え、均一に混合し、紡糸原液とした。
 この紡糸原液を、紡口口金を使用して紡口直下の加熱窒素ガス温度270℃の雰囲気下に吐出し、ゴデッドローラーと巻き取りボビン間のドラフト1.15の条件下で、巻き取り速度400m/分で、ジメチルシリコンを主成分とする処理剤をポリウレタン弾性繊維の重量に対して1.0%となるように付与した後、ボビンに巻き取り、620デシテックス(72フィラメント)のポリウレタン弾性繊維を得た。得られたポリウレタン弾性繊維の各種評価試験結果を以下の表1に示す。
[実施例2]
 酸化チタンの重量がポリウレタン固形分に対して0.01重量%になるように加えたことを除いて、実施例1と同様に実施した。得られたポリウレタン弾性繊維の各種評価試験結果を以下の表1に示す。
[実施例3]
 酸化チタンの重量がポリウレタン固形分に対して0.25重量%になるように加えたことを除いて、実施例1と同様に実施した。得られたポリウレタン弾性繊維の各種評価試験結果を以下の表1に示す。
[実施例4]
 酸化チタンの重量がポリウレタン固形分に対して0.5重量%になるように加えたことを除いて、実施例1と同様に実施した。得られたポリウレタン弾性繊維の各種評価試験結果を以下の表1に示す。
[実施例5]
 使用する酸化チタンの平均一次粒子径を0.35μm、比表面積を6.5m/gとし、酸化チタンの重量がポリウレタン固形分に対して0.25重量%になるように加えたことを除いて、実施例1と同様に実施した。得られたポリウレタン弾性繊維の各種評価試験結果を以下の表1に示す。
[実施例6]
 使用する酸化チタンの平均一次粒子径を0.08μm、比表面積を30m/gとし、酸化チタンの重量がポリウレタン固形分に対して0.25重量%になるように加えたことを除いて、実施例1と同様に実施した。得られたポリウレタン弾性繊維の各種評価試験結果を以下の表1に示す。
[実施例7]
 ジメチルシリコンを主成分とする処理剤をポリウレタン弾性繊維の重量に対して2.0%とすることを除いて、実施例1と同様に実施した。得られたポリウレタン弾性繊維の各種評価試験結果を以下の表1に示す。
[実施例8]
 ジメチルシリコンを主成分とする処理剤をポリウレタン弾性繊維の重量に対して0.5%とすることを除いて、実施例1と同様に実施した。得られたポリウレタン弾性繊維の各種評価試験結果を以下の表1に示す。
[実施例9]
 使用する酸化チタンの平均一次粒子径を0.013μm、比表面積を123m/gとすることを除いて、実施例3と同様に実施した。得られたポリウレタン弾性繊維の各種評価試験結果を以下の表1に示す。
[実施例10]
 使用する酸化チタンの平均一次粒子径を0.52μm、比表面積を4.9m/gとすることを除いて、実施例3と同様に実施した。得られたポリウレタン弾性繊維の各種評価試験結果を以下の表1に示す。
[実施例11]
 ジメチルシリコンを主成分とする処理剤をポリウレタン弾性繊維の重量に対して2.5%とすることを除いて、実施例1と同様に実施した。得られたポリウレタン弾性繊維の各種評価試験結果を以下の表1に示す。
[比較例1]
 酸化チタンの重量がポリウレタン固形分に対して0.8重量%になるように加えたことを除いて、実施例1と同様に実施した。得られたポリウレタン弾性繊維の各種評価試験結果を以下の表1に示す。
[比較例2]
 酸化チタンの重量がポリウレタン固形分に対して0.003重量%になるように加えたことを除いて、実施例1と同様に実施した。得られたポリウレタン弾性繊維の各種評価試験結果を以下の表1に示す。
[比較例3]
 使用する酸化チタンの平均一次粒子径を0.7μm、比表面積を5.2m/gとし、酸化チタンの重量がポリウレタン固形分に対して0.6重量%になるように加えたことを除いて、実施例1と同様に実施した。得られたポリウレタン弾性繊維の各種評価試験結果を以下の表1に示す。
[比較例4]
 使用する酸化チタンの平均一次粒子径を0.01μm、比表面積を150m/gとし、酸化チタンの重量がポリウレタン固形分に対して0.25重量%になるように加えたことを除いて、実施例1と同様に実施した。得られたポリウレタン弾性繊維の各種評価試験結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明のポリウレタン弾性繊維は、衛生製品、医療品等の製造工程中の糸切れの発生が抑制され、また、不織布等の基材に施した色、柄、文字等の外観を損ねることなく、衛生製品、医療品等のデザイン性を向上させるものである。
 1  弾性繊維の巻糸体
 2  送り出しロール
 3  プレドラフトロール
 4  巻き取りロール
 5  観察部位
 6  セラミックフックガイド
 7  ベアリングフリーローラー

Claims (4)

  1.  酸化チタンを0.005~0.5重量%含有するポリウレタン弾性繊維であって、
     パッケージからの送り出し速度を50m/分、巻取り速度を150m/分で該ポリウレタン弾性繊維の糸を走行させている時に、糸の走行経路にセラミックフックガイドを摩擦角90°で挿入した際に測定した入力側の糸張力(T)及び出力側の糸張力(T)を下記式(1):
       動摩擦係数(μd)=ln(T/T)/0.5π
    に代入して算出される該ポリウレタン弾性繊維の動摩擦係数(μd)が、0.2~1.5であり、かつ、
     該ポリウレタン弾性繊維を3mmの長さに切断した短繊維の集合体10gに、ジメチルアセトアミド90gを加え常温で撹拌して10%ポリウレタン溶液を作製し、該ポリウレタン溶液1gを、底面が10cm角の直方体形状の容器に流し入れ、50℃の恒温器内で放置してジメチルアセトアミドを蒸発させ、形成した厚さ100μmのフィルムを、黒板の上に載せ、分光光度計を用い、光源をD65/2℃として、測定した反射光のL値が、50以下である、
    ことを特徴とする前記ポリウレタン弾性繊維。
  2.  処理剤の付着率が2.0重量%以下である、請求項1に記載のポリウレタン弾性繊維。
  3.  請求項1又は2に記載のポリウレタン弾性繊維を含むギャザー部材。
  4.  粒径0.015~0.5μm、かつ、比表面積5~110m2/gの酸化チタンを含有するポリウレタン重合体を紡糸する工程を含む、請求項1又は2に記載のポリウレタン弾性繊維の製造方法。
PCT/JP2018/004899 2017-02-13 2018-02-13 ポリウレタン弾性繊維、その製法、及びそれを含むギャザー部材 WO2018147461A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880010402.6A CN110249084B (zh) 2017-02-13 2018-02-13 聚氨酯弹性纤维、其制造方法、及包含其的褶裥构件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-024063 2017-02-13
JP2017024063A JP2020056116A (ja) 2017-02-13 2017-02-13 ポリウレタン弾性繊維

Publications (1)

Publication Number Publication Date
WO2018147461A1 true WO2018147461A1 (ja) 2018-08-16

Family

ID=63107230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004899 WO2018147461A1 (ja) 2017-02-13 2018-02-13 ポリウレタン弾性繊維、その製法、及びそれを含むギャザー部材

Country Status (3)

Country Link
JP (1) JP2020056116A (ja)
CN (1) CN110249084B (ja)
WO (1) WO2018147461A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066103A1 (ja) * 2019-10-01 2021-04-08 東レ株式会社 遮光遮熱複合シートおよび繊維製品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232185A (ja) * 2003-01-24 2004-08-19 Bayer Faser Gmbh 塩素−耐性弾性繊維
JP2006002336A (ja) * 2004-06-17 2006-01-05 Dorlastan Fibers Gmbh 色の変化に対して保護された耐塩素性エラスタン繊維
JP2009007681A (ja) * 2007-06-26 2009-01-15 Opelontex Co Ltd ポリウレタン弾性糸およびその製造方法
JP2009516092A (ja) * 2005-11-14 2009-04-16 インヴィスタ テクノロジー エスアエルエル 向上した白色度を有するスパンデックスならびにそれを含む布および衣料品
JP2009091445A (ja) * 2007-10-09 2009-04-30 Asahi Kasei Fibers Corp ポリエーテルエステル及びその繊維、加工糸、織編物
JP2009167541A (ja) * 2008-01-11 2009-07-30 Asahi Kasei Fibers Corp ポリエーテルエステル繊維、加工糸、織編物
JP2015206150A (ja) * 2014-04-23 2015-11-19 旭化成せんい株式会社 ポリウレタン弾性繊維及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060062A (ja) * 2002-07-25 2004-02-26 Du Pont Toray Co Ltd ポリウレタン糸およびその製造方法
ATE464409T1 (de) * 2004-03-02 2010-04-15 Asahi Kasei Fibers Corp Polyurethanelastofaser und verfahren zu deren herstellung
CN101255619B (zh) * 2008-04-09 2010-09-01 南通华盛高聚物科技发展有限公司 含有纳米粉体的熔纺氨纶的制备方法
CN103436983B (zh) * 2013-08-26 2015-04-08 浙江华峰氨纶股份有限公司 一种高回弹氨纶纤维及其制备方法
CN104630929B (zh) * 2015-03-16 2016-05-11 浙江华峰氨纶股份有限公司 生物易降解纸尿裤用氨纶及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232185A (ja) * 2003-01-24 2004-08-19 Bayer Faser Gmbh 塩素−耐性弾性繊維
JP2006002336A (ja) * 2004-06-17 2006-01-05 Dorlastan Fibers Gmbh 色の変化に対して保護された耐塩素性エラスタン繊維
JP2009516092A (ja) * 2005-11-14 2009-04-16 インヴィスタ テクノロジー エスアエルエル 向上した白色度を有するスパンデックスならびにそれを含む布および衣料品
JP2009007681A (ja) * 2007-06-26 2009-01-15 Opelontex Co Ltd ポリウレタン弾性糸およびその製造方法
JP2009091445A (ja) * 2007-10-09 2009-04-30 Asahi Kasei Fibers Corp ポリエーテルエステル及びその繊維、加工糸、織編物
JP2009167541A (ja) * 2008-01-11 2009-07-30 Asahi Kasei Fibers Corp ポリエーテルエステル繊維、加工糸、織編物
JP2015206150A (ja) * 2014-04-23 2015-11-19 旭化成せんい株式会社 ポリウレタン弾性繊維及びその製造方法

Also Published As

Publication number Publication date
CN110249084B (zh) 2022-02-11
CN110249084A (zh) 2019-09-17
JP2020056116A (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
EP1722015B1 (en) Polyurethane elastic fiber and method for production thereof
JP4595775B2 (ja) ポリウレタン系弾性繊維およびその製造方法
JP5168672B2 (ja) ポリウレタン弾性糸およびその製造方法
CN111194364B (zh) 聚氨酯弹性纤维、其绕纱体、及包含其的制品
CN113874561A (zh) 聚氨酯弹性纱及其制造方法
JP4984146B2 (ja) ポリウレタン弾性糸およびその製造方法
WO2018147461A1 (ja) ポリウレタン弾性繊維、その製法、及びそれを含むギャザー部材
JP5853065B1 (ja) ギャザー部材
EP4198180A1 (en) Polyurethane elastic fiber, winding body therefor, gather member, and sanitary material
EP4372132A1 (en) Thermoplastic polyurethane elastic fiber, wound body of same, gather and sanitary materials containing said thermoplastic polyurethane elastic fiber, and method for producing said polyurethane elastic fiber
JP2017205433A (ja) ギャザー部材、並びにこれを用いた吸収性物品及び医療用品
JP2010236150A (ja) ポリウレタン系弾性繊維およびその製造方法
JP2002348730A (ja) サニタリー用ポリウレタン弾性繊維
JP4834858B2 (ja) ポリウレタン糸およびその製造方法
JP4030375B2 (ja) 接着性良好な紙おむつ用ポリウレタン弾性繊維
TW450938B (en) Package of polyurethane elastic yarn for heat bonding
WO2023127753A1 (ja) ギャザー及びそれを含む衛生材料
JP2005344215A (ja) 紙おむつ用ポリウレタン弾性繊維
JP2002363823A (ja) 吸湿性ポリウレタン弾性繊維およびその製造方法
TW200400288A (en) Elastic polyurethane fiber
JP2005344214A (ja) 紙おむつ用ポリウレタン弾性繊維
JPH07285736A (ja) 紙おむつ用弾性糸捲糸体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18752073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18752073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP