WO2018147360A1 - 石炭灰の改質方法およびコンクリート混和材用のフライアッシュの製造方法 - Google Patents

石炭灰の改質方法およびコンクリート混和材用のフライアッシュの製造方法 Download PDF

Info

Publication number
WO2018147360A1
WO2018147360A1 PCT/JP2018/004375 JP2018004375W WO2018147360A1 WO 2018147360 A1 WO2018147360 A1 WO 2018147360A1 JP 2018004375 W JP2018004375 W JP 2018004375W WO 2018147360 A1 WO2018147360 A1 WO 2018147360A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal ash
mass
classification
ash
sieve residue
Prior art date
Application number
PCT/JP2018/004375
Other languages
English (en)
French (fr)
Inventor
浩大 土肥
牧生 山下
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63108331&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018147360(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to AU2018218375A priority Critical patent/AU2018218375B2/en
Priority to US16/484,327 priority patent/US11338328B2/en
Priority to CN201880007319.3A priority patent/CN110191867B/zh
Priority to NZ756067A priority patent/NZ756067B2/en
Publication of WO2018147360A1 publication Critical patent/WO2018147360A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/083Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1087Carbon free or very low carbon content fly ashes; Fly ashes treated to reduce their carbon content or the effect thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a method for modifying coal ash and a method for producing fly ash for a concrete admixture.
  • coal ash also called fly ash
  • the fly ash for concrete admixture is defined in Japanese Industrial Standard JIS A 6201 (Fly Ash for Concrete).
  • Coal ash generated in a coal-fired thermal power plant or a fluidized bed combustion furnace is usually classified by a classifier and then used as fly ash for a concrete admixture.
  • Patent Document 1 describes a method using a low-pressure classifier or a multistage cyclone (free vortex centrifugal classifier) as a method for classifying coal ash.
  • Patent Document 2 discloses a method of modifying fly ash by combining preliminary classification and pulverization.
  • coal ash generally contains unburned carbon, and this unburned carbon may adsorb the chemical admixture of concrete. For this reason, when coal ash with a large amount of unburned carbon is used as an admixture for concrete, it may be necessary to increase the amount of other chemical admixtures or the fluidity of the concrete may fluctuate. In addition, black spots due to unburned carbon occur on the surface of the concrete, and the appearance of the hardened concrete may be deteriorated. For this reason, in order to use coal ash as fly ash for concrete admixture, it is necessary to reduce the amount of unburned carbon in coal ash. In JIS A 6201 (concrete fly ash), ignition loss (ig.loss) including the amount of unburned carbon is limited.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a coal ash reforming method capable of efficiently reducing the amount of unburned carbon in coal ash. Another object of the present invention is to provide a method capable of efficiently producing fly ash for concrete admixture from coal ash.
  • a method for reforming coal ash uses a forced vortex centrifugal classifier to classify coal ash having a 45 ⁇ m sieve residue of 10% by mass or more.
  • the classification is performed under the condition that the 45 ⁇ m sieve residue of the coal ash after classification is in the range of 1% by mass to 8% by mass.
  • the coal ash after classification (after reforming) has a 45 ⁇ m sieve residue of 1% by mass to 8% by mass. Range and less.
  • unburned carbon in coal ash adheres to the coal ash particles and has a high ratio of forming aggregated particles having a particle diameter of 45 ⁇ m or more. Therefore, the coal ash obtained by the coal ash reforming method according to one embodiment of the present invention has a low content of unburned carbon, and when this is used as a concrete admixture, black spots are less likely to occur.
  • the obtained coal ash has the fine coal ash particle
  • the coal ash having a 45 ⁇ m sieve residue of 10% by mass or more is classified into 45 ⁇ m of the coal ash after the classification using a forced vortex centrifugal classifier. Since the classification is performed under the condition that the sieve residue is 1% by mass or more, as is clear from the results of Examples described later, the recovery rate of coal ash with reduced unburned carbon content is high, and coal ash The amount of unburned carbon can be efficiently reduced.
  • the 45 ⁇ m sieve residue is 10% by mass or more (that is, the coal ash before classification) has the 45 ⁇ m sieve residue.
  • 40% by mass or less the degree of compression is 40% or less, the lightness index L value in the Hunter Lab color system is 54.0 or more, and the ignition loss is 5.0% by mass or less. Is preferred.
  • the coal ash before classification has a 45 ⁇ m sieve residue of 40% by mass or less and a compressibility of 40% or less, so the recovery rate of coal ash with reduced unburned carbon content is high, The amount of unburned carbon in the coal ash can be reduced efficiently.
  • the lightness index L value in the Hunter Lab color system is 54.0 or more and the ignition loss is 5.0% by mass or less, the amount of unburned carbon in the obtained coal ash is further reduced. Therefore, it can be advantageously used as an admixture for concrete.
  • the classification accuracy index is set as high as 0.6 or more, the coal ash after classification has a narrow particle size distribution and a uniform particle size, and segregates during storage and mixing with other concrete materials. Is less likely to occur.
  • the classification accuracy index is set to 0.7 or less, the recovery rate of coal ash after classification is increased, and the amount of unburned carbon in the coal ash can be more efficiently reduced.
  • the obtained coal ash has an ignition loss that is reduced by 8.0% or more compared to the coal ash before classification.
  • the obtained coal ash can be advantageously used as an admixture for concrete because the amount of unburned carbon is reliably reduced.
  • the method for producing fly ash for concrete admixtures has a 45 ⁇ m sieve residue in a range of 10% by mass to 40% by mass, a compressibility of 40% or less, and a Hunter Lab table.
  • the coal ash having a lightness index L value in the color system of 54.0 or more and an ignition loss of 5.0% by mass or less is classified using a forced vortex centrifugal classifier.
  • the 45 ⁇ m sieve residue is classified under the condition of 1 mass% or more and 8 mass% or less.
  • the obtained coal ash (fly ash) has a small amount of unburned carbon and a particle diameter of 45 ⁇ m or less. Therefore, when this is used as an admixture for concrete, the occurrence of black spots is small and the activity index is high. Furthermore, since a forced vortex centrifugal classification device is used as the classification device, the coal ash recovery rate after classification is high. Therefore, according to the method for producing fly ash for concrete admixture which is one embodiment of the present invention, coal ash (fly ash) useful as a concrete admixture can be efficiently produced.
  • coal ash reforming method capable of efficiently reducing the amount of unburned carbon in coal ash.
  • the method which can manufacture efficiently the fly ash for concrete admixtures from coal ash can be provided.
  • the coal ash used in the present embodiment is ash generated by burning coal used as fuel for thermal power generation or fluidized bed combustion furnace.
  • Coal ash obtained by the reforming method of this embodiment can be advantageously used as an admixture for concrete, for example.
  • a predetermined coal ash is sieved using a forced vortex centrifugal classifier and the coal ash after classification is sieved by 45 ⁇ m. Classification is performed under the condition that the remainder is in the range of 1 to 8% by mass.
  • the coal ash before classification used in the present embodiment has a 45 ⁇ m sieve residue of 10% by mass or more.
  • the coal ash before classification is preferably in the range of 10% by mass to 40% by mass, the compression degree is 40% or less, and the lightness index L value in the Hunter Lab color system is 54.0 or more. And the loss on ignition is 5% or less.
  • the 45 ⁇ m sieve residue is the residue remaining on the sieve when classified using a standard sieve having an opening of 45 ⁇ m, and is the content of particles having a particle size of 45 ⁇ m or more.
  • the particles having a particle size of 45 ⁇ m or more contained in the coal ash are agglomerated particles mainly formed by unburned carbon in the coal ash adhering to the coal ash particles and agglomerating, and usually 10 mass in the coal ash. More than% is included. If the 45 ⁇ m sieve residue exceeds 40% by mass, the amount of 45 ⁇ m sieve residue removed by classification increases, and the recovery rate of coal ash after classification described later may be reduced.
  • the 45-micrometer sieve residue is set as the range of 10 mass% or more and 40 mass% or less.
  • the 45 ⁇ m sieve residue is more preferably in the range of 10% by mass to 20% by mass, but is not limited thereto.
  • the degree of compression is a value defined by the following equation.
  • Compressibility (%) ⁇ (Fixed apparent specific gravity ⁇ Loose apparent specific gravity) / Folded apparent specific gravity ⁇ ⁇ 100
  • the loose apparent specific gravity is the specific gravity of coal ash (coal ash weight / capacity of container) when a predetermined capacity of container is filled with coal ash by free fall.
  • the solid apparent specific gravity is a specific gravity (weight of coal ash / compressed coal ash volume) when coal ash filled in a container by free fall is compressed by tapping.
  • the degree of compression tends to correlate with the fluidity of the powder. If the degree of compression exceeds 40%, the fluidity of the coal ash becomes low, and the recovery rate of coal ash after classification described later may be reduced. For this reason, in this embodiment, the degree of compression is set to 40% or less. The degree of compression is preferably in the range of 30% to 40%.
  • the lightness index L value in the Hunter Lab color system represents lightness, and the larger the L value, the closer to white, that is, the smaller the amount of black material such as unburned carbon mixed.
  • the brightness index L value in the Hunter Lab color system is set to 54.0 or more.
  • the lightness index L value is preferably in the range of 54.0 to 70.0.
  • the ignition loss is an index of the amount of unburned carbon contained in coal ash.
  • the ignition loss exceeds 5.0% by mass, if the coal ash after classification described later is added to concrete as an admixture, black spots may easily occur in the obtained concrete.
  • the ignition loss is set to 5.0 mass% or less.
  • the ignition loss is preferably in the range of 1.0% by mass or more and 5.0% by mass or less.
  • the ignition loss is more preferably in the range of 1.0% by mass or more and 3.0% by mass or less, but is not limited thereto.
  • the coal ash is classified using a forced vortex centrifugal classifier.
  • a centrifugal classifying device that classifies using the centrifugal force of particles and an inertia type classifying device that classifies using the inertial force of particles are known.
  • a centrifugal classifier is known to be a forced vortex type, a semi-free vortex type, and a free vortex type.
  • the forced vortex classifier is a classifier in which a rotating body (also referred to as a classification rotor) is provided inside the apparatus, and the rotator is rotated at high speed to forcibly form a vortex.
  • the semi-free vortex classifier is a classifier provided with a guide plate (also referred to as a slit) for generating a vortex inside the apparatus instead of a rotating body.
  • the free vortex classifier is a classifier that generates vortices by blowing a gas in a tangential direction inside the apparatus, as represented by a cyclone.
  • the particle size of the powder after classification can be accurately adjusted by adjusting the rotational speed of the rotating body. For this reason, in this embodiment, a forced vortex centrifugal classifier is used.
  • the forced vortex centrifugal classifier is used, and classification is performed under the condition that the 45 ⁇ m sieve residue of the coal ash after classification is in the range of 1% by mass to 8% by mass. If the 45 ⁇ m sieve residue is set to a high value exceeding 8% by mass, the removal efficiency of unburned carbon may be lowered. On the other hand, if the 45 ⁇ m sieve residue is set to a low value of less than 1% by mass, the coal ash recovery rate after classification may be excessively reduced. For this reason, in this embodiment, the classification condition is set to a condition in which the 45 ⁇ m sieve residue of the coal ash after classification is in the range of 1% by mass to 8% by mass. The 45 ⁇ m sieve residue of coal ash after classification is preferably in the range of 1% by mass to 5% by mass, but is not limited thereto.
  • classification by a forced vortex centrifugal classifier is performed under the condition that the classification accuracy index excellent is 0.6 or more and 0.7 or less.
  • the classification accuracy index ⁇ is closer to 1, it means that the particle size distribution is narrower and the particle sizes are uniform.
  • the classified coal ash preferably has a narrow particle size distribution and a uniform particle size because segregation hardly occurs during storage or mixing with other concrete materials. Accordingly, the classification accuracy index ⁇ is preferably close to 1, but if the classification accuracy index ⁇ is too close to 1, the coal ash recovery rate after classification is too low. For this reason, in this embodiment, the classification condition is set as a condition in which the classification accuracy index ITA is 0.6 or more and 0.7 or less.
  • the coal ash after classification (after reforming) has a 45 ⁇ m sieve residue in the range of 1% by mass to 8% by mass. And less.
  • the obtained coal ash is usually reduced by 8.0% or more in terms of loss on ignition compared to the coal ash before classification. Therefore, since the coal ash obtained by the coal ash reforming method of the present embodiment has a low content of unburned carbon, when this is used as an admixture for concrete, black spots are less likely to occur.
  • the obtained coal ash preferably has a loss on ignition of 10.0% or more compared with the coal ash before classification, but is not limited thereto.
  • the obtained coal ash is mainly composed of fine coal ash particles having a particle size of 45 ⁇ m or less, the activity index becomes high when this is used as an admixture for concrete.
  • the coal ash obtained by this embodiment usually has a quality equivalent to that of fly ash type II defined by JIS A 6201 (fly ash for concrete).
  • the classification is performed under the condition that the 45 ⁇ m sieve residue of the coal ash after classification is in the range of 1% by mass to 8% by mass using a forced vortex centrifugal classifier.
  • the recovery rate of coal ash with reduced content of fuel carbon is high, and the amount of unburned carbon in coal ash can be reduced efficiently.
  • the coal ash before classification has a 45 ⁇ m sieve residue of 40% by mass or less and a compressibility of 40% or less, recovery of coal ash with reduced unburned carbon content The rate is high, and the amount of unburned carbon in the coal ash can be efficiently reduced.
  • the coal ash before classification has a brightness index L value in the Hunter Lab color system of 54.0 or more and an ignition loss of 5.0% by mass or less. Since the amount of carbon is further reduced, it can be advantageously used as an admixture for concrete.
  • the coal ash after classification may be used for applications other than the admixture for concrete.
  • the coal ash before classification has a 45 ⁇ m sieve residue in the range of 10% by mass to 40% by mass, the degree of compression is 40% or less, and the lightness index L value in the Hunter Lab color system. Is 54.0 or more, and it is not necessary that the loss on ignition is 5.0% by mass or less.
  • the coal ash before classification is required to have a 45 ⁇ m sieve residue of 10% by mass or more.
  • the 45-micrometer sieve residue and ignition loss were measured by the method based on the method described in JIS A6201 (fly ash for concrete).
  • the degree of compression was calculated from the above equation by measuring the loose apparent specific gravity and the hard apparent specific gravity using a powder tester (manufactured by Hosokawa Micron Corporation).
  • a classification device of the following classification method was prepared.
  • Forced vortex centrifugal classifier Turbo classifier, manufactured by Nissin Engineering Co., Ltd.
  • Semi-free vortex centrifugal classifier Micro classifier, manufactured by Seishin Corporation Free vortex centrifugal classifier: Cyclone, Mitsubishi Inertia classifier manufactured by Material Co., Ltd .: Elbow Jet, Matsubo Co., Ltd.
  • the above-mentioned coal ash raw material was classified using the classification system classification device, and the classified coal ash was recovered.
  • the classification conditions were such that the 45 ⁇ m sieve residue of the classified coal ash was 1% by mass or more and 8% by mass or less.
  • Recovery rate (mass%) weight of recovered coal ash / weight of coal ash charged into the classification device ⁇ 100
  • the particle size distribution (under the sieve) of the coal ash after classification was measured with a laser diffraction particle size distribution meter (Microtrack particle size distribution meter manufactured by Nikkiso Co., Ltd., model: MT3000II).
  • the obtained particle size distribution was divided into several particle size intervals, the partial classification efficiency was determined from the recovery rate for each particle size interval, and a partial classification efficiency curve was created.
  • the ratio of d25: 25% classification diameter and d75: 75% classification diameter (d25 / d75) was used as the classification accuracy index.
  • the lightness index L value was measured using a colorimetric color difference meter (manufactured by Nippon Denshoku Industries Co., Ltd., model: ZE2000).
  • the above coal ash DH is classified using a forced vortex centrifugal classifier (turbo classifier, manufactured by Nissin Engineering Co., Ltd.), and the classified coal ash is recovered. did.
  • the classification conditions are as follows. In Examples 4 to 7 of the present invention and Comparative Examples 14, 17, and 19, the 45 ⁇ m sieve residue of the coal ash after classification is in the range of 1% by mass to 8% by mass, and the classification accuracy index is The conditions were in the range of 0.6 to 0.7. In Comparative Examples 10, 12, and 16, the 45 ⁇ m sieve residue of the classified coal ash exceeded 8 mass%, and the classification accuracy index was in the range of 0.6 to 0.7. In Comparative Examples 11, 13, 15, and 18, the 45 ⁇ m sieve residue of the coal ash after classification was less than 1% by mass, and the classification accuracy index was in the range of 0.6 to 0.7.
  • a mortar specimen was prepared by a method based on the method described in JIS R 5201 (Cement physical test method). Observe the presence or absence of a black substance that floats on the surface of the mortar specimen prepared, and mark “A” when no black spots occur, and “B” when any black spots occur. did.
  • the activity index was measured based on the method described in JIS A 6201 (fly ash for concrete).
  • An activity index having an activity index of 7 days of age is 70% or more, an activity index of 28 days of age is 80% or more, and an activity index of 91 days of age is 90% or more.
  • B Activity index of coal ash after classification
  • the 45 ⁇ m sieve residue, the degree of compression, the lightness index L value, and the coal ash whose ignition loss is within the scope of the present invention are adjusted to the condition that the 45 ⁇ m sieve residue of the classified coal ash exceeds 8% by mass.
  • the coal ash after classification had a large 45 ⁇ m sieve residue, and the ignition loss was not reduced.
  • the activity index was low and it was inadequate to use as a concrete admixture.
  • Comparative Examples 14, 15, and 16 using coal ash having a lightness index L value lower than the range of the present invention black spots were generated on the mortar specimen. Furthermore, in the comparative example 16 which classified on the conditions that the 45 micrometer sieve residue of the coal ash after classification exceeds 8 mass%, the coal ash after classification had a high ignition loss, and the activity index became low.
  • Comparative Example 17 using coal ash whose ignition loss was higher than the range of the present invention the coal ash after classification had a high ignition loss and a low activity index.
  • Comparative Example 19 using coal ash having a lightness index L value lower than the range of the present invention and an ignition loss higher than the range of the present invention black spots are generated on the mortar specimen, and the activity index is lowered. It was.
  • the amount of unburned carbon in the coal ash can be efficiently reduced.
  • the fly ash for concrete admixtures can be efficiently manufactured from coal ash.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本発明の石炭灰の改質方法は、45μmふるい残分が10質量%以上である石炭灰を、強制渦式遠心方式の分級装置を用いて、分級後の石炭灰の45μmふるい残分が1質量%以上8質量%以下の範囲となる条件にて分級することを特徴とする。

Description

石炭灰の改質方法およびコンクリート混和材用のフライアッシュの製造方法
 本発明は、石炭灰の改質方法およびコンクリート混和材用のフライアッシュの製造方法に関する。
 本願は、2017年2月10日に、日本に出願された特願2017-023389号に基づき優先権を主張し、その内容をここに援用する。
 石炭焚き火力発電所や流動床燃焼炉などで発生する石炭灰(フライアッシュともいう)を、コンクリートの混和材として利用することが検討されている。コンクリート混和材用のフライアッシュは、日本工業規格のJIS A 6201(コンクリート用フライアッシュ)で規定されている。石炭焚き火力発電所や流動床燃焼炉にて生成した石炭灰は、通常、分級装置によって分級された後、コンクリート混和材用のフライアッシュとして利用されている。
 特許文献1には、石炭灰を分級する方法として、低圧分級装置や複数段のサイクロン(自由渦式遠心方式分級装置)を用いる方法が記載されている。また、特許文献2には、予備分級と粉砕を組み合わせてフライアッシュを改質する方法が開示されている。
特開2016-60673号公報 特開2014-196240号公報
 ところで、石炭灰は一般に未燃カーボンを含んでおり、この未燃カーボンが、コンクリートの化学混和剤を吸着することがある。このため、未燃カーボン量が多い石炭灰をコンクリートの混和材として用いると、他の化学混和剤の添加量を多くする必要が生じたり、コンクリートの流動性が変動することがある。また、コンクリートの表面に未燃カーボンによる黒色の斑点が生じ、硬化したコンクリートの見かけが悪くなるおそれがある。このため、石炭灰をコンクリート混和材用のフライアッシュとして利用するためには、石炭灰中の未燃カーボン量を低減させることが必要となる。なお、JIS A 6201(コンクリート用フライアッシュ)では、未燃カーボン量を含む強熱減量(ig.loss)が制限されている。
 しかしながら、石炭灰中の未燃カーボンは、石炭灰粒子に付着して凝集粒子を形成しているため、未燃カーボンのみを選択的に除去するのは難しいという問題がある。すなわち、特許文献1に記載されている低圧分級装置や複数段のサイクロンでは、未燃カーボンを含む凝集粒子を選択的に除去することは難しく、未燃カーボンが除去された石炭灰の回収率が低くなるおそれがあった。また、特許文献2に記載されている予備分級と粉砕を組み合わせる方法では、未燃カーボンが微細化され、AE剤などの他の混和剤の吸着量が、分級前の石炭灰(原粉)よりも増加するおそれがある。
 本発明は、前述した事情に鑑みてなされたものであって、石炭灰中の未燃カーボン量を効率よく低減させることができる石炭灰の改質方法を提供することを目的とする。また、本発明は、石炭灰からコンクリート混和材用のフライアッシュを効率よく製造することができる方法を提供することもその目的とする。
 上記の課題を解決するために、本発明の一態様である石炭灰の改質方法は、45μmふるい残分が10質量%以上である石炭灰を、強制渦式遠心方式の分級装置を用いて、分級後の石炭灰の45μmふるい残分が1質量%以上8質量%以下の範囲となる条件にて分級することを特徴としている。
 このような構成とされた本発明の一態様である石炭灰の改質方法によれば、分級後(改質後)の石炭灰は、45μmふるい残分が1質量%以上8質量%以下の範囲と少なくなる。本発明者の検討によると、石炭灰中の未燃カーボンは石炭灰粒子に付着して、粒子径が45μm以上の凝集粒子を形成している割合が高い。従って、本発明の一態様である石炭灰の改質方法で得られる石炭灰は、未燃カーボンの含有量が少なく、これをコンクリート混和材として使用した場合は黒色斑点が発生しにくくなる。また、得られる石炭灰は、粒径が45μm以下の微細な石炭灰粒子を主成分とするので、これをコンクリートの混和材として使用した場合は活性度が高くなる。
 また、本発明の一態様である石炭灰の改質方法では、45μmふるい残分が10質量%以上である石炭灰を、強制渦式遠心方式の分級装置を用い、分級後の石炭灰の45μmふるい残分が1質量%以上となる条件にて分級しているので、後述の実施例の結果から明らかなように、未燃カーボンの含有量が低減した石炭灰の回収率が高く、石炭灰中の未燃カーボン量を効率よく低減させることができる。
 ここで、本発明の一態様である石炭灰の改質方法においては、前記45μmふるい残分が10質量%以上である石炭灰(すなわち、分級前の石炭灰)は、前記45μmふるい残分が40質量%以下であって、圧縮度が40%以下であり、ハンターLab表色系における明度指数L値が54.0以上であって、かつ強熱減量が5.0質量%以下であることが好ましい。
 この場合、分級前の石炭灰は、45μmふるい残分が40質量%以下で、圧縮度が40%以下とされているので、未燃カーボンの含有量が低減した石炭灰の回収率が高く、石炭灰中の未燃カーボン量を効率よく低減させることができる。また、ハンターLab表色系における明度指数L値が54.0以上であり、かつ強熱減量が5.0質量%以下とされているので、得られる石炭灰の未燃カーボン量がより低減されるので、コンクリート用の混和材として有利に使用することができる。
 また、本発明の一態様である石炭灰の改質方法においては、前記分級を、分級精度指数(к=d25/d75)が0.6以上0.7以下となる条件にて実施することが好ましい。
 この場合、分級精度指数が0.6以上と高く設定されているので、分級後の石炭灰は、粒度分布が狭く、粒径が揃っていて、保存時や他のコンクリート材料との混合時に偏析が起こりにくくなる。また、分級精度指数が0.7以下と設定されているので、分級後の石炭灰の回収率が高くなり、石炭灰中の未燃カーボン量をより効率よく低減させることができる。
 さらに、本発明の一態様である石炭灰の改質方法においては、得られる石炭灰は、強熱減量が分級前の石炭灰と比較して8.0%以上低減されていることが好ましい。
 この場合、得られる石炭灰は、未燃カーボン量が確実に低減されているので、コンクリート用の混和材として有利に使用することができる。
 本発明の一態様であるコンクリート混和材用のフライアッシュの製造方法は、45μmふるい残分が10質量%以上40質量%以下の範囲にあって、圧縮度が40%以下であり、ハンターLab表色系における明度指数L値が54.0以上であって、かつ強熱減量が5.0質量%以下である石炭灰を、強制渦式遠心方式の分級装置を用いて、分級後の石炭灰の45μmふるい残分が1質量%以上8質量%以下の範囲となる条件にて分級することを特徴としている。
 このような構成とされた本発明の一態様であるコンクリート混和材用のフライアッシュの製造方法によれば、得られる石炭灰(フライアッシュ)は、未燃カーボン量が少なく、粒子径が45μm以下である微細な石炭灰粒子を多く含むので、これをコンクリートの混和材として使用した場合は黒色斑点の発生が少なく、また活性度指数が高い。さらに、分級装置として、強制渦式遠心方式の分級装置を用いるので、分級後の石炭灰の回収率が高い。従って、本発明の一態様であるコンクリート混和材用のフライアッシュの製造方法によれば、コンクリートの混和材として有用な石炭灰(フライアッシュ)を効率よく製造することができる。
 本発明によれば、石炭灰中の未燃カーボン量を効率よく低減させることができる石炭灰の改質方法を提供することができる。また、石炭灰からコンクリート混和材用のフライアッシュを効率よく製造することができる方法を提供することができる。
 以下、本発明の本実施形態である石炭灰の改質方法およびコンクリート混和材用のフライアッシュの製造方法について説明する。
 本実施形態で用いる石炭灰は、火力発電や流動床燃焼炉の燃料として使用された石炭が燃焼して生成した灰である。本実施形態の改質方法で得られる石炭灰は、例えば、コンクリートの混和材として有利に利用することができる。
 本実施形態である石炭灰の改質方法およびコンクリート混和材用のフライアッシュの製造方法では、所定の石炭灰を、強制渦式遠心方式の分級装置を用いて、分級後の石炭灰の45μmふるい残分が1質量%以上8質量%以下の範囲となる条件にて分級する。
 本実施形態で用いる分級前の石炭灰は、45μmふるい残分が10質量%以上とされている。上記の分級前の石炭灰は、好ましくは10質量%以上40質量%以下の範囲にあって、圧縮度が40%以下であって、ハンターLab表色系における明度指数L値が54.0以上であり、かつ強熱減量が5%以下とされている。以下、本実施形態において、石炭灰の物性を上記のように設定した理由を説明する。
 45μmふるい残分とは、目開き45μmの標準ふるいを使用して分級したときに、ふるい上に残る残分であり、粒径が45μm以上の粒子の含有量である。石炭灰に含まれる粒径が45μm以上の粒子は、主として、石炭灰中の未燃カーボンが石炭灰粒子に付着して凝集することによって形成された凝集粒子であり、通常は石炭灰に10質量%以上含まれている。45μmふるい残分が40質量%を超えると、分級によって45μmふるい残分を除去する量が多くなり、後述の分級を行った後の石炭灰の回収率が低減するおそれがある。
 このため、本実施形態では、45μmふるい残分を10質量%以上40質量%以下の範囲と設定している。前記45μmふるい残分は、10質量%以上20質量%以下の範囲とすることがより好ましいが、これに限定されることはない。
 圧縮度は、下記の式で定義される値である。
 圧縮度(%)={(固め見掛け比重-ゆるみ見掛け比重)/固め見掛け比重}×100
 ゆるみ見掛け比重は、所定容量の容器に石炭灰を自由落下によって充填したときの石炭灰の比重(石炭灰の重量/容器の容量)である。固め見掛け比重は、自由落下によって容器に充填した石炭灰を、タッピングによって圧縮したときの比重(石炭灰の重量/圧縮した石炭灰の体積)である。
 圧縮度は、粉体の流動性と相関する傾向がある。圧縮度が40%を超えると、石炭灰の流動性が低くなり、後述の分級を行った後の石炭灰の回収率が低減するおそれがある。
 このため、本実施形態では、圧縮度を40%以下と設定している。圧縮度は30%以上40%以下の範囲にあることが好ましい。
 ハンターLab表色系における明度指数L値は明度を表し、L値が大きいほど白色に近いこと、すなわち未燃カーボンなどの黒色物質の混入量が少ないことを示す。ハンターLab表色系における明度指数L値が54.0未満であると、後述の分級を行った後の石炭灰を混和材としてコンクリートに加えると、得られるコンクリートに黒色の斑点が発生しやすくなるおそれがある。
 このため、本実施形態では、ハンターLab表色系における明度指数L値を54.0以上と設定している。なお、明度指数L値は、54.0以上70.0以下の範囲にあることが好ましい。
 強熱減量は、石炭灰に含まれる未燃カーボン量を指標する。強熱減量が5.0質量%を超えると、後述の分級を行った後の石炭灰を混和材としてコンクリートに加えると、得られるコンクリートに黒色の斑点が発生しやすくなるおそれがある。
 このため、本実施形態では、強熱減量を5.0質量%以下と設定している。なお、強熱減量は、1.0質量%以上5.0質量%以下の範囲にあることが好ましい。前記強熱減量は、1.0質量%以上3.0質量%以下の範囲にあることがより好ましいが、これに限定されることはない。
 本実施形態では、上記の石炭灰を、強制渦式遠心方式の分級装置を用いて分級する。
 分級装置としては、粒子の遠心力を利用して分級する遠心方式の分級装置と、粒子の慣性力を利用して分級する慣性方式の分級装置とが知られている。さらに、遠心方式の分級装置は、強制渦式と、半自由渦式と、自由渦式とが知られている。強制渦式の分級装置は、装置内部に回転体(分級ロータともいう)が備えられていて、その回転体を高速で回転させることで強制的に渦を形成する分級装置である。半自由渦式の分級装置は、回転体の代わりに、装置内部に渦を生成させる案内板(スリットともいう)が備えられている分級装置である。自由渦式の分級装置は、サイクロンに代表されるように、装置内部の接線方向に気体を吹き込んで渦を生成させる分級装置である。
 上記の分級装置の中で、強制渦式遠心方式の分級装置では、回転体の回転数を調整することによって、分級後の粉末の粒子径を精度よく調節することができる。このため、本実施形態では、強制渦式遠心方式の分級装置を用いる。
 本実施形態では、上記の強制渦式遠心方式の分級装置を用い、分級後の石炭灰の45μmふるい残分が1質量%以上8質量%以下の範囲となる条件にて分級する。
 45μmふるい残分が8質量%を超える高い値に設定すると、未燃カーボンの除去効率が低下するおそれがある。一方、45μmふるい残分を1質量%未満の低い値に設定すると、分級後の石炭灰の回収率が過度に低下するおそれがある。
 このため、本実施形態では、分級条件を、分級後の石炭灰の45μmふるい残分が1質量%以上8質量%以下の範囲となる条件と設定している。分級後の石炭灰の45μmふるい残分は、1質量%以上5質量%以下の範囲が好ましいが、これに限定されることはない。
 また、本実施形態では、強制渦式遠心方式の分級装置による分級を分級精度指数кが、0.6以上0.7以下となる条件にて実施する。ここで、分級精度指数кは、部分分級効率曲線において、部分分級効率が25%となるときの粒径(d25、単位:μm)と部分分級効率が75%となるときの粒径(d75、単位:μm)との比であり、下記の式により求められる値である。
 к=d25/d75
 分級精度指数κは1に近いほど、粒度分布が狭く、粒径が揃っていることを意味する。
 分級後の石炭灰は、粒度分布が狭く、粒径が揃っている方が、保存時や他のコンクリートの材料との混合時に偏析が起こりにくくなるので好ましい。従って、分級精度指数κは1に近い方が好ましいが、一方、分級精度指数κを1に近づけすぎると、分級後の石炭灰の回収率が低くなりすぎる。
 このため、本実施形態では、分級条件を分級精度指数кが、0.6以上0.7以下となる条件と設定している。
 以上のような構成とされた本実施形態である石炭灰の改質方法によれば、分級後(改質後)の石炭灰は、45μmふるい残分が1質量%以上8質量%以下の範囲と少なくなる。
 また、得られる石炭灰は、強熱減量が分級前の石炭灰と比較して、通常は8.0%以上低減されている。従って、本実施形態の石炭灰の改質方法によって得られる石炭灰は、未燃カーボンの含有量が少ないので、これをコンクリートの混和材として使用した場合は黒色斑点が発生しにくくなる。得られる石炭灰は、強熱減量が分級前の石炭灰と比較して、10.0%以上低減されていることが好ましいが、これに限定されることはない。さらに、得られる石炭灰は、粒径が45μm以下の微細な石炭灰粒子を主成分とするので、これをコンクリートの混和材として使用した場合は活性度指数が高くなる。本実施形態により得られる石炭灰は、通常は、JIS A 6201(コンクリート用フライアッシュ)で規定されているフライアッシュII種と同等の品質を有する。
 また、本実施形態では、強制渦式遠心方式の分級装置を用いて、分級後の石炭灰の45μmふるい残分が1質量%以上8質量%以下の範囲となる条件にて分級するので、未燃カーボンの含有量が低減した石炭灰の回収率が高く、石炭灰中の未燃カーボン量を効率よく低減させることができる。
 さらに、本実施形態においては、分級前の石炭灰は45μmふるい残分が40質量%以下で、圧縮度が40%以下とされているので、未燃カーボンの含有量が低減した石炭灰の回収率が高く、石炭灰中の未燃カーボン量を効率よく低減させることができる。また、分級前の石炭灰はハンターLab表色系における明度指数L値が54.0以上であり、かつ強熱減量が5.0質量%以下とされているので、得られる石炭灰の未燃カーボン量がより低減されるので、コンクリート用の混和材として有利に使用することができる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、上記の実施形態では、分級後(改質後)の石炭灰を、コンクリートの混和材以外の用途で使用してもよい。この場合は、分級前の石炭灰は、45μmふるい残分が10質量%以上40質量%以下の範囲にあって、圧縮度が40%以下であって、ハンターLab表色系における明度指数L値が54.0以上であり、かつ強熱減量が5.0質量%以下とする必要はない。但し、分級前の石炭灰は、45μmふるい残分が10質量%以上であることは必要である。
 以下に、本発明に係る石炭灰の改質方法およびコンクリート混和材用のフライアッシュの製造方法について評価した評価試験の結果について説明する。
[本発明例1~3、比較例1~9]
 石炭灰(分級前)として、下記の石炭灰A~Cを用意した。
 石炭灰A:45μmふるい残分:39質量%、圧縮度:35質量%、強熱減量:3.5質量%
 石炭灰B:45μmふるい残分:40質量%、圧縮度:40質量%、強熱減量:5.0質量%
 石炭灰C:45μmふるい残分:41質量%、圧縮度:41質量%、強熱減量:2.0質量%
 なお、45μmふるい残分および強熱減量はJIS A 6201(コンクリート用フライアッシュ)に記載されている方法に準拠した方法により測定した。
 圧縮度は、パウダーテスター(ホソカワミクロン株式会社製)を用いて、ゆるみ見掛け比重と固め見掛け比重とを測定し、上述の式より算出した。
 また、分級装置として、下記の分級方式の分級装置を用意した。
 強制渦式遠心方式の分級装置:ターボクラシファイアー、日清エンジニアリング株式会社製
 半自由渦式遠心方式の分級装置:マイクロクラシファイアー、株式会社セイシン企業製
 自由渦式遠心方式の分級装置:サイクロン、三菱マテリアル株式会社製
 慣性方式の分級装置:エルボージェット、株式会社マツボー製
 下記の表1に示すように、上記の石炭灰原料を、上記分級方式の分級装置を用いて分級し、分級した石炭灰を回収した。なお、分級条件は、分級された石炭灰の45μmふるい残分が1質量%以上8質量%以下となる条件とした。
 分級後、下記の式を用いて、石炭灰の回収率(質量%)を算出した。
 回収率(質量%)=回収した石炭灰の重量/分級装置に投入した石炭灰の重量×100
 また、分級後の石炭灰の分級精度指数(к=d25/d75)を、次のようにして求めた。分級後の石炭灰の粒度分布(ふるい下)をレーザー回折式粒度分布計(日機装株式会社製マイクロトラック粒度分布計、型式:MT3000II)により測定した。得られた粒度分布をいくつかの粒径区間に区切り、各粒径区間ごとの回収率から部分分級効率を求め、部分分級効率曲線を作成した。d25:25%分級径、d75:75%分級径の比(d25/d75)を分級精度指数とした。
 さらに、回収した分級後の石炭灰について、45μmふるい残分と強熱減量とを測定した。その結果を、下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、同じ石炭灰を用いた場合、強制渦式遠心方式の分級装置を用いて分級した本発明例1~3は、他の分級方式の分級装置を用いて分級した比較例1~9と比較して、分級後の石炭灰の回収率と分級精度指数(к=d25/d75)が顕著に高くなることが確認された。
[本発明例4~7、比較例10~11]
 石炭灰(分級前)として、下記の石炭灰D~Hを用意した。
 石炭灰D:45μmふるい残分:21質量%、圧縮度:38%、明度指数L値:62.0、強熱減量:2.1質量%
 石炭灰E:45μmふるい残分:38質量%、圧縮度:37%、明度指数L値:54.0、強熱減量:5.0質量%
 石炭灰F:45μmふるい残分:23質量%、圧縮度:35%、明度指数L値:53.7、強熱減量:4.6質量%
 石炭灰G:45μmふるい残分:22質量%、圧縮度:39%、明度指数L値:55.1、強熱減量:5.2質量%
 石炭灰H:45μmふるい残分:30質量%、圧縮度:34%、明度指数L値:53.9、強熱減量:5.8質量%
 なお、明度指数L値は、測色色差計(日本電色工業株式会社製、型式:ZE2000)を用いて測定した。
 下記の表2に示すように、上記の石炭灰D~Hを、強制渦式遠心方式の分級装置(ターボクラシファイアー、日清エンジニアリング株式会社製)を用いて分級し、分級した石炭灰を回収した。
 なお、分級条件は、本発明例4~7および比較例14、17、19では、分級後の石炭灰の45μmふるい残分が1質量%以上8質量%以下の範囲で、かつ分級精度指数が0.6以上0.7以下の範囲となる条件とした。比較例10、12、16では、分級後の石炭灰の45μmふるい残分が8質量%を超え、かつ分級精度指数が0.6以上0.7以下の範囲となる条件とした。比較例11、13、15、18では、分級後の石炭灰の45μmふるい残分が1質量%未満で、かつ分級精度指数が0.6以上0.7以下の範囲となる条件とした。
 分級後の石炭灰について、回収率と、45μmふるい残分と強熱減量とを測定した。その結果を、表2に示す。また、分級後の石炭灰についてコンクリートの混和材としての品質評価として、分級後の石炭灰を用いたモルタル供試体の黒色斑点の有無と分級後の石炭灰の活性度指数とを下記の方法により測定した。その結果を、表2に示す。
(分級後の石炭灰を用いたモルタル供試体の黒色斑点の有無)
 モルタル供試体を、JIS R 5201(セメントの物理試験方法)に記載されている方法に準拠した方法によって作製した。作製したモルタル供試体の表面に浮き出す黒色物質の有無を目視で観察し、黒色の斑点が発生しなかったものを「A」とし、黒色の斑点が一つでも発生したものを「B」とした。
(分級後の石炭灰の活性度指数)
 JIS A 6201(コンクリート用フライアッシュ)に記載されている方法に準拠して、活性度指数を測定した。材齢7日の活性度指数が70%以上であって、材齢28日の活性度指数が80%以上であり、そして材齢91日の活性度指数が90%以上であるものを「A」とし、それ以外のものを「B」とした。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、45μmふるい残分、圧縮度、明度指数L値および強熱減量が本発明の範囲にある石炭灰を、強制渦式遠心方式の分級装置を用い、分級後の石炭灰の45μmふるい残分が1質量%以上8質量%以下の範囲でかつ分級精度指数が0.6以上0.7以下となる分級条件で分級した本発明例4~7では、分級後の石炭灰の45μmふるい残分が1質量%以上8質量%以下の範囲と低くなり、強熱減量が分級前と比較して低減した石炭灰を70%以上と高い回収率で得ることができることが分かる。そして、得られた石炭灰(本発明例4~7)は、モルタルに加えた場合でも黒色斑点が発生せず、また活性度指数が高い。本発明例4~7で得られた石炭灰は、フライアッシュII種に相当する。
 これに対して、45μmふるい残分、圧縮度、明度指数L値および強熱減量が本発明の範囲にある石炭灰を、分級後の石炭灰の45μmふるい残分が8質量%を超える条件にて分級した比較例10、12では、分級後の石炭灰は、45μmふるい残分が多く、強熱減量が低減しなかった。そして、活性度指数が低く、コンクリート混和材として使用するには不十分であった。
 45μmふるい残分、圧縮度、明度指数L値および強熱減量が本発明の範囲にある石炭灰を、分級後の石炭灰の45μmふるい残分が1質量%未満となる条件にて分級した比較例11、13は、回収率が低くなった。
 明度指数L値が本発明の範囲よりも低い石炭灰を用いた比較例14、15、16は、モルタル供試体に黒色斑点が発生した。さらに、分級後の石炭灰の45μmふるい残分が8質量%を超える条件にて分級した比較例16では、分級後の石炭灰は、強熱減量が高く、活性度指数が低くなった。
 強熱減量が本発明の範囲よりも高い石炭灰を用いた比較例17では、分級後の石炭灰は、強熱減量が高く、活性度指数が低くなった。強熱減量が本発明の範囲よりも高い石炭灰を分級後の石炭灰の45μmふるい残分が1質量%未満となる条件にて分級した比較例18は、強熱減量は低減したが、回収率が低くなった。
 明度指数L値が本発明の範囲よりも低く、強熱減量が本発明の範囲よりも高い石炭灰を用いた比較例19は、モルタル供試体に黒色斑点が発生し、活性度指数が低くなった。
 以上の評価結果から、本発明によれば、比較的簡単な装置を用いて、効率よく石炭灰中の未燃カーボン量を低減させることができることが確認された。
 本発明の石炭灰の改質方法によれば、石炭灰中の未燃カーボン量を効率よく低減させることができる。また、本発明のコンクリート混和材用のフライアッシュの製造方法によれば、石炭灰からコンクリート混和材用のフライアッシュを効率よく製造することができる。

Claims (5)

  1.  45μmふるい残分が10質量%以上である石炭灰を、強制渦式遠心方式の分級装置を用いて、分級後の石炭灰の45μmふるい残分が1質量%以上8質量%以下の範囲となる条件にて分級することを特徴とする石炭灰の改質方法。
  2.  前記45μmふるい残分が10質量%以上である石炭灰は、前記45μmふるい残分が40質量%以下であって、圧縮度が40%以下であり、ハンターLab表色系における明度指数L値が54.0以上であって、かつ強熱減量が5.0質量%以下であることを特徴とする請求項1に記載の石炭灰の改質方法。
  3.  前記分級を、分級精度指数(к=d25/d75)が、0.6以上0.7以下となる条件にて実施することを特徴とする請求項1または請求項2に記載の石炭灰の改質方法。
  4.  得られる石炭灰は、強熱減量が分級前の石炭灰と比較して8.0%以上低減されていることを特徴とする請求項1から請求項3のいずれかの一項に記載の石炭灰の改質方法。
  5.  45μmふるい残分が10質量%以上40質量%以下の範囲にあって、圧縮度が40%以下であり、ハンターLab表色系における明度指数L値が54.0以上であって、かつ強熱減量が5.0質量%以下である石炭灰を、強制渦式遠心方式の分級装置を用いて、分級後の石炭灰の45μmふるい残分が1質量%以上8質量%以下の範囲となる条件にて分級することを特徴とするコンクリート混和材用のフライアッシュの製造方法。
PCT/JP2018/004375 2017-02-10 2018-02-08 石炭灰の改質方法およびコンクリート混和材用のフライアッシュの製造方法 WO2018147360A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2018218375A AU2018218375B2 (en) 2017-02-10 2018-02-08 Method for reforming coal ash, and method for producing fly ash for concrete admixture
US16/484,327 US11338328B2 (en) 2017-02-10 2018-02-08 Method for reforming coal ash, and method for producing fly ash for concrete admixture
CN201880007319.3A CN110191867B (zh) 2017-02-10 2018-02-08 煤灰的改性方法及混凝土混合材料用粉煤灰的制造方法
NZ756067A NZ756067B2 (en) 2017-02-10 2018-02-08 Method for reforming coal ash, and method for producing fly ash for concrete admixture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-023389 2017-02-10
JP2017023389A JP6558383B2 (ja) 2017-02-10 2017-02-10 石炭灰の改質方法およびコンクリート混和材用のフライアッシュの製造方法

Publications (1)

Publication Number Publication Date
WO2018147360A1 true WO2018147360A1 (ja) 2018-08-16

Family

ID=63108331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004375 WO2018147360A1 (ja) 2017-02-10 2018-02-08 石炭灰の改質方法およびコンクリート混和材用のフライアッシュの製造方法

Country Status (5)

Country Link
US (1) US11338328B2 (ja)
JP (1) JP6558383B2 (ja)
CN (1) CN110191867B (ja)
AU (1) AU2018218375B2 (ja)
WO (1) WO2018147360A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7138405B2 (ja) * 2018-11-29 2022-09-16 太平洋セメント株式会社 石炭灰の処理方法
JP7402730B2 (ja) 2020-03-31 2023-12-21 Ube三菱セメント株式会社 石炭灰の改質方法及び改質装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145066A (en) * 1981-02-28 1982-09-07 Kobe Steel Ltd Method of sintering fly ash granules
JPH07165455A (ja) * 1993-10-20 1995-06-27 Sekisui Chem Co Ltd 硬化性無機質組成物
JPH092848A (ja) * 1995-06-19 1997-01-07 Chichibu Onoda Cement Corp モルタル・コンクリート用石炭灰及びこれを用いたモルタル・コンクリート
JP2006181895A (ja) * 2004-12-28 2006-07-13 Taiheiyo Material Kk ボックスカルバート及びその製造方法
JP2006315896A (ja) * 2005-05-11 2006-11-24 Mitsubishi Materials Corp 混和材およびこれを含む混合セメント、モルタル、コンクリート
JP2011133344A (ja) * 2009-12-24 2011-07-07 Taiheiyo Cement Corp 石炭灰の強度発現性の評価方法及び強度発現性の改善方法
JP2012505150A (ja) * 2008-10-10 2012-03-01 ローマン セメント エルエルシー 高い早期強度発現性を有するポゾランセメントブレンド
CN102584060A (zh) * 2012-02-28 2012-07-18 上海宝田新型建材有限公司 一种将高钙粉煤灰用于制备商品二级粉煤灰的方法
JP2016113319A (ja) * 2014-12-15 2016-06-23 株式会社トクヤマ 炉底灰を含んだ水硬性組成物
JP2016527328A (ja) * 2013-05-10 2016-09-08 インターナショナル イノベティブ テクノロジーズ リミテッドInternational Innovative Technologies Limited 燃料濃縮方法
JP2017124343A (ja) * 2016-01-12 2017-07-20 三菱マテリアル株式会社 フライアッシュの製造方法
JP6278148B1 (ja) * 2017-01-17 2018-02-14 住友大阪セメント株式会社 フライアッシュ、セメント組成物及びフライアッシュの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812002B2 (ja) 1993-06-19 1996-02-07 四電産業株式会社 フライアッシュの改質方法
JPH1059755A (ja) * 1996-08-14 1998-03-03 Chichibu Onoda Cement Corp フライアッシュの充填方法及び充填材
JP3001496B2 (ja) * 1998-03-16 2000-01-24 住友大阪セメント株式会社 分級フライアッシュの未燃炭素量測定方法およびその装置
JP2001121084A (ja) 1999-10-22 2001-05-08 Mitsubishi Heavy Ind Ltd フライアッシュ精製方法及び精製物の粉体
JP4383615B2 (ja) * 1999-12-24 2009-12-16 株式会社日清製粉グループ本社 サイクロン式分級装置
JP4703524B2 (ja) * 2001-06-27 2011-06-15 株式会社東芝 二次電池用正極活物質の製造方法と非水電解液二次電池の製造方法
CN1256188C (zh) 2003-08-18 2006-05-17 郑州大学 干状粉煤灰高附加值矿物分离提取设备
SE532790C2 (sv) 2007-11-12 2010-04-13 Procedo Entpr Etablissement Metod för att behandla pozzolaner
JP2010030885A (ja) * 2008-06-30 2010-02-12 Mitsubishi Materials Corp 石炭灰の未燃炭素分の低減方法
US9067824B1 (en) * 2010-02-17 2015-06-30 Roman Cement, Llc Modification of pozzolanic chemistry through blending
CN201684726U (zh) 2010-05-28 2010-12-29 湖南嘉逸环保设备开发有限公司 强制气流涡轮式分级机
JP6350165B2 (ja) 2014-09-19 2018-07-04 株式会社Ihi フライアッシュの処理方法
CN106064150A (zh) 2016-07-27 2016-11-02 无锡市华通电力设备有限公司 一种旋转式粉煤灰专用分级机
CA3093529A1 (en) * 2018-03-13 2019-09-19 Tokuyama Corporation Process for reforming the fly ash and apparatus therefor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145066A (en) * 1981-02-28 1982-09-07 Kobe Steel Ltd Method of sintering fly ash granules
JPH07165455A (ja) * 1993-10-20 1995-06-27 Sekisui Chem Co Ltd 硬化性無機質組成物
JPH092848A (ja) * 1995-06-19 1997-01-07 Chichibu Onoda Cement Corp モルタル・コンクリート用石炭灰及びこれを用いたモルタル・コンクリート
JP2006181895A (ja) * 2004-12-28 2006-07-13 Taiheiyo Material Kk ボックスカルバート及びその製造方法
JP2006315896A (ja) * 2005-05-11 2006-11-24 Mitsubishi Materials Corp 混和材およびこれを含む混合セメント、モルタル、コンクリート
JP2012505150A (ja) * 2008-10-10 2012-03-01 ローマン セメント エルエルシー 高い早期強度発現性を有するポゾランセメントブレンド
JP2011133344A (ja) * 2009-12-24 2011-07-07 Taiheiyo Cement Corp 石炭灰の強度発現性の評価方法及び強度発現性の改善方法
CN102584060A (zh) * 2012-02-28 2012-07-18 上海宝田新型建材有限公司 一种将高钙粉煤灰用于制备商品二级粉煤灰的方法
JP2016527328A (ja) * 2013-05-10 2016-09-08 インターナショナル イノベティブ テクノロジーズ リミテッドInternational Innovative Technologies Limited 燃料濃縮方法
JP2016113319A (ja) * 2014-12-15 2016-06-23 株式会社トクヤマ 炉底灰を含んだ水硬性組成物
JP2017124343A (ja) * 2016-01-12 2017-07-20 三菱マテリアル株式会社 フライアッシュの製造方法
JP6278148B1 (ja) * 2017-01-17 2018-02-14 住友大阪セメント株式会社 フライアッシュ、セメント組成物及びフライアッシュの製造方法

Also Published As

Publication number Publication date
US11338328B2 (en) 2022-05-24
CN110191867A (zh) 2019-08-30
CN110191867B (zh) 2021-11-12
US20200030853A1 (en) 2020-01-30
AU2018218375B2 (en) 2023-04-13
JP6558383B2 (ja) 2019-08-14
AU2018218375A1 (en) 2019-08-29
NZ756067A (en) 2021-09-24
JP2018127390A (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
KR102441204B1 (ko) 개질 플라이 애시의 제조 방법
WO2018147360A1 (ja) 石炭灰の改質方法およびコンクリート混和材用のフライアッシュの製造方法
JP6278148B1 (ja) フライアッシュ、セメント組成物及びフライアッシュの製造方法
CN108610680B (zh) 抗高温氯腐蚀涂料及其制备方法
JP2006306651A (ja) シリカ・チタニア複合酸化物粒子
WO2018180687A1 (ja) 未燃カーボン含有石炭灰の改質方法、未燃カーボン含有石炭灰の改質システムおよびコンクリート混和材用のフライアッシュの製造方法
JP2018188358A (ja) 石炭灰の改質方法およびコンクリート混和材用のフライアッシュの製造方法
JP2017148790A (ja) 石炭灰中の未燃炭素の低減方法
JP6311220B2 (ja) 低温焼成セメントクリンカーの製造方法
JP2011144070A (ja) 耐凝集固結フライアッシュ、耐凝集固結フライアッシュ判定方法及び耐凝集固結フライアッシュ混合方法。
CN115558533A (zh) 纳米碳氢燃料制备用萘系分散剂及其应用
CN110627059B (zh) 一种可分散性石墨粉及其制备方法
NZ756067B2 (en) Method for reforming coal ash, and method for producing fly ash for concrete admixture
JP6288355B1 (ja) セメント組成物、その製造方法、及びセメント組成物用フライアッシュの製造方法
JP2019131434A (ja) コンクリート用フライアッシュの製造方法、及びセメント組成物の製造方法
JP6392491B1 (ja) 改質フライアッシュの製造方法
CN110453022B (zh) 一种铁矿粉造高炉入炉料的方法
JP4764361B2 (ja) 酸化インジウム粉末およびその製造方法
WO2023176812A1 (ja) 球状粒子材料の製造方法
JP2015071522A (ja) 石炭灰を用いた粉末状組成物
JP6284752B2 (ja) 石炭灰を用いた粉末状組成物
JP2006205354A (ja) 切削工具用焼結体とそれを用いた切削工具
CN116496094A (zh) 一种含靶向抗氧化剂的碳源的制备方法及碳源及耐火材料的制备方法
JP2012126913A (ja) 微粉炭生成方法及びフライアッシュ判定方法。
JP2020015655A (ja) 改質フライアッシュの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018218375

Country of ref document: AU

Date of ref document: 20180208

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18751797

Country of ref document: EP

Kind code of ref document: A1