WO2018147110A1 - 車両の転倒検出装置 - Google Patents

車両の転倒検出装置 Download PDF

Info

Publication number
WO2018147110A1
WO2018147110A1 PCT/JP2018/002673 JP2018002673W WO2018147110A1 WO 2018147110 A1 WO2018147110 A1 WO 2018147110A1 JP 2018002673 W JP2018002673 W JP 2018002673W WO 2018147110 A1 WO2018147110 A1 WO 2018147110A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
interval
detection
motorcycle
detection device
Prior art date
Application number
PCT/JP2018/002673
Other languages
English (en)
French (fr)
Inventor
斎藤 恭造
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to EP18752052.3A priority Critical patent/EP3581475B1/en
Priority to CN201880007057.0A priority patent/CN110177735B/zh
Priority to JP2018567369A priority patent/JP6691242B2/ja
Publication of WO2018147110A1 publication Critical patent/WO2018147110A1/ja
Priority to US16/517,286 priority patent/US11472355B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0231Circuits relating to the driving or the functioning of the vehicle
    • B60R16/0232Circuits relating to the driving or the functioning of the vehicle for measuring vehicle parameters and indicating critical, abnormal or dangerous conditions
    • B60R16/0233Vehicle tilting, overturning or roll over
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/415Inclination sensors
    • B62J45/4151Inclination sensors for sensing lateral inclination of the cycle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/414Acceleration sensors

Definitions

  • the present invention relates to an apparatus for detecting the fall of a vehicle such as a motorcycle.
  • Patent Document 1 includes a tilt angle detection unit that detects the tilt of a vehicle and a rider operation detection unit that detects whether or not the rider is operating the vehicle, and the rider is not operating the vehicle.
  • An engine control device is disclosed in which when the vehicle tilt angle is maintained at an angle exceeding a predetermined angle, the engine is considered to have fallen and the engine is stopped.
  • Patent Document 1 even if the vehicle has a large inclination angle, the engine control device is prevented from malfunctioning by not determining that the vehicle is falling when the rider is operating. .
  • the tilt angle detecting means periodically detects the tilt angle of the vehicle at regular intervals (for example, once every 10 msec). There are also disturbance factors close to a certain period, such as the vibration of the engine itself. Therefore, if noise continues at the same interval as the interval at which the inclination angle detection means detects the inclination angle of the vehicle, the vehicle has actually fallen over even though it has not fallen over. May be mistakenly recognized.
  • the engine may stop based on this erroneous recognition. If the engine stops despite running, there is a concern that it may cause a fall accident.
  • An object of the present invention is to provide a fall detection device that can prevent malfunction even when noise caused by a disturbance factor affects the vehicle inclination.
  • the vehicle overturn detection device includes an inclination angle detection means for detecting an inclination angle of the vehicle, a counting means for counting when the inclination angle detected by the inclination angle detection means is a predetermined angle or more, and the counting means.
  • Determination means for determining that the vehicle has fallen when the count of the vehicle has fallen a predetermined number of times, and the inclination angle detection means includes interval determination means for determining a detection interval for detecting the angle of the vehicle, The determining means makes the detection interval indefinite.
  • the inclination angle detection means performs angle detection at the indefinite detection interval determined by the interval determination means, and therefore noise generated at a constant period is generated due to a disturbance factor. Even in this case, noise is not applied to the detected value every time the inclination angle is detected. For this reason, even if the inclination angle of the vehicle is determined to be greater than or equal to a predetermined angle by the inclination angle detection means due to noise, such erroneous detection is not continuously performed. Therefore, since the output of the counting means is not continuously generated, the determining means can determine that the previous detection result of the tilt angle is an erroneous detection, and can prevent an erroneous determination of the vehicle overturning.
  • the interval determination means includes noise generation means for generating white noise and pulse signal generation means for generating a pulse signal from the white noise, and the pulse of the pulse signal
  • the interval is preferably set as the detection interval. In this way, when the pulse signal is generated using white noise, the pulse interval of the pulse signal becomes irregular, so that the detection interval by the interval determining means can be easily indefinite.
  • the inclination angle detection means detects acceleration in a vertical direction when the vehicle stands up vertically using an acceleration sensor.
  • an acceleration sensor is used as the angle detection means, when the vehicle falls, the acceleration in the vertical direction of the vehicle decreases. Therefore, the fall of the vehicle can be detected by this decrease in acceleration.
  • the vehicle is a motorcycle or a motor boat, the inclination of the vehicle body increases when turning, but centrifugal force (centripetal force) is generated in the vehicle when turning the vehicle. The acceleration in the vertical direction of the vehicle increases. Therefore, according to the said structure, the misjudgment when the inclination of a vehicle becomes large at the time of turning of a vehicle can be prevented.
  • malfunction can be prevented even when noise is generated in the means for detecting the inclination of the vehicle due to disturbance factors.
  • the fall detection device 1 of the present embodiment is mounted on a motorcycle (vehicle) M as shown in FIG.
  • the fall detection device 1 of the present embodiment includes an acceleration sensor 2 and an interval adjustment device (interval determination unit) 3 that are inclination angle detection means, and an angle detected by the acceleration sensor 2 is a predetermined threshold value.
  • the threshold determination device 4 for determining whether or not the threshold is exceeded is provided.
  • the fall detection device 1 determines that the motorcycle M has fallen when the count determination unit 4 counts the determination of exceeding the threshold by the threshold determination device 4 and the count by the count device 5 continues for a predetermined number of times.
  • a fall determination device (determination means) 6 is provided.
  • the overturn detection device 1 is connected to an engine control device 7 that controls the engine of the motorcycle M.
  • the acceleration sensor 2 has a movable part (not shown) elastically held inside, detects acceleration acting on the movable part, and transmits a signal corresponding to the acceleration to the outside.
  • the acceleration sensor 2 detects acceleration in the vertical direction when the motorcycle M stands vertically, that is, in the vertical direction of the vehicle. In FIG. 1A, the direction indicated by the arrow Fs ′ is the acceleration detection direction of the acceleration sensor 2.
  • FIG. 1 (A) shows a state where the motorcycle M is tilted by an angle ⁇ while the motorcycle M is stopped.
  • the acceleration generated in the motorcycle M is only the gravitational acceleration g.
  • the acceleration sensor 2 is applied with a force having the magnitude of the arrow Fs ′.
  • the arrow Fs ′ approaches 0. Therefore, the value of ⁇ is obtained from the size of the arrow Fs ′, and the value of the angle ⁇ at which the motorcycle M is determined to fall is set as a threshold value. If it is greater than or equal to the threshold, it can be determined that the vehicle has not fallen. This threshold value can be set to 45 °, for example.
  • FIG. 1 (B) shows a state of acceleration generated while the motorcycle M is driven by a rider and travels a curve.
  • the vertical arrow Fs in FIG. 1B is the same as that in FIG. 1A, but centrifugal force is generated in the direction of the arrow Fc in FIG. For this reason, the magnitude of the arrow Fs ′ detected by the acceleration sensor 2 is a combined vector of the arrow Fs and the arrow Fc.
  • the acceleration required by the acceleration sensor 2 is larger than that in the stopped state. Therefore, in the present embodiment, even if the motorcycle M greatly tilts the angle of the vehicle body while traveling on a curve, it is not erroneously recognized that the motorcycle M has fallen.
  • the interval adjusting device 3 includes a Zener diode 8 that is a white noise generating unit, an amplifier 9 that is a pulse signal generating unit, a comparator 10, and a counter 11.
  • the zener diode 8 is supplied with power from the power supply circuit, and the comparator 10 compares the reference voltage power supply 12 with the signal sent from the amplifier 9.
  • symbol 13 in FIG. 3 is resistance.
  • the interval adjusting device 3 white noise is generated by the Zener diode 8, amplified by the amplifier 9, and shaped into a pulse signal by the comparator 10.
  • the interval adjusting device 3 counts up the signal from the comparator 10 by the counter 11 and detects the acceleration by the acceleration sensor 2 using the count as a trigger for a signal detection interval (detection interval).
  • a waveform 9 a is a waveform output from the amplifier 9
  • a waveform 10 a is a waveform output from the comparator 10.
  • the interval adjusting device 3 in the present embodiment corresponds to the interval determining means in the present invention
  • the Zener diode 8 in the present embodiment corresponds to the noise generating means in the present invention
  • the amplifier 9 and the comparator 10 in the present embodiment corresponds to the pulse signal generating means in the present invention.
  • the threshold determination device 4, the count device 5, and the fall determination device 6 in the present embodiment are stored in an electronic device (not shown) such as an MPU (microprocessor), RAM (random access memory), ROM (read only memory), and the ROM. And configured program.
  • an electronic device such as an MPU (microprocessor), RAM (random access memory), ROM (read only memory), and the ROM. And configured program.
  • the threshold determination device 4 determines whether the angle detected by the acceleration sensor 2 exceeds a predetermined threshold.
  • the count device 5 cumulatively adds the number of times when the threshold determination device 4 determines that the output of the acceleration sensor 2 is less than the threshold.
  • the accumulated count is reset.
  • the overturn determination device 6 determines that the motorcycle M is overturned when the count device 5 exceeds a predetermined number (for example, 100 times).
  • the fall detection device 1 of the present embodiment When the motorcycle M is operated by a rider, an ignition switch (not shown) is turned on, the power is turned on, and the engine is operating. At this time, the fall detection device 1 is initialized (STEP 1), and is reset even when the count device 5 is counting in the previous run.
  • the acceleration detection interval by the acceleration sensor 2 is determined by a signal from the interval adjustment device 3 (STEP 2).
  • the acceleration detection interval by the acceleration sensor 2 is indefinite.
  • the acceleration sensor 2 detects acceleration at this indefinite interval (STEP 3).
  • the threshold determination device 4 the acceleration detected by the acceleration sensor 2 is compared with the threshold.
  • the acceleration detected by the acceleration sensor 2 is equal to or greater than the threshold value (NO in STEP 4)
  • the angle ⁇ of the motorcycle M is small.
  • the loop counter is reset in the counting device 5 (STEP 7). In this case, returning to STEP2, interval adjustment (STEP2) and acceleration reading (STEP3) are performed.
  • the angle ⁇ of the motorcycle M is so large that it exceeds the threshold value for judging the fall, so that the fall judging device 6 It is verified whether or not the count value of the loop counter exceeds a predetermined value (STEP 5).
  • the fall determination device 6 determines that the motorcycle M has fallen when the loop counter is counted 100 times continuously. This time, since the number of times the acceleration of the acceleration sensor 2 is less than the threshold is the first time, the loop counter does not exceed (NO in STEP 5). In this case, 1 is added to the loop counter by the counting device 5, and the process returns to before STEP2.
  • the processing from STEP2 to STEP5 is repeated and the loop counter is over (STEP5).
  • the fall detection device 1 determines that the motorcycle M has fallen, and sends a fall notification to the engine control device 7 (STEP 6).
  • the engine control device 7 when a fall notification is made from the fall detection device 1, the engine is stopped by turning off the ignition switch.
  • the acceleration sensor 2 performs angle detection at an indefinite interval determined by the interval adjustment device 3. Therefore, for example, even when noise is generated at regular intervals (constant period) caused by engine vibration or electrical system, the acceleration detection interval by the acceleration sensor 2 is irregular and coincides with the noise generation period every time. Therefore, the noise does not continuously affect the value acquired by the acceleration sensor 2. Therefore, since the fall determination device 6 of the present embodiment is highly resistant to disturbance factors, it is possible to prevent erroneous determination of vehicle fall.
  • the motorcycle M has been described as an example of the vehicle.
  • the present invention is not limited to this, and the vehicle may be used for a vehicle that may fall over depending on the situation, such as a tricycle called a trike or a ship. it can.
  • the acceleration detection interval by the acceleration sensor 2 is set by setting the circuit constant of the circuit including the Zener diode 8 and setting the count up in the counter 11. Therefore, when the fall detection device 1 of the present invention is applied to a vehicle other than the motorcycle M, the above setting can be adjusted according to the characteristics of the vehicle to be applied. Note that the interval adjusting device 3 may repeatedly use irregular pulse intervals set in advance without using the Zener diode 8 or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

【課題】車両の傾斜を検出する際に外乱要因によるノイズが影響した場合であっても、誤作動を防止することができる転倒検出装置を提供する。 【解決手段】転倒検出装置1は、自動二輪車Mに搭載されている。転倒検出装置1は、インターバル調整装置3で決定されたインターバルで加速度を検出する加速度センサ2と、検出された角度が所定の閾値を超えたか判定する閾値判定装置4と、閾値越えの判定をカウントするカウント装置5と、カウントが所定回数連続した場合に自動二輪車Mが転倒したと判定する転倒判定装置6を備える。インターバル調整装置3は、ホワイトノイズを元に生成したパルスをインターバルとしているので、加速度センサ2で検出する値に連続してノイズが影響することがない。

Description

車両の転倒検出装置
 本発明は、自動二輪車等の車両の転倒を検出する装置に関する。
 従来より、自動二輪車等の車両において、転倒した際にエンジンを停止させる処理が行われている。例えば、特許文献1においては、車両の傾斜を検出する傾斜角度検出手段と、ライダが車両を操作しているか否かを検出するライダ操作検出手段を備え、ライダが車両を操作していない状態で車両の傾斜角度が所定の角度を超えた角度で持続する場合、車両が転倒したものとみなしてエンジンを停止するエンジン制御装置が開示されている。
 このように、特許文献1では、車両の傾斜角度が大きい場合であっても、ライダが操作を行っている場合は転倒とは判断しないようにして、エンジン制御装置の誤作動を防止している。
特開2006-307782号公報
 この種の転倒検出装置においては、特許文献1に記載の装置のように、実際には転倒ではない場合にエンジン停止手段が作動しないよう、誤作動を防止する手段が設けられている。
 一方で、自動二輪車等の車両においては、外部からの電磁波や路面からの振動、エンジン自体の振動や電気系からのパルス等、数多くの外乱要因がある。これらの外乱要因は、角度検出手段の出力に対するノイズとなって表れることがある。
 従来の装置では、傾斜角度検出手段が車両の傾斜角度を一定の間隔(例えば10msecに1回)で周期的に傾斜角度を検出している。また、エンジン自体の振動のように一定周期に近い外乱要因もある。そのため、仮に傾斜角度検出手段が車両の傾斜角度を検出している間隔と同一の間隔でノイズが持続した場合には、実際には車両は転倒していないにもかかわらず、転倒しているものと誤って認識されるおそれがある。特に、車両が、転倒していると判断した場合にエンジンを停止させる制御を有している場合には、この誤認識に基づきエンジンが停止してしまうこともある。走行中にもかかわらずエンジンが停止すると、それが原因で転倒事故に繋がることが懸念される。
 本発明は、車両の傾斜を検出する際に外乱要因によるノイズが影響した場合であっても、誤作動を防止することができる転倒検出装置を提供することを目的とする。
 本発明の車両の転倒検出装置は、車両の傾斜角度を検出する傾斜角度検出手段と、前記傾斜角度検出手段の検出した傾斜角度が所定角度以上である場合にカウントするカウント手段と、前記カウント手段のカウントが所定回数連続した場合に前記車両が転倒したと判定する判定手段とを備え、前記傾斜角度検出手段は、前記車両の角度を検出する検出間隔を決定する間隔決定手段を備え、前記間隔決定手段は、前記検出間隔を不定化させることを特徴とする。
 本発明の車両の転倒検出装置によれば、傾斜角度検出手段は、間隔決定手段により決定された不定化された検出間隔での角度検出を行うため、外乱要因によって一定周期で発生するノイズが発生した場合であっても、傾斜角度の検出の際に、検出値に毎回ノイズが乗ることはない。このため、仮にノイズが原因で傾斜角度検出手段によって車両の傾斜角度が所定角度以上であるとされた場合であっても、連続してこのような誤検出が行われることがない。従って、カウント手段の出力は連続して発生しないので、判定手段は前回の傾斜角度の検出結果が誤検出であると判断でき、車両の転倒の誤判定を防止することができる。
 また、本発明の車両の転倒検出装置において、前記間隔決定手段は、ホワイトノイズを発生するノイズ発生手段と、前記ホワイトノイズからパルス信号を発生させるパルス信号発生手段とを備え、前記パルス信号のパルス間隔を前記検出間隔とすることが好ましい。このように、ホワイトノイズを利用してパルス信号を発生させると、パルス信号のパルス間隔は不定期なものとなるので、間隔決定手段による検出間隔を容易に不定化させることができる。
 また、本発明の車両の転倒検出装置において、前記傾斜角度検出手段は、加速度センサを用いて前記車両の垂直起立時の垂直方向への加速度を検出するものであることが好ましい。角度検出手段に加速度センサを用いた場合、車両が転倒すると車両の垂直方向への加速度が減少するので、この加速度の減少によって車両の転倒を検出することができる。一方で、車両が自動二輪車やモーターボート等の場合、旋回時に車体の傾きが大きくなるが、車両の旋回時には車両に遠心力(向心力)が発生するので、この遠心力の垂直方向への分力により車両の垂直方向への加速度が増加する。よって、当該構成によれば、車両の旋回時において車両の傾きが大きくなった場合の誤判定を防止することができる。
 本発明によれば、外乱要因により車両の傾斜を検出する手段にノイズが発生した場合であっても、誤作動を防止することができる。
(A)本発明の実施形態である転倒検出装置が自動二輪車に搭載され、停止状態で傾いている状態を示す説明図、(B)は自動二輪車がカーブを走行している状態の加速度のベクトルを示す説明図。 本実施形態の転倒検出装置の機能的構成を示す説明図。 本実施形態の転倒検出装置におけるインターバル調整装置の一例を示す説明図。 本実施形態の転倒検出装置の作動を示すフローチャート。
 本発明の車両の転倒検出装置の実施形態の一例について、図1~4を参照して説明する。本実施形態の転倒検出装置1は、図1(A)に示すように、自動二輪車(車両)Mに搭載されている。
 本実施形態の転倒検出装置1は、図2に示すように、傾斜角度検出手段である加速度センサ2及びインターバル調整装置(間隔決定手段)3と、加速度センサ2によって検出された角度が所定の閾値を超えているか判定する閾値判定装置4を備えている。
 また、転倒検出装置1は、閾値判定装置4による閾値越えの判定をカウントするカウント装置(カウント手段)5と、カウント装置5によるカウントが所定回数連続した場合に自動二輪車Mが転倒したと判定する転倒判定装置(判定手段)6を備えている。また、転倒検出装置1は、自動二輪車Mのエンジンを制御するエンジン制御装置7に接続されている。
 加速度センサ2は、内部に弾性的に保持された可動部(図示省略)を有しており、この可動部に作用する加速度を検出し、加速度に応じた信号を外部に送信する。また、加速度センサ2は、自動二輪車Mが垂直に起立している状態での鉛直方向、即ち、車両の上下方向の加速度を検出するものとなっている。図1(A)においては、符号Fs’の矢印の方向が加速度センサ2の加速度検出方向である。
 図1(A)では、自動二輪車Mが停止している状態で、角度θ分だけ傾いている状態を示している。自動二輪車Mが停止している状態では、自動二輪車Mに生じる加速度は重力加速度gのみである。この状態では、加速度センサ2には符号Fs’の矢印の大きさの力が加わる。
 ここで、加速度センサ2に内蔵された可動部の重さをmとすると、図1における矢印Fsにはm・gの力が作用している。この場合、矢印Fsにおける分力であるFs’はFs・cosθとなる。また、角度θは、次の式で求められる「θ=acos{Fs’/(m・g)}」。
 この場合、θが0であれば、即ち、自動二輪車Mが直立状態であれば、矢印Fs’=Fs=m・gとなり、値は最大となる。一方で、θが90°に近づけば矢印Fs’が0に近づく。従って、θの値を矢印Fs’の大きさから求め、自動二輪車Mが転倒していると判断される角度θの値を閾値にして、θが閾値未満になれば転倒と判定し、θが閾値以上の場合は転倒ではないと判定できる。この閾値は、例えば45°に設定することができる。
 図1(B)は、自動二輪車Mがライダによって運転され、カーブを走行中に生じる加速度の状態を示している。図1(B)における鉛直方向の矢印Fsは、図1(A)と同様であるが、カーブを走行中は、図1(B)の矢印Fcの方向に遠心力が発生する。このため、加速度センサ2によって検出される矢印Fs’の大きさは、矢印Fsと矢印Fcの合成ベクトルとなる。
 このため、自動二輪車Mが図1(A)の際の角度θと同様の角度θでカーブを走行していたとしても、加速度センサ2で求められる加速度は停止状態に比べて大きくなる。よって、本実施形態においては、自動二輪車Mがカーブを走行中に車体の角度を大きく傾けたとしても、転倒していると誤認識することはない。
 加速度センサ2における加速度の検出は、インターバル調整装置3から発信される信号のインターバルに応じて行われる。インターバル調整装置3は、図3に示すように、ホワイトノイズ発生手段であるツェナダイオード8と、パルス信号発生手段であるアンプ9、コンパレータ10、及びカウンタ11とを備えている。ツェナダイオード8には、電源回路から電源が供給され、コンパレータ10では基準電圧用電源12とアンプ9から送られる信号との比較を行っている。なお、図3における符号13は、抵抗である。
 このインターバル調整装置3においては、ツェナダイオード8によってホワイトノイズを発生させ、アンプ9でこれを増幅させ、コンパレータ10でパルス信号に波形成形する。インターバル調整装置3は、コンパレータ10からの信号をカウンタ11でカウントアップし、当該カウントを信号検出のインターバル(検出間隔)のトリガとして加速度センサ2による加速度の検出を行う。
 図3における波形は、符号8aの波形がツェナダイオード8から出力される波形であり、符号9aの波形がアンプ9から出力される波形であり、符号10aの波形がコンパレータ10から出力される波形を示している。
 上記の通り、本実施形態におけるインターバル調整装置3が本発明における間隔決定手段に相当し、本実施形態におけるツェナダイオード8が本発明におけるノイズ発生手段に相当し、本実施形態におけるアンプ9、コンパレータ10及びカウンタ11が本発明におけるパルス信号発生手段に相当する。
 本実施形態における閾値判定装置4、カウント装置5及び転倒判定装置6は、図示しないMPU(マイクロプロセッサ)、RAM(ランダムアクセスメモリ)、ROM(リードオンリーメモリ)等の電子デバイスと、ROM等に記憶されたプログラムとを備えて構成される。
 閾値判定装置4は、加速度センサ2によって検出された角度が所定の閾値を超えているかの判定を行う。カウント装置5は、閾値判定装置4によって、加速度センサ2の出力が閾値未満の判定の際にその回数を累積加算する。一方で、後述するように、閾値判定装置4の判定が閾値以上との判定の際には、累積されたカウントをリセットするように構成されている。転倒判定装置6は、カウント装置5において、カウント数が所定の回数(例えば100回)を超えた場合に、自動二輪車Mが転倒しているものと判定する。
 次に、図4を参照して、本実施形態の転倒検出装置1の作動について説明する。自動二輪車Mにおいて、ライダにより運転がなされているときは、図示しないイグニッションスイッチがONにされて電源がONとなり、エンジンが動作している。このとき、転倒検出装置1では初期設定がなされ(STEP1)、前回の走行においてカウント装置5でカウントがなされている場合であってもリセットされる。
 次に、転倒検出装置1では、加速度センサ2による加速度検出のインターバルを、インターバル調整装置3からの信号によって決定する(STEP2)。当該処理により、加速度センサ2による加速度検出のインターバルが不定化される。
 次に、加速度センサ2では、この不定化されたインターバルで加速度の検出が行われる(STEP3)。次に、閾値判定装置4において、加速度センサ2によって検出された加速度と閾値とを比較する。ここで、加速度センサ2によって検出された加速度が、閾値以上であるときは(STEP4においてNO)、自動二輪車Mの角度θが小さい場合である。この場合は、自動二輪車Mは転倒していないので、カウント装置5においてループカウンタがリセットされる(STEP7)。この場合、STEP2の前に戻り、インターバル調整(STEP2)、及び加速度の読み取り(STEP3)が行われる。
 ここで、加速度センサ2によって検出された加速度が閾値未満となった場合(STEP4においてYES)、自動二輪車Mの角度θが転倒の判定の閾値を超えるほど大きい場合であるので、転倒判定装置6によってループカウンタのカウント数が所定の値をオーバーしているか否かを検証する(STEP5)。
 本実施形態においては、転倒判定装置6において、ループカウンタが100回連続してカウントされた場合に自動二輪車Mが転倒したと判定する。今回は、加速度センサ2の加速度が閾値未満となった回数が第1回目であるので、ループカウンタはオーバーにはならない(STEP5においてNO)。この場合、カウント装置5によってループカウンタに1が加算され、STEP2の前に戻る。
 実際に自動二輪車Mが転倒している場合は、加速度センサ2によって検出される加速度が閾値未満となる状態が続くので、STEP2からSTEP5の処理が繰り返され、ループカウンタがオーバーする状況になる(STEP5においてYES)。この場合は、転倒検出装置1が自動二輪車Mが転倒していると判定し、エンジン制御装置7に転倒通知を行う(STEP6)。エンジン制御装置7では、転倒検出装置1から転倒通知がなされると、イグニッションスイッチをOFFにしてエンジンを停止させる。
 本実施形態の転倒判定装置6によれば、加速度センサ2がインターバル調整装置3によって決定された不定化されたインターバルで角度検出を行っている。従って、例えばエンジンの振動や電気系統により生じる一定間隔(一定周期)のノイズが発生した場合であっても、加速度センサ2による加速度検出のインターバルが不定期であり、ノイズが発生する周期に毎回一致することはなくなるため、加速度センサ2によって取得される値にこのノイズが連続して影響することがない。よって、本実施形態の転倒判定装置6は、外乱要因に対する耐性が強いため、車両の転倒の誤判定を防止することができる。
 なお、上記実施形態においては、車両として自動二輪車Mを例にして説明したが、これに限らず、いわゆるトライクと呼ばれる三輪自動車や、船舶等、状況によっては転倒のおそれがある車両に用いることができる。
 本実施形態のインターバル調整装置3では、加速度センサ2による加速検出のインターバルを、ツェナダイオード8を含む回路の回路定数の設定と、カウンタ11におけるカウントアップの設定を行うことにより行っている。従って、本発明の転倒検出装置1を自動二輪車M以外の車両に適用するときは、適用する車両の特性に合わせて上記設定を調整することができる。なお、インターバル調整装置3について、ツェナダイオード8等を用いることなく、予め設定された不定期のパルス間隔を繰返し利用するようにしてもよい。
 M…自動二輪車(車両)
 1…転倒検出装置
 2…加速度センサ
 3…インターバル調整装置
 4…閾値判定装置
 5…カウント装置
 6…転倒判定装置
 7…エンジン制御装置
 8…ツェナダイオード
 9…アンプ
 10…コンパレータ
 11…カウンタ

Claims (3)

  1.  車両の傾斜角度を検出する傾斜角度検出手段と、
     前記傾斜角度検出手段の検出した傾斜角度が所定角度以上である場合にカウントするカウント手段と、
     前記カウント手段のカウントが所定回数連続した場合に前記車両が転倒したと判定する判定手段とを備え、
     前記傾斜角度検出手段は、前記車両の角度を検出する検出間隔を決定する間隔決定手段を備え、
     前記間隔決定手段は、前記検出間隔を不定化させることを特徴とする車両の転倒検出装置。
  2.  前記間隔決定手段は、
     ホワイトノイズを発生するノイズ発生手段と、
     前記ホワイトノイズからパルス信号を発生させるパルス信号発生手段とを備え、
     前記パルス信号のパルス間隔を前記検出間隔とすることを特徴とする請求項1に記載の車両の転倒検出装置。
  3.  前記傾斜角度検出手段は、加速度センサを用いて前記車両の垂直起立時の垂直方向への加速度を検出するものであることを特徴とする請求項1又は2に記載の車両の転倒検出装置。
     
     
PCT/JP2018/002673 2017-02-10 2018-01-29 車両の転倒検出装置 WO2018147110A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18752052.3A EP3581475B1 (en) 2017-02-10 2018-01-29 Vehicle overturn detection device
CN201880007057.0A CN110177735B (zh) 2017-02-10 2018-01-29 车辆的跌倒检测装置
JP2018567369A JP6691242B2 (ja) 2017-02-10 2018-01-29 車両の転倒検出装置
US16/517,286 US11472355B2 (en) 2017-02-10 2019-07-19 Vehicle falling-over detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-023455 2017-02-10
JP2017023455 2017-02-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/517,286 Continuation US11472355B2 (en) 2017-02-10 2019-07-19 Vehicle falling-over detection device

Publications (1)

Publication Number Publication Date
WO2018147110A1 true WO2018147110A1 (ja) 2018-08-16

Family

ID=63108129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002673 WO2018147110A1 (ja) 2017-02-10 2018-01-29 車両の転倒検出装置

Country Status (5)

Country Link
US (1) US11472355B2 (ja)
EP (1) EP3581475B1 (ja)
JP (1) JP6691242B2 (ja)
CN (1) CN110177735B (ja)
WO (1) WO2018147110A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112073899A (zh) * 2020-08-13 2020-12-11 北京骑胜科技有限公司 车辆状态检测方法和处理方法
CN112061080B (zh) * 2020-09-08 2022-04-19 中国第一汽车股份有限公司 车辆异动检测方法、装置、设备和介质
CN114486141A (zh) * 2021-12-23 2022-05-13 安徽科力信息产业有限责任公司 一种交通信号机撞击倾斜检测设备及检测方法
CN114789764B (zh) * 2022-05-27 2023-02-14 浙江莫里尼机车有限公司 一种phev摩托车驻车安全管理系统
CN115180059A (zh) * 2022-07-05 2022-10-14 苏州万佳电器有限公司 一种跌倒告警装置、方法、两轮车及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107629A (ja) * 1996-10-02 1998-04-24 Hitachi Ltd 信号処理装置及びそれを備えるシステム
JP2001117757A (ja) * 1999-10-20 2001-04-27 Iwaki Electronics Corp 確率発生器および乱数発生器
JP2002071703A (ja) * 2000-09-01 2002-03-12 Yamaha Motor Co Ltd 自動二輪車の加速度センサー
JP2006307782A (ja) 2005-04-28 2006-11-09 Yamaha Motor Co Ltd 車両用エンジンの制御装置、制御法及びそのプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2229536B (en) * 1989-03-22 1993-04-07 Ferranti Int Signal Signal processing apparatus and method
TW561262B (en) 2001-10-19 2003-11-11 Yamaha Motor Co Ltd Tipping detecting device for a motorcycle
JP2005057845A (ja) * 2003-08-07 2005-03-03 Meidensha Corp 電動車の制御装置
WO2005082068A2 (en) * 2004-02-25 2005-09-09 Hamm Alton B Vehicle stability control system
JP4095987B2 (ja) 2004-12-16 2008-06-04 富士通株式会社 クロック発生回路、信号多重化回路及び光送信器、並びに、クロック発生方法
JP4846664B2 (ja) 2007-06-22 2011-12-28 川崎重工業株式会社 転倒検知機能付き乗り物
AU2009247636B2 (en) * 2008-05-12 2014-07-24 Koninklijke Philips Electronics N.V. Displacement measurement in a fall detection system
US10466269B2 (en) * 2013-02-19 2019-11-05 Calamp Corp. Systems and methods for low latency 3-axis accelerometer calibration
JP6028060B2 (ja) * 2015-03-26 2016-11-16 本田技研工業株式会社 車両の制御装置
CN105225419A (zh) * 2015-09-18 2016-01-06 深圳大学 跌倒检测方法、系统及基于该系统的跌倒自动报警器
DE112016007215B4 (de) * 2016-10-25 2021-02-04 Mitsubishi Electric Corporation Neigungswinkeldetektionseinrichtung und Autonivellierer
JP6571631B2 (ja) * 2016-12-26 2019-09-04 国立大学法人 東京大学 走行車両及び走行車両の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107629A (ja) * 1996-10-02 1998-04-24 Hitachi Ltd 信号処理装置及びそれを備えるシステム
JP2001117757A (ja) * 1999-10-20 2001-04-27 Iwaki Electronics Corp 確率発生器および乱数発生器
JP2002071703A (ja) * 2000-09-01 2002-03-12 Yamaha Motor Co Ltd 自動二輪車の加速度センサー
JP2006307782A (ja) 2005-04-28 2006-11-09 Yamaha Motor Co Ltd 車両用エンジンの制御装置、制御法及びそのプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3581475A4

Also Published As

Publication number Publication date
CN110177735B (zh) 2020-10-27
EP3581475A4 (en) 2021-01-06
EP3581475A1 (en) 2019-12-18
JPWO2018147110A1 (ja) 2019-06-27
CN110177735A (zh) 2019-08-27
JP6691242B2 (ja) 2020-04-28
EP3581475B1 (en) 2022-03-02
US20190339073A1 (en) 2019-11-07
US11472355B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2018147110A1 (ja) 車両の転倒検出装置
US6516278B1 (en) Vehicle hood operating system
JP4794554B2 (ja) 車両安全装置を始動させるための装置
US7649447B2 (en) Wireless bike brake light
JP5952421B2 (ja) 乗員保護装置の制御装置
JP2008535724A5 (ja)
JP4476852B2 (ja) 車両用加速度検出装置
KR20080055144A (ko) 가속 페달 시스템
JP2010208350A (ja) 乗員保護装置の起動装置
CN107000807B (zh) 换挡过程的识别
WO2009095986A1 (ja) 締固め機械用転倒検出センサー
JP2009196396A (ja) 自動二輪車の転倒検出装置
US11654958B2 (en) Detecting impact forces on an electric power steering system
EP1293399B1 (en) Collision detecting apparatus for vehicle
JP2018062185A5 (ja)
JP2004519699A (ja) 車両における前面衝突をセンシングするための回路装置
US6798340B2 (en) Collision detecting apparatus for vehicle
US20040088094A1 (en) Assembling for sensing a frontal impact in a vehicle
JP2009196464A (ja) 歩行者衝突検知装置及び歩行者保護システム
JP4830991B2 (ja) 内燃機関の点火制御装置
JP3319104B2 (ja) 車両の衝突判定装置
US20100241318A1 (en) method and control device for triggering passenger protection means for a vehicle
JP2011099383A (ja) 自動車用保安装置
JP2005188367A (ja) エンジン停止装置
JPH0585300A (ja) エアバツク制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18752052

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567369

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018752052

Country of ref document: EP

Effective date: 20190910