WO2018147002A1 - 電子写真現像剤用磁性芯材、電子写真現像剤用キャリア及び現像剤 - Google Patents

電子写真現像剤用磁性芯材、電子写真現像剤用キャリア及び現像剤 Download PDF

Info

Publication number
WO2018147002A1
WO2018147002A1 PCT/JP2018/000877 JP2018000877W WO2018147002A1 WO 2018147002 A1 WO2018147002 A1 WO 2018147002A1 JP 2018000877 W JP2018000877 W JP 2018000877W WO 2018147002 A1 WO2018147002 A1 WO 2018147002A1
Authority
WO
WIPO (PCT)
Prior art keywords
core material
magnetic core
carrier
resin
amount
Prior art date
Application number
PCT/JP2018/000877
Other languages
English (en)
French (fr)
Inventor
裕樹 澤本
哲也 植村
Original Assignee
パウダーテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パウダーテック株式会社 filed Critical パウダーテック株式会社
Priority to CN201880010958.5A priority Critical patent/CN110268335B/zh
Priority to EP18751417.9A priority patent/EP3582022B1/en
Priority to US16/483,718 priority patent/US10996579B2/en
Publication of WO2018147002A1 publication Critical patent/WO2018147002A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/1075Structural characteristics of the carrier particles, e.g. shape or crystallographic structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/083Magnetic toner particles
    • G03G9/0837Structural characteristics of the magnetic components, e.g. shape, crystallographic structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/108Ferrite carrier, e.g. magnetite
    • G03G9/1085Ferrite carrier, e.g. magnetite with non-ferrous metal oxide, e.g. MgO-Fe2O3
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1132Macromolecular components of coatings
    • G03G9/1133Macromolecular components of coatings obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1132Macromolecular components of coatings
    • G03G9/1135Macromolecular components of coatings obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/1136Macromolecular components of coatings obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles

Definitions

  • the present invention relates to a magnetic core material for an electrophotographic developer, a carrier for an electrophotographic developer, and a developer.
  • the electrophotographic development method is a method in which toner particles in a developer are attached to an electrostatic latent image formed on a photoreceptor and developed, and the developer used in this method is composed of toner particles and carrier particles.
  • the cascade method has been used in the past, but at present, the magnetic brush method using a magnet roll is the mainstream. It is.
  • the carrier particles are agitated together with the toner particles in the developing box filled with the developer, thereby imparting a desired charge to the toner particles and thus being charged.
  • the carrier particles remaining on the developing roll holding the magnet are returned to the developing box from the developing roll, mixed and stirred with new toner particles, and used repeatedly for a certain period.
  • the two-component developer has the function of mixing and stirring the carrier particles with the toner particles, charging the toner particles, and further transporting them to the surface of the photoreceptor. Good controllability when designing. Therefore, the two-component developer is suitable for use in a full-color developing device that requires high image quality, a device that performs high-speed printing that requires reliability and durability of image maintenance, and the like.
  • image characteristics such as image density, fog, vitiligo, gradation, and resolving power show predetermined values from the initial stage, and these characteristics are in the printing life period. It needs to remain stable without fluctuating (ie, over a long period of use).
  • the characteristics of the carrier particles contained in the two-component developer are stable.
  • various carriers such as an iron powder carrier, a ferrite carrier, a resin-coated ferrite carrier, and a magnetic powder-dispersed resin carrier have been used as carrier particles forming the two-component developer.
  • Patent Document 1 Japanese Patent Laid-Open No. 2014-197040 discloses an electrophotography comprising porous ferrite particles having an average compressive fracture strength of 100 mN or more and a coefficient of variation of compressive fracture strength of 50% or less.
  • resin-filled ferrite carrier core materials for developers and resin-filled ferrite carriers for electrophotographic developers obtained by filling the voids in the ferrite carrier core materials with resin. According to the ferrite carrier, the carrier particles can be reduced in specific gravity and weight, and have high strength. Therefore, the ferrite carrier has an effect such as excellent durability and long life.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2010-55014 discloses a resin-filled carrier for an electrophotographic developer obtained by filling a void in a porous ferrite core material with the resin.
  • a resin-filled carrier for an electrophotographic developer has been proposed in which the Cl concentration measured by the material elution method is 10 to 280 ppm, and the resin contains an amine compound.
  • Patent Document 3 Japanese Patent Laid-Open No. 2016-252878 discloses that ferrite magnetic materials whose main components are Fe and additive elements such as Mn have an average particle size of 1 to 1.
  • the total amount of impurities excluding Fe, additive elements, and oxygen in the ferrite magnetic material is 0.5 mass% or less, and the impurities are Si, Al, Cr, Cu, P, Cl, Ni Ferrite magnetic materials containing at least two of Mo, Zn, Ti, sulfur, Ca, Mn, and Sr have been proposed.
  • a magnetic carrier using a ferrite magnetic material in which the influence of impurities in the raw material is suppressed as a magnetic carrier core material for an electrophotographic developer is said to have a high magnetic force and an effect of suppressing carrier scattering.
  • Japanese Unexamined Patent Publication No. 2014-197040 Japanese Unexamined Patent Publication No. 2010-55014 Japanese Unexamined Patent Publication No. 2016-25288
  • the porous ferrite core material and the resin-filled type carrier comprising the same reduce the mechanical stress such as collision between particles, impact, friction and stress generated between the particles in the developing machine due to the specific low specific gravity. Even when used for a long period of time, it can reduce cracks in the carrier and toner spent, and has long-term stability in printing durability. However, it is difficult to say that the high demands in recent years are sufficiently met.
  • electrical resistance is a factor that affects image characteristics such as carrier scattering, white spots, image density, fogging, and toner scattering. Since the physical properties of the carrier core also affect the carrier, the electrical resistance characteristics of the carrier core are good. This is important for obtaining images. In order to suppress image defects caused by changes in the usage environment, it is desirable to reduce the environmental dependency of the core material resistance.
  • the present inventors have recently demonstrated that the specific anion component content and pore volume measured by the combustion ion chromatography method have excellent electrical resistance characteristics and strength.
  • the knowledge that it is important in obtaining was obtained. Specifically, by appropriately controlling the content of the specific anion content component and the pore volume, the electrical resistance change due to environmental fluctuation is small and the strength is excellent, while having a low specific gravity. As a result, it was found that a good image can be stably obtained when used as a carrier or a developer.
  • an object of the present invention is to have a low specific gravity and a small change in electrical resistance due to environmental fluctuations and an excellent strength, and to stably obtain a good image when used as a carrier or a developer.
  • the object is to provide a magnetic core material for an electrophotographic developer.
  • Another object of the present invention is to provide a carrier for an electrophotographic developer and a developer provided with such a magnetic core material.
  • the amount of fluorine ions measured by combustion ion chromatography is a (ppm), the amount of chlorine ions is b (ppm), the amount of bromine ions is c (ppm), and the amount of nitrite ions is
  • d ppm
  • nitrate ion content is e (ppm)
  • sulfate ion content is f (ppm)
  • the value of formula (1): a + b ⁇ 10 + c + d + e + f is 200 to 1400 and the pore volume is 30 to
  • a magnetic core material for an electrophotographic developer having a size of 100 mm 3 / g is provided.
  • an electrophotographic developer carrier comprising the magnetic core material for an electrophotographic developer and a coating layer made of a resin provided on the surface of the magnetic core material. Is done.
  • the electrophotographic developer carrier further comprising a resin formed by filling the pores of the magnetic core material.
  • a developer including the carrier and a toner is provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the magnetic core material for an electrophotographic developer is a particle that can be used as a carrier core material, and a resin is coated on the carrier core material to form a magnetic carrier for electrophotographic development. By including the magnetic carrier for electrophotographic developer and toner, an electrophotographic developer is obtained.
  • Magnetic core material for electrophotographic developer The magnetic core material for an electrophotographic developer of the present invention (hereinafter sometimes referred to as a magnetic core material or a carrier core material) is a specific material measured by a combustion ion chromatography method. It has the characteristic that content of an anion component is controlled in the specific range.
  • the amount of fluorine ions in the magnetic core material is a (ppm)
  • the amount of chlorine ions is b (ppm)
  • the amount of bromine ions is c (ppm)
  • the amount of nitrite ions is d (ppm)
  • the amount of nitrate ions is 200 to 1400.
  • a carrier having excellent electric resistance characteristics and strength can be obtained.
  • the value of the formula (1) exceeds 1400, the environmental dependency of the electrical resistance increases.
  • anion component a specific anion component (hereinafter sometimes simply referred to as anion component), the greater the electrical resistance of the magnetic core material changes when the environment changes.
  • anion component easily absorbs moisture in the environment, the moisture content of the magnetic core material is increased and the ionic conductivity is increased particularly under high temperature and high humidity. As a result, the core material resistance is decreased. it is conceivable that.
  • the value of the formula (1) is less than 200, the fluctuation of the compressive fracture strength becomes large, and the durability of the carrier is deteriorated.
  • the value of the formula (1) is preferably 250 to 1200, particularly preferably 300 to 1000.
  • the content of the anionic component in the magnetic core material is preferably 200 to 1400, more preferably 250 to 1200, and still more preferably 300 to 1000 in the formula (2): b ⁇ 10 + f.
  • the fluorine ion content a in the magnetic core material is preferably 0.1 to 5.0 ppm, more preferably 0.5 to 3.0 ppm, and still more preferably 0.5 to 2.0 ppm.
  • content (ppm) of an anion component is a weight reference
  • the combustion ion chromatography method a sample is burned in an oxygen-containing gas stream, and the generated gas is absorbed in the absorption liquid. Thereafter, the halogen and sulfate ions absorbed in the absorption liquid are quantitatively analyzed by the ion chromatography method.
  • the content of the anion component is a value measured by a combustion ion chromatography method.
  • the detection of the anion component does not necessarily mean that it is contained in the magnetic core material in the form of the anion. It doesn't mean.
  • the magnetic core material is not limited to those containing a sulfur component in the form of sulfate ions, simple sulfur, metal sulfide, sulfate ions, or other These may be included in the form of sulfides.
  • the content value of the anion component described in this specification is a value measured by the combustion ion chromatography method under the conditions described in Examples described later.
  • the content of the cation component in the magnetic core material can be measured by an emission spectroscopic analysis method.
  • the content value of the cation component described in the present specification is a value measured by the ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy) under the conditions described in the examples described later.
  • the magnetic core material of the present invention has a pore volume of 30 to 100 mm 3 / g. If the pore volume is less than 30 mm 3 / g, the weight cannot be reduced. On the other hand, if the pore volume exceeds 100 mm 3 / g, the carrier strength cannot be maintained.
  • the pore volume is preferably 35 to 85 mm 3 / g, more preferably 40 to 70 mm 3 / g.
  • the pore volume value described in the present specification is a value measured and calculated under the conditions described in Examples described later using a mercury porosimeter.
  • the composition of the magnetic core material is not particularly limited as long as it functions as a carrier core material, and a conventionally known composition can be used.
  • the magnetic core typically has a ferrite composition (ferrite particles), and preferably has a ferrite composition containing Fe, Mn, Mg, and Sr.
  • ferrite particles ferrite particles
  • ferrite composition containing Fe, Mn, Mg, and Sr ferrite particles
  • the content of these heavy metals is typically 1% or less.
  • the magnetic core material is particularly preferably one having a composition represented by the formula: (MnO) x (MgO) y (Fe 2 O 3 ) z and in which a part of MnO and MgO is substituted with SrO.
  • x 35 to 45 mol%
  • y 5 to 15 mol%
  • z 40 to 60 mol%
  • x + y + z 100 mol%.
  • This magnetic core material contains SrO in the composition. By containing SrO, the generation of low magnetization particles is suppressed. Also, SrO, together with Fe 2 O 3, (SrO) ⁇ 6 (Fe 2 O 3) or ferrite of magnetoplumbite type of the form, Sr a Fe b O c (however, a ⁇ 2, a + b ⁇ c ⁇ a + 1 .5b) is a cubic strontium ferrite precursor (hereinafter referred to as Sr—Fe compound) having a perovskite type crystal structure, and spinel (MnO) x (MgO) y (Fe 2 A composite oxide that is solid-solved in O 3 ) z is formed.
  • This composite oxide of iron and strontium has the effect of increasing the charge imparting ability of the magnetic core material in combination with magnesium ferrite, which is a component containing MgO.
  • the Sr—Fe compound has a crystal structure similar to that of SrTiO 3 , which has a high dielectric constant, and contributes to higher charging of the magnetic core material.
  • Substitution of SrO is, (MnO) relative to x (MgO) y (Fe 2 O 3) z total amount, preferably from 0.1 to 2.5 mol%, more preferably 0.1 to 2.0 mol% More preferably, it is 0.3 to 1.5 mol%.
  • the volume average particle diameter (D 50 ) of the magnetic core material is preferably 20 to 50 ⁇ m.
  • the volume average particle diameter is more preferably 25 to 50 ⁇ m, still more preferably 25 to 45 ⁇ m.
  • the apparent density (AD) of the magnetic core is preferably 1.5 to 2.1 g / cm 3 .
  • the apparent density is more preferably 1.7 to 2.1 g / cm 3 , and still more preferably 1.7 to 2.0 g / cm 3 .
  • the BET specific surface area of the magnetic core material is preferably 0.25 to 0.60 m 2 / g.
  • the BET specific surface area is 0.25 m 2 / g or more, the effective charging area is suppressed from being reduced, and the charge imparting ability is further improved.
  • the BET specific surface area is 0.60 m 2 / g or less. A decrease in the breaking strength is suppressed.
  • the BET specific surface area is preferably 0.25 to 0.50 m 2 / g, more preferably 0.30 to 0.50 m 2 / g.
  • the magnetic core material has an electrical resistance environment fluctuation ratio (A / B) of preferably 1.25 or less, more preferably 1.23 or less, and further preferably 1.20 or less.
  • the electrical resistance environment fluctuation ratio (A / B) is an index representing a change in electrical resistance due to the environmental fluctuation, and as shown in the following formula, the electrical resistance in a low temperature / low humidity (L / L) environment.
  • the H / H environment is an environment with a temperature of 30 to 35 ° C. and a relative humidity of 80 to 85%
  • the L / L environment is an environment with a temperature of 10 to 15 ° C. and a relative humidity of 10 to 15%. is there.
  • the magnetic core material has an average compressive fracture strength (average compressive fracture strength: CS ave ) of preferably 100 mN or more, more preferably 120 mN or more, and even more preferably 150 mN or more.
  • the average of the compressive fracture strength is the average of the compressive fracture strength of individual particles in the particle aggregate of the magnetic core material.
  • the magnetic core material has a coefficient of variation in compression fracture strength (compression fracture strength variation coefficient: CS var ) of preferably 40% or less, more preferably 37% or less, and still more preferably 34% or less.
  • the coefficient of variation in compressive fracture strength serves as an index of variation in the compressive fracture strength of individual particles in the magnetic core particle aggregate, and can be obtained by a method described later.
  • the lower limit of the compression fracture strength variation coefficient is not particularly limited, but is typically 5% or more.
  • the average compressive fracture strength (CS ave ) and the compressive fracture strength variation coefficient (CS var ) of the magnetic core material can be measured, for example, as follows. That is, an ultra-fine indentation hardness tester (ENT-1100a manufactured by Elionix Co., Ltd.) is used for measurement of compressive fracture strength. A sample dispersed on a glass plate is set on a tester and measured in an environment of 25 ° C. A flat indenter with a diameter of 50 ⁇ m ⁇ is used for the test, and a load of 49 mN / s is applied to 490 mN.
  • ENT-1100a manufactured by Elionix Co., Ltd. is used for measurement of compressive fracture strength.
  • a sample dispersed on a glass plate is set on a tester and measured in an environment of 25 ° C.
  • a flat indenter with a diameter of 50 ⁇ m ⁇ is used for the test, and a load of 49 mN / s is applied to 490 mN.
  • a particle to be used for measurement there is only one particle on the measurement screen (width 130 ⁇ m ⁇ length 100 ⁇ m) of the ultra micro indentation hardness tester, it has a spherical shape, and the major axis measured by the software attached to ENT-1100a The average value of the minor axis is selected so that the volume average particle diameter is ⁇ 2 ⁇ m.
  • the compressive fracture strength of 100 particles is measured, and the average compressive fracture strength (CS ave ) is obtained by adopting 80 compressive fracture strengths obtained by subtracting 10 from the maximum value and the minimum value as data.
  • the compression fracture strength coefficient of variation (CS var ) is obtained from the following equation by calculating the standard deviation (CS sd ) for the 80 pieces.
  • the magnetic core material (carrier core material) for an electrophotographic developer of the present invention has a low specific gravity by controlling the amount of anions and pore volume measured by a combustion ion chromatography method.
  • the change in electrical resistance due to the environmental difference is small, the compressive fracture strength is high, the fluctuation is suppressed, and a carrier capable of obtaining a good image without defects can be obtained.
  • Patent Document 2 defines the Cl concentration measured by the elution method, but does not mention the influence of anions other than Cl.
  • Patent Document 3 defines the total amount of impurities in the ferrite magnetic material, but this document simply focuses on reducing the total amount of impurities such as Si and Al as much as possible, and the amount of anions Is not taught within a specific range, and there is no disclosure of pore volume.
  • Electrophotographic developer carrier The electrophotographic developer carrier of the present invention (sometimes simply referred to as a carrier) comprises the magnetic core material (carrier core material) and a resin provided on the surface of the magnetic core material. And a coating layer. Carrier properties may be affected by the materials and properties present on the carrier surface. Therefore, by coating the surface with an appropriate resin, desired carrier characteristics can be imparted with high accuracy.
  • Coating resin is not particularly limited.
  • silicone resins modified with resins such as acrylic resin, polyester resin, epoxy resin, polyamide resin, polyamideimide resin, alkyd resin, urethane resin, and fluororesin can be used.
  • a thermosetting resin is preferably used.
  • thermosetting resins include epoxy resins, phenol resins, silicone resins, unsaturated polyester resins, urea resins, melamine resins, alkyd resins, and resins containing them.
  • the coating amount of the resin is preferably 0.5 to 5.0 parts by weight with respect to 100 parts by weight of the magnetic core material.
  • the coating resin can contain a conductive agent and a charge control agent.
  • the conductive agent include conductive carbon, oxides such as titanium oxide and tin oxide, and various organic conductive agents. The addition amount thereof is preferably 0.25 to 20.0 based on the solid content of the coating resin. % By weight, more preferably 0.5 to 15.0% by weight, still more preferably 1.0 to 10.0% by weight.
  • the charge control agent include various charge control agents generally used for toners and various silane coupling agents.
  • charge control agents and coupling agents are not particularly limited, but charge control agents such as nigrosine dyes, quaternary ammonium salts, organometallic complexes, and metal-containing monoazo dyes, aminosilane coupling agents, and fluorine-based silane couplings.
  • An agent or the like is preferable.
  • the addition amount of the charge control agent is preferably 0.25 to 20.0% by weight, more preferably 0.5 to 15.0% by weight, still more preferably 1.0 to 10% by weight based on the solid content of the coating resin. 0% by weight.
  • the carrier may further comprise a resin formed by filling the pores of the magnetic core material.
  • the filling amount of the resin is desirably 2 to 20 parts by weight, more desirably 2.5 to 15 parts by weight, and further desirably 3 to 10 parts by weight with respect to 100 parts by weight of the magnetic core material. If the filling amount of the resin is 2 parts by weight or more, the filling is sufficient and the charge amount by the resin coating can be easily controlled. On the other hand, if the filling amount of the resin is 20 parts by weight or less, Aggregate particle generation at the time of filling, which causes a change in amount, is suppressed.
  • the soot filling resin is not particularly limited, and can be appropriately selected depending on the toner to be combined, the environment in which it is used, and the like.
  • silicone resins modified with resins such as acrylic resin, polyester resin, epoxy resin, polyamide resin, polyamideimide resin, alkyd resin, urethane resin, and fluororesin can be used.
  • a thermosetting resin is preferably used. Specific examples of thermosetting resins include epoxy resins, phenol resins, silicone resins, unsaturated polyester resins, urea resins, melamine resins, alkyd resins, and resins containing them.
  • a conductive agent or a charge control agent can be added to the filled resin.
  • the kind and addition amount of the conductive agent and charge control agent are the same as in the case of the coating resin.
  • an appropriate amount of a curing catalyst may be added as appropriate.
  • the catalyst include titanium diisopropoxy bis (ethyl acetoacetate), and the addition amount is preferably 0.5 to 10.0% by weight, more preferably in terms of Ti atom with respect to the solid content of the coating resin. Is 1.0 to 10.0% by weight, more preferably 1.0 to 5.0% by weight.
  • the carrier preferably has an apparent density (AD) of 1.5 to 2.1 g / cm 3 .
  • AD apparent density
  • the apparent density is more preferably 1.7 to 2.1 g / cm 3 , and still more preferably 1.7 to 2.0 g / cm 3 .
  • the carrier has an electrical resistance environment fluctuation ratio (C / D) of preferably 1.25 or less, more preferably 1.23 or less, and further preferably 1.20 or less.
  • the electrical resistance environment fluctuation ratio (C / D) is a logarithmic value (LogR L / L ) of the electrical resistance R L / L (unit: ⁇ ) in a low temperature / low humidity (L / L) environment as shown in the following formula. ) Of the electrical resistance R H / H (unit: ⁇ ) in a high temperature / high humidity (H / H) environment to a logarithmic value (Log R H / H ).
  • a magnetic core material for electrophotographic developer is prepared.
  • an appropriate amount of raw materials are weighed, and then pulverized and mixed in a ball mill or vibration mill for 0.5 hours or more, preferably 1 to 20 hours.
  • the raw material is not particularly limited.
  • the pulverized product thus obtained is pelletized using a pressure molding machine or the like, and then calcined at a temperature of 700 to 1200 ° C.
  • the mixture is further pulverized with a ball mill or a vibration mill, and then water is added and pulverized using a bead mill or the like.
  • a dispersant, a binder, etc. are added, and after adjusting the viscosity, it is granulated with a spray dryer and granulated.
  • water may be added and pulverized by a wet ball mill, a wet vibration mill or the like.
  • the above-mentioned ball mill, vibration mill, bead mill and other pulverizers are not particularly limited, but in order to disperse the raw materials effectively and uniformly, it is necessary to use fine beads having a particle size of 2 mm or less for the media to be used. preferable. Further, the degree of pulverization can be controlled by adjusting the particle size, composition, and pulverization time of the beads used.
  • the obtained granulated product is heated at 400 to 800 ° C. to remove organic components such as added dispersant and binder. If firing is performed with the dispersant and binder remaining, the oxygen concentration in the firing device is likely to fluctuate due to decomposition and oxidation of the organic components, which greatly affects the magnetic properties, so a stable magnetic core is produced. Difficult to do. Further, these organic components make it difficult to control the porosity of the magnetic core material, that is, cause fluctuations in ferrite crystal growth.
  • the obtained granulated material is held for 1 to 24 hours at a temperature of 800 to 1500 ° C. in an atmosphere in which the oxygen concentration is controlled to perform main firing.
  • a rotary electric furnace, a batch electric furnace or a continuous electric furnace is used, and an inert gas such as nitrogen or a reducing gas such as hydrogen or carbon monoxide is introduced into the atmosphere during firing, and oxygen The concentration may be controlled.
  • the fired product thus obtained is crushed and classified.
  • the particle size is adjusted to a desired particle size using an existing air classification, mesh filtration method, sedimentation method, or the like.
  • the surface can be heated at a low temperature to perform an oxide film treatment, and the electric resistance can be adjusted.
  • the oxide film treatment can be performed by heat treatment at, for example, 300 to 700 ° C. using a general rotary electric furnace, batch electric furnace or the like.
  • the thickness of the oxide film formed by this treatment is preferably 0.1 nm to 5 ⁇ m. When the thickness is 0.1 nm or more, the effect of the oxide film layer is sufficient, and when the thickness is 5 ⁇ m or less, it is possible to suppress a decrease in magnetization and an excessively high resistance. Moreover, you may reduce
  • the temporary firing conditions In order to keep the average compressive fracture strength of the magnetic core material above a certain level and the compressive fracture strength variation coefficient below a certain level, it is desirable to strictly control the temporary firing conditions, the pulverizing conditions, and the main firing conditions. More specifically, it is preferable that the calcination temperature is higher. If the raw material is ferritized at the pre-baking stage, the strain generated in the particles at the main baking stage can be reduced. As pulverization conditions in the pulverization step after pre-baking, a longer pulverization time is preferable.
  • the pore volume of the magnetic core material can be adjusted to the above range by adjusting the firing temperature. For example, increasing the temperature during the main firing tends to reduce the pore volume, and decreasing the temperature during the main firing tends to increase the pore volume.
  • the main calcination temperature is preferably 1010 ° C. to 1130 ° C., more preferably 1050 ° C. to 1120 ° C.
  • the surface of the magnetic core material is preferably covered with a resin to form a carrier.
  • the coating resin used here is as described above.
  • a coating method a known method such as a brush coating method, a dry method, a spray drying method using a fluidized bed, a rotary drying method, an immersion drying method using a universal stirrer, or the like can be employed.
  • a fluidized bed method is preferred.
  • an external heating method or an internal heating method may be used.
  • a fixed or fluid electric furnace, a rotary electric furnace, or a burner furnace can be used.
  • microwave baking may be used.
  • a UV curable resin is used as the coating resin, a UV heater is used.
  • the baking temperature varies depending on the resin to be used, it is desirable that the temperature be equal to or higher than the melting point or the glass transition point.
  • the pores of the magnetic core material may be filled with resin before the resin coating step.
  • Various methods can be used as the filling method. Examples of the method include a dry method, a spray drying method using a fluidized bed, a rotary drying method, an immersion drying method using a universal stirrer, and the like.
  • the resin used here is as described above.
  • the step of filling the resin it is preferable to fill the pores of the magnetic core material with the resin while mixing and stirring the magnetic core material and the filled resin under reduced pressure.
  • the degree of decompression is preferably 10 to 700 mmHg. By making it 700 mmHg or less, the effect of decompression can be made sufficient, while by making it 10 mmHg or more, boiling of the resin solution during the filling step is suppressed and efficient filling becomes possible.
  • the resin filling process it is possible to fill the resin by one filling. However, depending on the type of resin, particle aggregation may occur when a large amount of resin is filled at once. In such a case, by filling the resin in a plurality of times, filling can be performed without excess or deficiency while preventing aggregation.
  • the resin is heated by various methods, and the filled resin is brought into close contact with the core material.
  • a heating system either an external heating system or an internal heating system may be used.
  • a fixed or fluid electric furnace, a rotary electric furnace, or a burner furnace can be used.
  • Microwave baking may be used.
  • the temperature varies depending on the resin to be filled, it is desirable that the temperature be equal to or higher than the melting point or the glass transition point.
  • a thermosetting resin or a condensation-crosslinking resin it is desirable that the temperature is sufficiently increased.
  • the developer of the present invention contains the carrier for an electrophotographic developer and a toner.
  • Particulate toner (toner particles) constituting the developer includes pulverized toner particles produced by a pulverization method and polymerized toner particles produced by a polymerization method.
  • the toner particles used in the present invention may be toner particles obtained by any method.
  • the average particle size of the toner particles is preferably in the range of 2 to 15 ⁇ m, more preferably 3 to 10 ⁇ m. When the average particle size is 2 ⁇ m or more, the charging ability is improved and fogging and toner scattering are further suppressed, while when the average particle size is 15 ⁇ m or less, the image quality is further improved.
  • the mixing ratio of the carrier and the toner is preferably set to 3 to 15% by weight.
  • the mixing ratio of the carrier and the toner can be 2 to 50 parts by weight of the toner with respect to 1 part by weight of the carrier.
  • the developer of the present invention prepared as described above is a two-component having toner and carrier while applying a bias electric field to an electrostatic latent image formed on a latent image holding member having an organic photoconductor layer.
  • the present invention can be used in digital copiers, printers, fax machines, printers, and the like that use a developing system in which reversal development is performed with a magnetic brush of developer. Further, the present invention can also be applied to a full color machine using an alternating electric field, which is a method of superimposing an AC bias on a DC bias when a developing bias is applied from the magnetic brush to the electrostatic latent image side.
  • Example 1 (1) Preparation of MnO magnetic core (carrier core material): 38mol%, MgO: 11mol %, Fe 2 O 3: 50.3mol% and SrO: raw materials were weighed so that 0.7 mol%, of the dry The mixture was pulverized and mixed for 4.5 hours with a media mill (vibration mill, 1/8 inch diameter stainless steel beads), and the obtained pulverized product was formed into pellets of about 1 mm square using a roller compactor.
  • This resin solution was mixed and stirred with 100 parts by weight of the porous ferrite particles obtained in (1-3) above at 60 ° C. under a reduced pressure of 6.7 kPa (about 50 mmHg).
  • the pores (pores) of the porous ferrite particles were infiltrated and filled. Return the inside of the vessel to normal pressure, and remove the toluene almost completely while continuing stirring under normal pressure. Then, remove the porous ferrite particles from the filling device, put them in the vessel, and put them in a hot air heating oven. Heat treatment was performed for 1.5 hours.
  • the mixture was cooled to room temperature, and the ferrite particles with the cured resin were taken out.
  • the particles were agglomerated with a 200-mesh vibrating sieve and the non-magnetic material was removed using a magnetic separator. Thereafter, coarse particles were removed again with a 200-mesh vibrating sieve to obtain ferrite particles filled with resin.
  • a solid acrylic resin (BR-73 manufactured by Mitsubishi Rayon Co., Ltd.) was prepared, 20 parts by weight of the acrylic resin was mixed with 80 parts by weight of toluene, and the acrylic resin was dissolved in toluene to prepare a resin solution.
  • 3% by weight of carbon black (Mogul L manufactured by Cabot) was added as a conductive agent to the acrylic resin to obtain a coating resin solution.
  • the ferrite particles filled with the obtained resin were put into a universal mixing stirrer, the above acrylic resin solution was added, and the resin coating was performed by the immersion drying method. At this time, the acrylic resin was 1% by weight with respect to the weight of the ferrite particles after filling the resin. After coating, the mixture was heated at 145 ° C. for 2 hours, and then the particles were agglomerated using a 200-mesh aperture sieve and the non-magnetic material was removed using a magnetic separator. Thereafter, coarse particles were removed again with a 200-mesh vibrating sieve to obtain a resin-filled ferrite carrier having a resin coating on the surface.
  • the volume average particle diameter (D 50 ) of the magnetic core material was measured using a Microtrac particle size analyzer (Model 9320-X100 manufactured by Nikkiso Co., Ltd.). Water was used as the dispersion medium. First, 10 g of a sample and 80 ml of water were placed in a 100 ml beaker, and 2 to 3 drops of a dispersant (sodium hexametaphosphate) was added. Next, using an ultrasonic homogenizer (UH-150 type, manufactured by SMT Co. LTD.), The output level was set to 4 and dispersion was performed for 20 seconds. Thereafter, bubbles formed on the surface of the beaker were removed, and the sample was put into the apparatus for measurement.
  • a dispersant sodium hexametaphosphate
  • the BET specific surface area of the magnetic core material was measured using a BET specific surface area measuring apparatus (Macsorb HM model 1210 manufactured by Mountec Co., Ltd.). The measurement sample was put in a vacuum dryer, treated at 200 ° C. for 2 hours, held in the dryer until it became 80 ° C. or lower, and then taken out from the dryer. Thereafter, the sample was filled so that the cells were dense and set in the apparatus. Measurements were made after pretreatment at a degassing temperature of 200 ° C. for 60 minutes.
  • the content of the anion component in the magnetic core material was measured by a quantitative analysis under the following conditions by the combustion ion chromatography method.
  • -Combustion device AQF-2100H manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • -Sample amount 50mg -Combustion temperature: 1100 ° C
  • Combustion time 10 minutes-Ar flow rate: 400 ml / min -O 2 flow rate: 200 ml / min -Humidification
  • Air flow rate 100ml / min -Absorbent: 1% by weight of hydrogen peroxide in the eluent below
  • IC-2010 manufactured by Tosoh Corporation -Column: TSKgel SuperIC-Anion HS (4.6 mm ID ⁇ 1 cm + 4.6 mm ID ⁇ 10 cm) - Eluent: aqueous solution of pure water with respect NaHCO 3 3.8 mmol, and dissolved Na 2 CO 3 3.0 mmol of 1L - flow rate: 1.5 mL / min -Column temperature: 40 ° C -Injection volume: 30 ⁇ L -Measurement mode: Suppressor method-Detector: CM detector-Standard sample: Anion mixed standard solution manufactured by Kanto Chemical Co., Inc.
  • the content of the cation component in the magnetic core material was measured as follows. First, an acid solution was added to the ferrite particles and heated to completely dissolve the ferrite particles. Next, the dissolved solution was quantitatively analyzed using an ICP emission analyzer (ICPS-1000IV manufactured by Shimadzu Corporation), and the analysis result was converted into the content of ferrite particles.
  • an acid solution was added to the ferrite particles and heated to completely dissolve the ferrite particles.
  • the dissolved solution was quantitatively analyzed using an ICP emission analyzer (ICPS-1000IV manufactured by Shimadzu Corporation), and the analysis result was converted into the content of ferrite particles.
  • the electrical resistance characteristics of the magnetic core material and the carrier in a normal temperature and normal humidity (N / N) environment, a high temperature and high humidity (H / H) environment, and a low temperature and low humidity (L / L) environment are as follows. Asked.
  • the electrical resistance (R N / N ) of the magnetic core material in an N / N environment was measured as follows. That is, nonmagnetic parallel plate electrodes (10 mm ⁇ 40 mm) were opposed to each other with an electrode spacing of 2.0 mm, and 200 mg of a sample was weighed and filled between them.
  • a sample is held between the electrodes by attaching a magnet (surface magnetic flux density: 1500 Gauss, area of the magnet in contact with the electrode: 10 mm ⁇ 30 mm) to the parallel plate electrodes, a voltage of 100 V is applied, and an insulation resistance meter (Toa The electrical resistance R N / N (unit: ⁇ ) was measured using SM-8210 manufactured by Decka Corporation, and the logarithmic value (LogR N / N ) was determined.
  • the term “normal temperature and humidity” as used herein refers to an environment where the temperature is 20 to 25 ° C. and the humidity is 50 to 60%. In the measurement, the sample is placed in a constant temperature and humidity chamber controlled to the room temperature and humidity. After exposure for more than an hour.
  • the electrical resistance (R H / H ) of the magnetic core material in the H / H environment was measured as follows. That is, after exposing the sample to a room in which the room temperature and humidity are controlled so that the H / H environment has a temperature of 30 to 35 ° C. and a relative humidity of 80 to 85% for 12 hours or more, The electrical resistance R H / H (unit: ⁇ ) was measured by the same method as the resistance, and the logarithmic value (Log R H / H ) was determined. At this time, the distance between the electrodes was 2.0 mm, and the applied voltage was 100V.
  • the electrical resistance (R L / L ) of the magnetic core material under the L / L environment was measured as follows. That is, after exposing the sample to a room where the room temperature and humidity are controlled so that the L / L environment has a temperature of 10 to 15 ° C. and a relative humidity of 10 to 15% for 12 hours or more, The electric resistance R L / L (unit: ⁇ ) was measured by the same method as the resistance, and the logarithmic value (Log R L / L ) was obtained. At this time, the distance between the electrodes was 2.0 mm, and the applied voltage was 100V.
  • the electrical resistance ( RN / N , RH / H, and RL / L ) of the carrier under the N / N environment, H / H environment, and L / L environment is the same as in the case of the magnetic core material.
  • the carrier was measured and the electrical resistance environment fluctuation ratio (C / D) of the carrier was determined from the following equation.
  • CS ave compressive fracture strength
  • CS var compressive fracture strength variation coefficient
  • a particle to be used for measurement there is only one particle on the measurement screen (width 130 ⁇ m ⁇ length 100 ⁇ m) of the ultra micro indentation hardness tester, it has a spherical shape, and the major axis measured by the software attached to ENT-1100a The average value of the minor axis was selected so that the volume average particle diameter is ⁇ 2 ⁇ m.
  • the compressive fracture strength of 100 particles was measured, and 80 compressive fracture strengths obtained by subtracting 10 from the maximum value and the minimum value were adopted as data, and the average compressive fracture strength (CS ave ) was obtained.
  • the compression fracture strength variation coefficient (CS var ) was obtained from the following formula by calculating the standard deviation (CS sd ) for the 80 pieces.
  • Example 2 In the production of the magnetic core material, the magnetic core material and the carrier were produced and evaluated in the same manner as in Example 1 except that the pulverization condition of the temporarily fired product was changed.
  • (1-1) pre-calcined product pulverization in Example 1 was changed as follows. That is, after pulverizing using a dry media mill (vibration mill, 1/8 inch diameter stainless steel beads) to an average particle size of about 4 ⁇ m, water was added, and a wet media mill (horizontal bead mill, 1 / 16-inch diameter stainless steel beads) for 5 hours.
  • the obtained slurry was dehydrated with a screw press, water was added to the cake, and the mixture was again pulverized for 5 hours using a wet media mill (horizontal bead mill, 1/16 inch diameter stainless steel beads) to obtain slurry 2. It was.
  • the particle diameter in the slurry in 2 results measured at Microtrac, D 50 was 1.4 [mu] m.
  • Example 3 In the production of the magnetic core material, the magnetic core material and the carrier were produced and evaluated in the same manner as in Example 1 except that the pulverization condition of the temporarily fired product was changed.
  • (1-1) pre-calcined product pulverization in Example 1 was changed as follows. That is, after pulverizing using a dry media mill (vibration mill, 1/8 inch diameter stainless steel beads) to an average particle size of about 4 ⁇ m, water was added, and a wet media mill (horizontal bead mill, 1 / 16-inch diameter stainless steel beads) for 10 hours. The slurry during pulverization was subjected to concentration by cross-flow filtration and addition of water simultaneously with pulverization to obtain slurry 3. The particle diameter of particles contained in the slurry 3 (volume average particle diameter of the pulverized product) results measured at Microtrac, D 50 was 1.4 [mu] m.
  • Example 4 In the production of the magnetic core material, the magnetic core material and the carrier were produced and evaluated in the same manner as in Example 1 except that raw materials in different lots were used.
  • Example 5 In the production of the magnetic core material, the magnetic core material and the carrier were produced and evaluated in the same manner as in Example 1 except that the pulverization condition of the temporarily fired product was changed.
  • (1-1) pre-calcined product pulverization in Example 1 was changed as follows. That is, after pulverizing using a dry media mill (vibration mill, 1/8 inch diameter stainless steel beads) to an average particle size of about 4 ⁇ m, water was added, and a wet media mill (horizontal bead mill, 1 / 16 inches of stainless steel beads) was pulverized for 10 hours to obtain slurry 5.
  • the particle diameter of particles contained in the slurry 5 results measured at Microtrac, D 50 was 1.4 [mu] m.
  • Example 6 (comparative example) A magnetic core material and a carrier were prepared and evaluated in the same manner as in Example 5 except that raw materials of different lots were used in the production of the magnetic core material.
  • Example 7 In the production of the magnetic core material, the magnetic core material and the carrier were produced and evaluated in the same manner as in Example 1 except that the pulverization condition of the temporarily fired product was changed.
  • (1-1) pre-calcined product pulverization in Example 1 was changed as follows. That is, after pulverizing using a dry media mill (vibration mill, 1/8 inch diameter stainless steel beads) to an average particle size of about 4 ⁇ m, water was added, and a wet media mill (horizontal bead mill, 1 / 16-inch diameter stainless steel beads) for 4 hours.
  • the obtained slurry was squeezed and dehydrated with a belt press, water was added to the cake, and the mixture was pulverized again for 3 hours using a wet media mill (horizontal bead mill, 1/16 inch diameter stainless steel beads).
  • a wet media mill horizontal bead mill, 1/16 inch diameter stainless steel beads.
  • water was added to the cake, and the slurry was pulverized again for 4 hours using a wet media mill (horizontal bead mill, 1/16 inch stainless steel beads). Obtained.
  • the particle diameter of particles contained in the slurry 7 results measured at Microtrac, D 50 was 1.4 [mu] m.
  • Example 8 (comparative example) When producing the magnetic core material (1-3) The firing temperature during the main firing is 1145 ° C., and when the carrier is produced, the amount of the methyl silicone resin solution in the filled resin solution is 10 parts by weight (2 parts by weight as the solid content) The magnetic core material and the carrier were prepared and evaluated in the same manner as in Example 1 except that.
  • Example 9 (comparative example) When producing the magnetic core (1-3) the firing temperature during the main firing is 1010 ° C., and during the carrier production, the amount of the methyl silicone resin solution in the filled resin solution is 40 parts by weight (the solid content is 8 parts by weight) The magnetic core material and the carrier were prepared and evaluated in the same manner as in Example 1 except that.
  • Example 1 to 9 the obtained evaluation results were as shown in Tables 1 and 2.
  • the electrical resistance environment variation ratio (A / B) was small, the average compressive fracture strength (CS ave ) was excellent, and the variation coefficient (CS var ) of the compressive fracture strength was small.
  • the formula (1) was excessively large, and as a result, the electrical resistance environment fluctuation ratio (A / B) was large.
  • Formula (1) was too small, and as a result, the coefficient of variation (CS var ) of the compressive fracture strength became large.
  • Example 8 since the pore volume was too small, the apparent density (AD) of the carrier was high and the weight was inferior.
  • Example 9 was inferior in average compressive fracture strength because the pore volume was too large. From these results, according to the present invention, a magnetic core for an electrophotographic developer that has a low specific gravity but has a small change in electrical resistance due to environmental differences, an excellent strength, and a good image free of defects. It can be seen that a material and a carrier for an electrophotographic developer and a developer containing the carrier can be provided.
  • a magnetic core material for a developer can be provided. Another object of the present invention is to provide an electrophotographic developer carrier and developer comprising such a magnetic core material.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

低比重でありながらも、環境差による電気抵抗変化が小さく且つ優れた強度を有し、欠陥の無い良好な画像が得られる電子写真現像剤用磁性芯材及び電子写真現像剤用キャリア、並びに該キャリアを含む現像剤を提供する。 燃焼イオンクロマトグラフィー法によって測定されるフッ素イオン量をa(ppm)、塩素イオン量をb(ppm)、臭素イオン量をc(ppm)、亜硝酸イオン量をd(ppm)、硝酸イオン量をe(ppm)、硫酸イオン量をf(ppm)としたとき、式(1):a+b×10+c+d+e+fの値が200~1400であり、且つ細孔容積が30~100mm3/gである、電子写真現像剤用磁性芯材。

Description

電子写真現像剤用磁性芯材、電子写真現像剤用キャリア及び現像剤
 本発明は、電子写真現像剤用磁性芯材、電子写真現像剤用キャリア及び現像剤に関する。
 電子写真現像方法は、現像剤中のトナー粒子を感光体上に形成された静電潜像に付着させて現像する方法であり、この方法で使用される現像剤は、トナー粒子とキャリア粒子からなる二成分系現像剤と、トナー粒子のみを用いる一成分系現像剤とに分けられる。
 こうした現像剤のうち、トナー粒子とキャリア粒子からなる二成分系現像剤を用いた現像方法としては、古くはカスケード法等が採用されていたが、現在では、マグネットロールを用いる磁気ブラシ法が主流である。二成分系現像剤において、キャリア粒子は、現像剤が充填されている現像ボックス内において、トナー粒子と共に撹拌されることによって、トナー粒子に所望の電荷を付与し、さらにこのように電荷を帯びたトナー粒子を感光体の表面に搬送して感光体上にトナー像を形成するための担体物質である。マグネットを保持する現像ロール上に残ったキャリア粒子は、この現像ロールから再び現像ボックス内に戻り、新たなトナー粒子と混合及び撹拌され、一定期間繰り返して使用される。
 二成分系現像剤は、一成分系現像剤とは異なり、キャリア粒子はトナー粒子と混合及び撹拌され、トナー粒子を帯電させ、さらに感光体表面に搬送する機能を有しており、現像剤を設計する際の制御性が良い。したがって、二成分系現像剤は、高画質が要求されるフルカラー現像装置や、画像維持の信頼性及び耐久性が要求される高速印刷を行う装置等での使用に適している。このようにして用いられる二成分系現像剤においては、画像濃度、カブリ、白斑、階調性、解像力等の画像特性が、初期の段階から所定の値を示し、しかもこれらの特性が耐刷期間(すなわち、長期にわたる使用期間)中に変動せず、安定に維持されることが必要である。これらの特性を安定に維持するためには、二成分系現像剤中に含有されるキャリア粒子の特性が安定していることが必要になる。二成分系現像剤を形成するキャリア粒子としては、従来、鉄粉キャリア、フェライトキャリア、樹脂被覆フェライトキャリア、磁性粉分散型樹脂キャリア等の各種キャリアが使用されていた。
 最近、オフィスのネットワーク化が進み、単機能の複写機から複合機への時代に進化している。また、サービス体制も、契約した保守作業員が定期的にメンテナンスを行って現像剤等を交換するようなシステムから、メンテナンスフリーシステムの時代へシフトしてきており、市場からは、現像剤の更なる長寿命化に対する要求が一層高まってきている。
 このような中で、キャリア粒子の軽量化を図り、現像剤寿命を伸ばすことを目的として、多孔質フェライト粒子を用いたフェライトキャリア芯材の空隙に樹脂を充填した樹脂充填型フェライトキャリアが提案されている。例えば、特許文献1(特開2014-197040号公報)には、平均圧縮破壊強度が100mN以上、圧縮破壊強度の変動係数が50%以下である多孔質フェライト粒子からなることを特徴とする電子写真現像剤用樹脂充填型フェライトキャリア芯材や該フェライトキャリア芯材の空隙に樹脂を充填してなる電子写真現像剤用樹脂充填型フェライトキャリアが提案さている。該フェライトキャリアによれば、キャリア粒子の低比重及び軽量化が図れ、かつ高い強度を有するため、耐久性に優れ長寿命化が達成できる等の効果があるとされている。
 一方、キャリア芯材中の極微量の元素がキャリア特性を低下させることも知られている。例えば、特許文献2(特開2010-55014号公報)には、多孔質フェライト芯材の空隙に樹脂を充填させて得られる電子写真現像剤用樹脂充填型キャリアであって、該多孔質フェライト芯材の溶出法により測定されるCl濃度が10~280ppmであり、該樹脂がアミン系化合物を含有すること特徴とする電子写真現像剤用樹脂充填型キャリアが提案さている。該キャリアによれば、多孔質フェライト芯材のCl濃度を一定範囲に抑え、かつ充填樹脂にアミン系化合物を含有するので、所望の帯電量を得ることができ、かつ環境変動による帯電量の変化が小さいとされている。また、多孔質フェライトに関するものではないが、特許文献3(特開2016-25288号公報)には、主成分がFeと、Mn等の添加元素であるフェライト磁性材において、平均粒径が1~100μmであり、当該フェライト磁性材におけるFeと、添加元素と酸素とを除いた不純物の総量が、0.5質量%以下であり、前記不純物がSi、Al、Cr、Cu、P、Cl、Ni、Mo、Zn、Ti、硫黄、Ca,Mn、Srのいずれかの少なくとも2種以上を含むフェライト磁性材が提案さている。この原料中の不純物の影響が抑制されたフェライト磁性材を、電子写真現像剤用の磁性キャリア芯材として用いた磁性キャリアは、磁力が高く、キャリア飛散を抑制する効果があるとされている。
日本国特開2014-197040号公報 日本国特開2010-55014号公報 日本国特開2016-25288号公報
 このように、キャリア芯材に含まれる微量元素の含有量を抑制することで、キャリア特性の向上を図る試みが知られている一方、高画質及び高速印刷の要求に応じて、キャリア特性の更なる向上が望まれている。この点、多孔質フェライト芯材及びそれから成る樹脂充填型のキャリアは、特有の低比重さにより現像機内での粒子同士の衝突、衝撃、摩擦、及び粒子間に生じる応力などの機械的ストレスが軽減でき、長期にわたる使用においてもキャリアの割れ欠けや、トナースペントが低減でき、耐刷における長期安定性を有している。しかしながら、近年の高い要求に十分に応えられているとは言い難いものであった。特に電気抵抗は、キャリア飛散や白斑、画像濃度、かぶり、トナー飛散といった画像特性に影響する因子であり、キャリア芯材の物性がキャリアにも影響するため、キャリア芯材の電気抵抗特性は良好な画像を得る上で重要である。そして、使用環境の変化に起因する画像欠陥を抑制する目的で、芯材抵抗の環境依存性を低くすることが望ましい。
 本発明者らは、今般、電子写真現像剤用磁性芯材において、燃焼イオンクロマトグラフィー法にて測定される特定の陰イオン成分の含有量と細孔容積が、優れた電気抵抗特性と強度を得る上で重要であるとの知見を得た。具体的には、特定の陰イオン量成分の含有量と細孔容積を適切に制御することにより、低比重でありながらも、環境変動による電気抵抗変化が小さく且つ強度が優れたものとなり、その結果、キャリアや現像剤としたときに良好な画像が安定して得られるとの知見を得た。
 したがって、本発明の目的は、低比重でありながらも、環境変動による電気抵抗変化が小さく且つ優れた強度を有し、キャリアや現像剤としたときに良好な画像を安定して得ることができる電子写真現像剤用磁性芯材を提供することにある。また、本発明の他の目的は、そのような磁性芯材を備えた電子写真現像剤用キャリアや現像剤を提供することにある。
 本発明の一態様によれば、燃焼イオンクロマトグラフィー法によって測定されるフッ素イオン量をa(ppm)、塩素イオン量をb(ppm)、臭素イオン量をc(ppm)、亜硝酸イオン量をd(ppm)、硝酸イオン量をe(ppm)、硫酸イオン量をf(ppm)としたとき、式(1):a+b×10+c+d+e+fの値が200~1400であり、且つ細孔容積が30~100mm/gである、電子写真現像剤用磁性芯材が提供される。
 本発明の他の一態様によれば、前記電子写真現像剤用磁性芯材と、前記磁性芯材の表面に設けられた樹脂からなる被覆層とを備えた、電子写真現像剤用キャリアが提供される。
 本発明の別の一態様によれば、前記磁性芯材の細孔に充填してなる樹脂を更に備えた、前記電子写真現像剤用キャリアが提供される。
 本発明の更に別の一態様によれば、前記キャリアと、トナーとを含む、現像剤が提供される。
磁性芯材における式(1)の値と電気抵抗環境変動比(A/B)の関係を示す。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 電子写真現像剤用磁性芯材はキャリア芯材として利用可能な粒子であり、キャリア芯材に樹脂が被覆されて電子写真現像用磁性キャリアとなる。この電子写真現像剤用磁性キャリアと、トナーとを含むことで電子写真現像剤となる。
 電子写真現像剤用磁性芯材
 本発明の電子写真用現像剤用磁性芯材(以下、磁性芯材、又はキャリア芯材と称する場合がある)は、燃焼イオンクロマトグラフィー法によって測定される特定の陰イオン成分の含有量が特定の範囲内に制御されているという特徴を有している。具体的には、磁性芯材におけるフッ素イオン量をa(ppm)、塩素イオン量をb(ppm)、臭素イオン量をc(ppm)、亜硝酸イオン量をd(ppm)、硝酸イオン量をe(ppm)、硫酸イオン量をf(ppm)としたとき、式(1):a+b×10+c+d+e+fの値が200~1400である。このような磁性芯材によれば、優れた電気抵抗特性と強度を有するキャリアとすることが可能となる。式(1)の値が1400を超えると、電気抵抗の環境依存性が大きくなる。これは、特定の陰イオン成分(以下、単に陰イオン成分と称する場合がある)の含有量が多いほど、環境が変化したときの磁性芯材の電気抵抗が大きく変化するためであり、その理由として、陰イオン成分は環境中の水分を吸湿しやすいため、特に高温高湿下では磁性芯材の含水量が増えてイオン導電性が高くなり、その結果、芯材抵抗が低くなるためであると考えられる。一方、式(1)の値が200未満であると、圧縮破壊強度の変動が大きくなり、キャリアの耐久性が劣るものとなる。これは、磁性芯材中の陰イオン成分が少なすぎると焼結阻害効果が小さくなり過ぎ、磁性芯材製造時の焼成工程の際に結晶成長速度が過度に大きくなるためではないかと考えられている。結晶成長速度が過度に大きいと、焼成条件を調整したとしても、結晶成長速度が適度な場合と比べて粒子間の焼結度合いにバラツキが生じ、その結果、強度の低い粒子の占める割合が高くなると推察される。強度の低い粒子はキャリアとして使用した際に、耐刷時の撹拌ストレスや現像機内での粒子同士の衝突、衝撃、摩擦、及び粒子間に生じる応力などの機械的ストレスによる割れ欠けが発生し、電気特性の変化による画像不良を招く。その上、式(1)の値が200未満の磁性芯材を製造するためには、品位の高い(陰イオン成分の含有量が低い)原料を用いる、もしくは品位を高めるための工程を経なければならず、生産性に劣るという問題もある。式(1)の値は好ましくは250~1200、特に好ましくは300~1000である。また、磁性芯材中の陰イオン成分の含有量は、式(2):b×10+fの値が、好ましくは200~1400、より好ましくは250~1200、さらに好ましくは300~1000である。
 また、磁性芯材中のフッ素イオン量aは、好ましくは0.1~5.0ppm、より好ましくは0.5~3.0ppm、更に好ましくは0.5~2.0ppmである。
 なお、陰イオン成分の含有量(ppm)は、重量基準である。
 燃焼イオンクロマトグラフィー法は、試料を酸素含有ガス気流中で燃焼させて、発生したガスを吸収液に吸収させ、その後、吸収液に吸収したハロゲンや硫酸イオンを、イオンクロマトグラフィー法により定量分析する手法であり、従来困難であったハロゲンや硫黄成分のppmオーダーでの分析を容易に行なうことが可能となる。なお、陰イオン成分の含有量は燃焼イオンクロマトグラフィー法によって測定される値であるが、陰イオン成分が検出されることは、必ずしも上記陰イオンの形態で磁性芯材中に含有されることを意味する訳ではない。例えば、燃焼イオンクロマトグラフィー法によって硫酸イオンが検出されたとしても、磁性芯材が硫黄成分を硫酸イオンの形態で含むものに限定される訳ではなく、硫黄単体、硫化金属、硫酸イオン、或いはその他の硫化物等の形態で含むものであってもよい。
 本明細書において記載する陰イオン成分の含有量値は、燃焼イオンクロマトグラフィー法により、後述の実施例に記載の条件にて測定した値である。
 また、磁性芯材中の陽イオン成分の含有量については、発光分光分析法により測定することが可能である。本明細書において記載する陽イオン成分の含有量値は、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)により、後述の実施例に記載の条件にて測定した値である。
 その上、本発明の磁性芯材は、その細孔容積が30~100mm/gである。細孔容積が30mm/g未満であると、軽量化が図れない一方、100mm/gを越えると、キャリアの強度を保つことができない。細孔容積は、好ましくは35~85mm/g、より好ましくは40~70mm/gである。
 本明細書において記載する細孔容積値は、水銀ポロシメーターを用いて、後述の実施例に記載の条件にて測定及び算出した値である。
 ところで、磁性芯材は、キャリア芯材として機能するものであれば、その組成は特に限定されるものではなく、従来公知の組成を用いることができる。磁性芯材は、典型的にはフェライト組成を有するもの(フェライト粒子)であり、好ましくはFe、Mn、Mg及びSrを含むフェライト組成を有するものである。一方、近年の廃棄物規制を始めとする環境負荷低減の流れを考慮すると、Cu、Zn、Ni等の重金属を、不可避不純物(随伴不純物)の範囲を超えて含まないことが望ましい。これら重金属の含有量は典型的には1%以下である。
 磁性芯材は、特に好ましくは、式:(MnO)(MgO)(Feで表され、MnO及びMgOの一部がSrOで置換されている組成を有するものである。ここで、x=35~45モル%、y=5~15モル%、z=40~60モル%、x+y+z=100モル%である。xを35モル%以上及びyを15モル%以下とすることで、フェライトの磁化が高まりキャリア飛散がより抑制される一方、xを45モル%以下及びyを5モル%以上とすることで、帯電量のより高い磁性芯材とすることができる。
 この磁性芯材は組成中にSrOを含有している。SrOを含有させることで、低磁化粒子の発生が抑制される。また、SrOはFeとともに、(SrO)・6(Fe)という形のマグネトプランバイト型のフェライトや、SrFe(ただし、a≧2、a+b≦c≦a+1.5b)に代表される立方晶でペロブスカイト型の結晶構造を持ったストロンチウムフェライトの前駆体(以下Sr-Fe化合物と呼ぶ)を形成し、スピネル構造の(MnO)(MgO)(Feに固溶した複合酸化物を形成する。この鉄とストロンチウムの複合酸化物は、MgOを含有する成分である主にマグネシウムフェライトと相まって磁性芯材の帯電付与能力を上げる効果がある。特にSr-Fe化合物は高誘電率であるSrTiOと同様の結晶構造を持っており、磁性芯材の高帯電化に寄与する。SrOの置換量は、(MnO)(MgO)(Fe全量に対して、好ましくは0.1~2.5モル%、より好ましくは0.1~2.0モル%、さらに好ましくは0.3~1.5モル%である。SrOの置換量を0.1モル%以上とすることで、SrO含有の効果がより発揮され、2.5モル%以下とすることで、残留磁化や保磁力が過度に高くなることが抑制され、その結果、キャリアの流動性がより良好なものとなる。
 磁性芯材の体積平均粒径(D50)は、好ましくは20~50μmである。体積平均粒径を20μm以上とすることで、キャリア飛散が十分に抑制される一方、50μm以下とすることで、帯電付与能力低下による画質劣化をより抑制することができる。体積平均粒径は、より好ましくは25~50μm、さらに好ましくは25~45μmである。
 磁性芯材の見かけ密度(AD)は、好ましくは1.5~2.1g/cmである。見かけ密度を1.5g/cm以上とすることで、キャリアの過度な軽量化が抑制されて帯電付与能力がより向上する一方、2.1g/cm以下とすることで、キャリア軽量化の効果を十分なものとすることができ、耐久性がより向上する。見かけ密度は、より好ましくは1.7~2.1g/cm、さらに好ましくは1.7~2.0g/cmである。
 磁性芯材のBET比表面積は、好ましくは0.25~0.60m/gである。BET比表面積を0.25m/g以上とすることで、有効な帯電面積が小さくなることが抑制され、帯電付与能力がより向上する一方、0.60m/g以下とすることで、圧縮破壊強度の低下が抑制される。BET比表面積は、好ましくは0.25~0.50m/g、より好ましくは0.30~0.50m/gである。
 また、磁性芯材は、その電気抵抗環境変動比(A/B)が、好ましくは1.25以下、より好ましくは1.23以下、さらに好ましくは1.20以下である。ここで、電気抵抗環境変動比(A/B)は、環境変動による電気抵抗変化を表す指標となるものであり、下記式に示すように、低温/低湿(L/L)環境下での電気抵抗RL/L(単位:Ω)の対数値(LogRL/L)の、高温/高湿(H/H)環境下での電気抵抗RH/H(単位:Ω)の対数値(LogRH/H)に対する比として求められる。
Figure JPOXMLDOC01-appb-M000001
 電気抵抗環境変動比(A/B)を1.25以下とすることで、芯材抵抗の環境依存性を小さくすることができ、使用環境の変化に起因する画像欠陥の抑制を十分なものとすることができる。なお、H/H環境とは温度30~35℃、相対湿度80~85%の環境のことであり、L/L環境とは温度10~15℃、相対湿度10~15%の環境のことである。
 磁性芯材は、その圧縮破壊強度の平均(平均圧縮破壊強度:CSave)が、好ましくは100mN以上、より好ましくは120mN以上、さらに好ましくは150mN以上である。ここで、圧縮破壊強度の平均とは、磁性芯材の粒子集合体における個々の粒子の圧縮破壊強度の平均のことである。平均圧縮破壊強度を100mN以上とすることで、キャリアとしたときの強度が高くなり、耐久性がより向上する。なお、平均圧縮破壊強度は、その上限が特に限定されるものではないが、典型的には450mN以下である。
 磁性芯材は、その圧縮破壊強度の変動係数(圧縮破壊強度変動係数:CSvar)が、好ましくは40%以下、より好ましくは37%以下、さらに好ましくは34%以下である。ここで、圧縮破壊強度変動係数は、磁性芯材の粒子集合体における個々の粒子の圧縮破壊強度のバラツキの指標となるものであり、後述の手法で求めることができる。圧縮破壊強度の変動係数を40%以下とすることで、強度の低い粒子の占める割合を低くすることができ、キャリアとしたときの強度を高くすることができる。なお、圧縮破壊強度変動係数は、その下限が特に限定されるものではないが、典型的には5%以上である。
 磁性芯材の平均圧縮破壊強度(CSave)及び圧縮破壊強度変動係数(CSvar)は、例えば、次のようにして測定することができる。すなわち、圧縮破壊強度の測定には超微小押し込み硬さ試験機(株式会社エリオニクス社製ENT-1100a)を使用する。ガラス板上に分散させた試料を試験機にセットし、25℃の環境下で測定する。試験には直径50μmφの平圧子を使用し、49mN/sの負荷速度で490mNまで荷重する。測定に用いる粒子として、超微小押し込み硬さ試験機の測定画面(横130μm×縦100μm)に1粒子だけで存在し、かつ球形を有し、ENT-1100a付属のソフトで計測される長径と短径の平均値が体積平均粒径±2μmであるものを選択する。荷重-変位曲線の傾きが0に近づいたときを粒子が破壊したと見なし、変曲点の荷重を圧縮破壊強度とする。100個の粒子の圧縮破壊強度を測定し、最大値と最小値からそれぞれから10個分を除いた80個分の圧縮破壊強度をデータとして採用し、平均圧縮破壊強度(CSave)を求める。また、圧縮破壊強度変動係数(CSvar)は、上記80個分の標準偏差(CSsd)を算出し、下記式から求める。
Figure JPOXMLDOC01-appb-M000002
 このように、本発明の電子写真用現像剤用磁性芯材(キャリア芯材)は、燃焼イオンクロマトグラフィー法によって測定される陰イオン量と細孔容積を制御することで、低比重でありながらも、環境差による電気抵抗変化が小さく、且つ圧縮破壊強度が高いとともにその変動が抑えられ、欠陥の無い良好な画像が得られるキャリアとすることが可能となる。本発明者らの知る限り、このように陰イオン量及び細孔容積を制御する技術は従来知られていない。例えば、特許文献2は溶出法によって測定されるCl濃度を規定したものであるが、Cl以外の陰イオンの影響については言及が無い。また、溶出法は粒子表面に存在する成分の濃度を測定する手法であり、イオンクロマトグラフィー法とは測定原理が全く異なる。さらに、特許文献3はフェライト磁性材における不純物の総量を規定したものであるが、この文献は単にSiやAlといった不純物の総量をなるべく少なくすることに主眼が置かれたものであり、陰イオン量を特定の範囲内に制御することを教示するものでなく、また、細孔容積については一切開示が無い。
 電子写真現像剤用キャリア
 本発明の電子写真現像剤用キャリア(単にキャリアと称する場合がある)は、上記磁性芯材(キャリア芯材)と、前記磁性芯材の表面に設けられた樹脂からなる被覆層とを備えたものである。キャリア特性はキャリア表面に存在する材料や性状に影響されることがある。したがって、適当な樹脂を表面被覆することによって、所望とするキャリア特性を、精度良く付与することができる。
 被覆樹脂は特に制限されない。例えば、フッ素樹脂、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、フェノール樹脂、フッ素アクリル樹脂、アクリル-スチレン樹脂、シリコーン樹脂、あるいはアクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、アルキッド樹脂、ウレタン樹脂、フッ素樹脂等の各樹脂で変性したシリコーン樹脂等が挙げられる。使用中の機械的ストレスによる樹脂の脱離を考慮すると、熱硬化性樹脂が好ましく用いられる。具体的な熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂及びそれらを含有する樹脂等が挙げられる。樹脂の被覆量は、磁性芯材100重量部に対して、0.5~5.0重量部が好ましい。
 また、被覆樹脂中には、導電剤や帯電制御剤を含有させることができる。導電剤としては導電性カーボン、酸化チタンや酸化スズ等の酸化物又は各種の有機系導電剤が挙げられ、その添加量は、被覆樹脂の固形分に対して好ましくは0.25~20.0重量%、より好ましくは0.5~15.0重量%、さらに好ましくは1.0~10.0重量%である。一方、帯電制御剤の例としては、トナー用に一般的に用いられる各種の帯電制御剤や、各種シランカップリング剤が挙げられる。使用できる帯電制御剤やカップリング剤の種類は特に限定されないが、ニグロシン系染料、4級アンモニウム塩、有機金属錯体、含金属モノアゾ染料等の帯電制御剤、アミノシランカップリング剤やフッ素系シランカップリング剤等が好ましい。帯電制御剤の添加量は、被覆樹脂の固形分に対して好ましくは0.25~20.0重量%、より好ましくは0.5~15.0重量%、さらに好ましくは1.0~10.0重量%である。
 キャリアは、磁性芯材の細孔に充填してなる樹脂を更に備えたものであってもよい。樹脂の充填量は、磁性芯材100重量部に対して2~20重量部が望ましく、より望ましくは、2.5~15重量部であり、更に望ましくは、3~10重量部である。樹脂の充填量を2重量部以上とすれば、充填が十分なものとなり、樹脂被覆による帯電量の制御が容易になる一方、樹脂の充填量を20重量部以下とすれば、長期使用における帯電量変化の原因となる充填時の凝集粒子発生が抑制される。
  充填樹脂は、特に制限されず、組み合わせるトナー、使用される環境等によって適宜選択できる。例えば、フッ素樹脂、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、フェノール樹脂、フッ素アクリル樹脂、アクリル-スチレン樹脂、シリコーン樹脂、あるいはアクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、アルキッド樹脂、ウレタン樹脂、フッ素樹脂等の各樹脂で変性したシリコーン樹脂等が挙げられる。使用中の機械的ストレスによる樹脂の脱離を考慮すると、熱硬化性樹脂が好ましく用いられる。具体的な熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂及びそれらを含有する樹脂が挙げられる。
  キャリア特性のコントロールを目的に、充填樹脂中に導電剤や帯電制御剤を添加することができる。導電剤や帯電制御剤の種類や添加量は被覆樹脂の場合と同様である。また、熱硬化性樹脂を用いる場合は、適宜硬化触媒を適量添加してもよい。
 触媒としては、例えばチタンジイソプロポキシビス(エチルアセトアセテート)が挙げられ、その添加量は、被覆樹脂の固形分に対しTi原子換算で、好ましくは0.5~10.0重量%、より好ましくは1.0~10.0重量%、さらに好ましくは1.0~5.0重量%である。
 キャリアは、その見かけ密度(AD)が好ましくは1.5~2.1g/cmである。見かけ密度を1.5g/cm以上とすることで、キャリアの過度な軽量化が抑制されて帯電付与能力がより向上する一方、2.1g/cm以下とすることで、キャリア軽量化の効果を十分なものとすることができ、耐久性がより向上する。見かけ密度は、より好ましくは1.7~2.1g/cm、さらに好ましくは1.7~2.0g/cmである。
 また、キャリアは、その電気抵抗環境変動比(C/D)が、好ましくは1.25以下、より好ましくは1.23以下、さらに好ましくは1.20以下である。電気抵抗環境変動比(C/D)は、下記式に示すように、低温/低湿(L/L)環境下での電気抵抗RL/L(単位:Ω)の対数値(LogRL/L)の、高温/高湿(H/H)環境下での電気抵抗RH/H(単位:Ω)の対数値(LogRH/H)に対する比として求められる。
Figure JPOXMLDOC01-appb-M000003
 電気抵抗環境変動比(C/D)を1.25以下とすることで、キャリア抵抗の環境依存性を小さくすることができ、使用環境の変化に起因する画像欠陥の抑制を十分なものとすることができる。
 電子写真現像剤用磁性芯材及び電子写真現像剤用キャリアの製造方法
 本発明の電子写真現像剤用キャリアを製造するにあたり、まず電子写真現像剤用磁性芯材を作製する。磁性芯材を作製するには、原材料を適量秤量した後、ボールミル又は振動ミル等で0.5時間以上、好ましくは1~20時間粉砕混合する。原料は特に制限されない。このようにして得られた粉砕物は加圧成型機等を用いてペレット化した後、700~1200℃の温度で仮焼成する。
 仮焼成後さらにボールミル又は振動ミル等で粉砕した後、水を加えてビーズミル等を用いて微粉砕を行う。次に必要に応じて分散剤、バインダー等を添加し、粘度調整後、スプレードライヤーにて粒状化し、造粒を行う。仮焼後に粉砕する際は、水を加えて湿式ボールミルや湿式振動ミル等で粉砕してもよい。上記のボールミル、振動ミル、ビーズミル等の粉砕機は特に限定されないが、原料を効果的かつ均一に分散させるためには、使用するメディアに2mm以下の粒径を持つ微細なビーズを使用することが好ましい。また使用するビーズの粒径、組成、粉砕時間を調整することによって、粉砕度合いをコントロールすることができる。
 次いで、得られた造粒物を400~800℃で加熱し、添加した分散剤やバインダーといった有機成分の除去を行う。分散剤やバインダーが残ったまま本焼成を行うと、有機成分の分解及び酸化によって本焼成装置内の酸素濃度が変動しやすく、磁気特性に大きく影響を与えるため、安定して磁性芯材を製造することが困難である。また、これらの有機成分は磁性芯材の多孔質性の制御を困難にする、つまりフェライトの結晶成長を変動させる原因となる。
 その後、得られた造粒物を、酸素濃度の制御された雰囲気下で800~1500℃の温度で1~24時間保持して、本焼成を行う。その際、ロータリー式電気炉やバッチ式電気炉または連続式電気炉等を使用し、焼成時の雰囲気に窒素等の不活性ガスや水素や一酸化炭素等の還元性ガスを導入して、酸素濃度の制御を行ってもよい。次いで、このようにして得られた焼成物を解砕して分級する。分級方法としては、既存の風力分級、メッシュ濾過法、沈降法などを用いて所望の粒径に粒度調整する。
 その後、必要に応じて、表面を低温加熱することで酸化皮膜処理を施し、電気抵抗調整を行うことができる。酸化被膜処理は、一般的なロータリー式電気炉、バッチ式電気炉等を用い、例えば300~700℃で熱処理することで行うことができる。この処理によって形成された酸化被膜の厚さは0.1nm~5μmであることが好ましい。0.1nm以上とすることで、酸化被膜層の効果が十分なものとなる一方、5μm以下とすることで、磁化の低下や過度な高抵抗となるのを抑制することができる。また、必要に応じて、酸化被膜処理の前に還元を行ってもよい。このようにして、平均圧縮破壊強度が一定以上で、圧縮破壊強度変動係数が一定以下にある多孔質フェライト粒子(磁性芯材)を調製する。
 磁性芯材の平均圧縮破壊強度を一定以上とし、圧縮破壊強度変動係数を一定以下とするためには、仮焼成条件、粉砕条件及び本焼成条件を厳密に制御することが望ましい。詳述すると、仮焼成温度は高いほうが好ましい。仮焼成の段階で原料のフェライト化が進んでいた方が、本焼成の段階で粒子内に生じる歪を低減できる。仮焼成後の粉砕工程における粉砕条件として、粉砕時間が長い方が好ましい。スラリー(仮焼成物と水とからなる懸濁体)中の仮焼成物の粒径を小さくしておくことで、多孔質フェライト粒子内にかかる外的ストレス(粒子同士の衝突、衝撃、摩擦、及び粒子間に生じる応力などの機械的ストレス)が均一に分散されるようになる。本焼成条件として、焼成時間が長い方が好ましい。焼成時間が短いと焼成物にムラができ、圧縮破壊強度を含む諸物性にバラツキが生じる。
 磁性芯材において、燃焼イオンクロマトグラフィー法によって測定される陰イオン量を調整する方法としては、様々な手法が挙げられる。その例としては、陰イオン量の少ない原材料を使用することや、造粒する前にスラリーの段階で洗浄操作を行なうことが挙げられる。また、仮焼成若しくは本焼成の際に、炉内に導入する雰囲気ガスの流量を増やして陰イオンを系外へ排出しやすくすることも有効である。特に、スラリーの洗浄操作を行なうことが好ましく、これはスラリーを脱水した後に再度水を加えて湿式粉砕する手法などにより行なうことができる。陰イオン量を低減させるため、脱水及び粉砕を繰り返してもよい。
 磁性芯材の細孔容積は、焼成温度を調整することにより上記の範囲とすることができる。例えば、本焼成時の温度を高くすることで、細孔容積は小さくなる傾向にあり、本焼成時の温度を低くすることで、細孔容積は大きくなる傾向にある。細孔容積を上記の範囲とするには、本焼成温度は1010℃~1130℃であることが好ましく、1050℃~1120℃であることがより好ましい。
 上述のように、磁性芯材を作製した後に、樹脂により磁性芯材の表面を被覆してキャリアとすることが望ましい。ここで用いられる被覆樹脂は、上述した通りである。被覆する方法として、公知の方法、例えば刷毛塗り法、乾式法、流動床によるスプレードライ方式、ロータリードライ方式、万能攪拌機による液浸乾燥法等を採用することができる。被覆率を向上させるためには、流動床による方法が好ましい。樹脂被覆後に焼き付けする場合には、外部加熱方式又は内部加熱方式のいずれでもよく、例えば固定式又は流動式電気炉、ロータリー式電気炉、バーナー炉を用いることができる。もしくはマイクロウェーブによる焼き付けでもよい。被覆樹脂としてUV硬化樹脂を用いる場合は、UV加熱器を用いる。焼き付けの温度は使用する樹脂により異なるが、融点又はガラス転移点以上の温度とすることが望ましく、熱硬化性樹脂又は縮合架橋型樹脂等では、充分硬化が進む温度まで上げることが望ましい。
 本発明のキャリアを製造するにあたっては、必要に応じて、樹脂被覆工程前に磁性芯材の細孔に樹脂を充填してもよい。充填方法としては、様々な方法が使用できる。その方法としては、例えば乾式法、流動床によるスプレードライ方式、ロータリードライ方式、万能攪拌機等による液浸乾燥法等が挙げられる。ここで用いられる樹脂としては、上述した通りである。
 上記樹脂を充填する工程において、減圧下で磁性芯材と充填樹脂を混合撹拌しながら、磁性芯材の細孔に樹脂を充填することが好ましい。このように減圧下で樹脂を充填することによって、細孔部分に効率良く樹脂を充填することができる。減圧の程度としては、10~700mmHgが好ましい。700mmHg以下とすることで減圧の効果を十分にすることができる一方、10mmHg以上とすることで、充填工程中の樹脂溶液の沸騰が抑制され、効率のよい充填が可能となる。樹脂充填工程の際、1回の充填で樹脂を充填することも可能である。ただし、樹脂の種類によっては、一度に多量の樹脂を充填しようとすると粒子の凝集が発生する場合がある。このような場合には、複数回に分けて樹脂を充填することで、凝集を防ぎつつ、過不足なく充填が行える。
 樹脂を充填させた後、必要に応じて、各種の方式によって加熱し、充填した樹脂を芯材に密着させる。加熱方式としては、外部加熱方式又は内部加熱方式のいずれでもよく、例えば固定式又は流動式電気炉、ロータリー式電気炉、バーナー炉を用いることができる。マイクロウェーブによる焼き付けでもよい。温度は、充填する樹脂によって異なるが、融点又はガラス転移点以上の温度とすることが望ましく、熱硬化性樹脂又は縮合架橋型樹脂等では、充分硬化が進む温度まで上げることが望ましい。
 現像剤
 本発明の現像剤は、上記電子写真現像剤用キャリアとトナーとを含むものである。現像剤を構成する粒子状のトナー(トナー粒子)には、粉砕法によって製造される粉砕トナー粒子と、重合法により製造される重合トナー粒子とがある。本発明で使用するトナー粒子はいずれの方法により得られたトナー粒子でもよい。トナー粒子の平均粒径は、好ましくは2~15μm、より好ましくは3~10μmの範囲内である。平均粒径を2μm以上とすることで、帯電能力が向上しカブリやトナー飛散がより抑制される一方、15μm以下とすることで、画質がさらに向上する。また、キャリアとトナーの混合比、すなわちトナー濃度は、3~15重量%に設定することが好ましい。トナー濃度を3重量%以上とすることで、所望の画像濃度が得やすくなり、15重量%以下とすることで、トナー飛散やかぶりがより抑制される。一方、現像剤を補給用現像剤として用いる場合には、キャリアとトナーの混合比を、キャリア1重量部に対してトナー2~50重量部とすることができる。
 上記のように調製された本発明の現像剤は、有機光導電体層を有する潜像保持体に形成されている静電潜像を、バイアス電界を付与しながら、トナー及びキャリアを有する二成分現像剤の磁気ブラシによって反転現像する現像方式を用いたデジタル方式のコピー機、プリンター、FAX、印刷機等に使用することができる。また、磁気ブラシから静電潜像側に現像バイアスを印加する際に、DCバイアスにACバイアスを重畳する方法である交番電界を用いるフルカラー機等にも適用可能である。
 本発明を以下の例によってさらに具体的に説明する。
 例1
(1)磁性芯材(キャリア芯材)の作製
 MnO:38mol%、MgO:11mol%、Fe:50.3mol%及びSrO:0.7mol%になるように原料を秤量し、乾式のメディアミル(振動ミル、1/8インチ径のステンレスビーズ)で4.5時間粉砕混合し、得られた粉砕物をローラーコンパクターにて、約1mm角のペレットにした。原料としてのFe17.2kg、MnO原料としては四酸化三マンガン6.2kgを、MgO原料としては水酸化マグネシウム1.4kgを、SrO原料としては、炭酸ストロンチウム0.2kgを用いた。
(1-1)仮焼成物粉砕
 このペレットを目開き3mmの振動篩にて粗粉を除去し、次いで目開き0.5mmの振動篩にて微粉を除去した後、ロータリー式電気炉で1080℃で3時間加熱して仮焼成を行った。
 次いで、乾式のメディアミル(振動ミル、1/8インチ径のステンレスビーズ)を用いて平均粒径が約4μmになるまで粉砕した後に水を加え、さらに湿式のメディアミル(横型ビーズミル、1/16インチ径のステンレスビーズ)を用いて5時間粉砕した。得られたスラリーをベルトプレス機にて圧搾脱水した後、ケーキに水を加え、再び湿式のメディアミル(横型ビーズミル、1/16インチ径のステンレスビーズ)を用いて5時間粉砕し、スラリー1を得た。このスラリー1中の粒子の粒径(粉砕物の体積平均粒径)をマイクロトラックにて測定した結果、D50は1.4μmであった。
(1-2)造粒
 このスラリー1にバインダーとしてPVA(20重量%水溶液)を固形分に対して0.2重量%添加し、ポリカルボン酸系分散剤をスラリー粘度が2ポイズになるよう添加し、次いでスプレードライヤーにより造粒及び乾燥し、得られた粒子(造粒物)の粒度調整をジャイロシフターにて行った。その後、造粒物をロータリー式電気炉で700℃で2時間加熱して、分散剤やバインダーといった有機成分の除去を行った。
(1-3)本焼成
 その後、造粒物をトンネル式電気炉にて、焼成温度1105℃、酸素ガス濃度0.7容量%雰囲気下にて5時間保持して本焼成を行なった。この時、昇温速度を150℃/時、降温速度を110℃/時とした。その後、ハンマークラッシャーにて解砕し、さらにジャイロシフター、及びターボクラシファイアにて分級して粒度調整を行い、磁力選鉱により低磁力品を分別し、多孔質フェライト粒子からなるフェライトキャリア芯材(磁性芯材)を得た。
(2)キャリアの作製
 メチルシリコーン樹脂溶液20重量部(樹脂溶液濃度20%のため固形分としては4重量部)に、触媒として、チタンジイソプロポキシビス(エチルアセトアセテート)を、樹脂固形分に対して25重量%(Ti原子換算で3重量%)加えた後、アミノシランカップリング剤として3-アミノプロピルトリエトキシシシランを、樹脂固形分に対して5重量%添加し、充填樹脂溶液を得た。
 この樹脂溶液を、上記(1-3)で得られた多孔質フェライト粒子100重量部と、60℃、6.7kPa(約50mmHg)の減圧下で混合撹拌し、トルエンを揮発させながら、樹脂を多孔質フェライト粒子の空隙(細孔)に浸透及び充填させた。容器内を常圧に戻し、常圧下で撹拌を続けながら、トルエンをほぼ完全に除去した後、多孔質フェライト粒子を充填装置から取り出して容器に入れ、熱風加熱式のオーブンに入れ、220℃で1.5時間、加熱処理を行った。
 その後、室温まで冷却し、樹脂が硬化されたフェライト粒子を取り出し、200メッシュの目開きの振動篩にて粒子の凝集を解し、磁力選鉱機を用いて、非磁性物を取り除いた。その後、再度200メッシュの目開きの振動篩にて粗大粒子を取り除き樹脂が充填されたフェライト粒子を得た。
 次に、固形のアクリル樹脂(三菱レーヨン社製BR-73)を準備し、上記アクリル樹脂20重量部をトルエン80重量部に混合して、アクリル樹脂をトルエンに溶解させ、樹脂溶液を調製した。この樹脂溶液に、更に導電剤として、カーボンブラック(Cabot社製Mogul L)をアクリル樹脂に対して3重量%添加し、被覆樹脂溶液を得た。
 得られた樹脂が充填されたフェライト粒子を万能混合撹拌器に投入し、上記のアクリル樹脂溶液を添加して、液浸乾燥法により樹脂被覆を行った。この際、アクリル樹脂は、樹脂充填後のフェライト粒子の重量に対して1重量%とした。被覆した後、145℃で2時間加熱を行ったのち、200メッシュの目開きの振動篩にて粒子の凝集を解し、磁力選鉱機を用いて、非磁性物を取り除いた。その後、再度200メッシュの目開きの振動篩にて粗大粒子を取り除き表面に樹脂被覆を施した樹脂充填型フェライトキャリアを得た。
(3)評価
 得られた磁性芯材及びキャリアについて、各種特性の評価を以下のとおり行った。
<体積平均粒径>
 磁性芯材の体積平均粒径(D50)は、マイクロトラック粒度分析計(日機装株式会社製Model9320-X100)を用いて測定した。分散媒には水を用いた。まず、試料10gと水80mlを100mlのビーカーに入れ、分散剤(ヘキサメタリン酸ナトリウム)を2~3滴添加した。次いで超音波ホモジナイザー(SMT.Co.LTD.製UH-150型)を用い、出力レベル4に設定し、20秒間分散を行った。その後、ビーカー表面にできた泡を取り除き、試料を装置へ投入し測定を行った。
<見かけ密度>
 磁性芯材及びキャリアの見かけ密度(AD)は、JIS-Z2504(金属粉の見掛け密度試験法)に従って測定した。
<細孔容積>
 磁性芯材の細孔容積は、水銀ポロシメーター(Thermo Fisher Scientific社製Pascal 140及びPascal 240)を用いて測定した。ディラトメータはCD3P(粉体用)を使用し、サンプルは複数の穴を開けた市販のゼラチン製カプセルに入れて、ディラトメータ内に入れた。Pascal 140で脱気後、水銀を充填し低圧領域(0~400Kpa)での測定を行なった。次にPascal 240で高圧領域(0.1Mpa~200Mpa)での測定を行なった。測定後、圧力から換算される細孔径が3μm以下のデータ(圧力、水銀圧入量)から、フェライト粒子の細孔容積を求めた。また、細孔径を求める際には装置付属の制御及び解析兼用ソフトウェアPASCAL 140/240/440を用い、水銀の表面張力を480dyn/cm、接触角を141.3°として計算した。
<BET比表面積>
 磁性芯材のBET比表面積はBET比表面積測定装置(株式会社マウンテック製Macsorb HM model 1210)を用いて測定した。測定試料を真空乾燥機に入れ、200℃で2時間処理を行い、80℃以下になるまで乾燥機内に保持した後、乾燥機から取り出した。その後、試料をセルが密になるように充填し、装置にセットした。脱気温度200℃にて60分間前処理を行った後に測定を行った。
<イオン含有量>
 磁性芯材における陰イオン成分の含有量の測定は、燃焼イオンクロマトグラフィー法にて、下記条件で定量分析することにより行った。
‐ 燃焼装置:株式会社三菱化学アナリテック製AQF-2100H
‐ 試料量:50mg
‐ 燃焼温度:1100℃
‐ 燃焼時間:10分
‐ Ar流量:400ml/min
‐ O流量:200ml/min
‐ 加湿Air流量:100ml/min
‐ 吸収液:下記溶離液に過酸化水素を1重量%添加した溶液
‐ 分析装置:東ソー株式会社製IC-2010
‐ カラム:TSKgel SuperIC-Anion HS(4.6mmI.D.×1cm+4.6mmI.D.×10cm)
‐ 溶離液:1Lの純水に対しNaHCO3.8mmol、及びNaCO3.0mmolを溶解させた水溶液
‐ 流速:1.5mL/min
‐ カラム温度:40℃
‐ 注入量:30μL
‐ 測定モード:サプレッサ方式
‐ 検出器:CM検出器
‐ 標準試料:関東化学社製陰イオン混合標準液
 一方、磁性芯材における陽イオン成分の含有量の測定は、次のようにして行った。まず、フェライト粒子に酸溶液を加えて加熱し、フェライト粒子を完全溶解させた。つぎに、ICP発光分析装置(島津製作所製ICPS-1000IV)を用いて、溶解させた溶液の定量分析を行い、分析結果をフェライト粒子の含有量に換算した。
<電気抵抗>
 磁性芯材及びキャリアの常温常湿(N/N)環境下、高温高湿(H/H)環境下及び低温低湿(L/L)環境下での電気抵抗特性を、それぞれ以下のようにして求めた。
 まず、磁性芯材のN/N環境下での電気抵抗(RN/N)を次のようにして測定した。すなわち、電極間間隔2.0mmにて非磁性の平行平板電極(10mm×40mm)を対向させ、その間に試料200mgを秤量して充填した。次に、磁石(表面磁束密度:1500Gauss、電極に接する磁石の面積:10mm×30mm)を平行平板電極に付けることにより電極間に試料を保持させ、100Vの電圧を印加し、絶縁抵抗計(東亜ディケーケー(株)製SM-8210)にて電気抵抗RN/N(単位:Ω)を測定し、その対数値(LogRN/N)を求めた。なお、ここで言う常温常湿下とは、室温20~25℃、湿度50~60%の環境下であり、上記測定は、上記の室温及び湿度に制御された恒温恒湿室内に試料を12時間以上暴露したのち行ったものである。
 磁性芯材のH/H環境下での電気抵抗(RH/H)は次のようにして測定した。すなわち、H/H環境として温度30~35℃、相対湿度80~85%になるように室温及び湿度が制御された室内に試料を12時間以上暴露した後、上述の常温常湿下での電気抵抗と同じ方法で電気抵抗RH/H(単位:Ω)を測定し、その対数値(LogRH/H)を求めた。この際、電極間間隔を2.0mmとし、印加電圧を100Vとした。
 磁性芯材のL/L環境下での電気抵抗(RL/L)は次のようにして測定した。すなわち、L/L環境として温度10~15℃、相対湿度10~15%になるように室温及び湿度が制御された室内に試料を12時間以上暴露した後、上述の常温常湿下での電気抵抗と同じ方法で電気抵抗RL/L(単位:Ω)を測定し、その対数値(LogRL/L)を求めた。この際、電極間間隔を2.0mmとし、印加電圧を100Vとした。
 そして、上記LogRH/H及びLogRL/Lを用いて、磁性芯材の電気抵抗環境変動比(A/B)を、下記式から求めた。
Figure JPOXMLDOC01-appb-M000004
 また、キャリアのN/N環境下、H/H環境下及びL/L環境下での電気抵抗(RN/N、RH/H及びRL/L)を磁性芯材の場合と同様に測定し、キャリアの電気抵抗環境変動比(C/D)を、下記式から求めた。
Figure JPOXMLDOC01-appb-M000005
<圧縮破壊強度>
 磁性芯材の平均圧縮破壊強度(CSave)及び圧縮破壊強度変動係数(CSvar)を次のようにして求めた。まず、超微小押し込み硬さ試験機(株式会社エリオニクス社製ENT-1100a)を使用し、ガラス板上に分散させた試料を試験機にセットし、25℃の環境下で圧縮破壊強度を測定した。試験には直径50μmφの平圧子を使用し、49mN/sの負荷速度で490mNまで荷重した。測定に用いる粒子として、超微小押し込み硬さ試験機の測定画面(横130μm×縦100μm)に1粒子だけで存在し、かつ球形を有し、ENT-1100a付属のソフトで計測される長径と短径の平均値が体積平均粒径±2μmであるのものを選択した。荷重-変位曲線の傾きが0に近づいたときを粒子が破壊したと見なし、変曲点の荷重を圧縮破壊強度とした。100個の粒子の圧縮破壊強度を測定し、最大値と最小値からそれぞれ10個分を除いた80個分の圧縮破壊強度をデータとして採用し、平均圧縮破壊強度(CSave)を求めた。また、圧縮破壊強度変動係数(CSvar)は、上記80個分の標準偏差(CSsd)を算出し、下記式から求めた。
Figure JPOXMLDOC01-appb-M000006
 例2
 磁性芯材作製の際に、仮焼成物の粉砕条件を変えた以外は、例1と同様にして磁性芯材及びキャリアの作製と評価を行った。ここで、例1の(1-1)仮焼成物粉砕を次のように変更した。すなわち、乾式のメディアミル(振動ミル、1/8インチ径のステンレスビーズ)を用いて平均粒径が約4μmになるまで粉砕した後、水を加え、さらに湿式のメディアミル(横型ビーズミル、1/16インチ径のステンレスビーズ)を用いて5時間粉砕した。得られたスラリーをスクリュープレス機にて脱水した後、ケーキに水を加え、再び湿式のメディアミル(横型ビーズミル、1/16インチ径のステンレスビーズ)を用いて5時間粉砕し、スラリー2を得た。このスラリー2中に含まれる粒子粒径(粉砕物の体積平均粒径)をマイクロトラックにて測定した結果、D50は1.4μmであった。
 例3
 磁性芯材作製の際に、仮焼成物の粉砕条件を変えた以外は、例1と同様にして磁性芯材及びキャリアの作製と評価を行った。ここで、例1の(1-1)仮焼成物粉砕を次のように変更した。すなわち、乾式のメディアミル(振動ミル、1/8インチ径のステンレスビーズ)を用いて平均粒径が約4μmになるまで粉砕した後、水を加え、さらに湿式のメディアミル(横型ビーズミル、1/16インチ径のステンレスビーズ)を用いて10時間粉砕した。粉砕中のスラリーは、粉砕と同時にクロスフロー式濾過による濃縮と水の添加を行い、スラリー3を得た。このスラリー3中に含まれる粒子の粒径(粉砕物の体積平均粒径)をマイクロトラックにて測定した結果、D50は1.4μmであった。
 例4
 磁性芯材作製の際に、ロットの異なる原料を用いた以外は、例1と同様にして磁性芯材及びキャリアの作製と評価を行った。
 例5(比較例)
 磁性芯材作製の際に、仮焼成物の粉砕条件を変えた以外は、例1と同様にして磁性芯材及びキャリアの作製と評価を行った。ここで、例1の(1-1)仮焼成物粉砕を次のように変更した。すなわち、乾式のメディアミル(振動ミル、1/8インチ径のステンレスビーズ)を用いて平均粒径が約4μmになるまで粉砕した後、水を加え、さらに湿式のメディアミル(横型ビーズミル、1/16インチ径のステンレスビーズ)を用いて10時間粉砕し、スラリー5を得た。このスラリー5中に含まれる粒子の粒径(粉砕物の体積平均粒径)をマイクロトラックにて測定した結果、D50は1.4μmであった。
 例6(比較例)
 磁性芯材作製の際に、ロットの異なる原料を用いた以外は、例5と同様にして磁性芯材及びキャリアの作製と評価を行った。
 例7(比較例)
 磁性芯材作製の際に、仮焼成物の粉砕条件を変えた以外は、例1と同様にして磁性芯材及びキャリアの作製と評価を行った。ここで、例1の(1-1)仮焼成物粉砕を次のように変更した。すなわち、乾式のメディアミル(振動ミル、1/8インチ径のステンレスビーズ)を用いて平均粒径が約4μmになるまで粉砕した後、水を加え、さらに湿式のメディアミル(横型ビーズミル、1/16インチ径のステンレスビーズ)を用いて4時間粉砕した。得られたスラリーをベルトプレス機にて圧搾脱水した後、ケーキに水を加え、再び湿式のメディアミル(横型ビーズミル、1/16インチ径のステンレスビーズ)を用いて3時間粉砕した。得られたスラリーをベルトプレス機にて圧搾脱水した後、ケーキに水を加え、再び湿式のメディアミル(横型ビーズミル、1/16インチ径のステンレスビーズ)を用いて4時間粉砕し、スラリー7を得た。このスラリー7中に含まれる粒子の粒径(粉砕物の体積平均粒径)をマイクロトラックにて測定した結果、D50は1.4μmであった。
 例8(比較例)
 磁性芯材作製の際に(1-3)本焼成時の焼成温度を1145℃とし、キャリア作製の際に充填樹脂溶液中のメチルシリコーン樹脂溶液量を10重量部(固形分としては2重量部)とした以外は、例1と同様にして磁性芯材及びキャリアの作製と評価を行なった。
 例9(比較例)
 磁性芯材作製の際に(1-3)本焼成時の焼成温度を1010℃とし、キャリア作製の際に充填樹脂溶液中のメチルシリコーン樹脂溶液量を40重量部(固形分としては8重量部)とした以外は、例1と同様にして磁性芯材及びキャリアの作製と評価を行なった。
 結果
 例1~9において、得られた評価結果は表1及び2に示されるとおりであった。実施例である例1~4においては、電気抵抗環境変動比(A/B)が小さいとともに、平均圧縮破壊強度(CSave)に優れ且つ圧縮破壊強度の変動係数(CSvar)が小さかった。一方、比較例である例5及び6においては、式(1)が過度に大きく、その結果、電気抵抗環境変動比(A/B)が大きくなった。これに対して、例7においては、式(1)が過度に小さく、その結果、圧縮破壊強度の変動係数(CSvar)が大きくなった。また、例8は細孔容積が小さすぎるため、キャリアの見かけ密度(AD)が高く、軽量化に劣るものとなった。一方、例9は細孔容積が大きすぎるため、平均圧縮破壊強度に劣るものとなった。これらの結果から、本発明によれば、低比重でありながらも、環境差による電気抵抗変化が小さく且つ優れた強度を有し、欠陥の無い良好な画像が得られる電子写真現像剤用磁性芯材及び電子写真現像剤用キャリア、並びに該キャリアを含む現像剤を提供できることが分かる。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明によれば、低比重でありながらも、環境変動による電気抵抗変化が小さく且つ優れた強度を有し、キャリアや現像剤としたときに良好な画像を安定して得ることができる電子写真現像剤用磁性芯材を提供することができる。また、本発明の他の目的は、そのような磁性芯材を備えた電子写真現像剤用キャリアや現像剤を提供することができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2017年2月10日出願の日本特許出願(特願2017-023597)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (7)

  1.  燃焼イオンクロマトグラフィー法によって測定されるフッ素イオン量をa(ppm)、塩素イオン量をb(ppm)、臭素イオン量をc(ppm)、亜硝酸イオン量をd(ppm)、硝酸イオン量をe(ppm)、硫酸イオン量をf(ppm)としたとき、式(1):a+b×10+c+d+e+fの値が200~1400であり、且つ細孔容積が30~100mm/gである、電子写真現像剤用磁性芯材。
  2.  前記磁性芯材がFe、Mn、Mg及びSrを含むフェライト組成を有する、請求項1に記載の電子写真現像剤用磁性芯材。
  3.  前記式(1)の値が250~1200である、請求項1又は2に記載の電子写真現像剤用磁性芯材。
  4.  前記細孔容積が35~85mm/gである、請求項1~3のいずれか一項に記載の電子写真現像剤用磁性芯材。
  5.  請求項1~4のいずれか一項に記載の電子写真現像剤用磁性芯材と、前記磁性芯材の表面に設けられた樹脂からなる被覆層とを備えた、電子写真現像剤用キャリア。
  6.  前記磁性芯材の細孔に充填してなる樹脂を更に備えた、請求項5に記載の電子写真現像剤用キャリア。
  7.  請求項5又は6に記載のキャリアと、トナーとを含む、現像剤。
PCT/JP2018/000877 2017-02-10 2018-01-15 電子写真現像剤用磁性芯材、電子写真現像剤用キャリア及び現像剤 WO2018147002A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880010958.5A CN110268335B (zh) 2017-02-10 2018-01-15 电子照相显影剂用磁性芯材、电子照相显影剂用载体及显影剂
EP18751417.9A EP3582022B1 (en) 2017-02-10 2018-01-15 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
US16/483,718 US10996579B2 (en) 2017-02-10 2018-01-15 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017023597A JP6865056B2 (ja) 2017-02-10 2017-02-10 電子写真現像剤用磁性芯材、電子写真現像剤用キャリア及び現像剤
JP2017-023597 2017-02-10

Publications (1)

Publication Number Publication Date
WO2018147002A1 true WO2018147002A1 (ja) 2018-08-16

Family

ID=63108016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000877 WO2018147002A1 (ja) 2017-02-10 2018-01-15 電子写真現像剤用磁性芯材、電子写真現像剤用キャリア及び現像剤

Country Status (5)

Country Link
US (1) US10996579B2 (ja)
EP (1) EP3582022B1 (ja)
JP (1) JP6865056B2 (ja)
CN (1) CN110268335B (ja)
WO (1) WO2018147002A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175326A1 (ja) * 2019-02-25 2020-09-03 パウダーテック株式会社 フェライト粒子、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア及び電子写真現像剤

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959025A (ja) * 1995-06-15 1997-03-04 Toda Kogyo Corp 球状を呈した磁性トナー用磁性酸化鉄粒子粉末及びその製造法並びに該磁性酸化鉄粒子粉末を用いた磁性トナー
JP2009234839A (ja) * 2008-03-26 2009-10-15 Powdertech Co Ltd フェライト粒子及びその製造方法
JP2010055014A (ja) 2008-08-29 2010-03-11 Powdertech Co Ltd 電子写真現像剤用樹脂充填型キャリア及び該樹脂充填型キャリアを用いた電子写真現像剤
JP2011180296A (ja) * 2010-02-26 2011-09-15 Powdertech Co Ltd 電子写真現像剤用フェライトキャリア芯材、フェライトキャリア及び該フェライトキャリアを用いた電子写真現像剤
JP2014197040A (ja) 2013-03-21 2014-10-16 パウダーテック株式会社 電子写真現像剤用樹脂充填型フェライトキャリア芯材及びフェライトキャリア、並びに該フェライトキャリアを用いた電子写真現像剤
JP2016025288A (ja) 2014-07-24 2016-02-08 Dowaホールディングス株式会社 フェライト磁性材
JP2016224237A (ja) * 2015-05-29 2016-12-28 パウダーテック株式会社 電子写真現像剤用樹脂充填型フェライトキャリア及び該樹脂充填型フェライトキャリアを用いた電子写真現像剤
JP2017023597A (ja) 2015-07-27 2017-02-02 木下精密工業株式会社 自動ボビン交換装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121239B1 (ko) * 2005-09-29 2012-03-23 도와 아이피 크리에이션 가부시키가이샤 전자 사진 현상용 캐리어 심재, 전자 사진 현상용 캐리어및 그 제조방법, 및 전자 사진 현상제
JP5464639B2 (ja) * 2008-03-14 2014-04-09 パウダーテック株式会社 電子写真現像剤用樹脂充填型キャリア及び該樹脂充填型キャリアを用いた電子写真現像剤
JP2012048210A (ja) * 2010-07-30 2012-03-08 Konica Minolta Business Technologies Inc 静電荷像現像用現像剤の製造方法
JP5622151B2 (ja) * 2011-01-31 2014-11-12 パウダーテック株式会社 電子写真現像剤用フェライトキャリア芯材、フェライトキャリア及びこれらの製造方法、並びに該フェライトキャリアを用いた電子写真現像剤
CN103309190B (zh) * 2013-05-29 2015-06-03 湖北鼎龙化学股份有限公司 载体芯材及其制造方法、载体及静电荷图像显影剂
JP5692766B1 (ja) * 2014-01-20 2015-04-01 パウダーテック株式会社 外殻構造を有するフェライト粒子を用いた電子写真現像剤用フェライトキャリア芯材及びフェライトキャリア、並びに該フェライトキャリアを用いた電子写真現像剤
JP2018109704A (ja) * 2017-01-04 2018-07-12 パウダーテック株式会社 電子写真現像剤用磁性芯材、電子写真現像剤用キャリア及び現像剤

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959025A (ja) * 1995-06-15 1997-03-04 Toda Kogyo Corp 球状を呈した磁性トナー用磁性酸化鉄粒子粉末及びその製造法並びに該磁性酸化鉄粒子粉末を用いた磁性トナー
JP2009234839A (ja) * 2008-03-26 2009-10-15 Powdertech Co Ltd フェライト粒子及びその製造方法
JP2010055014A (ja) 2008-08-29 2010-03-11 Powdertech Co Ltd 電子写真現像剤用樹脂充填型キャリア及び該樹脂充填型キャリアを用いた電子写真現像剤
JP2011180296A (ja) * 2010-02-26 2011-09-15 Powdertech Co Ltd 電子写真現像剤用フェライトキャリア芯材、フェライトキャリア及び該フェライトキャリアを用いた電子写真現像剤
JP2014197040A (ja) 2013-03-21 2014-10-16 パウダーテック株式会社 電子写真現像剤用樹脂充填型フェライトキャリア芯材及びフェライトキャリア、並びに該フェライトキャリアを用いた電子写真現像剤
JP2016025288A (ja) 2014-07-24 2016-02-08 Dowaホールディングス株式会社 フェライト磁性材
JP2016224237A (ja) * 2015-05-29 2016-12-28 パウダーテック株式会社 電子写真現像剤用樹脂充填型フェライトキャリア及び該樹脂充填型フェライトキャリアを用いた電子写真現像剤
JP2017023597A (ja) 2015-07-27 2017-02-02 木下精密工業株式会社 自動ボビン交換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3582022A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175326A1 (ja) * 2019-02-25 2020-09-03 パウダーテック株式会社 フェライト粒子、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア及び電子写真現像剤
WO2020175336A1 (ja) * 2019-02-25 2020-09-03 パウダーテック株式会社 フェライト粒子、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア及び電子写真現像剤
JP6757872B1 (ja) * 2019-02-25 2020-09-23 パウダーテック株式会社 フェライト粒子、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア及び電子写真現像剤
JP6766310B1 (ja) * 2019-02-25 2020-10-14 パウダーテック株式会社 フェライト粒子、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア及び電子写真現像剤

Also Published As

Publication number Publication date
US10996579B2 (en) 2021-05-04
JP2018128650A (ja) 2018-08-16
EP3582022A4 (en) 2020-11-18
EP3582022B1 (en) 2024-03-13
JP6865056B2 (ja) 2021-04-28
CN110268335B (zh) 2023-07-28
US20200026211A1 (en) 2020-01-23
EP3582022A1 (en) 2019-12-18
CN110268335A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
KR20120132539A (ko) 전자 사진 현상제용 캐리어 심재, 그 제조 방법, 전자 사진 현상제용 캐리어, 및 전자 사진 현상제
JP5032147B2 (ja) 電子写真現像剤用樹脂充填型フェライトキャリア及び該フェライトキャリアを用いた電子写真現像剤
KR20120121412A (ko) 전자 사진 현상제용 캐리어 심재, 전자 사진 현상제용 캐리어, 및 전자 사진 현상제
JP6319779B1 (ja) 電子写真現像剤用磁性芯材、電子写真現像剤用キャリア及び現像剤
WO2018147002A1 (ja) 電子写真現像剤用磁性芯材、電子写真現像剤用キャリア及び現像剤
US10754271B2 (en) Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
EP3567430B1 (en) Magnetic core material for electrographic developer, carrier for electrographic developer, and developer
WO2018147001A1 (ja) 電子写真現像剤用磁性芯材、電子写真現像剤用キャリア及び現像剤
JP6742119B2 (ja) キャリア用芯材、キャリア、現像剤及び電子写真現像システム
JP6302123B1 (ja) 電子写真現像剤用磁性芯材、電子写真現像剤用キャリア及び現像剤
JP7335580B2 (ja) フェライト粒子、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア及び電子写真現像剤
CN109839808B (zh) 用于电子照相显影剂的铁氧体载体芯材、载体和显影剂
JP2019040174A (ja) 電子写真現像剤用磁性芯材、電子写真現像剤用キャリア及び現像剤
EP4349789A1 (en) Ferrite particle, carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018751417

Country of ref document: EP

Effective date: 20190910