WO2018142476A1 - 組電池の製造方法および製造装置 - Google Patents

組電池の製造方法および製造装置 Download PDF

Info

Publication number
WO2018142476A1
WO2018142476A1 PCT/JP2017/003433 JP2017003433W WO2018142476A1 WO 2018142476 A1 WO2018142476 A1 WO 2018142476A1 JP 2017003433 W JP2017003433 W JP 2017003433W WO 2018142476 A1 WO2018142476 A1 WO 2018142476A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
bus bar
electrode tab
assembled battery
manufacturing
Prior art date
Application number
PCT/JP2017/003433
Other languages
English (en)
French (fr)
Inventor
真広 中本
昭雄 桑田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201780084838.5A priority Critical patent/CN110226245A/zh
Priority to PCT/JP2017/003433 priority patent/WO2018142476A1/ja
Priority to US16/478,515 priority patent/US20190372079A1/en
Priority to EP17895081.2A priority patent/EP3579304A4/en
Priority to KR1020197024270A priority patent/KR20190103433A/ko
Priority to JP2018565116A priority patent/JPWO2018142476A1/ja
Publication of WO2018142476A1 publication Critical patent/WO2018142476A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method and an apparatus for manufacturing an assembled battery.
  • the assembled battery includes a plurality of unit cells including a power generation element and electrode tabs led out of the power generation element, a spacer that supports the electrode tabs, and a bus bar that electrically connects the electrode tabs of different unit cells.
  • Patent Document 1 discloses a method of performing laser welding in a state where the electrode tabs of the respective single cells are inserted into the bent portions of the bus bar.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an assembled battery manufacturing method and manufacturing apparatus capable of suitably joining an electrode tab and a bus bar.
  • a method for manufacturing an assembled battery according to the present invention that achieves the above object includes a plurality of unit cells including a power generation element and electrode tabs, a spacer that supports the electrode tabs, and the electrode tabs of different unit cells. And a bus bar for electrically connecting the battery pack. By moving the spacer in one direction for each stacking step of stacking the unit cells, the electrode tab is positioned at a predetermined position with respect to the bus bar in the moving direction of the spacer.
  • the battery assembly manufacturing apparatus that achieves the above object includes a plurality of unit cells including a power generation element and electrode tabs, a spacer that supports the electrode tabs, and the electrodes of the unit cells different from each other.
  • An assembled battery manufacturing apparatus having a bus bar for electrically connecting tabs to each other.
  • the assembled battery manufacturing apparatus moves the spacer in one direction for each stacking step of stacking the unit cells, thereby moving the electrode tab to a predetermined position of the electrode bar in the moving direction.
  • FIG. 1 It is a perspective view which shows the assembled battery which concerns on embodiment.
  • FIG. 1 It is a perspective view which shows the principal part of the state which joined the bus bar to the electrode tab of the laminated
  • FIG. 4 is a state in which the first cell sub-assembly (three sets of cells connected in parallel) shown in FIG. 4 is disassembled for each cell, and the first spacer and the second spacer are removed from one (the uppermost) cell.
  • FIG. It is a perspective view which shows the principal part of a 1st spacer. It is a flowchart which shows the manufacturing method of the assembled battery which concerns on 1st Embodiment. It is a perspective view which shows a part of manufacturing apparatus of the assembled battery which concerns on 1st Embodiment.
  • FIG. 1 It is an enlarged view in the A section of FIG. It is a perspective view which shows typically the state in the middle of mounting the 1st single cell with respect to a mounting plate with a lower pressurizing plate being mounted. It is a perspective view which shows typically the state which laminated
  • Laser welding with the anode terminal brought into contact with the anode-side bus bar at the anode-side end, and laser welding with the cathode-side terminal brought into contact with the cathode-side bus bar at the cathode-side termination It is a perspective view which shows this state typically. It is a perspective view which shows typically the state which coat
  • the azimuth is indicated by using arrows represented by X, Y, and Z.
  • the direction of the arrow represented by X indicates a direction that intersects the stacking direction of the unit cells 110 and is along the longitudinal direction of the unit cells 110.
  • the direction of the arrow represented by Y indicates a direction that intersects the stacking direction of the unit cells 110 and is along the short direction of the unit cells 110.
  • the direction of the arrow represented by Z indicates the stacking direction of the unit cells 110.
  • a plurality of assembled batteries 100 are mounted on a vehicle such as an electric vehicle and used as a power source for driving a vehicle motor.
  • the assembled battery 100 is configured by being electrically connected by a bus bar unit 130 in a state where a stacked body 100S formed by stacking a plurality of single cells 110 is pressurized by a pressure unit 120.
  • a battery pack 100 according to an embodiment of the present invention will be described with reference to FIGS.
  • FIG. 1 is a perspective view showing an assembled battery 100 according to the present embodiment.
  • FIG. 2 shows that the pressure unit 120 (the upper pressure plate 121, the lower pressure plate 122, and the left and right side plates 123) is removed from the assembled battery 100 shown in FIG. 1, and a part of the bus bar unit 130 (the protective cover 135 and the anode side). It is a perspective view which shows the state which removed the terminal 133 and the cathode side terminal 134).
  • FIG. 3A is a perspective view showing a main part in a state where the bus bar 132 is joined to the electrode tab 112 of the stacked unit cell 110 in cross section.
  • FIG. 3B is a cross-sectional view showing FIG. 3A from the side.
  • FIG. 4 is a perspective view showing a state in which the bus bar holder 131 and the bus bar 132 are removed from the laminate 100S shown in FIG.
  • FIG. 5 is a perspective view showing a state where the first cell sub-assembly 110M and the second cell sub-assembly 110N shown in FIG. 6 disassembles the first cell sub-assembly 110M (three sets of unit cells 110 connected in parallel) shown in FIG. 4 for each unit cell 110, and the first spacer 110 from one (top) unit cell 110 of the first cell sub-assembly 110M.
  • It is a perspective view which shows the state which removed 114 and the 2nd spacer 115.
  • FIG. 7 is a perspective view showing a main part of the first spacer 114.
  • the stacked body 100S includes a first cell subassembly 110M including three unit cells 110 electrically connected in parallel and a second cell subassembly 110N including three unit cells 110 electrically connected in parallel. Alternately connected in series.
  • the first cell sub-assembly 110 ⁇ / b> M includes three unit cells 110 positioned in the first stage (lowermost stage), the third stage, the fifth stage, and the seventh stage (uppermost stage) in the assembled battery 100. It corresponds to.
  • the second cell sub-assembly 110 ⁇ / b> N corresponds to the three unit cells 110 located in the second, fourth, and sixth stages in the assembled battery 100.
  • the first cell sub-assembly 110M and the second cell sub-assembly 110N have the same configuration. However, the first cell sub-assembly 110M and the second cell sub-assembly 110N have three anode-side electrode tabs 112A and three cathode-side electrode tabs 112K by replacing the top and bottom of the three unit cells 110 as shown in FIGS. Are arranged alternately along the stacking direction Z.
  • all the anode side electrode tabs 112A are located on the left side in the figure, and all the cathode side electrode tabs 112K are located on the right side in the figure.
  • the orientation of the tip 112d of the electrode tab 112 varies up and down in the stacking direction Z by simply replacing the top and bottom for every three unit cells 110. For this reason, each tip 112d is refracted downward so that the tips 112d of the electrode tabs 112 of all the unit cells 110 are aligned.
  • the single battery 110 corresponds to, for example, a lithium ion secondary battery.
  • a plurality of unit cells 110 are connected in series in order to satisfy the specification of the drive voltage of the vehicle motor.
  • a plurality of single cells 110 are connected in parallel in order to secure the capacity of the battery and extend the travel distance of the vehicle.
  • the unit cell 110 includes a flat power generation element 111 that performs charging and discharging, an electrode tab 112 that is led out from the power generation element 111 and has a tip 112d refracted along the stacking direction Z, and a power generation element A laminating film 113 for sealing 111 is included.
  • the power generation element 111 supplies electric power by discharging electric power to a vehicle motor or the like after charging electric power from an outdoor charging stand or the like.
  • the power generation element 111 is configured by stacking a plurality of sets of anodes and cathodes separated by a separator.
  • the electrode tab 112 faces the power generation element 111 to the outside.
  • the electrode tab 112 includes an anode side electrode tab 112A and a cathode side electrode tab 112K.
  • the proximal end side of the anode side electrode tab 112A is joined to all the anodes included in one power generation element 111.
  • the anode-side electrode tab 112A is formed from a thin plate and is made of aluminum in accordance with the characteristics of the anode.
  • the base end side of the cathode side electrode tab 112K is joined to all the cathodes included in one power generation element 111.
  • the cathode-side electrode tab 112K is formed from a thin plate and is made of copper in accordance with the characteristics of the cathode.
  • the electrode tab 112 is formed in an L shape as shown in FIG. 3B.
  • the base end portion 112 c of the electrode tab 112 is supported from below by the support surface 114 b of the first spacer 114.
  • the tip 112 d of the electrode tab 112 is refracted along the lower side in the stacking direction Z and faces the contact surface 114 h of the first spacer 114.
  • the laminate film 113 is a pair, and seals the power generation element 111 by sandwiching the power generation element 111 from above and below along the stacking direction Z.
  • the pair of laminate films 113 lead out the anode-side electrode tab 112A and the cathode-side electrode tab 112K from the gap between the one end portions 113a along the short direction Y to the outside.
  • the unit cell 110 is supported by a pair of spacers (first spacer 114 and second spacer 115) as shown in FIG. Laminated.
  • the cells 110 are arranged at regular intervals along the stacking direction Z as shown in FIGS. 2, 3A, and 3B.
  • the first spacer 114 supports the unit cell 110 on the side provided with the electrode tab 112.
  • the second spacer 115 supports the unit cell 110 on the side not provided with the electrode tab 112 so as to face the first spacer 114 in the longitudinal direction X of the unit cell 110.
  • the first spacer 114 is formed of a long plate shape having irregularities and is made of reinforced plastics having insulating properties.
  • the first spacer 114 is provided so as to face one end 113a of the pair of laminate films 113.
  • the first spacer 114 supports one end 113 a of the laminate film 113 by a flat support surface 114 b.
  • the first spacer 114 includes a contact surface 114h on a wall surface adjacent to the support surface 114b and extending in the stacking direction Z.
  • the contact surface 114h positions the tip 112d of the electrode tab 112 along the longitudinal direction X as shown in FIG. 3B.
  • FIG. 3B As shown in FIG.
  • the first spacer 114 includes a pair of connecting pins 114 c protruding upward at both ends along the short direction Y of the support surface 114 b.
  • the pair of connecting pins 114c has a columnar shape, and the unit cell 110 is positioned by being inserted into connecting holes 113c opened at both ends along the short direction Y of the one end portion 113a of the laminate film 113.
  • the plurality of first spacers 114 are in contact with the upper surface 114a of one first spacer 114 and the lower surface 114d of another first spacer 114.
  • the plurality of first spacers 114 are positioned so as to open to cylindrical positioning pins 114e protruding from the upper surface 114a of one first spacer 114 and lower surfaces 114d of the other first spacers 114.
  • the holes 114f they are positioned with respect to each other.
  • the first spacer 114 has locating holes 114g at both ends along the short direction Y.
  • the collar 116 is inserted into the locate hole 114g.
  • the locate hole 114g is inserted with a bolt that connects the battery packs 100 while positioning them in the stacking direction Z.
  • the first spacer 114 includes a pair of connecting pins 114 c that protrude upward at both ends along the short direction Y of the support surface 114 b.
  • the pair of connecting pins 114c has a columnar shape, and the unit cell 110 is positioned by being inserted into connecting holes 113c opened at both ends along the short direction Y of the one end portion 113a of the laminate film 113.
  • the plurality of first spacers 114 are in contact with the upper surface 114a of one first spacer 114 and the lower surface 114d of another first spacer 114. As shown in FIG. 3B, the plurality of first spacers 114 are positioned so as to open to cylindrical positioning pins 114e protruding from the upper surface 114a of one first spacer 114 and lower surfaces 114d of the other first spacers 114. By positioning the holes 114f, they are positioned with respect to each other.
  • the first spacer 114 has a concave portion 114 j formed by cutting out in a concave shape along the stacking direction Z on the side surface on the outer side in the Y direction of the upper surface 114 a.
  • the concave portion 114j is engaged with a convex portion 221 provided on the positioning member 220 in the method for manufacturing the assembled battery 100 described later.
  • the recess 114 j has a first surface 114 s located on the front side (the tip side where the electrode tab 112 faces the bus bar 132).
  • the first spacer 114 has an extending surface 114k that is located on the front surface side (X direction negative side) and extends in the stacking direction Z.
  • the first spacer 114 Since the second spacer 115 does not need to support the electrode tab 112, the first spacer 114 is simplified.
  • the second spacer 115 supports the other end 113b facing the one end 113a of the laminate film 113 along the longitudinal direction X by the support surface 115b.
  • the second spacer 115 includes a positioning pin 115 e for positioning the second spacers, a connecting pin 115 c for positioning the unit cell 110, and a plurality of assembled batteries 100, as with the first spacer 114. Locating holes 115g for inserting bolts to be connected while positioning are provided.
  • the collar 116 (regulating member) is formed of a metal that is formed in a cylindrical shape and has sufficient strength.
  • the collar 116 is inserted into the pair of locating holes 114g of the first spacer 114 and the pair of locating holes 115g of the second spacer 115, respectively.
  • the collar 116 is inserted with a bolt (not shown) that connects the battery packs 100 while positioning them.
  • the collar 116 reinforces the first spacer 114 and the second spacer 115 along the stacking direction Z. Compared to the first spacer 114 and the second spacer 115, the collar 116 has a considerably small amount of deformation along the stacking direction Z.
  • the tape member (corresponding to the adhesive member) 117 is disposed between the unit cells 110 that are vertically adjacent to each other along the stacking direction Z, and bonds the adjacent unit cells 110 to each other.
  • the tape member 117 is a double-sided tape having adhesiveness on both sides.
  • the tape member 117 is provided at least in the gap between each unit cell 110 at a portion that overlaps at least the power generation element 111 included in the unit cell 110 along the stacking direction Z.
  • the tape member 117 protects the laminate film 113 by absorbing stress applied to the laminate film 113 located on the outermost layer of the unit cell 110 when the unit cell 110 vibrates or an impact is applied to the unit cell 110. To do.
  • the configuration of the pressure unit 120 will be described in detail.
  • the pressurizing unit 120 includes an upper pressurizing plate 121 and a lower pressurizing plate 122 that pressurize the power generation element 111 of each unit cell 110 of the stacked body 100S from above and below, and an upper pressurizing plate 121 and a lower part in a state where the stacked body 100S is pressed A pair of side plates 123 for fixing the pressure plate 122 is included.
  • the upper pressure plate 121 and the lower pressure plate 122 sandwich and hold the plurality of unit cells 110 constituting the stacked body 100 ⁇ / b> S from above and below, and generate power elements of each unit cell 110.
  • 111 is pressurized.
  • the upper pressure plate 121 is formed in a plate shape having unevenness and is made of a metal having sufficient rigidity.
  • the upper pressure plate 121 is provided on a horizontal plane.
  • the upper pressure plate 121 includes a pressure surface 121 a that pressurizes the power generation element 111 downward.
  • the pressing surface 121a is formed flat and protrudes downward from the central portion of the upper pressing plate 121.
  • the upper pressure plate 121 includes a locating hole 121b into which a bolt for connecting the assembled batteries 100 is inserted.
  • the locate hole 121b is formed of a through hole and opens at the four corners of the upper pressure plate 121.
  • the lower pressure plate 122 has the same shape as the upper pressure plate 121 and is provided so as to reverse the top and bottom of the upper pressure plate 121. Similarly to the upper pressure plate 121, the lower pressure plate 122 inserts a pressure surface 122 a that pressurizes the power generation element 111 upward, and a bolt that connects the battery packs 100 while positioning them in the stacking direction Z. A hole 122b is provided.
  • the pair of side plates 123 fix the upper pressure plate 121 and the lower pressure plate 122 in a state where the laminate 100S is pressurized. That is, the pair of side plates 123 maintains a constant distance between the upper pressure plate 121 and the lower pressure plate 122. Further, the pair of side plates 123 covers and protects the side surfaces along the longitudinal direction X of the stacked unit cells 110.
  • the side plate 123 is formed in a flat plate shape and is made of metal.
  • the pair of side plates 123 are provided upright so as to face both side surfaces along the longitudinal direction X of the stacked unit cells 110.
  • the pair of side plates 123 are welded to the upper pressure plate 121 and the lower pressure plate 122.
  • bus bar unit 130 The configuration of the bus bar unit 130 will be described in detail.
  • the bus bar unit 130 includes a bus bar holder 131 that integrally holds a plurality of bus bars 132, a bus bar 132 that electrically connects tip portions 112d of electrode tabs 112 of different unit cells 110 (unit cells 110 arranged vertically), Anode-side terminal 133 that allows the anode-side terminals of a plurality of connected unit cells 110 to face an external input / output terminal, and the cathode-side ends of the plurality of electrically connected unit cells 110 that are connected to an external input / output A cathode side terminal 134 facing the terminal, a protective cover 135 for protecting the bus bar 132 and the like are included.
  • the bus bar holder 131 integrally holds a plurality of bus bars 132.
  • the bus bar holder 131 integrally holds a plurality of bus bars 132 in a matrix so as to face the electrode tabs 112 of each unit cell 110 of the stacked body 100S.
  • the bus bar holder 131 is made of an insulating resin and has a frame shape.
  • the bus bar holder 131 is a pair of standing up along the stacking direction Z so as to be located on both sides in the longitudinal direction of the first spacer 114 that supports the electrode tab 112 of the unit cell 110.
  • Each column 131a is provided.
  • the pair of support columns 131 a are fitted to the side surfaces of the first spacer 114.
  • the pair of support columns 131a are L-shaped when viewed along the stacking direction Z and are formed in a plate shape extending along the stacking direction Z.
  • the bus bar holder 131 is provided with a pair of auxiliary support columns 131b that are erected along the stacking direction Z so as to be located near the center of the first spacer 114 in the longitudinal direction.
  • the pair of auxiliary struts 131b are formed in a plate shape extending along the stacking direction Z.
  • the bus bar holder 131 includes insulating portions 131 c that protrude between the bus bars 132 adjacent to each other along the stacking direction Z.
  • the insulating part 131c is formed in a plate shape extending along the short direction Y.
  • Each insulating part 131c is provided horizontally between the auxiliary support part 131b and the auxiliary support part 131b.
  • the insulating part 131 c prevents discharge by insulating between the bus bars 132 adjacent along the stacking direction Z.
  • the bus bar holder 131 may be formed by joining the supporting column 131a, the auxiliary supporting column 131b, and the insulating portion 131c formed independently of each other, or the supporting column 131a, the auxiliary supporting column 131b, and the insulating portion 131c are integrally formed. You may form and comprise.
  • the bus bar 132 electrically connects the electrode tabs 112 of the unit cells 110 arranged vertically.
  • the bus bar 132 electrically connects the anode side electrode tab 112 ⁇ / b> A of one unit cell 110 and the cathode side electrode tab 112 ⁇ / b> K of another unit cell 110.
  • the bus bar 132 electrically connects, for example, three anode-side electrode tabs 112A arranged above and below the first cell sub-assembly 110M and three cathode-side electrode tabs 112K arranged above and below the second cell sub-assembly 110N. Connect to.
  • the bus bar 132 connects three anode side electrode tabs 112A of the first cell sub-assembly 110M in parallel and connects three cathode side electrode tabs 112K of the second cell sub-assembly 110N in parallel. . Further, the bus bar 132 connects three anode side electrode tabs 112A of the first cell sub-assembly 110M and three cathode side electrode tabs 112K of the second cell sub-assembly 110N in series. The bus bar 132 is laser-welded to the anode side electrode tab 112A of one unit cell 110 and the cathode side electrode tab 112K of another unit cell 110.
  • the bus bar 132 is configured by joining an anode side bus bar 132A and a cathode side bus bar 132K.
  • the anode-side bus bar 132A and the cathode-side bus bar 132K have the same shape, and are formed in an L shape.
  • the bus bar 132 is integrated by a joining portion 132 c formed by joining one end of the anode-side bus bar 132 ⁇ / b> A that is refracted and one end of the cathode-side bus bar 132 ⁇ / b> K that is refracted. As shown in FIG.
  • the anode side bus bar 132 ⁇ / b> A and the cathode side bus bar 132 ⁇ / b> K constituting the bus bar 132 include side portions 132 d that join the bus bar holder 131 at both ends along the short direction Y.
  • the anode-side bus bar 132A is made of aluminum, like the anode-side electrode tab 112A of the unit cell 110.
  • the cathode-side bus bar 132K is made of copper, like the cathode-side electrode tab 112K of the unit cell 110.
  • the anode-side bus bar 132A and the cathode-side bus bar 132K made of different metals are joined to each other by ultrasonic joining to form a joined portion 132c.
  • the bus bar 132 located at the upper right in the drawing of FIG. 4 corresponds to the end of the anode side of 21 unit cells 110 (3 parallel 7 series), and from only the anode side bus bar 132A. It is composed.
  • the anode-side bus bar 132A is laser-bonded to the anode-side electrode tab 112A of the uppermost three unit cells 110 among the stacked unit cells 110.
  • the bus bar 132 located at the lower left in the drawing of FIG. 4 corresponds to the terminal end on the cathode side of the twenty-one unit cells 110 (three parallel seven series), and from only the cathode side bus bar 132K. It is composed.
  • the cathode-side bus bar 132K is laser-bonded to the cathode-side electrode tab 112K of the lowermost three unit cells 110 among the stacked unit cells 110.
  • the anode side terminal 133 has the anode-side terminations of a plurality of electrically connected unit cells 110 facing an external input / output terminal. As shown in FIG. 2, the anode-side terminal 133 is joined to the anode-side bus bar 132A located at the upper right in the figure among the bus bars 132 arranged in a matrix.
  • the anode side terminal 133 is formed in a plate shape in which both ends are refracted, and is made of a metal having conductivity.
  • the cathode side terminal 134 has the terminal on the cathode side of a plurality of electrically connected unit cells 110 facing an external input / output terminal. As shown in FIG. 2, the cathode side terminal 134 is joined to the cathode side bus bar 132K located in the lower left of the figure among the bus bars 132 arranged in a matrix. The cathode side terminal 134 has the same shape as the anode side terminal 133 and is inverted upside down.
  • the protective cover 135 protects the bus bar 132 and the like. That is, the protective cover 135 integrally covers the plurality of bus bars 132 to prevent each bus bar 132 from coming into contact with other members and the like to cause an electrical short circuit. As shown in FIG. 2, the protective cover 135 refracts one end 135b and the other end 135c of the side surface 135a standing along the stacking direction Z in the longitudinal direction X like a claw, and has an insulating property. Consists of.
  • the protective cover 135 covers the respective bus bars 132 by the side surfaces 135a, and fixes the bus bar holder 131 by sandwiching the bus bar holder 131 from above and below by the one end 135b and the other end 135c.
  • the protective cover 135 has a rectangular opening and a first opening 135d that faces the anode side terminal 133 to the outside, and a second opening 135e that has a rectangular hole and faces the cathode side terminal 134 to the outside. In preparation.
  • FIG. 8 is a flowchart of the manufacturing method of the assembled battery 100 according to the first embodiment.
  • FIG. 9 is a perspective view illustrating a part of the manufacturing apparatus 200 for the assembled battery 100 according to the first embodiment.
  • FIG. 10 is an enlarged view of part A in FIG.
  • the battery pack manufacturing apparatus 200 includes a mounting table 202, a locating column 203 extending in the Z direction from the mounting table 202, and a reference jig fixed to the mounting table 202. 210.
  • the assembled battery 100 manufacturing apparatus 200 includes a plurality of positioning members 220 provided along the stacking direction Z, and a cylinder 230 that pushes the end 223 of the positioning member 220.
  • the manufacturing apparatus 200 of the assembled battery 100 includes a press 205 used in the holding step S103 and a laser light source 206 used for laser welding.
  • the mounting table 202 is formed in a plate shape and is arranged along the horizontal direction (longitudinal direction X and short direction Y).
  • the four locating columns 203 stand on the mounting surface 202a of the mounting table 202 at a predetermined interval.
  • the locating column 203 aligns the relative positions of the lower pressure plate 122, the pair of spacers (first spacer 114 and second spacer 115) attached to the unit cell 110, and the upper pressure plate 121.
  • Each laminated member is laminated one by one by a robot arm, a hand lifter, a vacuum suction type collet or the like (each not shown).
  • Locating column 203 is configured to provide a predetermined clearance with respect to locating hole 114g of first spacer 114.
  • the reference jig 210 is fixed and arranged on the mounting table 202 as shown in FIGS.
  • the method for fixing the reference jig 210 to the mounting table 202 is not particularly limited.
  • the reference jig 210 has a reference surface 211 on which the extending surface 114k of the first spacer 114 abuts as the positioning member 220 rotates.
  • the positioning member 220 is provided for each first spacer 114 as shown in FIGS. That is, a plurality of positioning members 220 are provided along the stacking direction Z.
  • the positioning member 220 has a convex portion 221 that can be engaged with the concave portion 114 j of the first spacer 114.
  • the positioning member 220 is rotatably provided around the stacking direction Z by pins 222 along the stacking direction Z.
  • the cylinder 230 is located on the X direction negative side (front side) of the positioning member 220.
  • a plurality of cylinders 230 are provided along the stacking direction Z corresponding to the plurality of positioning members 220 along the stacking direction Z.
  • the cylinder 230 has an end 223 opposite to the side where the convex portion 221 of the positioning member 220 is provided from the X direction negative side (front side) to the X direction positive side (rear side).
  • the positioning member 220 is rotated around the axis of the pin 222 by pushing in.
  • the state before being pushed is indicated by a dotted line
  • the state after being pushed is indicated by a solid line.
  • the convex portion 221 contacts the first surface 114s of the concave portion 114j of the first spacer 114, and moves the first spacer 114 and the unit cell 110 to the X direction negative side (see FIG. 13). Then, the extending surface 114k of the first spacer 114 abuts on the reference surface 211 of the reference jig 210, so that the joining position of the electrode tab 112 to the bus bar 132 to a predetermined position in the moving direction of the first spacer 114 is achieved. Perform positioning.
  • the cylinders 230 are preferably arranged in a staggered pattern as shown in FIG. By arranging the cylinders 230 in a staggered pattern, the diameter of the cylinders 230 can be increased, and the end portions 223 of the positioning members 220 can be preferably pushed in.
  • the end part 223 of the cylinder 230 and the positioning member 220 is provided with a first magnetic part (not shown) and a second magnetic part 224 having different magnetism.
  • the positioning member 220 moves following the movement of the cylinder 230 in the X direction. For this reason, it can prevent that the positioning member 220 rotates freely, and the workability
  • the manufacturing method of the assembled battery 100 can be summarized as follows. Each time the unit cells 110 are stacked, the first spacer 114 is moved in one direction (in this embodiment, the X direction negative side). As a result, in the moving direction of the first spacer 114, there is a positioning step S102 for positioning the joining portion of the electrode tab 112 with respect to the bus bar 132 to a predetermined position.
  • the manufacturing method of the assembled battery 100 includes a stacking step S101 for stacking the cells 110 and the like one by one, and a holding step S103 for holding the stacked body 100S in a pressurized state. And an electrical path connection step S104 for electrically connecting a plurality of stacked unit cells 110 to each other.
  • the stacking step S101 the above-described positioning step S102 is performed.
  • the stacking step S101 will be described with reference to FIGS.
  • the unit cell 110 arranged at the bottom is the “first unit cell 110”
  • the unit cell 110 positioned second from the bottom is “ The second unit cell 110 ”and the third unit cell 110 located from the bottom are referred to as the“ third unit cell 110 ”.
  • FIG. 11 is a perspective view schematically showing a state in which the lower pressure plate 122 is mounted on the mounting table 202 and the first unit cell 110 is being stacked on the lower pressure plate 122. It is.
  • FIG. 12 is a perspective view schematically showing a state in which the first unit cell 110 is stacked on the lower pressure plate 122.
  • FIG. 13 is a top view showing how the positioning step S102 is performed.
  • FIG. 14 is a perspective view schematically showing a state in the middle of stacking the second unit cell 110 on the first unit cell 110.
  • FIG. 15 is a perspective view showing how the positioning step S102 is performed in a state where a gap is provided between the first unit cell 110 and the second unit cell 110.
  • FIG. 16 is a perspective view showing a state in which the second unit cell 110 is in contact with the first unit cell 110.
  • FIG. 17 is a perspective view schematically showing a state in which the upper pressure plate 121 is laminated on the laminate 100S. 14 to 16, a part of the reference jig 210 and the positioning member 220 are omitted for easy understanding. 14 to 16 are enlarged views of a portion B in FIG.
  • locating holes 122b provided at the four corners of the lower pressure plate 122 are inserted into the four locating columns 203.
  • the lower pressure plate 122 is placed on the placement surface 202 a of the placement table 202 while lowering the lower pressure plate 122 along the stacking direction Z.
  • a tape member 117 is attached to the upper surface of the first unit cell 110.
  • the locate column 203 is configured to provide a predetermined clearance with respect to the locate hole 114g of the first spacer 114. For this reason, if the unit cells 110 are simply stacked, the position of the plurality of unit cells 110 and the first spacers 114 stacked in the stacking direction Z may vary in the XY plane after the stacking process is completed.
  • the positioning step S102 for positioning the electrode tab 112 by eliminating the variation in the position on the XY plane will be described in detail.
  • the cylinder 230 is controlled in a state where the convex portion 221 of the positioning member 220 is engaged with the concave portion 114 j of the first spacer 114. Then, the end 223 of the positioning member 220 is pushed. As a result, the positioning member 220 rotates around the axis of the pin 222 (around the stacking direction Z), and the convex portion 221 of the positioning member 220 abuts on the first surface 114s of the concave portion 114j of the first spacer 114, The spacer 114 is moved to the negative side in the X direction (the lower side in FIG. 13).
  • the extending surface 114k of the first spacer 114 abuts on the reference surface 211 of the reference jig 210.
  • the bonding portion of the electrode tab 112 with respect to the bus bar 132 is positioned at a predetermined position.
  • a pair of collars 116 provided at both ends of the first spacer 114 attached to the second unit cell 110 with respect to the four locating columns 203, and the second spacer 115 A pair of collars 116 provided at both ends are inserted.
  • a pair of spacers (the first spacer 114 and the second spacer 115) attached to the second unit cell 110 are arranged so as not to contact the tape member 117 attached to the upper surface of the first unit cell 110. Lower along the stacking direction Z.
  • the descent is stopped in a state where the first unit cell 110 and the second unit cell have a gap of a predetermined amount (for example, 1 mm).
  • the first spacer 114 attached to the second unit cell 110 is a predetermined amount in the stacking direction Z with respect to the first spacer 114 attached to the first unit cell 110. It is in a separated state.
  • the positioning step S102 is performed again. That is, in the stacking step S101, the positioning step S102 is performed before the first unit cell 110 and the second unit cell 110 contact each other. Since the positioning step S102 performed for the second unit cell 110 is the same as the positioning step S102 performed for the first unit cell 110, description thereof will be omitted.
  • the first spacer 114 attached to the second unit cell 110 is directed toward the first spacer 114 attached to the first unit cell 110. And let it come into contact. As a result, the second unit cell 110 comes into contact with the first unit cell 110 via the tape member 117.
  • the third unit cell 110 and the subsequent steps as well as the second unit cell 110 are lowered along the stacking direction Z until a predetermined gap is provided with the unit cell 110 located on the lower side, positioning.
  • the process S102 and the process of making it contact with the unit cell 110 located below are repeated.
  • the extending surface 114k of the first spacer 114 along the stacking direction Z becomes the same plane in the YZ plane.
  • the joint portion of the electrode tab 112 to the bus bar 132 can be aligned along the stacking direction Z.
  • Locating holes 121b provided at the four corners of the upper pressure plate 121 are inserted into the four locating columns 203. In that state, while lowering the upper pressure plate 121 along the stacking direction Z, the upper pressure plate 121 is stacked on the unit cell 110 positioned at the top of the stacked body 100S. As a result, as shown in FIG. 17, the stacked body 100 ⁇ / b> S is sandwiched between the upper pressure plate 121 and the lower pressure plate 122.
  • FIG. 18 schematically shows a state in which the stacked body 100 ⁇ / b> S sandwiched between the upper pressure plate 121 and the lower pressure plate 122 is pressed by the press 205 continuously from FIG. 17.
  • the press 205 moves along the stacking direction Z by a linear motion stage (not shown) or a hydraulic cylinder (not shown).
  • a linear motion stage not shown
  • a hydraulic cylinder not shown
  • the press 205 moves downward along the stacking direction Z
  • the stacked body 100S sandwiched between the upper pressure plate 121 and the lower pressure plate 122 is pressed, and a sufficient surface pressure is applied to the power generation element 111 of each unit cell 110. It takes.
  • each unit cell 110 can exhibit the desired electrical characteristics.
  • FIG. 19 schematically shows a state in which the side plate 123 is laser-welded to the upper pressure plate 121 and the lower pressure plate 122, continuing from FIG.
  • the laser light source 206 is in contact with the upper pressure plate 121 and the lower pressure plate 122 while the side plate 123 is in close contact with the power generation element 111 of each unit cell 110. Laser welding.
  • the side plate 123 is pressed against the upper pressure plate 121 and the lower pressure plate 122 by a jig (not shown) provided with a laser irradiation punch hole.
  • the laser light source 206 is composed of, for example, a YAG (yttrium, aluminum, garnet) laser.
  • the laser light L2 derived from the laser light source 206 is scanned horizontally along the upper end 123a and the lower end 123b of the side plate 123 in a state where the optical path is adjusted by an optical fiber or a mirror and condensed by a condenser lens, for example. Weld. Since the side plate 123 includes a pair of the upper pressure plate 121 and the lower pressure plate 122 sandwiched from the left and right, the side plates 123 are laser welded respectively. When the welding of one side plate 123 is completed, the mounting table 202 is rotated so that the other side plate 123 and the laser light source 206 face each other, and then the other side plate 123 is welded.
  • the pair of side plates 123 keeps the distance between the upper pressure plate 121 and the lower pressure plate 122 constant. Therefore, even if the press 205 is separated from the upper pressure plate 121, the surface pressure applied to the power generation element 111 of each unit cell 110 is maintained.
  • FIG. 20 corresponds to the electrical path connection step S104.
  • FIG. 20 schematically shows a state in the middle of laser welding by bringing each corresponding bus bar 132 into contact with each electrode tab 112 of the stacked unit cells 110 continuously from FIG. Yes.
  • the mounting table 202 is rotated 90 ° counterclockwise in the drawing from the state of FIG. 19, so that each electrode tab 112 of the stacked unit cells 110 faces the laser light source 206.
  • the bus bar holder 131 is moved by a robot arm (not shown), and each bus bar 132 integrally held by the bus bar holder 131 is pressed against each corresponding electrode tab 112 of the stacked unit cells 110.
  • the laser beam L2 is derived from the laser light source 206, and each bus bar 132 and each corresponding electrode tab 112 are seam welded in order.
  • the distance from the arrangement position of the laser light source 206 to the electrode tab 112 is set as the stacking direction. It is possible to align with high accuracy along Z. Therefore, the electrode tab 112 and the bus bar 132 can be suitably joined at the time of laser welding.
  • FIG. 21 corresponds to the electrical path connecting step S104.
  • FIG. 21 continues from FIG. 20 by abutting the anode-side terminal 133 against the anode-side bus bar 132A at the end of the anode side for laser welding, and the cathode side with respect to the cathode-side bus bar 132K at the end of the cathode side.
  • a state in the middle of laser welding with the terminal 134 in contact is schematically shown.
  • the anode side terminal 133 is joined to the anode side bus bar 132A that corresponds to the terminal end of the anode side and is located on the upper right in the drawing.
  • the cathode side terminal 134 is joined to the cathode side bus bar 132K which corresponds to the end of the cathode side and is located at the lower left in the figure among the bus bars 132 arranged in a matrix.
  • FIG. 22 corresponds to the electrical path connecting step S104.
  • FIG. 22 schematically shows a state in which a plurality of bus bars 132 are covered with one protective cover 135, continuing from FIG.
  • the protective cover 135 is moved by a robot arm (not shown), and one end 135b and the other end 135c of the protective cover 135 are fitted into the bus bar holder 131.
  • the protective cover 135 is fixed to the bus bar holder 131 by using a hook such as a snap fit, using a screw, or using an elastic adhesive.
  • the protective cover 135 has the anode side terminal 133 exposed to the outside from the first opening 135d provided on the side surface 135a, and the cathode side terminal 134 exposed to the outside from the second opening 135e provided on the side surface 135a.
  • the protective cover 135 prevents the bus bar 132 from coming into contact with an external member or the like to cause a short circuit or an electric leakage.
  • the method of manufacturing the assembled battery 100 described with reference to FIGS. 9 to 22 and the like is an automatic machine that controls the entire process by a controller, a semi-automatic machine that handles a part of the process, or an operator that handles the entire process. It may be embodied by any form of manual machine.
  • the method of manufacturing the assembled battery 100 is a method of manufacturing the assembled battery 100 including the plurality of single cells 110, the first spacer 114, and the bus bar 132.
  • the first spacer 114 is moved to the X direction negative side for each stacking step S ⁇ b> 101 for stacking the unit cells 110, whereby the electrode tab 112 is moved relative to the bus bar 132 in the moving direction of the first spacer 114.
  • Positioning of the joining part to a predetermined position is performed.
  • the first spacer 114 is moved to the negative side in the X direction, so that a predetermined portion of the joining portion of the electrode tab 112 to the bus bar 132 in the moving direction of the first spacer 114 can be obtained. Position to the position of. For this reason, after stacking the single cells 110, the distance from the arrangement position of the laser light source 206 to the electrode tab 112 can be aligned with high accuracy along the stacking direction Z. Therefore, the electrode tab 112 and the bus bar 132 can be suitably joined at the time of laser welding.
  • the electrode tabs 112 are positioned before the single cells 110 come into contact with each other. For this reason, even when the tape member 117 is disposed between the single cells 110, the first spacer 114 is preferably moved to favorably position the joining portion of the electrode tab 112 with respect to the bus bar 132 to a predetermined position. Can be done.
  • the tape member 117 is disposed on the surface of the unit cell 110 before the stacking step S101, and before the unit cells 110 are brought close to each other with the tape member 117 interposed therebetween in the stacking step S101, the unit cells 110 are connected to each other. Prior to overlapping via 117, the electrode tab 112 is positioned. According to this manufacturing method, the single cells 110 overlap with each other via the tape member 117, so that when the single cells 110 vibrate or an impact is applied to the single cells 110, they are positioned in the outermost layer of the single cells 110. The stress applied to the laminate film 113 is absorbed to protect the laminate film 113.
  • the positioning of the electrode tab 112 with respect to the bus bar 132 is performed by the positioning member 220 provided for each first spacer 114. For this reason, the positioning of the electrode tab 112 performed each time the unit cells 110 are stacked is facilitated.
  • the first spacer 114 is moved by moving the positioning member 220 in a state where the convex portion 221 provided in the positioning member 220 is engaged with the concave portion 114j provided in the first spacer 114. According to this manufacturing method, it is possible to more easily position the joining portion of the electrode tab 112 with respect to the bus bar 132 at a predetermined position.
  • the positioning member 220 is provided rotatably around the stacking direction Z by pins 222 provided along the stacking direction Z.
  • the positioning member 220 is rotated around the axis of the pin 222 by pushing the end 223 opposite to the side where the convex portion 221 of the positioning member 220 is provided, thereby positioning the electrode tab 112 with respect to the bus bar 132. For this reason, the electrode tab 112 can be easily positioned at a predetermined position of the joint portion with respect to the bus bar 132.
  • the electrode tab 112 is positioned with respect to the bus bar 132 by bringing the first spacer 114 into contact with the reference surface 211 serving as a reference. According to this manufacturing method, since the electrode tab 112 can be positioned by bringing the first spacer 114 into contact with the reference surface 211, the electrode tab 112 can be easily positioned.
  • the tip 112d of the electrode tab 112 is refracted along the stacking direction Z, and the first spacer 114 is in the surface direction of the unit cell 110 and away from the unit cell 110 (X direction negative side).
  • the spacer 114 is moved to position the electrode tab 112. According to this manufacturing method, since the first spacer 114 is moved away from the unit cell 110, the electrode tab 112 can be easily positioned.
  • the assembled battery 100 manufacturing apparatus 200 is the assembled battery 100 manufacturing apparatus 200 including the plurality of single cells 110, the first spacer 114, and the bus bar 132. .
  • the manufacturing apparatus 200 moves the first spacer 114 to the X direction negative side for each stacking step S101 for stacking the unit cells 110, so that the bonding portion of the electrode tab 112 to the bus bar 132 is moved in the moving direction of the first spacer 114. It has a positioning member 220 for positioning to a predetermined position. According to this manufacturing apparatus 200, the distance from the arrangement position of the laser light source 206 to the electrode tab 112 can be aligned with high accuracy along the stacking direction Z. Therefore, the electrode tab 112 and the bus bar 132 can be suitably joined at the time of laser welding.
  • FIG. 23 is a diagram showing a method for manufacturing the battery pack 100 according to the second embodiment, and is a perspective view showing how the electrode tab 112 of the first unit cell 110 is positioned.
  • FIG. 24 is a diagram showing a method for manufacturing the assembled battery 100 according to the second embodiment, and is a perspective view showing how the electrode tab 112 of the second unit cell 110 is positioned. 23 and 24, the reference jig 210, the positioning member 220, and the extending part 330 are partially omitted for easy understanding.
  • the manufacturing method according to the second embodiment differs from the manufacturing method according to the first embodiment in a method of pressing the positioning member 220 to the X direction positive side.
  • the manufacturing method of the assembled battery 100 according to the second embodiment includes a stacking step S201, a holding step S103, and an electrical path connecting step S104.
  • the stacking step S201 includes a positioning step S202.
  • the manufacturing apparatus 300 of the assembled battery 100 according to the second embodiment includes a mounting table 202, a locating column 203, a reference jig 210, and a positioning member 220, as shown in FIGS.
  • the manufacturing apparatus 300 includes an extending portion 330 that extends in the stacking direction Z, and a tapered block 340 that can move in the stacking direction Z.
  • the configuration of the mounting table 202, the locating column 203, the reference jig 210, and the positioning member 220 is the same as that of the manufacturing apparatus 200 for the assembled battery 100 according to the first embodiment, and thus the description thereof is omitted.
  • the extending part 330 extends in the stacking direction Z as shown in FIGS.
  • the extending portion 330 is provided on the Y direction negative side of the reference jig 210 and the positioning member 220 on the X direction negative side.
  • the taper block 340 is slidably installed in the extending direction 330 in the stacking direction Z as shown in FIGS.
  • the taper block 340 is moved in the stacking direction Z by a control unit (not shown).
  • the taper block 340 includes a contact part 341 that can contact the end part 223 of the positioning member 220, and a taper part 342 that is continuous with the contact part 341 and is inclined to the negative side in the X direction as it extends upward in the stacking direction Z.
  • the taper block 340 moves upward so that the taper portion 342 pushes the end 223 of the positioning member 220 from the X direction negative side to the X direction positive side.
  • the positioning member 220 is rotated around the axis of the pin 222.
  • the convex portion 221 contacts the first surface 114s of the concave portion 114j of the first spacer 114, and moves the first spacer 114 and the unit cell 110 to the X direction negative side.
  • the extending surface 114k of the first spacer 114 abuts on the reference surface 211 of the reference jig 210, so that the joining position of the electrode tab 112 to the bus bar 132 to a predetermined position in the moving direction of the first spacer 114 is achieved. Perform positioning.
  • the manufacturing method of the assembled battery 100 according to the second embodiment differs from the manufacturing method of the assembled battery 100 according to the first embodiment only in the stacking step S201. For this reason, below, lamination
  • the lower pressure plate 122 is mounted on the mounting surface 202a of the mounting table 202, the first unit cell 110 is stacked on the lower pressure plate 122, and the first unit cell.
  • a tape member 117 is attached to the upper surface of 110.
  • the taper block 340 moves upward in the stacking direction Z, and the end 223 of the first positioning member 220 is moved from the negative side to the positive side in the X direction.
  • Push As a result, the positioning member 220 rotates around the axis of the pin 222 (around the Z direction), and the convex portion 221 of the positioning member 220 comes into contact with the first surface 114s of the concave portion 114j of the first spacer 114. 114 is moved to the negative side in the X direction. Then, the extending surface 114k of the first spacer 114 abuts on the reference surface 211 of the reference jig 210. As a result, in the moving direction of the first spacer 114, the bonding portion of the electrode tab 112 with respect to the bus bar 132 is positioned at a predetermined position.
  • first spacer 114 and second spacer 115 attached to the second unit cell 110 are lowered along the stacking direction Z. Then, the descent is stopped in a state where the first unit cell 110 and the second unit cell have a gap of a predetermined amount.
  • the positioning step S202 is performed again. Specifically, the taper block 340 is moved upward in the stacking direction Z, the positioning member 220 is rotated by the taper portion 342 of the taper block 340, and the contact portion 341 contacts the end portion 223 of the positioning member 220. Let me.
  • the first spacer 114 attached to the second unit cell 110 is lowered and brought into contact with the first spacer 114 attached to the first unit cell 110.
  • the second unit cell 110 comes into contact with the first unit cell 110 via the tape member 117.
  • Step S202 and the step of contacting with the lower unit cell 110 are repeated.
  • the taper block 340 provided with the taper portion 342 rises along the stacking direction Z, so that the taper portion 342 becomes the end portion 223.
  • the end 223 is pushed in by contact.
  • the manufacturing apparatus 300 since one taper block 340 may be controlled without controlling a plurality of cylinders 230 used in the method for manufacturing the assembled battery 100 according to the first embodiment, the manufacturing apparatus 300 becomes complicated. Can be prevented.
  • FIG. 25 is a diagram showing a method for manufacturing the assembled battery 100 according to the third embodiment, and is a perspective view showing a state in which the unit cells 110 are stacked by the support portion 440 via a gap.
  • FIG. 26 is a diagram showing a method for manufacturing the assembled battery 100 according to the third embodiment, and is a top view showing a state before performing the positioning step S302.
  • FIG. 27 is a diagram illustrating a method for manufacturing the assembled battery 100 according to the third embodiment, and is a top view illustrating a state after performing the positioning step S302.
  • FIG. 28 is a diagram illustrating a method of manufacturing the battery pack 100 according to the third embodiment, and is a perspective view illustrating a state in which all the unit cells 110 are stacked by releasing the support state of the support portion 440 (retracted state).
  • FIG. 26 is a diagram showing a method for manufacturing the assembled battery 100 according to the third embodiment, and is a perspective view showing a state in which the unit cells 110 are stacked by the support portion
  • the manufacturing method according to the third embodiment differs from the manufacturing method according to the first embodiment in the stacking step S301.
  • the manufacturing method of the assembled battery 100 according to the third embodiment includes a stacking step S301, a holding step S103, and an electrical path connecting step S104.
  • the stacking step S301 includes a positioning step S302.
  • the manufacturing apparatus 400 of the assembled battery 100 according to the third embodiment includes a mounting table 202, a locating column 203, and a reference jig 210, as shown in FIGS.
  • the manufacturing apparatus 400 includes the positioning member 420 provided extending in the stacking direction Z, the cylinder 430 that pushes the end portion 423 of the positioning member 420, and the first spacer 114 in a state where the single cells 110 are spaced from each other. And a support portion 440 to support. Since the mounting table 202, the locating column 203, and the reference jig 210 are the same as those of the battery pack 100 manufacturing apparatus 200 according to the first embodiment, description thereof is omitted.
  • one positioning member 420 is provided extending along the Z direction. As shown in FIGS. 26 and 27, the positioning member 420 has a convex portion 421 that can be engaged with the concave portion 114 j of the first spacer 114. The positioning member 420 is rotatably provided by a pin 222 along the stacking direction Z.
  • the cylinder 430 is positioned near the center along the stacking direction Z of the positioning member 420. As shown in FIGS. 26 and 27, the cylinder 430 rotates the positioning member 220 around the axis of the pin 222 by pushing the end 423 of the positioning member 420. As a result, the convex portion 421 contacts the first surface 114s of the concave portion 114j of the first spacer 114, and the first spacer 114 and the unit cell 110 are moved to the X direction negative side.
  • the extending surface 114k of the first spacer 114 abuts on the reference surface 211 of the reference jig 210, so that the joining position of the electrode tab 112 to the bus bar 132 to a predetermined position in the moving direction of the first spacer 114 is achieved. Perform positioning.
  • the support portion 440 supports the first spacer 114 so that the single cells 110 are arranged with a gap therebetween as shown in FIGS.
  • the support portion 440 is provided to be rotatable around the stacking direction Z by pins 441 along the stacking direction Z.
  • the support unit 440 switches between a support state (see FIGS. 25 to 27) for supporting the first spacer 114 and a retracted state (see FIG. 28) that does not support the first spacer 114 by rotating around the stacking direction Z. Can do.
  • the manufacturing method of the assembled battery 100 according to the third embodiment differs from the manufacturing method of the assembled battery 100 according to the first embodiment only in the stacking step S301. For this reason, below, stacking process S301 of the manufacturing method of the assembled battery 100 which concerns on 3rd Embodiment is demonstrated.
  • the lowermost support portion 440 is referred to as a “first support portion 440”
  • the second support portion 440 from the bottom is referred to as a “second support portion 440”.
  • the unit cells 110 are stacked so that the unit cells 110 are arranged with a gap therebetween. Specifically, the first unit 110 is stacked with the first support 440 in the retracted state, and the first support 440 is in the support state. Next, the second support unit 440 is set in the retracted state, the second unit cell 110 is stacked, and the second support unit 440 is set in the support state. By repeating this process, as shown in FIG. 25, the unit cells 110 are stacked by the support portion 440 via the gap.
  • the positioning member 420 is controlled by controlling the cylinder 430 with the convex portion 221 of the positioning member 220 engaged with the concave portion 114j of the first spacer 114. Is pushed (see the arrow in FIG. 26). Accordingly, the positioning member 420 rotates around the axis of the pin 222 (around the stacking direction Z), and the convex portion 421 of the positioning member 420 abuts on the first surface 114s of the concave portion 114j of the first spacer 114. The spacer 114 is moved to the negative side in the X direction.
  • the extending surface 114k of the first spacer 114 abuts on the reference surface 211 of the reference jig 210.
  • the bonding portion of the electrode tab 112 with respect to the bus bar 132 is positioned at a predetermined position.
  • a plurality of the unit cells 110 are stacked via a gap. Then, by moving the first spacer 114 in one direction, the bonding portion of the electrode tab 112 with respect to the bus bar 132 is positioned at a predetermined position in the moving direction of the first spacer 114. Then, the single cells 110 are brought into contact with each other. According to this manufacturing method, the distance from the arrangement position of the laser light source 206 to the electrode tab 112 can be aligned with high accuracy along the stacking direction Z. Therefore, the electrode tab 112 and the bus bar 132 can be suitably joined at the time of laser welding.
  • the electrode tab 112 is positioned before the unit cells 110 contact each other.
  • the electrode tab 112 may be positioned after the single cells 110 come into contact with each other. At this time, friction is generated by the own weight of the unit cells 110, and deviation between the unit cells 110 can be suppressed.
  • the first spacer 114 is moved by rotating the positioning member 220 while the convex portion 221 of the positioning member 220 is engaged with the concave portion 114j of the first spacer 114.
  • the present invention is not limited to this, and a concave portion may be provided on the positioning member, and a convex portion may be provided on the first spacer so that they are engaged with each other.
  • the first spacer 114 is moved by the cylinder 230.
  • the first spacer 114 may be moved while being held by the hand robot.
  • the extending surfaces 114k of the first spacer 114 are brought into contact with the reference surface 211 of the reference jig 210, so that the extending surfaces 114k are made the same plane.
  • the extending surfaces 114k may be set to the same plane by the positioning member 220 and the cylinder 230 without providing the reference jig.
  • the laser oscillator is appropriately adjusted so that the focal point of the laser beam is an appropriate location.
  • the tip 112d of the electrode tab 112 is refracted along the stacking direction Z, but may not be refracted.
  • positioning is performed for each single cell 110, but positioning may be performed for each of a plurality of single cells 110 (for example, three). According to this method, the manufacturing time can be shortened.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】電極タブおよびバスバを好適に接合することのできる組電池の製造方法を提供する。 【解決手段】単電池110を積層するごとに第1スペーサ114を一方向に移動させることによって、第1スペーサの移動方向において、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めを行う。

Description

組電池の製造方法および製造装置
 本発明は、組電池の製造方法および製造装置に関する。
 組電池は、発電要素と、発電要素の外部に導出した電極タブと、を含む複数の単電池と、電極タブを支持するスペーサと、異なる単電池の電極タブ同士を電気的に接続するバスバと、を有する。
 このような組電池の製造工程において、バスバを電極タブに接合する工程がある。これに関連して、例えば下記の特許文献1には、各々の単電池の電極タブをバスバの屈曲部に挿入した状態で、レーザ溶接を行う方法が開示されている。
特表2012-515418号公報
 特許文献1に記載の接合方法において、電池セルの厚さのばらつき等により、屈曲部に対する電極タブの積層方向の位置がずれる可能性がある。このように屈曲部に対する電極タブの積層方向の位置がずれた場合、電極タブの先端とバスバとの隙間が変化し、接合品質が低下する虞がある。
 本発明は、上記の課題を解決するためになされたものであり、電極タブおよびバスバを好適に接合することのできる組電池の製造方法および製造装置を提供することを目的とする。
 上記目的を達成する本発明に係る組電池の製造方法は、発電要素と、電極タブと、を含む複数の単電池と、前記電極タブを支持するスペーサと、異なる前記単電池の前記電極タブ同士を電気的に接続するバスバと、を有する組電池の製造方法である。前記単電池を積層する積層工程ごとに前記スペーサを一方向に移動させることによって、前記スペーサの移動方向において、前記電極タブの前記バスバに対する接合部位の所定の位置への位置決めを行う。
 また、上記目的を達成する本発明に係る組電池の製造装置は、発電要素と、電極タブと、を含む複数の単電池と、前記電極タブを支持するスペーサと、異なる前記単電池の前記電極タブ同士を電気的に接続するバスバと、を有する組電池の製造装置である。組電池の製造装置は、前記単電池を積層する積層工程ごとに前記スペーサを一方向に移動させることによって、前記スペーサの移動方向において、前記電極タブの前記バスバに対する接合部位の所定の位置への位置決めを行う位置決め部材を有する。
実施形態に係る組電池を示す斜視図である。 図1に示す組電池から、加圧ユニット(上部加圧板と下部加圧板と左右の側板)を取り外し、かつ、バスバユニットの一部(保護カバーとアノード側ターミナルとカソード側ターミナル)を取り外した状態を示す斜視図である。 積層した単電池の電極タブにバスバを接合した状態の要部を断面によって示す斜視図である。 図3Aを側方から示す断面図である。 図2に示す積層体から、バスバホルダとバスバを取り外した状態を示す斜視図である。 図4に示す第1セルサブアッシと第2セルサブアッシをバスバによって電気的に接続する状態を示す斜視図である。 図4に示す第1セルサブアッシ(並列接続する3組の単電池)を単電池毎に分解し、かつ、そのうちの1つ(最上部)の単電池から第1スペーサと第2スペーサを取り外した状態を示す斜視図である。 第1スペーサの要部を示す斜視図である。 第1実施形態に係る組電池の製造方法を示すフローチャートである。 第1実施形態に係る組電池の製造装置の一部を示す斜視図である。 図9のA部における拡大図である。 載置台に対して下部加圧板を載置し、かつ、下部加圧板に対して1つ目の単電池を積層している途中の状態を模式的に示す斜視図である。 下部加圧板に対して1つ目の単電池を積層した状態を模式的に示す斜視図である。 位置決め工程を行う様子を示す上面図である。 1つ目の単電池に対して2つ目の単電池を積層している途中の状態を模式的に示す斜視図である。 1つ目の単電池と2つ目の単電池との間に隙間を配した状態で、位置決め工程を行う様子を示す斜視図である。 2つ目の単電池を1つ目の単電池に接触させた状態を示す斜視図である。 積層体に対して上部加圧板を積層した状態を模式的に示す斜視図である。 上部加圧板および下部加圧板によって挟み込まれた積層体をプレスによって加圧している状態を模式的に示す斜視図である。 上部加圧板および下部加圧板に対して側板をレーザ溶接している状態を模式的に示す斜視図である。 積層している単電池の各々の電極タブに対して対応する各々のバスバを当接させてレーザ溶接している途中の状態を模式的に示す斜視図である。 アノード側の終端のアノード側バスバに対してアノード側ターミナルを当接させてレーザ溶接し、かつ、カソード側の終端のカソード側バスバに対してカソード側ターミナルを当接させてレーザ溶接している途中の状態を模式的に示す斜視図である。 複数のバスバを1つの保護カバーによって被覆した状態を模式的に示す斜視図である。 第2実施形態に係る組電池の製造方法を示す図であって、1つ目の単電池の電極タブの位置決めを行う様子を示す斜視図である。 第2実施形態に係る組電池の製造方法を示す図であって、2つ目の単電池の電極タブの位置決めを行う様子を示す斜視図である。 第3実施形態に係る組電池の製造方法を示す図であって、単電池を支持部によって隙間を介して積層した状態を示す斜視図である。 第3実施形態に係る組電池の製造方法を示す図であって、位置決め工程を行う前の状態を示す上面図である。 第3実施形態に係る組電池の製造方法を示す図であって、位置決め工程を行った後の状態を示す上面図である。 第3実施形態に係る組電池の製造方法を示す図であって、支持部の支持状態を解除して、全ての単電池を積層した状態を示す斜視図である。
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面における各部材の大きさや比率は、説明の都合上誇張され実際の大きさや比率とは異なる場合がある。
 図中において、X、Y、およびZで表す矢印を用いて、方位を示している。Xによって表す矢印の方向は、単電池110の積層方向と交差し、かつ、単電池110の長手方向に沿った方向を示している。Yによって表す矢印の方向は、単電池110の積層方向と交差し、かつ、単電池110の短手方向に沿った方向を示している。Zによって表す矢印の方向は、単電池110の積層方向を示している。
 組電池100は、電気自動車のような車両に複数搭載され、車両用モータを駆動させる電源として使用される。組電池100は、複数の単電池110を積層してなる積層体100Sを加圧ユニット120によって加圧した状態において、バスバユニット130によって電気的に接続して構成している。
 本発明の実施形態に係る組電池100を図1~図7を参照しつつ説明する。
 図1は、本実施形態に係る組電池100を示す斜視図である。図2は、図1に示す組電池100から加圧ユニット120(上部加圧板121と下部加圧板122と左右の側板123)を取り外し、かつ、バスバユニット130の一部(保護カバー135とアノード側ターミナル133とカソード側ターミナル134)を取り外した状態を示す斜視図である。図3Aは、積層した単電池110の電極タブ112にバスバ132を接合した状態の要部を断面によって示す斜視図である。図3Bは、図3Aを側方から示す断面図である。図4は、図2に示す積層体100Sから、バスバホルダ131とバスバ132を取り外した状態を示す斜視図である。図5は、図4に示す第1セルサブアッシ110Mと第2セルサブアッシ110Nをバスバ132によって電気的に接続する状態を示す斜視図である。図6は、図4に示す第1セルサブアッシ110M(並列接続する3組の単電池110)を単電池110毎に分解し、かつ、そのうちの1つ(最上部)の単電池110から第1スペーサ114と第2スペーサ115を取り外した状態を示す斜視図である。図7は、第1スペーサ114の要部を示す斜視図である。
 積層体100Sの構成を詳述する。
 積層体100Sは、図4に示すように、電気的に並列接続した3つの単電池110からなる第1セルサブアッシ110Mと、電気的に並列接続した3つの単電池110からなる第2セルサブアッシ110Nを、交互に直列接続して構成している。
 第1セルサブアッシ110Mは、図4に示すように、組電池100において、1段目(最下段)、3段目、5段目、および7段目(最上段)に位置する3つの単電池110に相当する。第2セルサブアッシ110Nは、図4に示すように、組電池100において、2段目、4段目、および6段目に位置する3つの単電池110に相当する。
 第1セルサブアッシ110Mと第2セルサブアッシ110Nは、同様の構成からなる。但し、第1セルサブアッシ110Mと第2セルサブアッシ110Nは、図4および図5に示すように、3つの単電池110の天地を入れ替えることによって、3つのアノード側電極タブ112Aと3つのカソード側電極タブ112Kが積層方向Zに沿って交互に位置するように配置している。
 第1セルサブアッシ110Mは、図4および図5に示すように、全てのアノード側電極タブ112Aが図中右側に位置し、全てのカソード側電極タブ112Kが図中左側に位置している。
 第2セルサブアッシ110Nは、図4および図5に示すように、全てのアノード側電極タブ112Aが図中左側に位置し、全てのカソード側電極タブ112Kが図中右側に位置している。3つの単電池110毎に、その天地を単純に入れ替えただけでは、電極タブ112の先端部112dの向きが積層方向Zの上下にばらついてしまう。このため、全ての単電池110の電極タブ112の先端部112dの向きが揃うように、各々の先端部112dを下方に屈折させている。
 単電池110は、例えばリチウムイオン二次電池に相当する。単電池110は、車両用モータの駆動電圧の仕様を満たすために直列に複数接続する。単電池110は、電池の容量を確保して車両の走行距離を伸ばすために並列に複数接続する。
 単電池110は、図3Aおよび図3Bに示すように、充放電を行う扁平な発電要素111、発電要素111から導出し先端部112dが積層方向Zに沿って屈折した電極タブ112、および発電要素111を封止するラミネートフィルム113を含んでいる。
 発電要素111は、屋外の充電スタンド等から電力を充電した上で、車両用モータ等に対して放電して駆動電力を供給するものである。発電要素111は、セパレータによって分離されたアノードとカソードを複数組積層して構成している。
 電極タブ112は、図3A、図3Bおよび図4に示すように、発電要素111を外部に臨ませるものである。電極タブ112は、アノード側電極タブ112Aおよびカソード側電極タブ112Kから構成している。アノード側電極タブ112Aの基端側は、1つの発電要素111に含まれる全てのアノードに接合している。アノード側電極タブ112Aは、薄板状から形成し、アノードの特性に合わせてアルミニウムからなる。カソード側電極タブ112Kの基端側は、1つの発電要素111に含まれる全てのカソードに接合している。カソード側電極タブ112Kは、薄板状から形成し、カソードの特性に合わせて銅からなる。
 電極タブ112は、図3Bに示すように、L字状に形成している。電極タブ112の基端部112cは、第1スペーサ114の支持面114bによって下方から支持されている。電極タブ112の先端部112dは、積層方向Zの下方に沿って屈折し、第1スペーサ114の当接面114hに対面している。
 ラミネートフィルム113は、図3Aおよび図3Bに示すように、一対からなり、発電要素111を積層方向Zに沿った上下から挟み込んで封止するものである。一対のラミネートフィルム113は、短手方向Yに沿った一端部113aの隙間から外部に向かって、アノード側電極タブ112Aおよびカソード側電極タブ112Kを導出させている。
 単電池110は、図6に示すように一対のスペーサ(第1スペーサ114および第2スペーサ115)によって支持された状態において、図3(A)、図3(B)および図4に示すように積層される。
 一対のスペーサ(第1スペーサ114および第2スペーサ115)は、図2、図3Aおよび図3Bに示すように、単電池110を積層方向Zに沿って一定の間隔で配置している。第1スペーサ114は、電極タブ112を備えた側の単電池110を支持する。第2スペーサ115は、第1スペーサ114と単電池110の長手方向Xにおいて対向するように、電極タブ112を備えていない側の単電池110を支持する。
 第1スペーサ114は、図6に示すように、凹凸を備えた長尺な板形状から形成し、絶縁性を備えた強化プラスチックスからなる。第1スペーサ114は、一対のラミネートフィルム113の一端部113aに対向するように設けている。第1スペーサ114は、図3Bおよび図6に示すように、平坦な支持面114bによって、ラミネートフィルム113の一端部113aを支持している。第1スペーサ114は、支持面114bと隣接し積層方向Zに沿った壁面に当接面114hを備えている。当接面114hは、図3Bに示すように、電極タブ112の先端部112dを長手方向Xに沿って位置決めしている。第1スペーサ114は、図6に示すように、支持面114bの短手方向Yに沿った両端に、それぞれ上方に向かって突出した一対の連結ピン114cを備えている。一対の連結ピン114cは、円柱形状からなり、ラミネートフィルム113の一端部113aの短手方向Yに沿った両端に開口した連結孔113cに挿入することによって、単電池110を位置決めしている。
 複数の第1スペーサ114は、図3Bに示すように、一の第1スペーサ114の上面114aと、他の第1スペーサ114の下面114dが当接している。複数の第1スペーサ114は、図3Bに示すように、一の第1スペーサ114の上面114aから突出した円柱形状の位置決ピン114eと、他の第1スペーサ114の下面114dに開口した位置決穴114fを嵌合させることによって、互いに位置決めしている。第1スペーサ114は、図6に示すように、短手方向Yに沿った両端に、ロケート孔114gを両端に備えている。ロケート孔114gは、カラー116を挿入している。ロケート孔114gは、複数の組電池100同士を積層方向Zに沿って位置決めしつつ連結するボルトを挿入する。
 第1スペーサ114は、図6に示すように、支持面114bの短手方向Yに沿った両端に、それぞれ上方に向かって突出した一対の連結ピン114cを備えている。一対の連結ピン114cは、円柱形状からなり、ラミネートフィルム113の一端部113aの短手方向Yに沿った両端に開口した連結孔113cに挿入することによって、単電池110を位置決めしている。
 複数の第1スペーサ114は、図3Bに示すように、一の第1スペーサ114の上面114aと、他の第1スペーサ114の下面114dが当接している。複数の第1スペーサ114は、図3Bに示すように、一の第1スペーサ114の上面114aから突出した円柱形状の位置決ピン114eと、他の第1スペーサ114の下面114dに開口した位置決穴114fを嵌合させることによって、互いに位置決めしている。
 第1スペーサ114は、図6、図7に示すように、上面114aのY方向外方の側面に、積層方向Zに沿って凹形状に切り欠いて形成した凹部114jを有する。凹部114jは、後述する組電池100の製造方法において、位置決め部材220に設けられる凸部221と係合する。
 凹部114jは、図7に示すように、前面側(電極タブ112がバスバ132に向かう先端側)に位置する第1面114sを有する。
 第1スペーサ114は、図6、図7に示すように、前面側(X方向負側)に位置して積層方向Zに沿って延在する延在面114kを有する。
 第2スペーサ115は、電極タブ112を支持する必要がないことから、第1スペーサ114を簡略化して構成している。第2スペーサ115は、ラミネートフィルム113の一端部113aと長手方向Xに沿って対向した他端部113bを、支持面115bによって支持している。第2スペーサ115は、図6に示すように、第1スペーサ114と同様に、第2スペーサ同士を位置決めする位置決ピン115e、単電池110を位置決めする連結ピン115c、複数の組電池100同士を位置決めしつつ連結するボルトを挿入するロケート孔115g等を備えている。
 カラー116(規制部材)は、円筒形状に形成し、十分な強度を備えた金属からなる。カラー116は、第1スペーサ114の一対のロケート孔114gと、第2スペーサ115の一対のロケート孔115gにそれぞれ挿入している。カラー116は、複数の組電池100同士を位置決めしつつ連結するボルト(不図示)を挿通する。カラー116は、第1スペーサ114および第2スペーサ115を、積層方向Zに沿って補強する。カラー116は、第1スペーサ114および第2スペーサ115と比較して、積層方向Zに沿った変形量が相当小さい。
 テープ部材(接着部材に相当)117は、図3A、図3Bに示すように、積層方向Zに沿って上下に隣り合う単電池110の間に配置されて、隣り合う単電池110同士を接着している。テープ部材117は両面に粘着性を備える両面テープである。テープ部材117は、少なくとも、各々の単電池110の隙間において、少なくとも単電池110の内部に含まれる発電要素111と積層方向Zに沿って重なる部分に備えている。テープ部材117は、単電池110が振動したり、単電池110に衝撃がかかったりした場合に、単電池110の最外層に位置するラミネートフィルム113にかかる応力を吸収して、ラミネートフィルム113を保護する。
 加圧ユニット120の構成を詳述する。
 加圧ユニット120は、積層体100Sの各々の単電池110の発電要素111を上下から加圧する上部加圧板121と下部加圧板122、および積層体100Sを加圧した状態の上部加圧板121および下部加圧板122を固定する一対の側板123を含んでいる。
 上部加圧板121は、図1および図2に示すように、下部加圧板122と共に、積層体100Sを構成する複数の単電池110を上下から挟み込んで保持しつつ、各々の単電池110の発電要素111を加圧するものである。上部加圧板121は、凹凸を備えた板状に形成し、十分な剛性を備えた金属からなる。上部加圧板121は、水平面上に設けている。上部加圧板121は、図2に示すように、発電要素111を下方に向かって加圧する加圧面121aを備えている。加圧面121aは、平坦に形成され、上部加圧板121の中央の部分から下方に向かって突出している。上部加圧板121は、組電池100同士を連結するボルトを挿入するロケート孔121bを備えている。ロケート孔121bは、貫通孔からなり、上部加圧板121の四隅に開口している。
 下部加圧板122は、図2に示すように、上部加圧板121と同一の形状からなり、上部加圧板121の天地を逆転させるように設けている。下部加圧板122は、上部加圧板121と同様に、発電要素111を上方に向かって加圧する加圧面122a、および組電池100同士を積層方向Zに沿って位置決めしつつ連結するボルトを挿入するロケート孔122bを備えている。
 一対の側板123は、図1および図2に示すように、積層体100Sを加圧した状態の上部加圧板121および下部加圧板122を固定するものである。すなわち、一対の側板123は、上部加圧板121および下部加圧板122の間隔を一定に維持する。また、一対の側板123は、積層した単電池110の長手方向Xに沿った側面を被覆して保護する。側板123は、平板状に形成し、金属からなる。一対の側板123は、積層した単電池110の長手方向Xに沿った両側面に対向するように、起立して設けている。一対の側板123は、上部加圧板121および下部加圧板122に対して溶接している。
 バスバユニット130の構成を詳述する。
 バスバユニット130は、複数のバスバ132を一体的に保持するバスバホルダ131、異なる単電池110(上下に並んだ単電池110)の電極タブ112の先端部112d同士を電気的に接続するバスバ132、電気的に接続された複数の単電池110のアノード側の終端を外部の入出力端子に臨ませるアノード側ターミナル133、電気的に接続された複数の単電池110のカソード側の終端を外部の入出力端子に臨ませるカソード側ターミナル134、およびバスバ132等を保護する保護カバー135を含んでいる。
 バスバホルダ131は、図2および図4に示すように、複数のバスバ132を一体的に保持するものである。バスバホルダ131は、複数のバスバ132を、積層体100Sの各々の単電池110の電極タブ112に対面するように、マトリクス状に一体的に保持している。バスバホルダ131は、絶縁性を備えた樹脂からなり、枠状に形成している。
 バスバホルダ131は、図4に示すように、単電池110の電極タブ112を支持している方の第1スペーサ114の長手方向の両側に位置するように、積層方向Zに沿って起立した一対の支柱部131aをそれぞれ備えている。一対の支柱部131aは、第1スペーサ114の側面に嵌合する。一対の支柱部131aは、積層方向Zに沿って視認した場合にL字状であって、積層方向Zに沿って延在した板状に形成している。バスバホルダ131は、第1スペーサ114の長手方向の中央付近に位置するように、積層方向Zに沿って起立した一対の補助支柱部131bを離間させて備えている。一対の補助支柱部131bは、積層方向Zに沿って延在した板状に形成している。
 バスバホルダ131は、図4に示すように、積層方向Zに沿って隣り合うバスバ132の間にそれぞれ突出する絶縁部131cを備えている。絶縁部131cは、短手方向Yに沿って延在した板状に形成している。各々の絶縁部131cは、補助支柱部131bと補助支柱部131bの間に水平に備えている。絶縁部131cは、積層方向Zに沿って隣り合うバスバ132の間を絶縁することによって放電を防止する。
 バスバホルダ131は、それぞれ独立して形成した支柱部131aと補助支柱部131bおよび絶縁部131cを互いに接合して構成してもよいし、支柱部131aと補助支柱部131bおよび絶縁部131cを一体的に成形して構成してもよい。
 バスバ132は、図3A、図3B、図4および図5に示すように、上下に並んだ単電池110の電極タブ112を電気的に接続するものである。バスバ132は、一の単電池110のアノード側電極タブ112Aと、他の単電池110のカソード側電極タブ112Kを電気的に接続する。バスバ132は、図5に示すように、例えば、第1セルサブアッシ110Mの上下に3つ並んだアノード側電極タブ112Aと、第2セルサブアッシ110Nの上下に3つ並んだカソード側電極タブ112Kを電気的に接続する。
 すなわち、バスバ132は、図5に示すように、例えば、第1セルサブアッシ110Mの3つのアノード側電極タブ112Aを並列接続し、かつ、第2セルサブアッシ110Nの3つのカソード側電極タブ112Kを並列接続する。さらに、バスバ132は、第1セルサブアッシ110Mの3つのアノード側電極タブ112Aと、第2セルサブアッシ110Nの3つのカソード側電極タブ112Kを直列接続する。バスバ132は、一の単電池110のアノード側電極タブ112Aと、他の単電池110のカソード側電極タブ112Kに対してレーザ溶接している。
 バスバ132は、図3Aおよび図4に示すように、アノード側バスバ132Aとカソード側バスバ132Kを接合して構成している。アノード側バスバ132Aとカソード側バスバ132Kは、同一の形状からなり、それぞれL字状に形成している。バスバ132は、図3Aおよび図4に示すように、アノード側バスバ132Aの屈折した一端と、カソード側バスバ132Kの屈折した一端を接合してなる接合部132cによって、一体化している。バスバ132を構成するアノード側バスバ132Aおよびカソード側バスバ132Kは、図4に示すように、短手方向Yに沿った両端にバスバホルダ131と接合する側部132dを備えている。
 アノード側バスバ132Aは、単電池110のアノード側電極タブ112Aと同様に、アルミニウムからなる。カソード側バスバ132Kは、単電池110のカソード側電極タブ112Kと同様に、銅からなる。異なる金属からなるアノード側バスバ132Aとカソード側バスバ132Kは、超音波接合によって互いに接合し、接合部132cを形成している。
 マトリクス状に配設したバスバ132のうち、図4の図中右上に位置するバスバ132は、21つの単電池110(3並列7直列)のアノード側の終端に相当し、アノード側バスバ132Aのみから構成している。このアノード側バスバ132Aは、積層した単電池110のうち最上部の3つの単電池110のアノード側電極タブ112Aに対してレーザ接合している。
 マトリクス状に配設したバスバ132のうち、図4の図中左下に位置するバスバ132は、21つの単電池110(3並列7直列)のカソード側の終端に相当し、カソード側バスバ132Kのみから構成している。このカソード側バスバ132Kは、積層した単電池110のうち最下部の3つの単電池110のカソード側電極タブ112Kに対してレーザ接合している。
 アノード側ターミナル133は、図1および図2に示すように、電気的に接続された複数の単電池110のアノード側の終端を外部の入出力端子に臨ませるものである。アノード側ターミナル133は、図2に示すように、マトリクス状に配設したバスバ132のうち、図中右上に位置するアノード側バスバ132Aに接合する。アノード側ターミナル133は、両端を屈折させた板状に形成し、導電性を備えた金属からなる。
 カソード側ターミナル134は、図1および図2に示すように、電気的に接続された複数の単電池110のカソード側の終端を外部の入出力端子に臨ませるものである。カソード側ターミナル134は、図2に示すように、マトリクス状に配設したバスバ132のうち、図中左下に位置するカソード側バスバ132Kに接合する。カソード側ターミナル134は、アノード側ターミナル133と形状からなり、天地を反転させている。
 保護カバー135は、図1および図2に示すように、バスバ132等を保護するものである。すなわち、保護カバー135は、複数のバスバ132を一体的に被覆することによって、各々のバスバ132が他の部材等と接触して電気的な短絡が発生することを防止する。保護カバー135は、図2に示すように、積層方向Zに沿って起立した側面135aの一端135bと他端135cを爪のように長手方向Xに向かって屈折し、絶縁性を備えたプラスチックスからなる。
 保護カバー135は、側面135aによって各々のバスバ132を被覆しつつ、一端135bと他端135cによってバスバホルダ131を上下から挟み込んで固定している。保護カバー135は、矩形状の孔からなりアノード側ターミナル133を外部に臨ませる第1開口135dと、矩形状の孔からなりカソード側ターミナル134を外部に臨ませる第2開口135eを、それぞれ側面135aに備えている。
 <第1実施形態に係る製造方法>
 次に、第1実施形態に係る組電池100の製造方法および製造装置200を、図8~図22を参照しつつ説明する。まず、第1実施形態に係る組電池100の製造装置200を説明して、その後製造方法について説明する。
 図8は、第1実施形態に係る組電池100の製造方法のフローチャートである。図9は、第1実施形態に係る組電池100の製造装置200の一部を示す斜視図である。図10は、図9のA部における拡大図である。
 第1実施形態に係る組電池100の製造装置200は、図9に示すように、載置台202と、載置台202からZ方向に延びるロケート支柱203と、載置台202に固定される基準治具210と、を有する。また、組電池100の製造装置200は、積層方向Zに沿って複数設けられる位置決め部材220と、位置決め部材220の端部223を押し込むシリンダー230と、を有する。また、組電池100の製造装置200は、図18~図21に示すように、保持工程S103において用いるプレス205と、レーザ溶接に用いるレーザ光源206と、を有する。
 載置台202は、板状に形成し、水平方向(長手方向Xおよび短手方向Y)に沿って配置している。
 ロケート支柱203は、載置台202の載置面202aに、所定の間隔を隔てて4本起立している。ロケート支柱203は、下部加圧板122、単電池110に取り付けた一対のスペーサ(第1スペーサ114および第2スペーサ115)、および上部加圧板121の相対的な大まかな位置を合わせる。各々の積層部材は、ロボットアーム、ハンドリフタ、および真空吸着タイプのコレット等(それぞれ不図示)によって、1つずつ積層する。
 ロケート支柱203は、第1スペーサ114のロケート孔114gに対して所定のクリアランスを設けるように構成する。
 基準治具210は、図9~図12に示すように、載置台202に固定されて配置される。基準治具210の載置台202に対する固定方法は特に限定されない。基準治具210は、図13に示すように、位置決め部材220が回転して、第1スペーサ114の延在面114kが当接する基準面211を有する。
 位置決め部材220は、図9、図10に示すように、第1スペーサ114ごとに設けられる。すなわち、位置決め部材220は、積層方向Zに沿って、複数設けられる。位置決め部材220は、第1スペーサ114の凹部114jに係合可能な凸部221を有する。位置決め部材220は、積層方向Zに沿うピン222によって、積層方向Z周りに回転自在に設けられる。
 シリンダー230は、位置決め部材220のX方向負側(前面側)に位置する。シリンダー230は、積層方向Zに沿う複数の位置決め部材220に対応して、積層方向Zに沿って複数設けられる。シリンダー230は、図10、図13に示すように、位置決め部材220の凸部221が設けられる側の反対側の端部223をX方向負側(前面側)からX方向正側(後面側)へ押し込むことによって、位置決め部材220をピン222の軸周りに回転させる。なお、図10、図13では、押し込む前の状態を点線で示し、押し込んだ後の状態を実線で示す。その結果、凸部221が第1スペーサ114の凹部114jの第1面114sに接触して、第1スペーサ114および単電池110をX方向負側に移動させる(図13参照)。そして、第1スペーサ114の延在面114kが基準治具210の基準面211に当接することによって、第1スペーサ114の移動方向において、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めを行う。
 シリンダー230は、図10に示すように、千鳥格子状に配置されていることが好ましい。シリンダー230が千鳥格子状に配置されることによって、シリンダー230を大径化することができ、好適に位置決め部材220の端部223を押し込むことができる。
 なお、シリンダー230および位置決め部材220の端部223には、互いに磁性の異なる第1磁性部(不図示)、第2磁性部224が備え付けられていることが好ましい。このように第1磁性部および第2磁性部224が設けられることによって、シリンダー230のX方向の移動に追従して位置決め部材220が移動する。このため、位置決め部材220が自由に回転することを防止でき、製造方法における作業性が向上する。
 組電池100の製造方法は、概説すると、単電池110を積層するごとに第1スペーサ114を一方向(本実施形態ではX方向負側)に移動させる。これによって、第1スペーサ114の移動方向において、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めを行う位置決め工程S102を有する。
 第1実施形態に係る組電池100の製造方法は、図8に示すように、単電池110等を1つずつ積層する積層工程S101と、積層体100Sを加圧した状態において保持する保持工程S103と、複数積層している単電池110同士を電気的に接続する電気的経路接続工程S104と、を有する。積層工程S101において、上述した位置決め工程S102が行われる。
 まず、図11~図17を参照して、積層工程S101について説明する。以下の説明において、積層工程S101において積層される単電池110のうち、一番下に配置する単電池110を「1つ目の単電池110」、下から2番目に位置する単電池110を「2つ目の単電池110」、下から3番目に位置する単電池110を「3つ目の単電池110」と称する。
 図11は、載置台202に対して下部加圧板122を載置し、かつ、下部加圧板122に対して1つ目の単電池110を積層している途中の状態を模式的に示す斜視図である。図12は、下部加圧板122に対して1つ目の単電池110を積層した状態を模式的に示す斜視図である。図13は、位置決め工程S102を行う様子を示す上面図である。図14は、1つ目の単電池110に対して2つ目の単電池110を積層している途中の状態を模式的に示す斜視図である。図15は、1つ目の単電池110と2つ目の単電池と110の間に隙間を配した状態で、位置決め工程S102を行う様子を示す斜視図である。図16は、2つ目の単電池110を1つ目の単電池110に接触させた状態を示す斜視図である。図17は、積層体100Sに対して上部加圧板121を積層した状態を模式的に示す斜視図である。なお、図14~図16では理解の容易のため、基準治具210および位置決め部材220を一部省略して示す。また、図14~図16は、図9のB部における拡大図である。
 積層工程S101では、図11に示すように、4本のロケート支柱203に対して、下部加圧板122の四隅に備えたロケート孔122bを挿入する。その状態において、下部加圧板122を積層方向Zに沿って降下させつつ、その下部加圧板122を載置台202の載置面202aに載置する。
 次に、4本のロケート支柱203に対して、1つ目の単電池110に接続される第1スペーサ114の両端に備えた一対のカラー116と、第2スペーサ115の両端に備えた一対のカラー116を挿入する。その状態において、単電池110に取り付けた一対のスペーサ(第1スペーサ114および第2スペーサ115)を積層方向Zに沿って降下させつつ、図12に示すように、1つ目の単電池110を下部加圧板122に積層する。
 次に、1つ目の単電池110の上面に、テープ部材117を貼り付ける。
 次に、上述した位置決め工程S102を行う。
 上述したように、ロケート支柱203は、第1スペーサ114のロケート孔114gに対して、所定のクリアランスを設けるように構成している。このため、単に単電池110を積層しただけでは、積層工程が終了した後に、積層方向Zに積層される複数の単電池110および第1スペーサ114は、XY平面において位置のばらつきが生じ得る。以下、このXY平面における位置のばらつきをなくし電極タブ112の位置決めを行う位置決め工程S102について、詳述する。
 図13に示すように、位置決め工程S102では、まず、位置決め部材220の凸部221が第1スペーサ114の凹部114jに係合した状態で、シリンダー230を制御することによって、図13の上側へ向けて、位置決め部材220の端部223を押す。これによって、位置決め部材220はピン222の軸周り(積層方向Z周り)に回転して、位置決め部材220の凸部221が第1スペーサ114の凹部114jの第1面114sに当接して、第1スペーサ114をX方向の負側(図13の下側)に移動させる。そして、第1スペーサ114の延在面114kが基準治具210の基準面211に当接する。これによって、第1スペーサ114の移動方向において、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めが行われる。
 次に、図14に示すように、4本のロケート支柱203に対して、2つ目の単電池110に取り付けた第1スペーサ114の両端に備えた一対のカラー116と、第2スペーサ115の両端に備えた一対のカラー116を挿入する。そして、1つ目の単電池110の上面に貼り付けられたテープ部材117に接触しない程度に、2つ目の単電池110に取り付けた一対のスペーサ(第1スペーサ114および第2スペーサ115)を積層方向Zに沿って降下させる。そして、1つ目の単電池110および2つ目の単電池が所定量(例えば1mm)だけ隙間を配した状態で、降下を停止する。このとき、図14に示すように、2つ目の単電池110に取り付けた第1スペーサ114は、1つ目の単電池110に取り付けた第1スペーサ114に対して積層方向Zに所定量だけ離間した状態となっている。
 次に、図15に示すように、再度、位置決め工程S102を行う。すなわち、積層工程S101において、1つ目の単電池110と2つ目の単電池110が接触する前に位置決め工程S102を行う。2つ目の単電池110に対して行う位置決め工程S102は、1つ目の単電池110に対して行った位置決め工程S102と同様であるため、説明は省略する。
 次に、図16に示すように、位置決め工程S102が終了した後、2つ目の単電池110に取り付けた第1スペーサ114を、1つ目の単電池110に取り付けた第1スペーサ114に向けて降下させて接触させる。この結果、2つ目の単電池110が、テープ部材117を介して、1つ目の単電池110と接触する。
 そして、3つ目の単電池110以降も、2つ目の単電池110と同様に、下側に位置する単電池110と所定の隙間を配するまで積層方向Zに沿って降下させる工程、位置決め工程S102、および下に位置する単電池110と接触させる工程を繰り返す。
 これによって、積層方向Zに沿う第1スペーサ114の延在面114kは、YZ平面において同一平面となる。この結果、電極タブ112のバスバ132に対する接合部位を積層方向Zに沿って揃えることができる。
 そして、4本のロケート支柱203に対して、上部加圧板121の四隅に備えたロケート孔121bを挿入する。その状態において、上部加圧板121を積層方向Zに沿って降下させつつ、その上部加圧板121を積層体100Sの最上部に位置する単電池110に積層する。この結果、図17に示すように、上部加圧板121および下部加圧板122によって、積層体100Sを挟み込む状態となる。
 図18に示す工程は、保持工程S103に相当する。図18は、図17から引き続き、上部加圧板121および下部加圧板122によって挟み込まれた積層体100Sをプレス205によって加圧している状態を模式的に示している。
 図18に示すように、プレス205は、直動ステージ(不図示)や油圧シリンダ(不図示)によって、積層方向Zに沿って移動する。プレス205が積層方向Zに沿った下方に移動すると、上部加圧板121および下部加圧板122によって挟み込まれた積層体100Sが加圧されて、各々の単電池110の発電要素111に十分な面圧がかかる。その結果、各々の単電池110は、所期の電気的特性を発揮させることができる。
 図19に示す工程は、保持工程S103に相当する。図19は、図18から引き続き、上部加圧板121および下部加圧板122に対して側板123をレーザ溶接している状態を模式的に示している。
 図19に示すように、各々の単電池110の発電要素111に十分な面圧がかかっている状態において、上部加圧板121および下部加圧板122に対して側板123を密着させつつ、レーザ光源206によってレーザ溶接する。側板123は、レーザ照射用の抜き穴が備えられた治具(不図示)によって、上部加圧板121および下部加圧板122に押し付ける。レーザ光源206は、例えば、YAG(イットリウム・アルミニウム・ガーネット)レーザから構成する。レーザ光源206から導出させたレーザ光L2は、例えば、光ファイバーやミラーによって光路を調整し、集光レンズによって集光した状態において、側板123の上端123aと下端123bに沿って水平に走査してシーム溶接する。側板123は、上部加圧板121および下部加圧板122を左右から挟むように一対備えることから、それぞれレーザ溶接する。1つの側板123の溶接が完了すると、載置台202を回転させることによって、他の側板123とレーザ光源206と対面させた上で、他の側板123の溶接を行う。一対の側板123は、上部加圧板121および下部加圧板122の間隔を一定に維持する。したがって、プレス205を上部加圧板121から離間させても、各々の単電池110の発電要素111にかかる面圧は維持される。
 図20に示す工程は、電気的経路接続工程S104に相当する。図20は、図19から引き続き、積層している単電池110の各々の電極タブ112に対して対応する各々のバスバ132を当接させてレーザ溶接している途中の状態を模式的に示している。
 図20に示すように、載置台202を、図19の状態から図中の反時計回りに90°回転させて、積層した単電池110の各々の電極タブ112をレーザ光源206に対面させる。バスバホルダ131をロボットアーム(不図示)によって移動させて、そのバスバホルダ131によって一体的に保持されている各々のバスバ132を、積層した単電池110の対応する各々の電極タブ112に対して押し付ける。上記の状態において、レーザ光源206からレーザ光L2を導出して、各々のバスバ132と対応する各々の電極タブ112とを順にシーム溶接する。このとき、位置決め工程S102において、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めが行われているため、このため、レーザ光源206の配置位置から電極タブ112までの距離を積層方向Zに沿って高精度に揃えることができる。したがって、レーザ溶接する際に、電極タブ112およびバスバ132を好適に接合することができる。
 図21に示す工程は、電気的経路接続工程S104に相当する。図21は、図20から引き続き、アノード側の終端のアノード側バスバ132Aに対してアノード側ターミナル133を当接させてレーザ溶接し、かつ、カソード側の終端のカソード側バスバ132Kに対してカソード側ターミナル134を当接させてレーザ溶接している途中の状態を模式的に示している。
 図21に示すように、アノード側ターミナル133を、マトリクス状に配設したバスバ132のうち、アノード側の終端に相当し図中右上に位置するアノード側バスバ132Aに接合する。同様に、カソード側ターミナル134を、マトリクス状に配設したバスバ132のうち、カソード側の終端に相当し図中左下に位置するカソード側バスバ132Kに接合する。
 図22に示す工程は、電気的経路接続工程S104に相当する。図22は、図21から引き続き、複数のバスバ132を1つの保護カバー135によって被覆した状態を模式的に示している。
 図22に示すように、保護カバー135をロボットアーム(不図示)によって移動させて、その保護カバー135の一端135bと他端135cをバスバホルダ131に嵌め込む。保護カバー135は、スナップフィットのようなフックを用いたり、ネジを用いたり、弾性接着剤を用いたりして、バスバホルダ131に固定する。保護カバー135は、側面135aに備えた第1開口135dからアノード側ターミナル133を外部に臨ませ、かつ、側面135aに備えた第2開口135eからカソード側ターミナル134を外部に臨ませる。保護カバー135は、バスバ132が外部の部材等に接触して短絡したり漏電したりすることを防止する。
 図9~図22等を参照しつつ説明した組電池100の製造方法は、工程全般をコントローラによって制御する自動機、工程の一部を作業者が担う半自動機、または工程全般を作業者が担うマニュアル機のいずれの形態によって具現化してもよい。
 以上説明したように、本実施形態に係る組電池100の製造方法は、複数の単電池110と、第1スペーサ114と、バスバ132と、を有する組電池100の製造方法である。組電池100の製造方法は、単電池110を積層する積層工程S101ごとに第1スペーサ114をX方向負側に移動させることによって、第1スペーサ114の移動方向において、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めを行う。この製造方法によれば、単電池110を積層するごとに第1スペーサ114をX方向負側に移動させることによって、第1スペーサ114の移動方向において、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めを行う。このため、単電池110を積層後に、レーザ光源206の配置位置から電極タブ112までの距離を積層方向Zに沿って高精度に揃えることができる。したがって、レーザ溶接する際に、電極タブ112およびバスバ132を好適に接合することができる。
 また、積層工程S101において、単電池110同士が接触する前に、電極タブ112の位置決めを行う。このため、単電池110同士の間にテープ部材117が配置されている場合でも、第1スペーサ114を好適に移動させて、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めを好適に行うことができる。
 また、積層工程S101の前に単電池110の表面にテープ部材117を配置し、積層工程S101においてテープ部材117を間に挟んで単電池110同士を接近させる前に、単電池110同士がテープ部材117を介して重なる前に、電極タブ112の位置決めを行う。この製造方法によれば、単電池110同士はテープ部材117を介して重なるため、単電池110が振動したり、単電池110に衝撃がかかったりした場合に、単電池110の最外層に位置するラミネートフィルム113にかかる応力を吸収して、ラミネートフィルム113を保護する。
 また、第1スペーサ114ごとに設けられた位置決め部材220によって、電極タブ112のバスバ132に対する位置決めを行う。このため、単電池110を積層するごとに行う電極タブ112の位置決めが容易になる。
 また、第1スペーサ114に設けられる凹部114jに、位置決め部材220に設けられる凸部221を係合した状態で、位置決め部材220を移動させることによって第1スペーサ114を移動させる。この製造方法によれば、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めをより容易に行うことができる。
 また、位置決め部材220は、積層方向Zに沿って設けられるピン222によって、積層方向Z周りに回転自在に設けられる。また、位置決め部材220の凸部221が設けられる側の反対側の端部223を押し込むことによって、位置決め部材220をピン222の軸周りに回転させて、電極タブ112のバスバ132に対する位置決めを行う。このため、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めを容易に行うことができる。
 また、第1スペーサ114を移動させる際に、第1スペーサ114を、基準となる基準面211に当接させることによって電極タブ112のバスバ132に対する位置決めを行う。この製造方法によれば、第1スペーサ114を基準面211に当接させることによって、電極タブ112の位置決めを行うことができるため、容易に電極タブ112の位置決めを行うことができる。
 また、電極タブ112の先端部112dは、積層方向Zに沿って屈折し、第1スペーサ114を単電池110の面方向であって単電池110から離れる向き(X方向負側)に、第1スペーサ114を移動させて、電極タブ112の位置決めを行う。この製造方法によれば、第1スペーサ114を単電池110から離れる向きに移動させるため、容易に、電極タブ112の位置決めを行うことができる。
 また、以上説明したように、本実施形態に係る組電池100の製造装置200は、複数の単電池110と、第1スペーサ114と、バスバ132と、を有する組電池100の製造装置200である。製造装置200は、単電池110を積層する積層工程S101ごとに第1スペーサ114をX方向負側に移動させることによって、第1スペーサ114の移動方向において、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めを行う位置決め部材220を有する。この製造装置200によれば、レーザ光源206の配置位置から電極タブ112までの距離を積層方向Zに沿って高精度に揃えることができる。したがって、レーザ溶接する際に、電極タブ112およびバスバ132を好適に接合することができる。
 <第2実施形態に係る製造方法>
 次に、第2実施形態に係る組電池100の製造方法および製造装置300を、図23および図24を参照しつつ説明する。
 図23は、第2実施形態に係る組電池100の製造方法を示す図であって、1つ目の単電池110の電極タブ112の位置決めを行う様子を示す斜視図である。図24は、第2実施形態に係る組電池100の製造方法を示す図であって、2つ目の単電池110の電極タブ112の位置決めを行う様子を示す斜視図である。なお、図23、図24では理解の容易のため、基準治具210、位置決め部材220、および伸延部330を一部省略して示す。
 第1実施形態と共通する部分は説明を省略し、第2実施形態のみに特徴のある箇所について説明する。なお、上述した第1実施形態と同一の部材には同一の符号を付して説明し、重複した説明は省略する。第2実施形態に係る製造方法は、第1実施形態に係る製造方法と比較して、位置決め部材220をX方向正側に押し付ける方法が異なる。
 第2実施形態に係る組電池100の製造方法は、積層工程S201と、保持工程S103と、電気的経路接続工程S104と、を有する。積層工程S201は、位置決め工程S202を備える。
 第2実施形態に係る組電池100の製造装置300は、図23、図24に示すように、載置台202と、ロケート支柱203と、基準治具210と、位置決め部材220と、を有する。また、製造装置300は、積層方向Zに伸延する伸延部330と、積層方向Zに移動可能なテーパブロック340と、を有する。載置台202、ロケート支柱203、基準治具210、位置決め部材220の構成は、第1実施形態に係る組電池100の製造装置200と同一の構成であるため、説明は省略する。
 伸延部330は、図23、図24に示すように、積層方向Zに伸延する。伸延部330は、基準治具210のY方向負側かつ位置決め部材220のX方向負側に設けられている。
 テーパブロック340は、図23、図24に示すように、伸延部330に積層方向Zにスライド可能に設置されている。テーパブロック340は、不図示の制御部によって積層方向Zに移動する。テーパブロック340は、位置決め部材220の端部223に当接可能な当接部341と、当接部341と連続して、積層方向Z上側につれてX方向負側に傾斜するテーパ部342と、を有する。テーパブロック340は、図23、図24に示すように、上方に移動することによって、テーパ部342が位置決め部材220の端部223をX方向負側からX方向正側へ押し込む。これによって、位置決め部材220をピン222の軸周りに回転させる。その結果、凸部221が第1スペーサ114の凹部114jの第1面114sに接触して、第1スペーサ114および単電池110をX方向負側に移動させる。そして、第1スペーサ114の延在面114kが基準治具210の基準面211に当接することによって、第1スペーサ114の移動方向において、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めを行う。
 第2実施形態に係る組電池100の製造方法は、第1実施形態に係る組電池100の製造方法と比較して、積層工程S201のみ異なる。このため、以下では、第2実施形態に係る組電池100の製造方法の積層工程S201について説明する。
 まず、第1実施形態と同様に、下部加圧板122を載置台202の載置面202aに載置し、1つ目の単電池110を下部加圧板122に積層し、1つ目の単電池110の上面に、テープ部材117を貼り付ける。
 次に、位置決め工程S202を行う。
 図23に示すように、位置決め工程S202では、テーパブロック340の積層方向Zの上方に移動して、X方向の負側から正側へ向けて、1つ目の位置決め部材220の端部223を押す。これによって、位置決め部材220はピン222の軸周り(Z方向周り)に回転して、位置決め部材220の凸部221が第1スペーサ114の凹部114jの第1面114sに当接して、第1スペーサ114をX方向の負側に移動する。そして、第1スペーサ114の延在面114kが基準治具210の基準面211に当接する。これによって、第1スペーサ114の移動方向において、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めが行われる。
 そして、2つ目の単電池110に取り付けた一対のスペーサ(第1スペーサ114および第2スペーサ115)を積層方向Zに沿って降下させる。そして、1つ目の単電池110および2つ目の単電池が所定量だけ隙間を配した状態で、降下を停止する。
 次に、図24に示すように、再度位置決め工程S202を行う。具体的には、テーパブロック340を積層方向Zの上方に移動させて、テーパブロック340のテーパ部342によって位置決め部材220を回転させ、当接部341を、位置決め部材220の端部223に当接させる。
 次に、位置決め工程S202が終了した後、2つ目の単電池110に取り付けた第1スペーサ114を、1つ目の単電池110に取り付けた第1スペーサ114に向けて降下させて接触させる。この結果、2つ目の単電池110が、テープ部材117を介して、1つ目の単電池110と接触する。
 そして、3つ目の単電池110以降も、2つ目の単電池110と同様に、下側に位置する単電池110と所定の隙間を配するまで積層方向Zに沿って降下させる工程、位置決め工程S202、および下に位置する単電池110と接触させる工程を繰り返す。
 以上説明したように、第2実施形態に係る組電池100の製造方法は、テーパ部342が設けられたテーパブロック340が積層方向Zに沿って上昇することによって、テーパ部342が端部223に接触することによって、端部223を押し込む。この製造方法によれば、第1実施形態に係る組電池100の製造方法で用いたシリンダー230を複数制御することなく、テーパブロック340の1つを制御すればいいため、製造装置300の煩雑化を防止できる。
 <第3実施形態に係る製造方法>
 次に、第3実施形態に係る組電池100の製造方法および製造装置400を、図25~図28を参照しつつ説明する。
 図25は、第3実施形態に係る組電池100の製造方法を示す図であって、単電池110を支持部440によって隙間を介して積層した状態を示す斜視図である。図26は、第3実施形態に係る組電池100の製造方法を示す図であって、位置決め工程S302を行う前の状態を示す上面図である。図27は、第3実施形態に係る組電池100の製造方法を示す図であって、位置決め工程S302を行った後の状態を示す上面図である。図28は、第3実施形態に係る組電池100の製造方法を示す図であって、支持部440の支持状態を解除して(退避状態)、全ての単電池110を積層した状態を示す斜視図である。
 第1実施形態と共通する部分は説明を省略し、第3実施形態のみに特徴のある箇所について説明する。なお、上述した第1実施形態と同一の部材には同一の符号を付して説明し、重複した説明は省略する。第3実施形態に係る製造方法は、第1実施形態に係る製造方法と比較して、積層工程S301が異なる。
 第3実施形態に係る組電池100の製造方法は、積層工程S301と、保持工程S103と、電気的経路接続工程S104と、を有する。積層工程S301は、位置決め工程S302を備える。
 第3実施形態に係る組電池100の製造装置400は、図25~図28に示すように、載置台202と、ロケート支柱203と、基準治具210と、を有する。また、製造装置400は、積層方向Zに延って設けられる位置決め部材420と、位置決め部材420の端部423を押し込むシリンダー430と、単電池110同士が隙間を介した状態で第1スペーサ114を支持する支持部440と、を有する。載置台202、ロケート支柱203、および基準治具210は、第1実施形態に係る組電池100の製造装置200と同様であるため、説明は省略する。
 位置決め部材420は、第1実施形態の製造装置200とは異なり、Z方向に沿って延在して1つ設けられる。位置決め部材420は、図26、図27に示すように、第1スペーサ114の凹部114jに係合可能な凸部421を有する。位置決め部材420は積層方向Zに沿うピン222によって、回転自在に設けられる。
 シリンダー430は、位置決め部材420の積層方向Zに沿う中央近傍に位置する。シリンダー430は、図26、図27に示すように、位置決め部材420の端部423を押し込むことによって、位置決め部材220をピン222の軸周りに回転させる。その結果、凸部421が第1スペーサ114の凹部114jの第1面114sに接触して、第1スペーサ114および単電池110をX方向負側に移動させる。そして、第1スペーサ114の延在面114kが基準治具210の基準面211に当接することによって、第1スペーサ114の移動方向において、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めを行う。
 支持部440は、図25~図27に示すように、単電池110同士が隙間を介して配置するように、第1スペーサ114を支持する。支持部440は、積層方向Zに沿うピン441によって、積層方向Z周りに回転可能に設けられる。支持部440は、積層方向Z周りに回転することによって、第1スペーサ114を支持する支持状態(図25~図27参照)および第1スペーサ114を支持しない退避状態(図28参照)を切り替えることができる。
 第3実施形態に係る組電池100の製造方法は、第1実施形態に係る組電池100の製造方法と比較して、積層工程S301のみ異なる。このため、以下では、第3実施形態に係る組電池100の製造方法の積層工程S301について説明する。以下の説明において、一番下に位置する支持部440を「1つ目の支持部440」、下から2番目に位置する支持部440を「2つ目の支持部440」と称する。
 図25に示すように、積層工程S301では、まず、単電池110同士が隙間を介して配置するように、単電池110を積層する。具体的には、1つ目の支持部440を退避状態として1つ目の単電池110を積層して、1つ目の支持部440を支持状態とする。次に、2つ目の支持部440を退避状態として2つ目の単電池110を積層して、2つ目の支持部440を支持状態とする。この工程を繰り返すことによって、図25に示すように、単電池110を支持部440によって隙間を介して積層した状態となる。
 次に、位置決め工程S302を行う。
 図26、図27に示すように、位置決め工程S302では、まず、位置決め部材220の凸部221が第1スペーサ114の凹部114jに係合した状態で、シリンダー430を制御することによって、位置決め部材420の端部423を押す(図26の矢印参照)。これによって、位置決め部材420はピン222の軸周り(積層方向Z周り)に回転して、位置決め部材420の凸部421が第1スペーサ114の凹部114jの第1面114sに当接して、第1スペーサ114をX方向の負側に移動させる。そして、第1スペーサ114の延在面114kが基準治具210の基準面211に当接する。これによって、第1スペーサ114の移動方向において、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めが行われる。
 次に、図28に示すように、全ての支持部440を退避状態として、全ての単電池110を積層方向Zの下側に積層する。これによって、積層方向Zに沿う第1スペーサ114の延在面114kは、YZ平面において同一平面となる。この結果、電極タブ112のバスバ132に対する接合部位を積層方向Zに沿って揃えることができる。
 以上説明したように、第3実施形態に係る組電池100の製造方法は、単電池110を、隙間を介して複数積層する。そして、第1スペーサ114を一方向に移動させることによって、第1スペーサ114の移動方向において、電極タブ112のバスバ132に対する接合部位の所定の位置への位置決めを行う。そして、単電池110同士を接触させる。この製造方法によれば、レーザ光源206の配置位置から電極タブ112までの距離を積層方向Zに沿って高精度に揃えることができる。したがって、レーザ溶接する際に、電極タブ112およびバスバ132を好適に接合することができる。
 そのほか、本発明は、特許請求の範囲に記載された構成に基づき様々な改変が可能であり、それらについても本発明の範疇である。
 例えば、上述した第1、第2実施形態では、単電池110同士が接触する前に、電極タブ112の位置決めを行った。しかしながら、単電池110同士の間に、テープ部材117が設けられない場合は、単電池110同士が接触した後に、電極タブ112の位置決めを行ってもよい。このとき、単電池110の自重によって摩擦が発生して、単電池110間のずれを抑制することができる。
 また、上述した第1実施形態では、位置決め部材220の凸部221を、第1スペーサ114の凹部114jに係合した状態で、位置決め部材220を回転させることによって、第1スペーサ114を移動させた。しかしながら、これに限定されず、位置決め部材に凹部が設けられ、第1スペーサに凸部が設けられてそれらが互いに係合されてもよい。
 また、上述した第1実施形態では、第1スペーサ114は、シリンダー230によって移動された。しかしながら、第1スペーサ114は、ハンドロボットに把持されて移動されてもよい。
 また、上述した第1実施形態では、第1スペーサ114の延在面114kを、基準治具210の基準面211に当接させることによって、各々の延在面114kを同一平面とした。しかしながら、基準治具が設けられることなく、位置決め部材220およびシリンダー230によって、各々の延在面114kを同一平面としてもよい。このとき、レーザ発振器は、レーザ光の焦点が適切の箇所となるように、適宜調整することが好ましい。
 また、上述した第1実施形態では、電極タブ112の先端部112dは、積層方向Zに沿って屈折したが、屈折していなくてもよい。
 また、上述した第1実施形態では、1つの単電池110ごとに位置決めを行ったが、複数の単電池110(例えば3つ)ごとに位置決めを行ってもよい。この方法によれば、製造時間を短縮することができる。
100  組電池、
100S 積層体、
110  単電池、
110M 第1セルサブアッシ、
110N 第2セルサブアッシ、
111  発電要素、
112  電極タブ、
112d 電極タブの先端部、
112A アノード側電極タブ、
112K カソード側電極タブ、
113  ラミネートフィルム、
114  第1スペーサ、
114j 凹部、
115  第2スペーサ、
116  カラー、
117  テープ部材(接着部材)、
120  加圧ユニット、
121  上部加圧板、
122  下部加圧板、
123  側板、
130  バスバユニット、
131  バスバホルダ、
132  バスバ、
132A アノード側バスバ、
132K カソード側バスバ、
133  アノード側ターミナル、
134  カソード側ターミナル、
135  保護カバー、
200、300、400  製造装置、
202  載置台、
203  ロケート支柱、
205  プレス、
206  レーザ光源、
210  基準治具、
211  基準面、
220、420  位置決め部材、
221  凸部、
222  ピン、
223  端部、
230  シリンダー、
340  テーパブロック、
342  テーパ部、
S101、S201、S301 積層工程、
S102、S202、S302 位置決め工程、
S103 保持工程、
S104 電気的経路接続工程、
L1,L2 レーザ光、
X    (単電池110の)長手方向、
Y    (単電池110の)短手方向、
Z    (単電池110の)積層方向。

Claims (11)

  1.  発電要素と、前記発電要素の外部に導出した電極タブと、を含む複数の単電池と、前記電極タブを支持するスペーサと、異なる前記単電池の前記電極タブ同士を電気的に接続するバスバと、を有する組電池の製造方法であって、
     前記単電池を積層する積層工程ごとに前記スペーサを一方向に移動させることによって、前記スペーサの移動方向において、前記電極タブの前記バスバに対する接合部位の所定の位置への位置決めを行う、組電池の製造方法。
  2.  前記積層工程において、前記単電池同士が接触する前に、前記電極タブの位置決めを行う請求項1に記載の組電池の製造方法。
  3.  前記積層工程の前に前記単電池の表面に接着部材を配置し、
     前記積層工程において前記接着部材を間に挟んで前記単電池同士を接近させる際に、前記単電池同士が前記接着部材を介して重なる前に、前記電極タブの位置決めを行う請求項1に記載の組電池の製造方法。
  4.  前記スペーサごとに設けられた位置決め部材によって、前記電極タブの位置決めを行う請求項1~3のいずれか1項に記載の組電池の製造方法。
  5.  前記スペーサに設けられる凹部に、前記位置決め部材に設けられる凸部を係合した状態で、前記位置決め部材を移動させることによって前記スペーサを移動させる請求項4に記載の組電池の製造方法。
  6.  前記位置決め部材は、前記単電池が積層する積層方向に沿って設けられるピンによって、前記ピンの軸周りに回転自在に設けられ、
     前記位置決め部材の前記凸部が設けられる側の反対側の端部を押し込むことによって、前記位置決め部材を前記ピンの軸周りに回転させて、前記電極タブの位置決めを行う請求項5に記載の組電池の製造方法。
  7.  テーパ部が設けられたテーパブロックが前記積層方向に沿って上昇することによって、前記テーパ部が前記端部に接触することによって、前記端部を押し込む請求項6に記載の組電池の製造方法。
  8.  前記スペーサを移動させる際に、
     前記スペーサを、基準となる基準面に当接させることによって前記電極タブの位置決めを行う請求項1~7のいずれか1項に記載の組電池の製造方法。
  9.  前記電極タブの先端部は、前記単電池の積層方向に沿って屈折し、
     前記スペーサを前記単電池の面方向であって前記単電池から離れる向きに、前記スペーサを移動させて、前記電極タブの位置決めを行う請求項1~8のいずれか1項に記載の組電池の製造方法。
  10.  発電要素と、前記発電要素の外部に導出した電極タブと、を含む複数の単電池と、前記電極タブを支持するスペーサと、異なる前記単電池の前記電極タブ同士を電気的に接続するバスバと、を有する組電池の製造装置であって、
     前記単電池を積層する積層工程ごとに前記スペーサを一方向に移動させることによって、前記スペーサの移動方向において、前記電極タブの前記バスバに対する接合部位の所定の位置への位置決めを行う位置決め部材を有する、組電池の製造装置。
  11.  発電要素と、前記発電要素の外部に導出した電極タブと、を含む複数の単電池と、前記電極タブを支持するスペーサと、異なる前記単電池の前記電極タブ同士を電気的に接続するバスバと、を有する組電池の製造方法であって、
     前記単電池を隙間を介して複数積層して、前記スペーサを一方向に移動させることによって、前記スペーサの移動方向において、前記電極タブの前記バスバに対する接合部位の所定の位置への位置決めを行った後に、前記単電池同士を接触させる、組電池の製造方法。
PCT/JP2017/003433 2017-01-31 2017-01-31 組電池の製造方法および製造装置 WO2018142476A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780084838.5A CN110226245A (zh) 2017-01-31 2017-01-31 电池组的制造方法和制造装置
PCT/JP2017/003433 WO2018142476A1 (ja) 2017-01-31 2017-01-31 組電池の製造方法および製造装置
US16/478,515 US20190372079A1 (en) 2017-01-31 2017-01-31 Battery pack production method and production device
EP17895081.2A EP3579304A4 (en) 2017-01-31 2017-01-31 METHOD FOR PRODUCING A BATTERY PACK AND PRODUCTION DEVICE
KR1020197024270A KR20190103433A (ko) 2017-01-31 2017-01-31 조전지의 제조 방법 및 제조 장치
JP2018565116A JPWO2018142476A1 (ja) 2017-01-31 2017-01-31 組電池の製造方法および製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003433 WO2018142476A1 (ja) 2017-01-31 2017-01-31 組電池の製造方法および製造装置

Publications (1)

Publication Number Publication Date
WO2018142476A1 true WO2018142476A1 (ja) 2018-08-09

Family

ID=63039466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003433 WO2018142476A1 (ja) 2017-01-31 2017-01-31 組電池の製造方法および製造装置

Country Status (6)

Country Link
US (1) US20190372079A1 (ja)
EP (1) EP3579304A4 (ja)
JP (1) JPWO2018142476A1 (ja)
KR (1) KR20190103433A (ja)
CN (1) CN110226245A (ja)
WO (1) WO2018142476A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112840502A (zh) * 2018-11-29 2021-05-25 宝马股份公司 具有调温装置的高压电池以及车辆

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208127288U (zh) * 2018-01-22 2018-11-20 宁德时代新能源科技股份有限公司 电池包
KR102395228B1 (ko) * 2018-10-10 2022-05-04 주식회사 엘지에너지솔루션 버스바 프레임 조립 방법
KR20210058143A (ko) * 2019-11-13 2021-05-24 주식회사 엘지에너지솔루션 배터리 모듈, 이러한 배터리 모듈의 제조 방법 및 이러한 배터리 모듈을 포함하는 배터리 팩 및 자동차
KR20210060222A (ko) * 2019-11-18 2021-05-26 주식회사 엘지에너지솔루션 전지 모듈 제조 장치 및 전지 모듈 제조 방법
KR20230134376A (ko) * 2022-03-14 2023-09-21 에스케이온 주식회사 배터리 모듈

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055456A (ja) * 2002-07-23 2004-02-19 Nissan Motor Co Ltd モジュール電池
WO2012077465A1 (ja) * 2010-12-07 2012-06-14 株式会社オートネットワーク技術研究所 端子付プレート、プレート組立体、及び電池モジュール
JP2012515418A (ja) 2009-01-12 2012-07-05 エー123 システムズ, インコーポレイテッド 電池システム用の2種類の金属で成るバスバー・ジャンパ及び関連した溶接方法
JP2012212604A (ja) * 2011-03-31 2012-11-01 Nec Energy Devices Ltd 電池パック
JP2013206772A (ja) * 2012-03-29 2013-10-07 Nissan Motor Co Ltd バスバー取り付け装置およびバスバー取り付け方法
WO2014073443A1 (ja) * 2012-11-09 2014-05-15 日産自動車株式会社 組電池および組電池の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964216B1 (ko) * 2003-06-24 2010-06-17 삼성에스디아이 주식회사 파우치 전지팩
JP4752267B2 (ja) * 2004-12-27 2011-08-17 日産自動車株式会社 電池用の電極端子保持プレート
JP4379467B2 (ja) * 2006-12-11 2009-12-09 日産自動車株式会社 電池モジュール
US8574320B2 (en) * 2009-06-08 2013-11-05 GM Global Technology Operations LLC Press apparatus
WO2012042913A1 (ja) * 2010-09-30 2012-04-05 三洋電機株式会社 バッテリモジュール、それを備えたバッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置および電気機器
KR101800067B1 (ko) * 2014-07-31 2017-11-21 주식회사 엘지화학 냉매 매니폴드 지그
WO2017068707A1 (ja) * 2015-10-22 2017-04-27 日産自動車株式会社 組電池の製造方法および製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055456A (ja) * 2002-07-23 2004-02-19 Nissan Motor Co Ltd モジュール電池
JP2012515418A (ja) 2009-01-12 2012-07-05 エー123 システムズ, インコーポレイテッド 電池システム用の2種類の金属で成るバスバー・ジャンパ及び関連した溶接方法
WO2012077465A1 (ja) * 2010-12-07 2012-06-14 株式会社オートネットワーク技術研究所 端子付プレート、プレート組立体、及び電池モジュール
JP2012212604A (ja) * 2011-03-31 2012-11-01 Nec Energy Devices Ltd 電池パック
JP2013206772A (ja) * 2012-03-29 2013-10-07 Nissan Motor Co Ltd バスバー取り付け装置およびバスバー取り付け方法
WO2014073443A1 (ja) * 2012-11-09 2014-05-15 日産自動車株式会社 組電池および組電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3579304A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112840502A (zh) * 2018-11-29 2021-05-25 宝马股份公司 具有调温装置的高压电池以及车辆
CN112840502B (zh) * 2018-11-29 2024-05-10 宝马股份公司 具有调温装置的高压电池以及车辆

Also Published As

Publication number Publication date
JPWO2018142476A1 (ja) 2019-11-07
US20190372079A1 (en) 2019-12-05
KR20190103433A (ko) 2019-09-04
EP3579304A4 (en) 2020-02-19
EP3579304A1 (en) 2019-12-11
CN110226245A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
JP6617154B2 (ja) 組電池の製造方法および製造装置
WO2018142476A1 (ja) 組電池の製造方法および製造装置
CN108352489B (zh) 组电池及组电池的制造方法
JP6748285B2 (ja) 組電池の製造方法
WO2017068706A1 (ja) 組電池および組電池の製造方法
WO2017068708A1 (ja) 電池パックおよびその製造方法
JP6519662B2 (ja) 組電池
JP6737905B2 (ja) 組電池、組電池に用いられるバスバホルダおよび組電池の製造方法
JP2017084468A (ja) 組電池および組電池の製造方法
JP6717954B2 (ja) 組電池
JP2017084465A (ja) 組電池および組電池用のバスバカバー並びに組電池の製造方法
JP2017084463A (ja) 組電池
JP2018181773A (ja) 組電池、組電池に用いられるバスバホルダおよび組電池の製造方法
JP2018181678A (ja) 組電池の製造装置および組電池の製造方法
JP2017084464A (ja) 組電池
JP2018055821A (ja) バスバと電極タブとの溶接方法
JP2017084469A (ja) 組電池および組電池用のスペーサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895081

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018565116

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197024270

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017895081

Country of ref document: EP

Effective date: 20190902