WO2018139476A1 - 容量制御弁 - Google Patents

容量制御弁 Download PDF

Info

Publication number
WO2018139476A1
WO2018139476A1 PCT/JP2018/002084 JP2018002084W WO2018139476A1 WO 2018139476 A1 WO2018139476 A1 WO 2018139476A1 JP 2018002084 W JP2018002084 W JP 2018002084W WO 2018139476 A1 WO2018139476 A1 WO 2018139476A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
chamber
pressure
control
chamber pressure
Prior art date
Application number
PCT/JP2018/002084
Other languages
English (en)
French (fr)
Inventor
英樹 東堂園
真弘 葉山
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to CN201880007249.1A priority Critical patent/CN110192052B/zh
Priority to JP2018564597A priority patent/JP6932146B2/ja
Priority to US16/480,281 priority patent/US11603832B2/en
Priority to EP18744644.8A priority patent/EP3575647B1/en
Publication of WO2018139476A1 publication Critical patent/WO2018139476A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/0624Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/20Control of pumps with rotary cylinder block
    • F04B27/22Control of pumps with rotary cylinder block by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1845Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/185Discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid

Definitions

  • the present invention relates to a capacity control valve that variably controls the capacity or pressure of a working fluid, and more particularly, to a capacity control valve that controls a discharge amount of a variable capacity compressor used in an air conditioning system of an automobile or the like according to a pressure load. .
  • a swash plate type variable capacity compressor used in an air conditioning system of an automobile or the like is connected to a rotating shaft that is rotationally driven by the rotational force of an engine, a swash plate that is variably connected to the rotating shaft, and a swash plate.
  • a piston for compression is provided, and by changing the inclination angle of the swash plate, the stroke of the piston is changed to control the discharge amount of the refrigerant gas.
  • the inclination angle of the swash plate uses the suction pressure of the suction chamber for sucking refrigerant, the discharge pressure of the discharge chamber for discharging the refrigerant pressurized by the piston, and the control chamber pressure of the control chamber (crank chamber) containing the swash plate.
  • the pressure in the control chamber is appropriately controlled, and the pressure acting on both surfaces of the piston can be adjusted to change continuously. ing.
  • the second valve portion 176 that opens and closes the valve hole 177 and the third valve portion 175 that is disposed in the third valve chamber 183 and opens and closes the third communication passage 171 and the flow groove 172 reciprocate together and simultaneously with each other.
  • a valve body 181 formed to open and close in the reverse direction, a first valve chamber 184 formed closer to the control chamber, an urging force in the direction of expansion (expansion) disposed in the first valve chamber and surroundings Pressure-sensitive body (bellows) that contracts as pressure increases 78, a valve seat body (engaging portion) 180 provided at the free end of the pressure-sensitive body in the expansion / contraction direction and having an annular seat surface, and the valve seat body 184 moves integrally with the valve body 181 in the first valve chamber 184.
  • a first valve portion (valve opening connecting portion) 179 that can open and close the suction side passage by engagement and disengagement with 180, a solenoid portion S that exerts an electromagnetic driving force on the valve body 181 and the like are known ( Hereinafter, it is referred to as “prior art.
  • the capacity control valve 170 allows the discharge chamber and the control chamber to communicate with each other when it is necessary to change the control chamber pressure without providing a clutch mechanism in the capacity variable compressor during capacity control.
  • the pressure in the control chamber (control chamber pressure) Pc can be adjusted.
  • the first valve portion (valve opening connecting portion) 179 is detached from the valve seat body (engaging portion) 180 and the suction side passageway is removed. And the suction chamber communicates with the control chamber.
  • the control chamber (crank chamber) has a liquid refrigerant (the refrigerant gas is liquefied by being cooled while being left). Therefore, unless the liquid refrigerant is discharged, the refrigerant gas cannot be compressed to ensure the discharge amount as set.
  • the liquid in the control chamber (crank chamber) The refrigerant needs to be discharged as quickly as possible.
  • the auxiliary communication passage 185 is provided in the valve seat body (engaging portion) 180, and suction is performed from the first valve chamber 184 through the auxiliary communication passage 185, the intermediate communication passage 186, and the flow groove 172.
  • the third communication passage 171 in the chamber pressure state is configured to be able to communicate.
  • FIG. 8 shows a state where the solenoid part S is energized, the open spring means 187 is contracted, and the third valve part 175 is opened.
  • the third valve part 175 is closed by the extension of the opening spring means 187, and the second valve part 176 is opened,
  • the first valve portion 179 opens upon receiving the suction chamber pressure Ps and the control chamber pressure Pc.
  • the refrigerant liquid in the control chamber is vaporized, and the fluid having the control chamber pressure Pc flows from the first communication passage 174 into the first valve chamber 184.
  • the control chamber pressure Pc and the suction chamber pressure Ps are high, the pressure sensitive body (bellows) 178 contracts, and the first valve portion 179 and the valve seat surface of the valve seat body 180 are opened.
  • the valve opening amount between the first valve portion 179 and the valve seat surface of the valve seat body 180 is functionally limited, the refrigerant liquid in the first valve chamber 184 is finely vaporized only in this valve open state. It only promotes. Therefore, if the auxiliary communication passage 185 communicating with the intermediate communication passage 186 is provided, the refrigerant liquid in the control chamber can be rapidly vaporized.
  • the conventional technology is designed as follows. S2 ⁇ S1 L> Lm
  • the refrigerant gas defined by the area S1 of the auxiliary communication path 185 flows from the control chamber to the suction chamber in the entire control region, and the valve body 181 has a stroke Lm in the control region. Since the flow of the refrigerant gas is only restricted for the first time in a state where the maximum stroke L is approached from a position exceeding the range, deterioration in operating efficiency is unavoidable during the control of the variable displacement compressor.
  • the present invention has been made to solve the above-described problems of the prior art, and has an improved capacity for discharging the liquid refrigerant in the control chamber when the variable capacity compressor is provided by providing an auxiliary communication path.
  • An object of the control valve is to provide a capacity control valve capable of simultaneously shortening the start-up time of the capacity variable compressor, improving the operation efficiency during control, and improving the control response.
  • the capacity control valve of the present invention is: In a capacity control valve that controls the flow rate or pressure in the operation control chamber according to the degree of valve opening, A first chamber having a first valve seat surface and a second valve seat surface and a first valve hole communicating with the first valve chamber and a first valve hole communicating with the first communication passage through which the fluid of the control chamber pressure passes and a discharge chamber A valve body having a second valve chamber that communicates with a second communication passage that allows fluid under pressure and a third valve chamber that communicates with a third communication passage that allows fluid under suction chamber pressure; A pressure-sensitive body having a third valve seat surface disposed at a free end that is disposed in the third valve chamber and expands and contracts in response to suction chamber pressure; An intermediate communication passage that communicates the first valve chamber and the third valve chamber via an auxiliary communication passage, and the first valve chamber and the second valve chamber that communicate with and separate from the second valve seat surface.
  • a second valve portion that opens and closes the first valve hole; a first valve portion that opens and closes the auxiliary communication passage in a direction opposite to the second valve portion;
  • a valve body having a third valve portion for opening and closing the passage and the third valve chamber;
  • Each valve portion of the valve body has an electromagnetic coil portion attached to the valve body, a plunger, a stator iron core, and a rod for connecting the valve body and the plunger, and according to a current flowing through the electromagnetic coil portion.
  • a solenoid part that opens and closes, A communication hole disposed between the second valve portion and the third valve portion and communicating the intermediate communication path and the third valve chamber; and between the second valve chamber and the third valve chamber.
  • a throttle valve portion having a second valve hole disposed in The throttle amount of the throttle valve portion with respect to the stroke of the valve body is large in the initial stage of valve opening when the second valve portion is detached from the second valve seat surface, and is smaller after the initial stage of valve opening. .
  • the liquid refrigerant is discharged to the suction chamber via the third valve portion and the communication hole communicating with the intermediate communication path, so that the refrigerant liquid can be obtained in a short time. Can be discharged.
  • the control chamber pressure and the suction chamber pressure are reduced, the third valve portion is closed, and the throttle valve portion is in communication at the initial opening of the second valve portion that shifts to the control operation. Since the hole is greatly squeezed, the refrigerant gas flowing from the control chamber to the suction chamber through the communication hole is greatly squeezed, and deterioration of the operation efficiency of the variable displacement compressor can be prevented.
  • the capacity control valve of the present invention is
  • the valve main body includes an introduction hole that communicates the third valve chamber and the solenoid portion and adjusts the change sensitivity of the control chamber pressure with respect to the suction chamber pressure.
  • the suction chamber pressure of the variable capacity compressor can be quickly converged to the set pressure. be able to.
  • the capacity control valve of the present invention is The gap between the rod of the solenoid part and the stator core is provided with a clearance seal part for adjusting the change sensitivity of the control chamber pressure with respect to the suction chamber pressure.
  • the change sensitivity of the control chamber pressure with respect to the suction chamber pressure can be adjusted, and the capacity control valve can be matched with the characteristics of the variable capacity compressor.
  • the capacity control valve of the present invention is The gap between the stator core and the valve body of the solenoid part is provided with a clearance seal part for adjusting the change sensitivity of the control chamber pressure with respect to the suction chamber pressure.
  • the change sensitivity of the control chamber pressure with respect to the suction chamber pressure can be adjusted, and the capacity control valve can be matched with the characteristics of the variable capacity compressor.
  • the capacity control valve of the present invention is In a capacity control valve that controls the flow rate or pressure in the operation control chamber according to the degree of valve opening, A first valve chamber that communicates with the first communication passage through which the fluid at the discharge chamber pressure passes and has a second valve seat surface, a first valve hole that communicates with the first valve chamber, and a fluid that passes through the fluid at the control chamber pressure.
  • a valve body having a second valve chamber that communicates with the two communication passages, and a third valve chamber that communicates with the third communication passage that allows fluid of suction chamber pressure to pass through;
  • a pressure-sensitive body having a third valve seat surface disposed at a free end that is disposed in the third valve chamber and expands and contracts in response to suction chamber pressure;
  • a second valve portion that opens and closes a first valve hole that connects and disconnects the first valve chamber from the second valve seat surface and communicates the first valve chamber with the second valve chamber, and the second valve chamber and the second through an auxiliary communication passage.
  • An intermediate communication passage that communicates with the three valve chambers, and a valve body having a third valve portion that opens and closes the third valve seat surface that communicates the third valve chamber and the intermediate communication passage;
  • the valve body has an electromagnetic coil portion, a plunger, a stator core, and a rod that connects the valve body and the plunger, and opens and closes each valve portion of the valve body by a current flowing through the electromagnetic coil portion.
  • Solenoid part to be A communication hole disposed between the second valve portion and the third valve portion and communicating the intermediate communication path and the third valve chamber; and between the second valve chamber and the third valve chamber.
  • a throttle valve portion having a second valve hole disposed in The throttle amount of the throttle valve portion with respect to the stroke of the valve body is large in the initial stage of valve opening when the second valve portion is detached from the second valve seat surface, and is smaller after the initial stage of valve opening. .
  • the liquid refrigerant is discharged to the suction chamber via the third valve portion and the communication hole communicating with the intermediate communication path, so that the refrigerant liquid can be obtained in a short time. Can be discharged.
  • the control chamber pressure and the suction chamber pressure are reduced, the third valve portion is closed, and the throttle valve portion is in communication at the initial opening of the second valve portion that shifts to the control operation. Since the hole is greatly squeezed, the refrigerant gas flowing from the control chamber to the suction chamber through the communication hole is greatly squeezed, and deterioration of the operation efficiency of the variable displacement compressor can be prevented.
  • the capacity control valve of the present invention is
  • the valve main body includes an introduction hole that communicates the third valve chamber and the solenoid portion to adjust the change sensitivity of the control chamber pressure with respect to the suction chamber pressure.
  • the suction chamber pressure of the variable displacement compressor can be quickly converged to the set suction chamber pressure.
  • the capacity control valve of the present invention is The gap between the rod of the solenoid part and the stator core is provided with a clearance seal part for adjusting the change sensitivity of the control chamber pressure with respect to the suction chamber pressure.
  • the change sensitivity of the control chamber pressure with respect to the suction chamber pressure can be adjusted, and the capacity control valve can be matched with the characteristics of the variable capacity compressor.
  • the capacity control valve of the present invention is The gap between the stator core and the valve body of the solenoid part is provided with a clearance seal part for adjusting the change sensitivity of the control chamber pressure with respect to the suction chamber pressure.
  • the change sensitivity of the control chamber pressure with respect to the suction chamber pressure can be adjusted, and the capacity control valve can be matched with the characteristics of the variable capacity compressor.
  • FIG. 2 is an enlarged view of a Pc—Ps flow path of FIG.
  • FIG. 6 is a diagram showing the relationship between the opening area of the Pc-Ps flow path and the Pd-Pc flow path of the capacity control valve according to Example 1 and the stroke of the valve element.
  • FIG. 6 is a diagram showing the relationship between the opening area of the Pc-Ps flow path and the Pd-Pc flow path of the capacity control valve according to Example 1 and the stroke of the valve element.
  • FIG. It is a figure which shows the change of the control chamber pressure Pc with respect to the suction chamber pressure Ps of the capacity control valve 1 of Example 1, the capacity control valve 50 of Example 2, and the capacity control valve 60 of Example 3.
  • FIG. It is front sectional drawing which shows the capacity
  • FIG. 1 is a capacity control valve.
  • the capacity control valve 1 is mainly composed of a valve body 2, a valve body 21, a pressure sensitive body 22, and a solenoid unit 30.
  • capacitance control valve 1 is demonstrated.
  • the valve main body 2 includes a first valve main body 2A having a through hole with a function provided therein, and a second valve main body 2B integrally fitted to one end of the first valve main body 2A.
  • the first valve body 2A is made of a metal such as brass, iron, aluminum, stainless steel, or a synthetic resin material.
  • the second valve body 2B functions as a magnetic path of the solenoid unit 30, it is made of a magnetic material such as iron having a small magnetic resistance.
  • the second valve body 2B is provided separately to make the material and function of the first valve body 2A different. In consideration of this point, the shape shown in FIG. 1 may be changed as appropriate.
  • the first valve body 2A is a hollow cylindrical member having a through hole penetrating in the axial direction, and the third valve chamber 4, the second valve chamber 6 and the first valve chamber 7 are continuously arranged in the through hole section.
  • the third valve chamber 4 is formed on one end side in the partition of the through hole
  • the second valve chamber 6 is continuously disposed adjacent to the third valve chamber 4 on the solenoid portion 30 side
  • the second valve A first valve chamber 7 is connected to the solenoid portion 30 side adjacent to the chamber 6.
  • a second valve hole 12A having a diameter smaller than the diameters of these chambers is continuously arranged.
  • a first valve hole 5 having a diameter smaller than the diameter of these chambers is connected between the second valve chamber 6 and the first valve chamber 7, and the first valve chamber 7 around the first valve hole 5 is provided.
  • a second valve seat surface 6A is formed on this side.
  • the third communication passage 9 is connected to the third valve chamber 4.
  • the third communication passage 9 is configured to communicate with a suction chamber of a variable capacity compressor (not shown) so that a fluid having a suction chamber pressure Ps can flow into and out of the third valve chamber 4 by the capacity control valve 1.
  • a second communication passage 8 is connected to the second valve chamber 6.
  • the second communication passage 8 is configured to communicate with the discharge chamber of the variable displacement compressor so that the flow rate of the discharge chamber pressure Pd can flow into the control chamber by the capacity control valve 1.
  • a first communication passage 10 is formed in the first valve chamber 7, and the first communication passage 10 communicates with a control chamber (crank chamber) of the variable displacement compressor to be described later.
  • the fluid having the discharge chamber pressure Pd flowing in from the outlet flows out to the control chamber (crank chamber) of the variable displacement compressor.
  • the 1st communicating path 10, the 2nd communicating path 8, and the 3rd communicating path 9 have penetrated the circumferential surface of the valve main body 2, respectively, for example from 2 to 6 equally.
  • the outer peripheral surface of the valve body 2 is formed in four steps, and mounting grooves for O-rings are provided at three positions on the outer peripheral surface so as to be separated in the axial direction.
  • An O-ring 46 that seals between the valve body 2 and a mounting hole (not shown) of the casing that fits the valve body 2 is attached to each of the mounting grooves.
  • Each flow path of the communication path 8 and the 3rd communication path 9 is comprised as an independent flow path.
  • a pressure sensitive body 22 is disposed in the third valve chamber 4.
  • one end portion of a metal bellows 22 ⁇ / b> A is hermetically coupled to the partition adjusting portion 3.
  • the bellows 22A is made of phosphor bronze or the like, and its spring constant is designed to a predetermined value.
  • the internal space of the pressure sensitive body 22 contains vacuum or air.
  • the suction chamber pressure Ps to contract actuate the pressure sensitive element 22 by acting with a pressure of the third valve chamber 4 (e.g. pressure Pc) It is configured as follows.
  • a free end of the pressure-sensitive body 22 is provided with a valve seat portion 22B having a dish shape and having a third valve seat surface 22C on the peripheral surface of the end portion.
  • the partition adjusting portion 3 of the pressure sensitive body 22 is fitted so as to close the third valve chamber 4 of the first valve body 2A. If it is screwed and fixed with a set screw (not shown), the spring force of the compression spring or bellows 22A arranged in parallel in the bellows 22A can be moved and adjusted in the axial direction.
  • the valve body 21 is a hollow cylindrical member having an intermediate communication passage 26 penetrating in the axial direction.
  • the third valve portion 21A, the second valve portion 21B, and the first valve portion 21C are continuously disposed, An auxiliary communication path 21 ⁇ / b> E communicating with the intermediate communication path 26 and a communication hole 23 are provided.
  • the valve body 21 is disposed in the through hole of the first valve body 2A so as to be movable in the axial direction.
  • a third valve portion surface 21A1 is provided at one end of the valve body 21, and the third valve portion surface 21A1 is separated from and in contact with the third valve seat surface 22C of the pressure-sensitive body 22.
  • the chamber 4 is opened and closed.
  • the third valve portion 21A1 and the third valve seat surface 22C are separated from the contact state, the third valve portion 21A is opened, and the third valve portion surface 21A1 and the third valve seat surface 22C are separated from each other.
  • the third valve portion 21A is closed by changing from the state to the contact state.
  • a second valve portion 21B is provided on the opposite side of the third valve portion 21A of the valve body 21 from the third valve portion surface 21A1.
  • the second valve portion 21B which is an intermediate portion of the valve body 21, is disposed in the second valve chamber 6, and the second valve portion 21B is provided with a second valve portion surface 21B1 joined to the second valve seat surface 6A.
  • the outer diameter of the two valve portions 21 ⁇ / b> B is formed smaller than the diameter of the first valve hole 5.
  • the second valve portion 21B1 and the second valve seat surface 6A are brought into contact with each other from the separated state, the second valve portion 21B is closed, and the second valve chamber 6 and the first valve chamber 7 are The flow of the fluid having the discharge chamber pressure Pd is also cut off.
  • the first valve chamber 7 and the first communication passage 10 communicated from the second communication passage 8, the second valve chamber 6 and the first valve hole 5 communicating with the discharge chamber to the control chamber via the second valve portion 21 ⁇ / b> B.
  • the flow path leading to is referred to as a Pd-Pc flow path. That is, when the second valve portion 21B is opened and closed, the Pd-Pc flow path is communicated and blocked in the flow path from the second communication path 8 to the first communication path 10.
  • a coupling portion 25A provided at the lower end portion of the solenoid rod 25 is fitted into the fitting portion 21D of the valve body 21, and the first valve is interposed between the fitting portion 21D and the second valve portion 21B.
  • a portion 21 ⁇ / b> C is provided, and the first valve portion 21 ⁇ / b> C is disposed in the first valve chamber 7.
  • four auxiliary communication passages 21 ⁇ / b> E are provided in the first valve chamber 7.
  • the first valve chamber 7 communicates with the intermediate communication path 26 through the auxiliary communication path 21E.
  • the first valve chamber 7 is formed to have a slightly larger diameter than the outer shape of the first valve portion 21 ⁇ / b> C, and the control chamber pressure Pc fluid from the first communication passage 10 easily flows into the first valve chamber 7. Yes.
  • a first valve seat surface 31 ⁇ / b> A is formed on the lower end surface of the stator core 31 of the solenoid unit 30.
  • the first valve portion 21C and the first valve seat surface 31A are separated from the contact state, the first valve portion 21C is opened, and the fluid at the control chamber pressure Pc flows from the first communication passage 10 and the first valve chamber. 7 flows out to the third valve chamber 4 and the third communication passage 9 through the auxiliary communication passage 21E, the intermediate communication passage 26, and the throttle valve portion 12.
  • the first valve portion 21C and the first valve seat surface 31A are brought into contact with each other from the separated state, the first valve portion 21C is closed, and the first communication passage 10 and the first valve chamber 7 are connected to the auxiliary communication.
  • the fluid of the control chamber pressure Pc flowing out to the third valve chamber 4 and the third communication passage 9 through the passage 21E, the intermediate communication passage 26, and the throttle valve portion 12 is shut off.
  • the first communication passage 10 communicating with the control chamber 10 and the first valve chamber 7 communicate with the suction chamber via the first valve portion 21C, the auxiliary communication passage 21E, the intermediate communication passage 26, and the throttle valve portion 12.
  • a flow path leading to the valve chamber 4 is referred to as a Pc-Ps flow path. That is, when the first valve portion 21C is opened and closed, the Pc-Ps flow path from the first communication path 10 to the third communication path 9 is communicated and blocked.
  • At least one communication hole 23 communicating with the intermediate communication passage 26 is provided between the third valve portion 21A and the second valve portion 21B, and the communication hole 23 slides on the second valve hole 12A and is throttled. It functions as the valve part 12.
  • the communication hole 23 of the throttle valve portion 12 moves in and out of the third valve chamber 4 by sliding in the axial direction facing the second valve hole 12A, and the opening area of the communication hole 23 with respect to the third valve chamber 4 is as follows. Changes from fully open to fully closed.
  • the solenoid unit 30 is configured by housing a solenoid rod 25, a plunger case 34, an electromagnetic coil 35, a stator core 31, a plunger 32, and a spring means 28 in a solenoid case 33.
  • a stator core 31 fixed to the second valve main body 2B is provided between the valve body 21 and the plunger 32, and the solenoid rod 25 is movably fitted in the through hole 31D of the stator core 31, so that the solenoid
  • the connecting portion 25A of the rod 25 is fitted to the fitting portion 21D of the valve body 21, and the opposite other end portion is fitted to the fitting hole 32A of the plunger 32 to be coupled.
  • the plunger case 34 is a bottomed hollow cylindrical member that is open at one end, and is fitted to the inner diameter portion of the electromagnetic coil 35, and the open end of the plunger case 34 is sealed with the fitting hole of the second valve body 2B.
  • the bottomed end is fixed to the fitting hole at the end of the solenoid case 33.
  • a stator core 31 and a plunger 32 are disposed, and the plunger 32 is slidably fitted in the plunger case 34.
  • a spring seat chamber 31 ⁇ / b> C is formed on the plunger 32 side of the stator core 31.
  • a spring means (hereinafter also referred to as an elastic means) 28 for disposing the first valve portion 21C and the second valve portion 21B from the closed state to the open state is disposed. That is, the spring means 28 is repelled so as to pull the plunger 32 away from the stator core 31.
  • the adsorption surface 31B of the stator iron core 31 and the joint surface 32B of the plunger 32 form a tapered surface that faces each other, and are arranged with a gap on the facing surface.
  • the separation between the adsorption surface 31B of the stator core 31 and the joint surface 32B of the plunger 32 is performed by the strength of the current flowing through the electromagnetic coil 35. That is, in the non-energized state of the electromagnetic coil 35, when the maximum gap is formed between the adsorption surface 31B of the stator core 31 and the joint surface 32B of the plunger 32 due to the repulsion of the spring means 28, the first valve portion 21C The throttle valve portion 12 is closed and the second valve portion 21B is opened.
  • the joining surface 32B of the plunger 32 is attracted to the attracting surface 31B of the stator core 31 by the magnetic attraction force, the first valve portion 21C and the throttle valve portion 12 are opened, and the second valve portion 21B is opened. Close the valve.
  • the magnitude of the current supplied to the electromagnetic coil 35 is controlled by a control unit (not shown) according to the degree of opening and closing of each valve unit of the valve body 21.
  • the control chamber (crank chamber) is in a state where liquid refrigerant (refrigerant gas liquefied by cooling while standing) has accumulated. Therefore, the capacity control valve 1 cannot freely control the pressure in the control chamber, and the refrigerant gas cannot be compressed to ensure the discharge amount as set. Therefore, the capacity control valve 1 of the present invention discharges and vaporizes liquid refrigerant in the control chamber (crank chamber) as quickly as possible in order to perform desired capacity control immediately after activation.
  • a thick curve with an arrow extending from the first communication path 10 to the third communication path 9 indicates a Pc-Ps flow path.
  • the communication hole 23 of the throttle valve portion 12 generates a maximum opening area S2max with respect to the second valve hole 12A.
  • the maximum opening area S2max is equal to or less than the minimum area of the first valve portion 21C, the auxiliary communication path 21E (the total area when there are a plurality of auxiliary communication paths), and the intermediate communication path 26.
  • the position and shape of the communication hole 23 are set. That is, the throttle valve section 12 is a bottleneck in the Pc-Ps flow path.
  • the throttle amount of the throttle valve portion 12 with respect to the stroke of the valve body 21 is large at the initial stage of valve opening when the second valve portion surface 21B1 of the second valve portion 21B is detached from the second valve seat surface 6A, and after the initial stage of valve opening. Is set to be small.
  • valve body 21 moves and the second valve 21B is fully opened, the first valve 21C is fully closed, and the throttle valve 12 is The fully closed state is established, and the Pc-Ps flow path is blocked.
  • the horizontal axis in FIG. 3 indicates the stroke of the valve body 21, and the vertical axis indicates the opening area.
  • the stroke Ls in FIG. 3 corresponds to the time when the liquid refrigerant is discharged in FIG. 2A, and the second valve portion 21B is fully closed (the first valve portion 21C is fully open).
  • the second valve portion 21B in (c) shows a fully open state (the first valve portion 21C is fully closed), and the range shown between (Ls-Lm) on the horizontal axis in the drawing shows the control range.
  • a horizontal line consisting of a broken line at a substantially intermediate position on the vertical axis indicates the smallest area S1 of the first valve portion 21C, the auxiliary communication path 21E, and the intermediate communication path 26 in the Pc-Ps flow path.
  • the opening area S2 of the throttle valve portion 12 in the control region is set smaller than the area S1, and becomes a bottleneck in the Pc-Ps flow path.
  • the auxiliary communication passage 21E is provided in the first valve portion 21C in the first valve chamber 7 where the fluid having the control chamber pressure acts, and the pressure sensitive body is provided in the third valve chamber 4 in which the fluid having the suction chamber pressure acts.
  • the minimum area of the Pc-Ps flow path in the control region can be set by a simple configuration of the throttle valve portion 12 including the second valve hole 12A disposed between the communication passages 9.
  • the opening area S2 of the throttle valve portion 12 in the control region is indicated by a solid line, and at the time of discharging the liquid refrigerant at the left end, that is, the second valve portion 21B is fully closed (the first valve portion 21C is fully open). ), The throttle valve section 12 is in a state of generating a maximum opening area S2max, and the maximum opening area S2max is set to be the same as or substantially the same as the area S1 of the auxiliary communication path 21E (FIG. 2A). )reference).
  • the control chamber pressure and the suction chamber pressure decrease, the pressure sensing body 22 extends, the third valve portion 21A closes, and the solenoid portion 30
  • the second valve portion 21B starts to move from the fully closed state to the valve open state
  • the throttle valve portion 12 starts to move from the fully open state to the valve closed state.
  • the throttle valve portion 12 serving as a bottleneck is throttled, so that the second valve portion surface 21B1 of the second valve portion 21B is separated from the second valve seat surface 6A and at the same time the Pc-Ps flow path is also throttled.
  • the throttle amount of the throttle valve portion 12 with respect to the stroke of the valve body 21 is the initial valve opening (between Ls and Lu in FIG. 3) when the second valve portion surface 21B1 of the second valve portion 21B is separated from the second valve seat surface 6A. ), And after the initial valve opening (between Lu and Le in FIG. 3) is set to be small, the Pc-Ps flow path can be quickly narrowed. As a result, the amount of refrigerant flowing through the Pc-Ps flow path can be rapidly reduced during control of the variable displacement compressor, so that a reduction in efficiency of the variable displacement compressor can be prevented.
  • the throttle amount of the throttle valve section 12 with respect to the stroke of the valve body 21 is the throttle ratio of the throttle valve section 12, and shows the inclination of the opening area S2 in FIG.
  • the throttle rate of the throttle valve portion 12 is large at the initial stage of valve opening (between Ls and Lu in FIG. 3) when the second valve portion surface 21B1 of the second valve portion 21B starts to separate from the second valve seat surface 6A. After the initial stage (between Lu and Le in FIG. 3), it is set to be small. Specifically, in the initial stage of valve opening (between Ls and Lu) when the second valve portion 21B is detached from the second valve seat surface 6A, the opening degree of the second valve portion 21B is changed from 0% to 30%.
  • the opening degree of the throttle valve section 12 is rapidly reduced from the opening degree 100% to the opening degree 10% to 30%.
  • the throttle valve part 12 has an opening degree of 10% to 30%. It is gently throttled from the% state to the fully closed state with the opening degree of 0%.
  • the opening area S2 of the throttle valve portion 12 with respect to the stroke of the valve body 21 varies depending on the relative position between the communication hole 23 and the second valve hole 12A, and varies nonlinearly as shown in FIG. Can be made.
  • the front shape of the communication hole 23 is substantially circular, and the cross-sectional shape is a bottomed large-diameter portion 23a having a predetermined depth on the side facing the second valve hole 12A.
  • the intermediate communication passage 26 has a stepped shape (refer to FIG. 2C) including a small-diameter portion 23b that has a smaller diameter than the large-diameter portion 23a and that passes through the valve body 21.
  • the front shape of the communication hole 23 is not limited to a substantially circular shape.
  • the second valve portion 21B side has a horizontal opening extending in a direction orthogonal to the valve shaft
  • the third valve portion 21A side has an axial opening extending in the axial direction. It is good also as a substantially T-shaped opening part which formed the horizontal opening part more than the axial direction opening part.
  • the shape of the communication hole 23 may be an inverted triangle in which the apex is disposed on the third valve portion 21A side and the base is disposed on the second valve portion 21B side in a front view.
  • the communication hole 23 of the throttle valve portion 12 is blocked by the second valve hole 12A from the bottom side, so that the opening area can be changed as shown by the solid line in FIG. it can.
  • the shape of the communication hole 23 may be a circle, an ellipse, an inverted triangle, a trapezoid, a pentagon, or the like.
  • the opening area of the throttle valve portion 12 can be changed non-linearly with respect to the stroke of the valve body 21 by blocking the large portion and then gradually closing the portion having a small opening area.
  • the capacity control valve according to the first embodiment of the present invention is as described above, and has the following excellent effects.
  • the liquid refrigerant is discharged from both the third valve portion 21A communicating with the intermediate communication passage 26 and the communication hole 23 to the suction chamber, so that the refrigerant liquid can be discharged in a short time.
  • the throttle valve portion 12 is greatly throttled. The inflow of the refrigerant gas into the chamber can be rapidly reduced, and the operation efficiency of the variable capacity compressor can be improved in the entire control region.
  • the opening area S2 of the throttle valve portion 12 is set to be smaller than the area S1 of the auxiliary communication passage 21E, so that an auxiliary communication passage is provided to improve the function of discharging the liquid refrigerant in the control chamber when starting the variable displacement compressor.
  • the minimum area of the Pc-Ps flow path in the control region can be reduced, and the start-up time of the variable capacity compressor and the improvement of the operation efficiency during control can be achieved at the same time.
  • the capacity control valve 50 according to the second embodiment is mainly different from the capacity control valve 1 according to the first embodiment in that an introduction hole 53 is provided in the first valve main body 52A.
  • the same reference numerals are assigned to the same members, and duplicate descriptions are omitted.
  • the valve main body 52 includes a first valve main body 52A that forms a through hole with a function provided therein, and a second valve main body 2B that is integrally fitted to one end of the first valve main body 52A. .
  • the structure of the second valve body 2B is the same as that of the first embodiment.
  • the first valve body 52A has an introduction hole 53 from the third valve chamber 4 to the solenoid part 200 side in parallel with the through holes forming the third valve chamber 4, the second valve chamber 6, and the first valve chamber 7. Newly provided.
  • the stator core 201 of the solenoid unit 200 has an introduction groove 201 ⁇ / b> A formed at a position facing the introduction hole 53.
  • a gap portion 36 is formed between the stator core 201 and the solenoid rod 25, and the clearance seal portion 207 having a gap narrower than the gap portion 36 in the gap portion 36 of the stator core 201 and the solenoid rod 25. Is formed.
  • the fluid having the suction chamber pressure Ps of the third valve chamber 4 flows through the gap between the stator core 201 and the plunger case 34 from the introduction hole 53 via the introduction groove 201A. It flows through the gap 36 with the solenoid rod 25 and is sealed at the clearance seal portion 207.
  • the pressure receiving area S A (Formula 2) area (S A -S B) (Equation 1). That is, the capacity control valve 50 of FIG. 4 having a smaller pressure receiving area (S A ⁇ S B ) has the same differential pressure (Pc ⁇ Ps) than the capacity control valve 1 of FIG. 1 having a larger pressure receiving area S A. Therefore, the force acting in the closing direction of the second valve portion 21B is small, and the second valve portion 21B is difficult to close. Therefore, the capacity control valve 50 of FIG.
  • control chamber pressure Pc is likely to change with respect to the same differential pressure (Pc ⁇ Ps) means that the suction chamber pressure Ps of the variable displacement compressor deviates from the set suction chamber pressure Pset, and the differential pressure (Pc ⁇ Ps).
  • the control chamber pressure Pc immediately changes in accordance with the change in the differential pressure (Pc ⁇ Ps), so that the suction chamber pressure Ps quickly converges to the set suction chamber pressure Pset.
  • the capacity control valve 50 according to the second embodiment of the present invention is as described above, and has the following excellent effects.
  • variable capacity compressor When the fluid having the suction chamber pressure Ps is introduced from the third valve chamber 4 to the back side of the plunger case 34 by providing the introduction hole 53 in the first valve body 52A, the response characteristic of the control chamber pressure Pc to the suction chamber pressure Ps is obtained. As a result, the response of the variable capacity compressor to the heat load can be improved. As a result, according to the characteristics of variable capacity compressors, the dimensions of pressure sensitive bodies and valve bodies, etc., which were conventionally designed individually, can be changed to the characteristics of individual variable capacity compressors without major design changes. Can be matched.
  • the capacity control valve 60 according to the third embodiment of the present invention will be described.
  • a fluid having a suction chamber pressure Ps introduced from the third valve chamber 4 to the back surface side of the plunger case 34 is used as a clearance seal portion 208 between the stator core 202 and the valve body 21.
  • the other basic configuration is the same as that of the second embodiment, the same members are denoted by the same reference numerals, and the duplicate description is omitted. .
  • the first valve body 52A is provided with an introduction hole 53 from the third valve chamber 4 to the solenoid part 200 side in parallel with the through holes forming the third valve chamber 4, the second valve chamber 6, and the first valve chamber 7.
  • the stator core 202 of the solenoid unit 210 is the same as the second embodiment in that an introduction groove 202A is formed at a position facing the introduction hole 53. Further, a clearance seal portion 208 is provided between the stator core 202 and the valve body 21, and the clearance seal portion 208 is formed to be narrower than the gap portion 36 between the stator core 202 and the solenoid rod 25. Yes.
  • the fluid having the suction chamber pressure Ps of the third valve chamber 4 flows through the gap between the stator core 202 and the plunger case 34 from the introduction hole 53 via the introduction groove 202A, and further to the stator core 202. It flows through the gap portion 36 with the solenoid rod 25 and is sealed by the clearance seal portion 208.
  • the capacity control valve 60 of the third embodiment is also provided with the introduction hole 53 in the first valve body 52A, so that the fluid having the suction chamber pressure Ps from the third valve chamber 4 to the back side of the plunger case 34 is obtained.
  • the pressure receiving area S C of the clearance seal 208 is larger than the pressure receiving area S B of the clearance seal 207 of the displacement control valve 50 of the second embodiment (FIG. 4) (Fig. 4).
  • Ps a variable displacement compressor suction chamber pressure
  • Pd variable displacement compressor discharge chamber pressure
  • Pc variable displacement compressor control chamber pressure
  • BLsp spring force of the pressure sensitive element 22
  • S BL pressure sensitive receiving area S a of the body 22: second valve portion 21B
  • the pressure receiving area S C of the third valve portion 21A pressure-receiving area of the clearance seal portion 208
  • Fsol driving force of the solenoid portion 210
  • Equation 3 in the third term on the left side of the capacity control valve 60 (FIG. 5) (Equation 3) of the third embodiment is in the direction in which the second valve portion 21B is closed. It is the force that acts.
  • the second valve portion 21B acts in the closing direction.
  • the force “ ⁇ (Pc ⁇ Ps) ⁇ (S A ⁇ S C )” is smaller in the capacity control valve 60 (FIG. 5) of the present embodiment. Accordingly, the capacity control valve 60 is difficult to close the second valve portion 21B with respect to the same differential pressure (Pc ⁇ Ps), and therefore the control of the variable capacity compressor from the second valve chamber 6 through the first valve chamber 7 is performed.
  • the amount of fluid supplied at the discharge chamber pressure Pd supplied to the chamber increases, and the pressure Pc in the control chamber does not easily change.
  • Displacement control valve 60 of this embodiment is made larger than the pressure receiving area S B of the clearance seal 207 of the displacement control valve 50 a pressure receiving area S C of the clearance seal 208 for receiving the suction chamber pressure Ps, the suction chamber pressure Ps
  • the response characteristic of the control chamber pressure Pc with respect to the change in the pressure can be further enhanced.
  • FIG. 6 shows the suction chamber pressure Ps of the capacity control valve 1 of the first embodiment (structure shown in FIG. 1), the capacity control valve 50 of the second embodiment (structure of FIG. 4), and the capacity control valve 60 of the third embodiment (structure of FIG. 5). It is a figure which shows the change of the control chamber pressure Pc with respect to.
  • the change amount of the control chamber pressure Pc (control output value) with respect to the change amount of the suction chamber pressure Ps (control input value) is the smallest in the capacity control valve 1 of FIG. 1, and the capacity control of the structure of FIG.
  • the valve 50 and the capacity control valve 60 having the structure shown in FIG. As shown in FIG. 1 to FIG. 5 shown in FIG.
  • the change in the control chamber pressure Pc relative to the change in the suction chamber pressure Ps is adjusted by adjusting the slope of the graph of the control chamber pressure Pc with respect to the suction chamber pressure Ps.
  • the capacity control valve can be easily matched to the characteristics of the individual variable capacity compressors.
  • the capacity control valve according to the third embodiment of the present invention is as described above, and has the following excellent effects.
  • the fluid of the suction chamber pressure Ps is introduced from the third valve chamber 4 to the back side of the plunger case 34, and the pressure receiving area of the clearance seal portion on which the suction chamber pressure Ps acts.
  • the response characteristic of the control chamber pressure Pc it is possible to adjust the response characteristic of the control chamber pressure Pc to the change in the suction chamber pressure Ps.
  • the size of bellows, valve body, etc., individually designed according to the characteristics of variable capacity compressors can be matched to the characteristics of individual variable capacity compressors without major design changes. .
  • the suction chamber pressure Ps can be quickly converged to the set suction chamber pressure Pset.
  • a capacity control valve 70 according to a fourth embodiment of the present invention will be described.
  • the fluid having the discharge chamber pressure Pd is guided to the first valve chamber 7 of the first valve body 52A, and the fluid having the control chamber pressure Pc is guided to the second valve chamber 6.
  • This is mainly different from the capacity control valve 60 of the third embodiment.
  • the same members as those of the capacity control valve 60 of the third embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the first valve body 52A communicates with the first communication passage 10 through which the fluid having the discharge chamber pressure Pd passes, and has a first valve chamber 7 having a second valve seat surface 6A, and a first valve hole communicating with the first valve chamber 7. And a third valve chamber 4 that communicates with a second communication passage 8 that communicates with a fluid having a control chamber pressure Pc and a third communication passage 9 that allows fluid with a suction chamber pressure Ps.
  • the valve body 71 is separated from the second valve seat surface 6A, opens and closes the first valve hole 5 that connects the first valve chamber 7 and the second valve chamber 6, a second valve portion 71B, an auxiliary communication passage 71E, An intermediate communication passage 76 that allows the second valve chamber 6 and the third valve chamber 4 to communicate with each other via the communication hole 73, and a third valve seat surface 22 ⁇ / b> C of the pressure-sensitive body 22, are separated from and connected to the third valve chamber 4.
  • a third valve portion 71A for opening and closing the passage 76 is provided. Unlike the first to third embodiments, the valve body 71 does not have a first valve portion that is disposed in the first valve chamber 7 and that opens and closes in the direction opposite to the second valve portion 71B.
  • a communication hole 73 for communicating the third valve chamber 4 and the intermediate communication passage 76 between the third valve portion 71 ⁇ / b> A and the second valve portion, and the second valve chamber 6 and the third valve chamber 4 are disposed.
  • a throttle valve portion 72 having a second valve hole 72A is provided, and the throttle valve portion 72 has a throttle amount at the initial stage of opening when the second valve portion surface 71B1 of the second valve portion 71B starts to separate from the second valve seat surface 6A. The throttle amount of the throttle valve portion 72 is low after the initial valve opening.
  • the capacity control valve 70 according to the fourth embodiment of the present invention is as described above, and has the following excellent effects.
  • the liquid refrigerant is discharged from both the third valve portion 71A communicating with the intermediate communication passage 76 and the communication hole 73 to the suction chamber, so that the refrigerant liquid can be discharged in a short time.
  • the throttle valve portion 72 is greatly throttled at the initial stage of valve opening. The inflow of the refrigerant gas into the chamber can be rapidly reduced, and the operation efficiency of the variable capacity compressor can be improved in the entire control region.
  • the fluid of the suction chamber pressure Ps is introduced from the third valve chamber 4 to the back side of the plunger case 34, and the pressure receiving area of the clearance seal portion on which the suction chamber pressure Ps acts.
  • the response characteristic of the control chamber pressure Pc it is possible to adjust the response characteristic of the control chamber pressure Pc to the change in the suction chamber pressure Ps.
  • the size of bellows, valve body, etc., individually designed according to the characteristics of variable capacity compressors can be matched to the characteristics of individual variable capacity compressors without major design changes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Multiple-Way Valves (AREA)

Abstract

【課題】補助連通路を設けて容量可変型圧縮機の起動時における制御室の液冷媒の排出機能を改善した容量制御弁において、容量可変型圧縮機の起動時間の短縮と制御時における運転効率の向上とを同時に達成できる容量制御弁を提供すること。 【解決手段】第2弁部21Bと第3弁部21Aの間に配設されるとともに中間連通路26と第3弁室4を連通させる連通孔23、及び第2弁室6と第3弁室4との間に配設される第2弁孔12Aを有する絞り弁部12と、を備え、弁体21のストロークに対する絞り弁部12の絞り量は、第2弁部21Bが第2弁座面6Aから離脱する開弁初期において大きく、開弁初期より後は小さくなる。

Description

容量制御弁
 本発明は、作動流体の容量又は圧力を可変制御する容量制御弁に関し、特に、自動車等の空調システムに用いられる容量可変型圧縮機等の吐出量を圧力負荷に応じて制御する容量制御弁に関する。
 自動車等の空調システムに用いられる斜板式容量可変型圧縮機は、エンジンの回転力により回転駆動される回転軸、回転軸に対して傾斜角度を可変に連結された斜板、斜板に連結された圧縮用のピストン等を備え、斜板の傾斜角度を変化させることにより、ピストンのストロークを変化させて冷媒ガスの吐出量を制御するものである。
 この斜板の傾斜角度は、冷媒を吸入する吸入室の吸入圧力、ピストンにより加圧した冷媒を吐出する吐出室の吐出圧力、斜板を収容した制御室(クランク室)の制御室圧力を利用しつつ、電磁力により開閉駆動される容量制御弁を用いて、制御室内の圧力を適宜制御し、ピストンの両面に作用する圧力のバランス状態を調整することで連続的に変化させ得るようになっている。
 このような容量制御弁としては、図8に示すように、吐出室と制御室とを連通させる第2連通路173及び弁孔177、吐出側通路の途中に形成された第2弁室182、吸入室と制御室とを連通させる第3連通路171及び流通溝172、吸入側通路の途中に形成された第3弁室183、第2弁室182内に配置されて第2連通路173及び弁孔177を開閉する第2弁部176と第3弁室183内に配置されて第3連通路171及び流通溝172を開閉する第3弁部175とが一体的に往復動すると同時にお互いに逆向きに開閉動作を行うように形成された弁体181、制御室寄りに形成された第1弁室184、第1弁室内に配置されて伸長(膨張)する方向に付勢力を及ぼすと共に周囲の圧力増加に伴って収縮する感圧体(ベローズ)178、感圧体の伸縮方向の自由端に設けられ環状の座面を有する弁座体(係合部)180、第1弁室184にて弁体181と一体的に移動すると共に弁座体180との係合及び離脱により吸入側通路を開閉し得る第1弁部(開弁連結部)179、弁体181に電磁駆動力を及ぼすソレノイド部S等を備えたものが知られている(以下、「従来技術」という。例えば、特許文献1参照。)。
 そして、この容量制御弁170では、容量制御時において容量可変型圧縮機にクラッチ機構を設けなくても、制御室圧力を変更する必要が生じた場合には、吐出室と制御室とを連通させて制御室内の圧力(制御室圧力)Pcを調整できるようにしたものである。また、容量可変型圧縮機が停止状態において制御室圧力Pcが上昇した場合には、第1弁部(開弁連結部)179を弁座体(係合部)180から離脱させて吸入側通路を開放し、吸入室と制御室とを連通させるような構成となっている。
 ところで、斜板式容量可変型圧縮機を停止して、長時間放置した後に起動させようとした場合、制御室(クランク室)には液冷媒(放置中に冷却されて冷媒ガスが液化したもの)が溜まるため、この液冷媒を排出しない限り冷媒ガスを圧縮して設定とおりの吐出量を確保することができず、起動直後から所望の容量制御を行うには、制御室(クランク室)の液冷媒をできるだけ素早く排出させる必要がある。
 このため、上記の従来技術においては、弁座体(係合部)180に補助連通路185を設け、第1弁室184から補助連通路185と中間連通路186及び流通溝172を介して吸入室圧力状態の第3連通路171とを連通可能に構成している。これにより、図8の矢印で示すように、液冷媒容量可変型圧縮機を起動して冷房するときには、制御室(クランク室)から吸入室に液冷媒を排出して制御室の冷媒液を気化させることにより、補助連通路185を有しない容量制御弁よりも1/10から1/15の早さで冷房運転状態とすることができる。
 図8は、ソレノイド部Sに通電され、開放ばね手段187が縮み、第3弁部175は開弁している状態を示す。一方、図示は省略するが、電流がソレノイド部Sに流れていないときは、開放ばね手段187の伸長により第3弁部175は閉弁し、第2弁部176は開弁状態になるとともに、第1弁部179は吸入室圧力Ps及び制御室圧力Pcを受けて開弁する。
 そして、起動時においては、制御室内の冷媒液が気化して第1連通路174から第1弁室184へ制御室圧力Pcの流体が流入する。この状態では、制御室圧力Pc及び吸入室圧力Psが高く、感圧体(ベローズ)178は収縮して第1弁部179と弁座体180の弁座面との間が開弁する。しかし、第1弁部179と弁座体180の弁座面との開弁量は機能的な制限があるため、この開弁状態だけでは第1弁室184内の冷媒液は気化が細々としか促進しない。そこで、中間連通路186に連通する補助連通路185を設けると、急速に制御室の冷媒液を気化させることができる。
 しかしながら、上記の従来技術では、例えば、制御室(クランク室)の液冷媒の排出を完了して容量可変型圧縮機の制御運転に移行したときには、第1弁部179と弁座体180の弁座面との間は閉弁状態となっても、中間連通路186に連通する補助連通路185は開放されているため、制御室から補助連通路185、中間連通路186を介して吸入室へ冷媒ガスが流れ、容量可変型圧縮機の運転効率の悪化を招くという問題があった。
 この点について、図8~図10を参照しながら詳しく説明する。図8~図10において、補助連通路185の面積S1(固定)、第3弁部175の最大開口面積をS2、弁体181の最大ストロークをL(全閉から全開までのストローク)、制御域における弁体181のストロークをLmとした場合、従来技術では以下のように設計されている。
 S2≧S1
 L>Lm
 このため、図10の実線で示すように、制御域の全部において補助連通路185の面積S1で規定される冷媒ガスが制御室から吸入室へ流れてしまい、弁体181が制御域のストロークLmを超えた位置から最大ストロークLに近づいた状態で初めて冷媒ガスの流れが規制されるに過ぎないため、容量可変型圧縮機の制御中における運転効率の悪化は避けられない。
特許第5167121号公報
 本発明は、上記従来技術の有する問題点を解決するためになされたものであって、補助連通路を設けて容量可変型圧縮機の起動時における制御室の液冷媒の排出機能を改善した容量制御弁において、容量可変型圧縮機の起動時間の短縮と制御時における運転効率の向上及び制御応答性の向上を同時に達成できる容量制御弁を提供することを目的としている。
 前記課題を解決するために、本発明の容量制御弁は、
  バルブ部の開弁度に応じて作動制御室内の流量又は圧力を制御する容量制御弁において、
 制御室圧力の流体を通す第1連通路と連通すると共に第1弁座面及び第2弁座面を有する第1弁室、前記第1弁室と連通する第1弁孔を有すると共に吐出室圧力の流体を通す第2連通路に連通する第2弁室、及び吸入室圧力の流体を通す第3連通路に連通する第3弁室を有するバルブ本体と、
 前記第3弁室内に配置されて吸入室圧力に応動して伸縮すると共に伸縮する自由端に配設される第3弁座面を有する感圧体と、
 補助連通路を介して前記第1弁室と前記第3弁室とを連通する中間連通路、前記第2弁座面と離接して前記第1弁室と前記第2弁室を連通させる前記第1弁孔を開閉する第2弁部、前記第2弁部と反対方向に連動して前記補助連通路を開閉する第1弁部、及び前記第3弁座面と離接して前記中間連通路と前記第3弁室とを開閉する第3弁部を有する弁体と、
 前記バルブ本体に取り付けられた電磁コイル部、プランジャ、固定子鉄心、及び、前記弁体と前記プランジャを接続するロッドを有し、前記電磁コイル部に流す電流に応じて前記弁体の各弁部を開閉作動させるソレノイド部と、
 前記第2弁部と前記第3弁部の間に配設されるとともに前記中間連通路と前記第3弁室を連通させる連通孔、及び前記第2弁室と前記第3弁室との間に配設される第2弁孔を有する絞り弁部と、を備え、
 前記弁体のストロークに対する前記絞り弁部の絞り量は、前記第2弁部が前記第2弁座面から離脱する開弁初期において大きく、前記開弁初期より後は小さくなることを特徴としている。
 この特徴によれば、容量可変型圧縮機の液冷媒排出運転時には、中間連通路に連通する第3弁部及び連通孔を介して液冷媒は吸入室へ排出されるので、短時間で冷媒液を排出できる。液冷媒の排出が完了したときには制御室圧力及び吸入室圧力は低下して第3弁部は閉弁し、そして制御運転へ移行する第2弁部の開弁初期においては、絞り弁部は連通孔を大きく絞るので、制御室から連通孔を介して吸入室へ流れる冷媒ガスは大きく絞られ、容量可変型圧縮機の運転効率の悪化を防ぐことができる。
 本発明の容量制御弁は、
 前記バルブ本体は、前記第3弁室と前記ソレノイド部を連通して、吸入室圧力に対する制御室圧力の変化感度を調整する導入孔を備えることを特徴としている。
 この特徴によれば、容量可変型圧縮機の吸入室圧力が設定圧力からずれても、吸入室圧力を設定圧力に迅速に収束させることができる。
 ことができる。
 本発明の容量制御弁は、
 前記ソレノイド部の前記ロッドと前記固定子鉄心との空隙部は、吸入室圧力に対する制御室圧力の変化感度を調整するクリアランスシール部を備えることを特徴としている。
 この特徴によれば、クリアランスシール部を調整することで、吸入室圧力に対する制御室圧力の変化感度を調整して、容量制御弁を容量可変型圧縮機の特性にマッチングさせることができる。
 本発明の容量制御弁は、
 前記ソレノイド部の前記固定子鉄心と前記弁体との空隙部は、吸入室圧力に対する制御室圧力の変化感度を調整するクリアランスシール部を備えることを特徴としている。
 この特徴によれば、クリアランスシール部を調整することで、吸入室圧力に対する制御室圧力の変化感度を調整して、容量制御弁を容量可変型圧縮機の特性にマッチングさせることができる。
 本発明の容量制御弁は、
 バルブ部の開弁度に応じて作動制御室内の流量又は圧力を制御する容量制御弁において、
 吐出室圧力の流体を通す第1連通路と連通すると共に第2弁座面を有する第1弁室、前記第1弁室と連通する第1弁孔を有するとともに制御室圧力の流体を通す第2連通路に連通する第2弁室、及び吸入室圧力の流体を通す第3連通路に連通する第3弁室を有するバルブ本体と、
 前記第3弁室内に配置されて吸入室圧力に応動して伸縮すると共に伸縮する自由端に配設される第3弁座面を有する感圧体と、
 前記第2弁座面と離接して前記第1弁室と前記第2弁室を連通させる第1弁孔を開閉する第2弁部、補助連通路を介して前記第2弁室と前記第3弁室とを連通させる中間連通路、及び前記第3弁室と前記中間連通路を連通させる前記第3弁座面を開閉する第3弁部を有する弁体と、
 前記バルブ本体に取り付けられ電磁コイル部、プランジャ、固定子鉄心、及び、前記弁体と前記プランジャを接続するロッドを有し、前記電磁コイル部に流す電流によって前記弁体の各弁部を開閉作動させるソレノイド部と、
 前記第2弁部と前記第3弁部の間に配設されるとともに前記中間連通路と前記第3弁室を連通させる連通孔、及び前記第2弁室と前記第3弁室との間に配設される第2弁孔を有する絞り弁部と、を備え、
 前記弁体のストロークに対する前記絞り弁部の絞り量は、前記第2弁部が前記第2弁座面から離脱する開弁初期において大きく、前記開弁初期より後は小さくなることを特徴としている。
 この特徴によれば、容量可変型圧縮機の液冷媒排出運転時には、中間連通路に連通する第3弁部及び連通孔を介して液冷媒は吸入室へ排出されるので、短時間で冷媒液を排出できる。液冷媒の排出が完了したときには制御室圧力及び吸入室圧力は低下して第3弁部は閉弁し、そして制御運転へ移行する第2弁部の開弁初期においては、絞り弁部は連通孔を大きく絞るので、制御室から連通孔を介して吸入室へ流れる冷媒ガスは大きく絞られ、容量可変型圧縮機の運転効率の悪化を防ぐことができる。
 本発明の容量制御弁は、
 前記バルブ本体は、前記第3弁室と前記ソレノイド部を連通して吸入室圧力に対する制御室圧力の変化感度を調整する導入孔を備えることを特徴としている。
 この特徴によれば、容量可変型圧縮機の吸入室圧力を設定吸入室圧力に迅速に収束させることができる。
 本発明の容量制御弁は、
 前記ソレノイド部の前記ロッドと前記固定子鉄心との空隙部は、吸入室圧力に対する制御室圧力の変化感度を調整するクリアランスシール部を備えることを特徴としている。
 この特徴によれば、クリアランスシール部を調整することで、吸入室圧力に対する制御室圧力の変化感度を調整して、容量制御弁を容量可変型圧縮機の特性にマッチングさせることができる。
 本発明の容量制御弁は、
 前記ソレノイド部の前記固定子鉄心と前記弁体との空隙部は、吸入室圧力に対する制御室圧力の変化感度を調整するクリアランスシール部を備えることを特徴としている。
 この特徴によれば、クリアランスシール部を調整することで、吸入室圧力に対する制御室圧力の変化感度を調整して、容量制御弁を容量可変型圧縮機の特性にマッチングさせることができる。
本発明の実施例1に係る容量制御弁を示す正面断面図である。 図1のPc-Ps流路の拡大図であり、各状態における弁体の各弁部の開閉状態を示す図である。 実施例1に係る容量制御弁のPc-Ps流路、Pd-Pc流路の開口面積と弁体のストロークの関係を示す図である。 本発明の実施例2に係る容量制御弁を示す正面断面図である。 本発明の実施例3に係る容量制御弁を示す正面断面図である。 実施例1の容量制御弁1、実施例2の容量制御弁50及び実施例3の容量制御弁60の吸入室圧力Psに対する制御室圧力Pcの変化を示す図である。 本発明の実施例4に係る容量制御弁を示す正面断面図である。 従来技術の容量制御弁を示す正面断面図である。 従来技術に係る容量制御弁のPc-Ps流路の拡大図であり、各状態における弁体の弁部の開閉状態を示す図である。 従来技術に係る容量制御弁のPc-Ps流路、Pd-Pc流路の開口面積と弁体のストロークの関係を示す図である。
 以下に図面を参照して、本発明を実施するための形態を、実施例に基づいて例示的に説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対的は位置などは、特に明示的な記載がない限り、それらのみに限定する趣旨のものではない。
 図1ないし図3を参照して、本発明の実施例1に係る容量制御弁について説明する。図1において、1は容量制御弁である。容量制御弁1は、バルブ本体2、弁体21、感圧体22及びソレノイド部30から主に構成される。以下、容量制御弁1を構成するそれぞれの構成について説明する。
 バルブ本体2は、内部に機能が付与された貫通孔を有する第1バルブ本体2Aと、この第1バルブ本体2Aの一端部に一体に嵌合された第2バルブ本体2Bとから構成される。また、第1バルブ本体2Aは、真鍮、鉄、アルミニウム、ステンレス等の金属または合成樹脂材等で構成される。一方、第2バルブ本体2Bは、ソレノイド部30の磁路として機能するため磁気抵抗の小さい鉄等の磁性体から構成される。第2バルブ本体2Bは、第1バルブ本体2Aの材質と機能的を異にするために分離して設けられているものである。この点を考慮すれば、図1に示す形状は適宜に変更しても良い。
 第1バルブ本体2Aは軸方向へ貫通する貫通孔を有する中空円筒状の部材で、貫通孔の区画には第3弁室4、第2弁室6及び第1弁室7が連続して配設される。すなわち、貫通孔の区画において一端側に第3弁室4が形成され、第3弁室4と隣接してソレノイド部30側には第2弁室6が連続して配設され、第2弁室6と隣接してソレノイド部30側には第1弁室7が連設される。また、第3弁室4と第2弁室6との間にはこれらの室の径より小径の第2弁孔12Aが連続して配設される。さらに、第2弁室6と第1弁室7との間にはこれらの室の径より小径の第1弁孔5が連設され、該第1弁孔5の周りの第1弁室7の側には第2弁座面6Aが形成される。
 第3弁室4には第3連通路9が連接される。第3連通路9には、図示しない容量可変型圧縮機の吸入室と連通して吸入室圧力Psの流体が容量制御弁1によって第3弁室4へ流入、流出できるように構成される。
 第2弁室6には第2連通路8が連設される。この第2連通路8は、容量可変型圧縮機の吐出室内に連通して吐出室圧力Pdの流量が容量制御弁1によって制御室に流入できるように構成される。
 さらに、第1弁室7には第1連通路10が形成され、この第1連通路10には、容量可変型圧縮機の制御室(クランク室)と連通して後記する第2弁室6から流入した吐出室圧力Pdの流体を容量可変型圧縮機の制御室(クランク室)へ流出させる。
 なお、第1連通路10、第2連通路8、第3連通路9は、バルブ本体2の周面に各々、例えば、2等配から6等配に貫通している。更に、バルブ本体2の外周面は4段面に形成されており、この外周面にはOリング用の取付溝が軸方向に離間して3カ所に設けられる。そして、この各取付溝には、バルブ本体2と、バルブ本体2を嵌合するケーシングの装着孔(図示省略)との間をシールするOリング46が取り付けられ、第1連通路10、第2連通路8、第3連通路9の各流路は独立した流路として構成される。
 第3弁室4内には感圧体22が配設される。この感圧体22は、金属製のベローズ22Aの一端部が仕切調整部3に密封に結合される。このベローズ22Aは、リン青銅等により製作するが、そのばね定数は所定の値に設計されている。感圧体22の内部空間は真空又は空気が内在している。そして、この感圧体22のベローズ22Aの有効受圧面積SBLに対し、第3弁室4内の圧力(例えばPcの圧力)と吸入室圧力Psが作用して感圧体22を収縮作動させるように構成されている。感圧体22の自由端には、皿型で端部周面に第3弁座面22Cを有する弁座部22Bが設けられている。
 そして、感圧体22の仕切調整部3は、第1バルブ本体2Aの第3弁室4を塞ぐように嵌着される。なお、ねじ込みにして図示省略の止めねじにより固定すれば、ベローズ22A内に並列に配置した圧縮ばね又はベローズ22Aのばね力を軸方向へ移動調整できるようになる。
 つぎに弁体21について説明する。弁体21は、軸方向へ貫通する中間連通路26を有する中空円筒状の部材で、第3弁部21A、第2弁部21B及び第1弁部21Cが連続して配設されるとともに、中間連通路26に連通する補助連通路21E及び連通孔23を有する。弁体21は、第1バルブ本体2Aの貫通孔内に軸方向に移動自在に配設される。
 弁体21の一方の端部には第3弁部面21A1が設けられ、第3弁部面21A1は感圧体22の第3弁座面22Cと離接して中間連通路26と第3弁室4とを開閉する。第3弁部面21A1と第3弁座面22Cとが接触状態から離間状態になることにより第3弁部21Aは開弁し、第3弁部面21A1と第3弁座面22Cとが離間状態から接触状態になることにより第3弁部21Aは閉弁する。
 また、弁体21の第3弁部21Aにおける第3弁部面21A1と反対側には、第2弁部21Bが設けられる。弁体21の中間部の第2弁部21Bは第2弁室6内に配置され、第2弁部21Bには第2弁座面6Aと接合する第2弁部面21B1が設けられ、第2弁部21Bの外径は第1弁孔5の径より小径に形成される。第2弁部面21B1と第2弁座面6Aとが接触状態から離間状態となることにより第2弁部21Bは開弁し、第2弁室6と第1弁室7とは連通して、吐出室圧力Pdの流体が通過できるようになっている。逆に、第2弁部面21B1と第2弁座面6Aとが離間状態から接触状態となることにより第2弁部21Bは閉弁し、第2弁室6と第1弁室7とは遮断され、吐出室圧力Pdの流体の流れも遮断される。以下、吐出室に連通する第2連通路8、第2弁室6及び第1弁孔5から第2弁部21Bを経由して制御室に連通する第1弁室7及び第1連通路10へ至る流路をPd-Pc流路と記す。すなわち、第2弁部21Bが開閉されることにより、第2連通路8から第1連通路10へ至る流路をPd-Pc流路が連通、遮断される。
 弁体21は、ソレノイドロッド25の下端部に設けた結合部25Aを弁体21の嵌合部21Dに嵌着され、該嵌合部21Dと第2弁部21Bとの間には第1弁部21Cが設けられ、該第1弁部21Cは第1弁室7内に配置される。弁体21の嵌合部21Dの直下には、第1弁室7内に位置して、例えば4等配の補助連通路21Eを設けられる。この補助連通路21Eを介して第1弁室7は中間連通路26に連通する。なお、第1弁室7は第1弁部21Cの外形よりやや大径面に形成されて第1連通路10からの制御室圧力Pcの流体が第1弁室7に流入しやすく構成されている。
 ソレノイド部30の固定子鉄心31の下端面には第1弁座面31Aが形成される。第1弁部21Cと第1弁座面31Aとが接触状態から離間状態となることにより第1弁部21Cは開弁し、制御室圧力Pcの流体は第1連通路10及び第1弁室7から補助連通路21E、中間連通路26、絞り弁部12を介して第3弁室4及び第3連通路9へ流出する。逆に、第1弁部21Cと第1弁座面31Aとが離間状態から接触状態となることにより第1弁部21Cは閉弁し、第1連通路10及び第1弁室7から補助連通路21E、中間連通路26、絞り弁部12を介して第3弁室4及び第3連通路9へ流出する制御室圧力Pcの流体は遮断される。以下、制御室に連通する第1連通路10及び第1弁室7から第1弁部21C、補助連通路21E、中間連通路26、絞り弁部12を経由して吸入室に連通する第3弁室4へ至る流路をPc-Ps流路と記す。すなわち、第1弁部21Cが開閉されることにより、第1連通路10から第3連通路9へ至るPc-Ps流路は連通、遮断される。
 また、第3弁部21Aと第2弁部21Bの間には中間連通路26と連通する連通孔23が少なくとも1つ設けられ、該連通孔23は第2弁孔12Aと摺動して絞り弁部12として機能する。絞り弁部12の連通孔23は、第2弁孔12Aと対向して軸方向に摺動することによって第3弁室4内に進退し、第3弁室4に対する連通孔23の開口面積は全開状態から全閉状態に変化する。
 つぎに、ソレノイド部30について説明する。ソレノイド部30は、ソレノイドロッド25、プランジャケース34、電磁コイル35、固定子鉄心31、プランジャ32、及びばね手段28がソレノイドケース33に収容して構成される。弁体21とプランジャ32との間には第2バルブ本体2Bに固着された固定子鉄心31が設けられ、ソレノイドロッド25は固定子鉄心31の貫通孔31D内に移動自在に嵌合され、ソレノイドロッド25の結合部25Aは弁体21の嵌合部21Dと嵌着され、反対の他端部は、プランジャ32の嵌合孔32Aに嵌着して結合する。
 プランジャケース34は一方が開放された有底状の中空円筒部材で、電磁コイル35の内径部に嵌着すると共に、プランジャケース34の開放端が第2バルブ本体2Bの嵌合孔と密封状に嵌着され、有底端がソレノイドケース33の端部の嵌着孔に固定される。これにより、電磁コイル35はプランジャケース34、第2バルブ本体2B及びソレノイドケース33によって密封され、冷媒と接触することがないので絶縁抵抗の低下を防止することができる。
 プランジャケース34内には、固定子鉄心31及びプランジャ32が配設され、プランジャ32はプランジャケース34内を摺動自在に嵌合される。この固定子鉄心31のプランジャ32側には、ばね座室31Cを形成する。このばね座室31Cには第1弁部21Cと第2弁部21Bを閉弁状態から開弁状態にするばね手段(以下、弾発手段とも称する)28が配置されている。つまり、ばね手段28はプランジャ32を固定子鉄心31から引き離すように弾発している。固定子鉄心31の吸着面31Bとプランジャ32の接合面32Bとは互いに対向するテーパ面を成し、対向面に空隙を設けて配置される。
 この固定子鉄心31の吸着面31Bとプランジャ32の接合面32Bの離接は、電磁コイル35に流れる電流の強さにより行われる。すなわち、電磁コイル35に無通電状態では、ばね手段28の反発により固定子鉄心31の吸着面31Bとプランジャ32の接合面32Bの間には最大空隙が形成されると、第1弁部21Cと絞り弁部12が閉弁し、第2弁部21Bが開弁する。一方、通電状態では磁気吸引力により、プランジャ32の接合面32Bは固定子鉄心31の吸着面31Bに吸引され、第1弁部21Cと絞り弁部12が開弁し、第2弁部21Bが閉弁する。この電磁コイル35に供給される電流の大きさは、弁体21の各弁部の開閉度合いに応じて図示しない制御部により制御される。
 以上説明した構成を有する容量制御弁1の動作について説明する。容量可変型圧縮機を停止して、長時間放置した後に起動させようとした場合、制御室(クランク室)には液冷媒(放置中に冷却されて冷媒ガスが液化したもの)が溜まった状態となるため、容量制御弁1により制御室内の圧力を自由に制御できず、冷媒ガスを圧縮して設定とおりの吐出量を確保することができない。そこで、本発明の容量制御弁1は、起動直後から所望の容量制御を行うために制御室(クランク室)の液冷媒をできるだけ素早く排出、気化させるようになっている。
 図1、図2を参照しながら、第1弁部21C、第2弁部21B、第3弁部21A及び絞り弁部12の動作状態について説明する。なお、図1、図2(a)において、第1連通路10から第3連通路9に至る矢印の太い曲線はPc-Ps流路を示している。
 図2(a)に示す液冷媒排出時(最大容量制御時)、すなわち、第2弁部21Bが全閉の状態において、第1弁部21Cは全開の状態にあり、絞り弁部12も全開の状態にあり、制御室圧力Pcの流体(液冷媒排出時においては冷媒液の気化した制御室圧力Pcの流体)が補助連通路21E、中間連通路26及び絞り弁部12の連通孔23を介して第3弁室4に流入し、第3弁室4から第3連通路9へ流出する。
 図2(a)の状態において、絞り弁部12の連通孔23は第2弁孔12Aに対して最大開口面積S2maxを生成する。ここで、最大開口面積S2maxは、第1弁部21C、補助連通路21E(補助連通路が複数の場合は合計の面積)、中間連通路26のうちの最小面積と同等又はそれ以下になるように連通孔23の位置、形状が設定される。すなわち、絞り弁部12は、Pc-Ps流路においてボトルネックとなっている。
 つぎに、液冷媒の排出が完了して図2(b)に示す制御域に移行すると、制御室圧力及び吸入室圧力は低下して感圧体22が伸びて第3弁部21Aは閉弁し、またソレノイド部30が制御され、第2弁部21Bは全閉状態から開弁状態へ、絞り弁部12は全開状態から閉弁方向に移動を開始する。これにより、ボトルネックとなる絞り弁部12が絞られるので、第2弁部21Bの第2弁部面21B1が第2弁座面6Aから離脱すると同時にPc-Ps流路も絞られる。さらに、弁体21のストロークに対する絞り弁部12の絞り量は、第2弁部21Bの第2弁部面21B1が第2弁座面6Aから離脱する開弁初期において大きく、開弁初期より後において小さくなるように設定されている。
 さらに、図2(c)に示すソレノイド部30がOFF時となると、弁体21が移動して第2弁部21Bが全開の状態、第1弁部21Cは全閉状態、絞り弁部12は全閉状態となり、Pc-Ps流路は遮断される。
 ここで、図3に示す弁体21のストロークに対する絞り弁部12の絞り量の関係を説明する。図3の横軸は弁体21のストロークを、また、縦軸は開口面積を示している。図3のストロークLsは、図2(a)の液冷媒排出時に対応し、第2弁部21Bが全閉(第1弁部21Cが全開)の状態であり、また、同じくストロークLeは図2(c)の第2弁部21Bが全開(第1弁部21Cが全閉)の状態を示し、図中横軸の(Ls-Lm)間で示す範囲が制御域を示している。さらに、縦軸のほぼ中間位置の破線からなる横線は、Pc-Ps流路における第1弁部21C、補助連通路21E、中間連通路26のうちの最も小さい面積S1を示している。
 本発明においては、制御域における絞り弁部12の開口面積S2は面積S1より小さく設定され、Pc-Ps流路におけるボトルネックとなっている。このように、制御室圧力の流体の作用する第1弁室7内の第1弁部21Cに補助連通路21Eを、また、吸入室圧力の流体の作用する第3弁室4に感圧体22及び液冷媒を排出する第3弁部21Aを配設した容量制御弁において、第2弁部21Bと第3弁部21Aの間に設けられる連通孔23、及び第2連通路8と第3連通路9の間に配設される第2弁孔12Aからなる絞り弁部12という簡単な構成により、制御域におけるPc-Ps流路の最小面積を設定することができる。
 図3において、制御域における絞り弁部12の開口面積S2は、実線で示されており、左端の液冷媒排出時において、すなわち、第2弁部21Bが全閉(第1弁部21Cが全開)の状態では、絞り弁部12は最大開口面積S2maxを生成する状態にあり、かつ、最大開口面積S2maxが補助連通路21Eの面積S1と同一又はほぼ同一に設定されている(図2(a)参照)。
 つぎに、液冷媒の排出が完了して制御域に移行すると、制御室圧力及び吸入室圧力は低下して感圧体22が伸びて第3弁部21Aは閉弁し、またソレノイド部30が制御され、第2弁部21Bは全閉状態から開弁状態へ、絞り弁部12は全開状態から閉弁状態へ移動を開始する。これにより、ボトルネックとなる絞り弁部12が絞られるので、第2弁部21Bの第2弁部面21B1が第2弁座面6Aから離脱すると同時にPc-Ps流路も絞られる。さらに、弁体21のストロークに対する絞り弁部12の絞り量は、第2弁部21Bの第2弁部面21B1が第2弁座面6Aから離脱する開弁初期(図3のLs-Lu間)において大きく、開弁初期より後(図3のLu-Le間)は小さくなるように設定されているので、迅速にPc-Ps流路を絞ることができる。これにより、容量可変型圧縮機の制御中において、Pc-Ps流路を流れる冷媒量を急速に絞ることができるので、容量可変型圧縮機の効率低下を防ぐことができる。
 ここで、弁体21のストロークに対する絞り弁部12の絞り量とは、絞り弁部12の絞り率であり、図3において開口面積S2の傾きを示す。絞り弁部12の絞り率は、第2弁部21Bの第2弁部面21B1が第2弁座面6Aから離脱を開始する開弁初期(図3のLs-Lu間)において大きく、開弁初期より後(図3のLu-Le間)は小さくなるように設定されている。具体的には、第2弁部21Bが第2弁座面6Aから離脱する開弁初期(Ls-Lu間)において、第2弁部21Bの開度が開度0%から開度30%となる間に、絞り弁部12の開度は開度100%から開度10%~30%に急激に絞られる。そして弁体21の開弁初期より後(Lu-Le間)においては、第2弁部21Bが開度30%から開度100%となる間に、絞り弁部12は開度10%~30%の状態から開度0%の全閉状態に緩やかに絞られる。
 なお、弁体21のストロークに対する絞り弁部12の開口面積S2は、連通孔23と第2弁孔12Aとの相対位置によって変化し、連通孔23の形状により図3に示すように非線形に変化させることができる。図1及び図2の例では、連通孔23の正面形状は略円形であって、断面形状は第2弁孔12Aに面する側が所定の深さを有する有底状の大径部23aであり、中間連通路26に面する側が大径部23aより小径に形成され弁体21を貫通する小径部23bからなる段付き形状(図2(c)参照)である。これにより、弁体21の移動初期において大径部23aのほぼ全域が第2弁孔12Aと重複して両者間の隙間が急速に減少され、その後、連通孔23と第2弁孔12Aとの径方向隙間が残ることになるため、図3の実線で示すように開口面積が変化する。
 また、連通孔23の正面形状は略円形に限らない。たとえば、第2弁部21B側には弁軸に直交する方向に延設される水平開口部と、第3弁部21A側には軸方向に延設される軸方向開口部とを有し、水平開口部を軸方向開口部以上に形成した略T字形の開口部としてもよい。これにより、第2弁部21Bの第2弁部面21B1が第2弁座面6Aから離脱する開弁初期において、連通孔23の水平開口部が第2弁孔12Aと重複して水平開口部が急速に絞られ、その後、連通孔23の軸方向開口部と第2弁孔12Aとが重複して緩やかに絞られるため、図3の実線で示すように開口面積を変化させることができる。
 さらに、連通孔23の形状は、正面視で頂点が第3弁部21A側に、底辺が第2弁部21B側に配置される逆三角形としてもよい。これにより、弁体21が移動を開始すると、絞り弁部12の連通孔23は底辺側から第2弁孔12Aによって遮断されるので、図3の実線で示すように開口面積を変化させることができる。このように連通孔23の形状は、円形、だ円形、逆三角形、台形、5角形等に形成してもよく、要は、液冷媒排出時からの弁体21の移動初期領域において開口面積の大きい部分が遮断され、その後、開口面積の小さい部分が徐々に閉となる形状とすることで、絞り弁部12の開口面積は弁体21のストロークに対して非線形に変化させることができる。
 本発明の実施例1に係る容量制御弁は上記のとおりであり、以下のような優れた効果を奏する。
 容量可変型圧縮機の液冷媒排出運転時には、中間連通路26に連通する第3弁部21Aと連通孔23の双方から液冷媒は吸入室へ排出されるので、短時間で冷媒液を排出できる。液冷媒の排出が完了して第3弁部21Aが閉弁して、制御運転へ移行する第2弁部21Bの開弁初期においては、絞り弁部12は大きく絞られるので、制御室から吸入室への冷媒ガスの流入を急速に低下させることができ、制御域の全部において容量可変型圧縮機の運転効率を向上することができる。
 絞り弁部12の開口面積S2は補助連通路21Eの面積S1より小さく設定されることにより、補助連通路を設けて容量可変型圧縮機の起動時における制御室の液冷媒の排出機能を改善した容量制御弁において、制御域におけるPc-Ps流路の最小面積を小さくすることができ、容量可変型圧縮機の起動時間の短縮及び制御時における運転効率の向上を同時に達成できる。
 図4を参照して、本発明の実施例2に係る容量制御弁について説明する。実施例2に係る容量制御弁50は、第1バルブ本体52Aに導入孔53を設けた点で、実施例1の容量制御弁1と主に相違するが、その他の基本構成は実施例1と同じであり、同じ部材には同じ符号を付し、重複する説明は省略する。
 バルブ本体52は、内部に機能が付与された貫通孔を形成する第1バルブ本体52Aと、この第1バルブ本体52Aの一端部に一体に嵌合された第2バルブ本体2Bとから構成される。第2バルブ本体2Bの構造は実施例1と同一である。一方、第1バルブ本体52Aは、第3弁室4、第2弁室6、第1弁室7を形成する貫通孔と並行して第3弁室4からソレノイド部200側へ導入孔53が新たに設けられている。また、ソレノイド部200の固定子鉄心201は、導入孔53と対向する位置に導入溝201Aが形成される。さらに、固定子鉄心201とソレノイドロッド25と間には空隙部36が形成され、さらに固定子鉄心201とソレノイドロッド25の空隙部36には、該空隙部36より狭い空隙を有するクリアランスシール部207が形成されている。これにより、第3弁室4の吸入室圧力Psの流体は、導入孔53から導入溝201Aを介して、固定子鉄心201とプランジャケース34との間の空隙を流れ、さらに固定子鉄心201とソレノイドロッド25との空隙部36を流れ、クリアランスシール部207においてシールされる。
 導入孔53を備える図4の容量制御弁50の弁体21に作用する外力の釣り合いは以下のように表すことができる。
 BLsp-Ps×SBL-(Pc-Ps)×(S-S)=Fsol (式1)
 ここで、Ps:容量可変型圧縮機の吸入室圧力
     Pd:容量可変型圧縮機の吐出室圧力
     Pc:容量可変型圧縮機の制御室圧力
     BLsp:感圧体22のバネ力
     SBL:感圧体22の受圧面積
     S:第2弁部21B、第3弁部21Aの受圧面積
     S:クリアランスシール部207の受圧面積
     Fsol:ソレノイド部200の駆動力
 これに対し、導入孔53を備えない図1の容量制御弁1の弁体21に作用する外力の釣り合いは以下のように表すことができる。
 BLsp-Ps×SBL-(Pc-Ps)×S=Fsol (式2)
 (式1)の左辺第3項の「-(Pc-Ps)×(S-S)」及び(式2)の左辺第3項の「-(Pc-Ps)×S」は、第2弁部21Bが閉じる方向に作用する力である。
 ここで、(式1)と(式2)を比較すると、(式2)の受圧面積Sは(式1)の面積(S-S)より大きい。すなわち、受圧面積Sの大きい図1の容量制御弁1よりも、受圧面積(S-S)の小さい図4の容量制御弁50の方が、同じ差圧力(Pc-Ps)に対して第2弁部21Bが閉じる方向に作用する力が小さく、第2弁部21Bは閉じにくくなる。したがって、図4の容量制御弁50は、同じ差圧(Pc-Ps)に対して第2弁部21Bが閉じにくいので、第2弁室6から第1弁室7へ吐出室圧力Pdの流体の供給量が多くなり、制御室の圧力Pcが変化しやすくなる。逆に、図1の容量制御弁1は、同じ差圧力(Pc-Ps)に対して第2弁部21Bが閉じ易いので、第2弁室6から第1弁室7へ吐出室圧力Pdの流体の供給量が少なくなるため、制御室の圧力Pcが変化しにくい。
 すなわち、同じ差圧(Pc-Ps)に対して制御室圧力Pcが変化しやすいということは、容量可変型圧縮機の吸入室圧力Psが設定吸入室圧力Psetからずれて差圧(Pc-Ps)が変化すると、差圧(Pc-Ps)の変化に応じて制御室圧力Pcもすぐに変化するので、吸入室圧力Psが設定吸入室圧力Psetに迅速に収束するようになる。
 本発明の実施例2に係る容量制御弁50は上記のとおりであり、以下のような優れた効果を奏する。
 第1バルブ本体52Aに導入孔53を設けることによって、第3弁室4からプランジャケース34の背面側に吸入室圧力Psの流体を導入すると、吸入室圧力Psに対する制御室圧力Pcの応答特性を高めることができ、延いては容量可変型圧縮機の熱負荷に対する応答性を高めることができる。これにより、従来、容量可変型圧縮機の特性に応じて、感圧体や弁体等の寸法を個別に設計していたものを、大きな設計変更なしに個々の容量可変型圧縮機の特性にマッチングさせることができる。
 図5を参照して、本発明の実施例3に係る容量制御弁60について説明する。実施例3に係る容量制御弁60は、第3弁室4からプランジャケース34の背面側に導入された吸入室圧力Psの流体を固定子鉄心202と弁体21との間のクリアランスシール部208でシールする点で、実施例2の容量制御弁50と主に相違するが、その他の基本構成は実施例2と同じであり、同じ部材には同じ符号を付し、重複する説明は省略する。
 第1バルブ本体52Aは、第3弁室4、第2弁室6、第1弁室7を形成する貫通孔と並行して第3弁室4からソレノイド部200側へ導入孔53が設けられ、ソレノイド部210の固定子鉄心202は、導入孔53と対向する位置に導入溝202Aが形成されている点は実施例2と同じである。また、固定子鉄心202と弁体21との間にはクリアランスシール部208が設けられ、クリアランスシール部208の空隙は固定子鉄心202とソレノイドロッド25との間の空隙部36より狭く形成されている。これにより、第3弁室4の吸入室圧力Psの流体は、導入孔53から導入溝202Aを介して、固定子鉄心202とプランジャケース34との間の空隙を流れ、さらに固定子鉄心202とソレノイドロッド25との空隙部36を流れ、クリアランスシール部208でシールされる。図5に示すように、本実施例3の容量制御弁60も第1バルブ本体52Aに導入孔53を設けることによって、第3弁室4からプランジャケース34の背面側に吸入室圧力Psの流体を導入しているが、クリアランスシール部208の受圧面積Sは、実施例2の容量制御弁50(図4)のクリアランスシール部207(図4)の受圧面積Sより大きい。
 図5の容量制御弁60の弁体21に作用する外力の釣り合いは以下のように表すことができる。
 BLsp-Ps×SBL-(Pc-Ps)×(S-S)=Fsol (式3)
 ここで、Ps:容量可変型圧縮機の吸入室圧力
     Pd:容量可変型圧縮機の吐出室圧力
     Pc:容量可変型圧縮機の制御室圧力
     BLsp:感圧体22のバネ力
     SBL:感圧体22の受圧面積
     S:第2弁部21B、第3弁部21Aの受圧面積
     S:クリアランスシール部208の受圧面積
     Fsol:ソレノイド部210の駆動力
 本実施例3の容量制御弁60(図5)(式3)の左辺第3項の「-(Pc-Ps)×(S-S)」は、第2弁部21Bが閉じる方向に作用する力である。
 ここで、クリアランスシール部208の受圧面積S(図5)は、クリアランスシール部207(図4)の受圧面積Sよりが大きく設定されているので、第2弁部21Bが閉じる方向に作用する力「-(Pc-Ps)×(S-S)」は、本実施例の容量制御弁60(図5)の方がさらに小さくなる。したがって、容量制御弁60は、同じ差圧(Pc-Ps)に対して第2弁部21Bが閉じにくいので、第2弁室6から第1弁室7を介して容量可変型圧縮機の制御室へ供給される吐出室圧力Pdの流体の供給量が多くなり、制御室の圧力Pcが変化しやすくなく。本実施例の容量制御弁60は、吸入室圧力Psを受けるクリアランスシール部208の受圧面積Sを容量制御弁50のクリアランスシール部207の受圧面積Sより大きくすることで、吸入室圧力Psの変化に対する制御室圧力Pcの応答特性をさらに高めることができる。
 図6は、実施例1の容量制御弁1(図1構造)、実施例2の容量制御弁50(図4構造)及び実施例3の容量制御弁60(図5構造)の吸入室圧力Psに対する制御室圧力Pcの変化を示す図である。図6において、吸入室圧力Ps(制御入力値)の変化量に対する制御室圧力Pc(制御出力値)の変化量は、図1構造の容量制御弁1が一番小さく、図4構造の容量制御弁50、図5構造の容量制御弁60の順に大きくなる。図6に示す図1構造から図5構造のように、吸入室圧力Psに対する制御室圧力Pcのグラフの傾きを調整することで、吸入室圧力Psの変化に対する制御室圧力Pcの変化を調整することができ、容量制御弁を個々の容量可変型圧縮機の特性に容易にマッチングさせることができる。
 本発明の実施例3に係る容量制御弁は上記のとおりであり、以下のような優れた効果を奏する。
 第1バルブ本体52Aに導入孔53を設けることによって、第3弁室4からプランジャケース34の背面側に吸入室圧力Psの流体を導入し、吸入室圧力Psが作用するクリアランスシール部の受圧面積を調整することで、吸入室圧力Psの変化に対する制御室圧力Pcの応答特性を調整することができる。従来、容量可変型圧縮機の特性に応じて、ベローズや弁体等の寸法を個別に設計していたものを、大きな設計変更なしに個々の容量可変型圧縮機の特性にマッチングさせることができる。
 吸入室圧力Psの変化に対する制御室圧力Pcの応答特性を高めることができるので、容量可変型圧縮機の吸入室圧力Psが設定吸入室圧力Psetから偏差が発生しても、差圧(Pc-Ps)の変化に応じて制御室圧力Pcもすぐに変化するので、吸入室圧力Psが設定吸入室圧力Psetに迅速に収束させることができる。
 図7を参照して、本発明の実施例4に係る容量制御弁70について説明する。実施例4に係る容量制御弁70は、第1バルブ本体52Aの第1弁室7に吐出室圧力Pdの流体が導かれ、第2弁室6に制御室圧力Pcの流体が導かれる点で、実施例3の容量制御弁60と主に相違する。実施例3の容量制御弁60と同じ部材には同じ符号を付し、重複する説明は省略する。
 第1バルブ本体52Aは、吐出室圧力Pdの流体を通す第1連通路10と連通すると共に第2弁座面6Aを有する第1弁室7、第1弁室7と連通する第1弁孔5を有すると共に制御室圧力Pcの流体を通す第2連通路8に連通する第2弁室6、吸入室圧力Psの流体を通す第3連通路9に連通する第3弁室4を有する。
 弁体71は、第2弁座面6Aと離接して前記第1弁室7と前記第2弁室6を連通させる第1弁孔5を開閉する第2弁部71B、補助連通路71E及び連通孔73を介して第2弁室6と第3弁室4とを連通させる中間連通路76、及び感圧体22の第3弁座面22Cと離接して第3弁室4と中間連通路76を開閉する第3弁部71Aを有する。実施例1~実施例3と異なり、弁体71は、第1弁室7に配置され第2弁部71Bと反対方向に開閉動作する第1弁部を有しない。
 また、第3弁部71Aと第2弁部の間に第3弁室4と中間連通路76を連通させる連通孔73及び第2弁室6と第3弁室4の間に配設される第2弁孔72Aを有する絞り弁部72を備え、第2弁部71Bの第2弁部面71B1が第2弁座面6Aから離脱を開始する開弁初期において、絞り弁部72の絞り量は大きく、開弁初期より後において絞り弁部72の絞り量は低くなっている。
 本発明の実施例4に係る容量制御弁70は上記のとおりであり、以下のような優れた効果を奏する。
 容量可変型圧縮機の液冷媒排出運転時には、中間連通路76に連通する第3弁部71Aと連通孔73の双方から液冷媒は吸入室へ排出されるので、短時間で冷媒液を排出できる。液冷媒の排出が完了して第3弁部71Aが閉弁して、制御運転へ移行する第2弁部71Bの開弁初期においては、絞り弁部72は大きく絞られるので、制御室から吸入室への冷媒ガスの流入を急速に低下させることができ、制御域の全部において容量可変型圧縮機の運転効率を向上することができる。
 第1バルブ本体52Aに導入孔53を設けることによって、第3弁室4からプランジャケース34の背面側に吸入室圧力Psの流体を導入し、吸入室圧力Psが作用するクリアランスシール部の受圧面積を調整することで、吸入室圧力Psの変化に対する制御室圧力Pcの応答特性を調整することができる。従来、容量可変型圧縮機の特性に応じて、ベローズや弁体等の寸法を個別に設計していたものを、大きな設計変更なしに個々の容量可変型圧縮機の特性にマッチングさせることができる。
1        容量制御弁
2        バルブ本体
3        仕切調整部
4        第3弁室
5        第1弁孔
6        第2弁室
6A       第2弁座面
7        第1弁室
8        第2連通路
9        第3連通路
10       第1連通路
12       絞り弁部
12A      第2弁孔
21       弁体
21A      第3弁部
21B      第2弁部
21C      第1弁部
21E      補助連通路
22       感圧体
22A      ベローズ
22B      弁座部
22C      第3弁座面
23       連通孔
25       ソレノイドロッド
26       中間連通路
28       ばね手段
30       ソレノイド部
31       固定鉄心
31A      第1弁座面
32       プランジャ
33       ソレノイドケース
34       プランジャケース
35       電磁コイル
36       空隙部
Pd       吐出室圧力
Ps       吸入室圧力
Pc       制御室圧力
S1       補助連通路の面積
S2       絞り弁部の開口面積

Claims (8)

  1.  バルブ部の開弁度に応じて作動制御室内の流量又は圧力を制御する容量制御弁において、
     制御室圧力の流体を通す第1連通路と連通すると共に第1弁座面及び第2弁座面を有する第1弁室、前記第1弁室と連通する第1弁孔を有すると共に吐出室圧力の流体を通す第2連通路に連通する第2弁室、及び吸入室圧力の流体を通す第3連通路に連通する第3弁室を有するバルブ本体と、
     前記第3弁室内に配置されて吸入室圧力に応動して伸縮すると共に伸縮する自由端に配設される第3弁座面を有する感圧体と、
     補助連通路を介して前記第1弁室と前記第3弁室とを連通する中間連通路、前記第2弁座面と離接して前記第1弁室と前記第2弁室を連通させる前記第1弁孔を開閉する第2弁部、前記第2弁部と反対方向に連動して前記補助連通路を開閉する第1弁部、及び前記第3弁座面と離接して前記中間連通路と前記第3弁室とを開閉する第3弁部を有する弁体と、
     前記バルブ本体に取り付けられた電磁コイル部、プランジャ、固定子鉄心、及び、前記弁体と前記プランジャを接続するロッドを有し、前記電磁コイル部に流す電流に応じて前記弁体の各弁部を開閉作動させるソレノイド部と、
     前記第2弁部と前記第3弁部の間に配設されるとともに前記中間連通路と前記第3弁室を連通させる連通孔、及び前記第2弁室と前記第3弁室との間に配設される第2弁孔を有する絞り弁部と、を備え、
     前記弁体のストロークに対する前記絞り弁部の絞り量は、前記第2弁部が前記第2弁座面から離脱する開弁初期において大きく、前記開弁初期より後は小さくなることを特徴とする容量制御弁。
  2.  前記バルブ本体は、前記第3弁室と前記ソレノイド部を連通して、吸入室圧力に対する制御室圧力の変化感度を調整する導入孔を備えることを特徴とする請求項1に記載の容量制御弁。
  3.  前記ソレノイド部の前記ロッドと前記固定子鉄心との空隙部は、吸入室圧力に対する制御室圧力の変化感度を調整するクリアランスシール部を備えることを特徴とする請求項2に記載の容量制御弁。
  4.  前記ソレノイド部の前記固定子鉄心と前記弁体との空隙部は、吸入室圧力に対する制御室圧力の変化感度を調整するクリアランスシール部を備えることを特徴とする請求項2に記載の容量制御弁。
  5.  バルブ部の開弁度に応じて作動制御室内の流量又は圧力を制御する容量制御弁において、
     吐出室圧力の流体を通す第1連通路と連通すると共に第2弁座面を有する第1弁室、前記第1弁室と連通する第1弁孔を有するとともに制御室圧力の流体を通す第2連通路に連通する第2弁室、及び吸入室圧力の流体を通す第3連通路に連通する第3弁室を有するバルブ本体と、
     前記第3弁室内に配置されて吸入室圧力に応動して伸縮すると共に伸縮する自由端に配設される第3弁座面を有する感圧体と、
     前記第2弁座面と離接して前記第1弁室と前記第2弁室を連通させる第1弁孔を開閉する第2弁部、補助連通路を介して前記第2弁室と前記第3弁室とを連通させる中間連通路、及び前記第3弁室と前記中間連通路を連通させる前記第3弁座面を開閉する第3弁部を有する弁体と、
     前記バルブ本体に取り付けられ電磁コイル部、プランジャ、固定子鉄心、及び、前記弁体と前記プランジャを接続するロッドを有し、前記電磁コイル部に流す電流によって前記弁体の各弁部を開閉作動させるソレノイド部と、
     前記第2弁部と前記第3弁部の間に配設されるとともに前記中間連通路と前記第3弁室を連通させる連通孔、及び前記第2弁室と前記第3弁室との間に配設される第2弁孔を有する絞り弁部と、を備え、
     前記弁体のストロークに対する前記絞り弁部の絞り量は、前記第2弁部が前記第2弁座面から離脱する開弁初期において大きく、前記開弁初期より後は小さくなることを特徴とする容量制御弁。
  6.  前記バルブ本体は、前記第3弁室と前記ソレノイド部を連通して吸入室圧力に対する制御室圧力の変化感度を調整する導入孔を備えることを特徴とする請求項5に記載の容量制御弁。
  7.  前記ソレノイド部の前記ロッドと前記固定子鉄心との空隙部は、吸入室圧力に対する制御室圧力の変化感度を調整するクリアランスシール部を備えることを特徴とする請求項6に記載の容量制御弁。
  8.  前記ソレノイド部の前記固定子鉄心と前記弁体との空隙部は、吸入室圧力に対する制御室圧力の変化感度を調整するクリアランスシール部を備えることを特徴とする請求項6に記載の容量制御弁。
PCT/JP2018/002084 2017-01-26 2018-01-24 容量制御弁 WO2018139476A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880007249.1A CN110192052B (zh) 2017-01-26 2018-01-24 容量控制阀
JP2018564597A JP6932146B2 (ja) 2017-01-26 2018-01-24 容量制御弁
US16/480,281 US11603832B2 (en) 2017-01-26 2018-01-24 Capacity control valve having a throttle valve portion with a communication hole
EP18744644.8A EP3575647B1 (en) 2017-01-26 2018-01-24 Capacity control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-012588 2017-01-26
JP2017012588 2017-01-26

Publications (1)

Publication Number Publication Date
WO2018139476A1 true WO2018139476A1 (ja) 2018-08-02

Family

ID=62979464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002084 WO2018139476A1 (ja) 2017-01-26 2018-01-24 容量制御弁

Country Status (5)

Country Link
US (1) US11603832B2 (ja)
EP (1) EP3575647B1 (ja)
JP (1) JP6932146B2 (ja)
CN (1) CN110192052B (ja)
WO (1) WO2018139476A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220213877A1 (en) * 2019-04-03 2022-07-07 Eagle Industry Co., Ltd. Capacity control valve

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109642560B (zh) * 2016-08-29 2020-07-24 伊格尔工业股份有限公司 容量控制阀
CN110192052B (zh) 2017-01-26 2020-09-22 伊格尔工业股份有限公司 容量控制阀
EP3584441B1 (en) * 2017-02-18 2022-08-31 Eagle Industry Co., Ltd. Capacity control valve
EP3712433B1 (en) 2017-11-15 2022-07-06 Eagle Industry Co., Ltd. Capacity control valve and capacity control valve control method
CN111316028B (zh) 2017-11-30 2022-12-02 伊格尔工业股份有限公司 容量控制阀及容量控制阀的控制方法
US11519399B2 (en) 2017-12-08 2022-12-06 Eagle Industry Co., Ltd. Capacity control valve and method for controlling same
WO2019117225A1 (ja) 2017-12-14 2019-06-20 イーグル工業株式会社 容量制御弁及び容量制御弁の制御方法
US11454227B2 (en) 2018-01-22 2022-09-27 Eagle Industry Co., Ltd. Capacity control valve
WO2020110925A1 (ja) 2018-11-26 2020-06-04 イーグル工業株式会社 容量制御弁
WO2021241477A1 (ja) * 2020-05-25 2021-12-02 イーグル工業株式会社 容量制御弁

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003468A (ja) * 2002-04-25 2004-01-08 Sanden Corp 容量制御弁を有する可変容量圧縮機
JP2007247512A (ja) * 2006-03-15 2007-09-27 Toyota Industries Corp 可変容量型圧縮機における容量制御弁
JP5167121B2 (ja) 2006-03-15 2013-03-21 イーグル工業株式会社 容量制御弁
JP2016196876A (ja) * 2016-02-25 2016-11-24 株式会社テージーケー 可変容量圧縮機用制御弁
JP2016205404A (ja) * 2011-12-21 2016-12-08 株式会社不二工機 可変容量型圧縮機用制御弁

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1614002A (en) 1923-12-05 1927-01-11 Horton Spencer Valve for automatic sprinkler apparatus for fire extinguishing
US2267515A (en) 1940-01-19 1941-12-23 California Cedar Prod Fluid control valve
US3360304A (en) 1964-11-09 1967-12-26 Abex Corp Retarder systems
US3483888A (en) 1967-12-15 1969-12-16 Waldes Kohinoor Inc Self-locking retaining rings and assemblies employing same
US4364615A (en) 1980-09-08 1982-12-21 The Bendix Corporation Retaining ring
JPS57139701A (en) 1981-02-25 1982-08-28 Fuji Photo Optical Co Ltd Reflection preventing film of plastic optical member
GB8315079D0 (en) 1983-06-01 1983-07-06 Sperry Ltd Pilot valves for two-stage hydraulic devices
DE8322570U1 (de) 1983-08-05 1985-01-17 Robert Bosch Gmbh, 7000 Stuttgart Druckregler
US4895192A (en) 1987-12-24 1990-01-23 Sundstrand Corporation Process and apparatus for filling a constant speed drive
DE3814156A1 (de) 1988-04-27 1989-11-09 Mesenich Gerhard Pulsmoduliertes hydraulikventil
US4917150A (en) 1988-07-29 1990-04-17 Colt Industries Inc. Solenoid operated pressure control valve
US4998559A (en) 1988-09-13 1991-03-12 Coltec Industries Inc. Solenoid operated pressure control valve
US5060695A (en) 1990-04-02 1991-10-29 Coltec Industries Inc Bypass flow pressure regulator
US5217047A (en) 1991-05-30 1993-06-08 Coltec Industries Inc. Solenoid operated pressure regulating valve
US5263694A (en) 1992-02-24 1993-11-23 General Motors Corporation Upper mount assembly for a suspension damper
JP3131036B2 (ja) 1992-07-07 2001-01-31 株式会社鷺宮製作所 電磁式比例制御弁
US5702235A (en) 1995-10-31 1997-12-30 Tgk Company, Ltd. Capacity control device for valiable-capacity compressor
US6010312A (en) 1996-07-31 2000-01-04 Kabushiki Kaisha Toyoda Jidoshokki Seiksakusho Control valve unit with independently operable valve mechanisms for variable displacement compressor
US5778932A (en) 1997-06-04 1998-07-14 Vickers, Incorporated Electrohydraulic proportional pressure reducing-relieving valve
US6161585A (en) 1999-03-26 2000-12-19 Sterling Hydraulics, Inc. High flow proportional pressure reducing valve
JP3583951B2 (ja) 1999-06-07 2004-11-04 株式会社豊田自動織機 容量制御弁
JP2001165055A (ja) 1999-12-09 2001-06-19 Toyota Autom Loom Works Ltd 制御弁及び容量可変型圧縮機
JP2002286151A (ja) 2001-03-26 2002-10-03 Denso Corp 電磁弁
JP4246975B2 (ja) 2002-02-04 2009-04-02 イーグル工業株式会社 容量制御弁
JP4118587B2 (ja) * 2002-04-09 2008-07-16 サンデン株式会社 可変容量圧縮機
JP4162419B2 (ja) * 2002-04-09 2008-10-08 サンデン株式会社 可変容量圧縮機
US6939112B2 (en) 2002-04-25 2005-09-06 Sanden Corporation Variable displacement compressors
JP2004190495A (ja) 2002-12-06 2004-07-08 Toyota Industries Corp 容量可変型圧縮機の容量可変構造
JP2004098757A (ja) 2002-09-05 2004-04-02 Toyota Industries Corp 空調装置
WO2004072524A1 (ja) 2003-02-12 2004-08-26 Isuzu Motors Limited 流量制御弁
JP4316955B2 (ja) 2003-08-11 2009-08-19 イーグル工業株式会社 容量制御弁
US20050151310A1 (en) 2004-01-14 2005-07-14 Barnes Group, Inc., A Corp. Of Delaware Spring washer
JP2005307817A (ja) 2004-04-20 2005-11-04 Toyota Industries Corp 容量可変型圧縮機の容量制御装置
JP2006194175A (ja) 2005-01-14 2006-07-27 Tgk Co Ltd 可変容量圧縮機用制御弁
KR101175201B1 (ko) 2005-02-24 2012-08-20 이구루코교 가부시기가이샤 용량제어밸브
US7958908B2 (en) * 2005-04-08 2011-06-14 Eagle Industry Co., Ltd. Flow control valve
EP1895161B1 (en) 2005-06-03 2018-05-02 Eagle Industry Co., Ltd. Capacity control valve
US10900539B2 (en) 2005-12-30 2021-01-26 Fox Factory, Inc. Fluid damper having a damping profile favorable for absorbing the full range of compression forces, including low- and high-speed compression forces
JP4695032B2 (ja) * 2006-07-19 2011-06-08 サンデン株式会社 可変容量圧縮機の容量制御弁
JP2008157031A (ja) 2006-12-20 2008-07-10 Toyota Industries Corp クラッチレス可変容量型圧縮機における電磁式容量制御弁
JP5217038B2 (ja) 2007-08-23 2013-06-19 イーグル工業株式会社 制御弁
CN101784828B (zh) 2007-08-23 2011-08-31 伊格尔工业股份有限公司 控制阀
JP4861956B2 (ja) 2007-10-24 2012-01-25 株式会社豊田自動織機 可変容量型圧縮機における容量制御弁
US8006719B2 (en) 2008-04-15 2011-08-30 Husco Automotive Holdings Llc Electrohydraulic valve having a solenoid actuator plunger with an armature and a bearing
EP2276953B1 (en) 2008-04-28 2018-05-23 BorgWarner Inc. Overmolded or pressed-in sleeve for hydraulic guiding of a solenoid valve
JP2009275550A (ja) 2008-05-13 2009-11-26 Toyota Industries Corp 可変容量型圧縮機における容量制御弁
JP5483376B2 (ja) * 2009-08-28 2014-05-07 イーグル工業株式会社 コンタミ用シール装置
EP2543915B1 (en) 2010-03-03 2018-04-11 Eagle Industry Co., Ltd. Solenoid valve
JP5557901B2 (ja) 2010-03-16 2014-07-23 イーグル工業株式会社 容量制御弁
EP2565452B1 (en) 2010-04-29 2018-11-28 Eagle Industry Co., Ltd. Capacity control valve
JP5878703B2 (ja) 2010-09-06 2016-03-08 株式会社不二工機 可変容量型圧縮機用制御弁
KR101375294B1 (ko) * 2010-12-09 2014-03-17 이구루코교 가부시기가이샤 용량 제어 밸브
JP5699259B2 (ja) 2011-01-07 2015-04-08 株式会社テージーケー 可変容量圧縮機用制御弁
DE102011010474A1 (de) 2011-02-05 2012-08-09 Hydac Fluidtechnik Gmbh Proportional-Druckregelventil
US8225818B1 (en) 2011-03-22 2012-07-24 Incova Technologies, Inc. Hydraulic valve arrangement with an annular check valve element
CN103547803B (zh) 2011-06-15 2017-03-01 伊格尔工业股份有限公司 容量控制阀
ITFI20110145A1 (it) 2011-07-19 2013-01-20 Nuovo Pignone Spa A differential pressure valve with parallel biasing springs and method for reducing spring surge
ITFI20110143A1 (it) 2011-07-19 2013-01-20 Nuovo Pignone Spa A differential pressure valve with reduced spring-surge and method for reducing spring surge
JP5665722B2 (ja) 2011-11-17 2015-02-04 株式会社豊田自動織機 容量制御弁
US9400027B2 (en) 2012-03-23 2016-07-26 Nhk Spring Co., Ltd. Coned disc spring
US20150068628A1 (en) 2012-05-24 2015-03-12 Eagle Industry Co., Ltd. Capacity control valve
KR102078226B1 (ko) 2012-07-11 2020-04-08 플렉스트로닉스 에이피, 엘엘씨 직접 작용식 솔레노이드 작동기
JP6064132B2 (ja) 2012-10-09 2017-01-25 株式会社テージーケー 複合弁
JP6064131B2 (ja) 2012-10-17 2017-01-25 株式会社テージーケー 可変容量圧縮機用制御弁
JP6064123B2 (ja) 2012-11-01 2017-01-25 株式会社テージーケー 制御弁
DE102012222399A1 (de) 2012-12-06 2014-06-12 Robert Bosch Gmbh Stetig verstellbares hydraulisches Einbauventil
EP3404262B1 (en) 2013-01-31 2019-09-11 Eagle Industry Co., Ltd. Capacity control valve
US20160053755A1 (en) 2013-03-22 2016-02-25 Sanden Holdings Corporation Control Valve And Variable Capacity Compressor Provided With Said Control Valve
JP6136461B2 (ja) 2013-03-29 2017-05-31 株式会社豊田自動織機 可変容量型圧縮機
JP5983539B2 (ja) 2013-06-13 2016-08-31 株式会社豊田自動織機 両頭ピストン型斜板式圧縮機
JP5870971B2 (ja) 2013-07-24 2016-03-01 株式会社デンソー 電磁弁
JP6115393B2 (ja) 2013-08-08 2017-04-19 株式会社豊田自動織機 可変容量型斜板式圧縮機
JP2015075054A (ja) 2013-10-10 2015-04-20 株式会社豊田自動織機 可変容量型斜板式圧縮機
JP6135521B2 (ja) 2014-01-20 2017-05-31 株式会社豊田自動織機 可変容量型斜板式圧縮機
JP6206274B2 (ja) 2014-03-19 2017-10-04 株式会社豊田自動織機 容量制御弁
JP2015183614A (ja) * 2014-03-25 2015-10-22 株式会社豊田自動織機 可変容量型斜板式圧縮機
WO2016084663A1 (ja) 2014-11-25 2016-06-02 イーグル工業株式会社 容量制御弁
JP6495634B2 (ja) 2014-12-02 2019-04-03 サンデンホールディングス株式会社 可変容量圧縮機
KR102060433B1 (ko) 2014-12-25 2019-12-30 이구루코교 가부시기가이샤 용량 제어 밸브
JP6500183B2 (ja) 2015-04-02 2019-04-17 株式会社テージーケー 可変容量圧縮機用制御弁
EP3292331A4 (en) 2015-05-05 2019-02-20 Eaton Corporation OIL CONTROLLED VALVE
JP6715320B2 (ja) 2015-07-31 2020-07-01 日産自動車株式会社 磁化状態制御方法及び磁化状態制御装置
JP2017089832A (ja) 2015-11-13 2017-05-25 株式会社テージーケー 電磁弁
EP3431760B1 (en) 2016-03-17 2020-09-23 Eagle Industry Co., Ltd. Capacity control valve
CN109642560B (zh) 2016-08-29 2020-07-24 伊格尔工业股份有限公司 容量控制阀
CN110192052B (zh) 2017-01-26 2020-09-22 伊格尔工业股份有限公司 容量控制阀
JP6924476B2 (ja) 2017-04-07 2021-08-25 株式会社テージーケー 可変容量圧縮機用制御弁
EP3712433B1 (en) 2017-11-15 2022-07-06 Eagle Industry Co., Ltd. Capacity control valve and capacity control valve control method
CN111316028B (zh) 2017-11-30 2022-12-02 伊格尔工业股份有限公司 容量控制阀及容量控制阀的控制方法
WO2019117225A1 (ja) 2017-12-14 2019-06-20 イーグル工業株式会社 容量制御弁及び容量制御弁の制御方法
JP7171616B2 (ja) 2017-12-27 2022-11-15 イーグル工業株式会社 容量制御弁及び容量制御弁の制御方法
JP7118568B2 (ja) 2017-12-27 2022-08-16 イーグル工業株式会社 容量制御弁及び容量制御弁の制御方法
KR102420987B1 (ko) 2018-05-23 2022-07-14 이구루코교 가부시기가이샤 용량 제어 밸브
JP7150645B2 (ja) 2019-03-20 2022-10-11 株式会社三共 遊技機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003468A (ja) * 2002-04-25 2004-01-08 Sanden Corp 容量制御弁を有する可変容量圧縮機
JP2007247512A (ja) * 2006-03-15 2007-09-27 Toyota Industries Corp 可変容量型圧縮機における容量制御弁
JP5167121B2 (ja) 2006-03-15 2013-03-21 イーグル工業株式会社 容量制御弁
JP2016205404A (ja) * 2011-12-21 2016-12-08 株式会社不二工機 可変容量型圧縮機用制御弁
JP2016196876A (ja) * 2016-02-25 2016-11-24 株式会社テージーケー 可変容量圧縮機用制御弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3575647A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220213877A1 (en) * 2019-04-03 2022-07-07 Eagle Industry Co., Ltd. Capacity control valve

Also Published As

Publication number Publication date
EP3575647A1 (en) 2019-12-04
CN110192052B (zh) 2020-09-22
US20200032781A1 (en) 2020-01-30
JPWO2018139476A1 (ja) 2019-11-14
EP3575647B1 (en) 2022-11-30
US11603832B2 (en) 2023-03-14
EP3575647A4 (en) 2021-01-27
CN110192052A (zh) 2019-08-30
JP6932146B2 (ja) 2021-09-08

Similar Documents

Publication Publication Date Title
WO2018139476A1 (ja) 容量制御弁
US10781804B2 (en) Displacement control valve
US10690125B2 (en) Displacement control valve
JP5699259B2 (ja) 可変容量圧縮機用制御弁
JP6998953B2 (ja) 容量制御弁
WO2019117225A1 (ja) 容量制御弁及び容量制御弁の制御方法
US7387501B2 (en) Control valve for variable displacement compressor
US11454227B2 (en) Capacity control valve
JPWO2019131693A1 (ja) 容量制御弁及び容量制御弁の制御方法
JPWO2019112025A1 (ja) 容量制御弁及び容量制御弁の制御方法
JP2001082624A (ja) ソレノイドバルブ
JP6998954B2 (ja) 容量制御弁
WO2019159999A1 (ja) 容量制御弁
US11994120B2 (en) Capacity control valve
WO2019097841A1 (ja) クラッチ付き斜板式可変容量圧縮機の容量制御弁
JP7051238B2 (ja) 容量制御弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564597

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018744644

Country of ref document: EP

Effective date: 20190826