WO2018139175A1 - 機能性フィルム積層体、及び、機能性フィルム積層体の製造方法 - Google Patents

機能性フィルム積層体、及び、機能性フィルム積層体の製造方法 Download PDF

Info

Publication number
WO2018139175A1
WO2018139175A1 PCT/JP2018/000086 JP2018000086W WO2018139175A1 WO 2018139175 A1 WO2018139175 A1 WO 2018139175A1 JP 2018000086 W JP2018000086 W JP 2018000086W WO 2018139175 A1 WO2018139175 A1 WO 2018139175A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
base material
functional
protective film
Prior art date
Application number
PCT/JP2018/000086
Other languages
English (en)
French (fr)
Inventor
美帆 宮▲崎▼
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018564452A priority Critical patent/JPWO2018139175A1/ja
Publication of WO2018139175A1 publication Critical patent/WO2018139175A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers

Definitions

  • the present invention relates to a functional film laminate comprising a functional film and a protective film, and a method for producing the functional film laminate.
  • a functional layer such as a gas barrier layer is formed on the surface of the substrate on the cooling roller with heating while the substrate is wound around the cooling roller under reduced pressure.
  • conveyance stress the stress applied to the substrate during conveyance
  • the substrate floats from the cooling roller (the substrate is separated from the cooling roller).
  • thermal damage such as deformation occurs in the substrate. For this reason, a deformation
  • the present invention provides a functional film laminate capable of suppressing deformation during production, and a method for producing the functional film laminate.
  • the functional film laminate of the present invention has a base material and a functional film having a functional layer formed on the first surface side of the base material and a peelable material bonded to the second surface side of the base material.
  • the protective film has a thickness of 20 ⁇ m or more and 100 ⁇ m or less, a surface arithmetic average roughness (Ra) of 150 nm or more and 800 nm or less, and an elastic modulus in the thickness direction of 4.0 GPa or more and 6.5 GPa or less.
  • the thickness is 20 ⁇ m or more and 100 ⁇ m or less
  • the arithmetic average roughness (Ra) of the surface is 150 nm or more and 800 nm or less
  • the present invention it is possible to provide a functional film laminate capable of suppressing deformation during production and a method for producing the functional film laminate.
  • Embodiment of Functional Film Laminate> A specific embodiment of the functional film laminate will be described. In FIG. 1, schematic structure of a functional film laminated body is shown.
  • the functional film laminate 10 shown in FIG. Specifically, the functional film 20 includes a base material 21 and a functional layer 22. The functional layer 22 is formed so as to cover one surface (first surface or surface) side of the substrate 21.
  • the protective film 30 includes an adhesive layer 32 and a protective base material 31. The adhesive layer 32 is formed so as to cover one surface (first surface or surface) side of the protective substrate 31. And the protective base material 31 is bonded by the other surface (2nd surface or back surface) side of the base material 21 of the functional film 20 via the adhesion layer 32.
  • the protective film 30 is bonded so that it can peel from the base material 21 of the functional film 20.
  • the functional film laminated body 10 can peel the protective film 30 and the functional film 20 between the base material 21 of the functional film 20 and the adhesive layer 32 of the protective film 30.
  • the functional film laminate 10 having the above configuration can be manufactured by, for example, the following method.
  • the protective film 30 is produced by forming the adhesive layer 32 on the protective substrate 31.
  • the protective film 30 is bonded to the back surface side of the base material 21, and the laminated body (henceforth, base material laminated body 25) which consists of the base material 21 and the protective film 30 is produced.
  • this base material laminated body 25 is arrange
  • the functional layer 22 is formed in the surface of the base material 21, and the functional film laminated body 10 by which the protective film 30 was bonded to the back surface of the base material 21 is producible.
  • the protective film 30 has a thickness of 20 ⁇ m to 100 ⁇ m, a surface roughness (arithmetic average roughness; Ra) of 150 nm to 800 nm, and an elastic modulus in the thickness direction of 4. It satisfies 0 GPa or more and 6.5 GPa or less.
  • the thickness, surface roughness (Ra), and elastic modulus in the thickness direction of the protective film 30 are defined as follows.
  • the thickness of the protective film 30 is the surface of the protective film 30 opposite to the surface of the adhesive layer 32 (the back surface of the protective film 30) from the surface of the adhesive layer 32 to be bonded to the functional film 20 in the protective film 30. Is the length. In the protective film 30 shown in FIG. 1, the length from the surface of the adhesive layer 32 in contact with the base material 21 to the second surface (back side) of the protective base material 31 is the thickness of the protective film 30. For this reason, when the other structure is provided between the protective base material 31 and the adhesion layer 32, the thickness of the protective film 30 is a total thickness including this other structure. Further, when another layer is formed on the back surface side of the protective base material 31, the length from the surface of the adhesive layer 32 to the surface of the other layer formed on the back surface side of the protective base material 31 is there.
  • the surface roughness of the protective film 30 is expressed by arithmetic average roughness (Ra), and is the surface roughness of the layer exposed on the back surface of the functional film laminate 10. For this reason, in the functional film laminate 10 having the configuration shown in FIG. 1, the surface roughness of the back surface side of the protective substrate 31 is the surface roughness of the protective film 30. In addition, when the other layer is provided in the back surface side of the protective base material 31, the surface roughness of the protective film 30 is the surface roughness of the other layer currently formed in the back surface side of the protective base material 31. It is.
  • the surface roughness (Ra) of the protective film 30 is defined by the arithmetic average roughness (Ra) observed using a non-contact interference microscope (WYKO). A conventionally known method can be applied to the measurement of Ra using WYKO.
  • the elastic modulus of the protective film 30 is a value measured in the thickness direction of the protective film 30 from the back side of the protective film 30 exposed on the back side of the functional film laminate 10. For this reason, in the functional film laminate 10 having the configuration shown in FIG. 1, the value measured in the thickness direction from the back side of the protective base material 31 is the elastic modulus of the protective film 30. In addition, when the other layer is provided in the back surface side of the protective base material 31, the elasticity modulus of the protective film 30 is thickness in the surface of the other layer currently formed in the back surface side of the protective base material 31. A value measured in the direction.
  • the elastic modulus of the protective film 30 can be measured by a nanoindentation method.
  • the nanoindentation method is a measurement that measures indentation hardness in nanometers by adding an indentation hardness measurement module (consisting of a transducer and an indentation tip) to an atomic force microscope (AFM). Is the method. More specifically, this is a method of measuring the relationship between the load and the indentation depth (displacement amount) while pushing a minute diamond indenter into the measurement sample, and calculating the plastic deformation hardness from the measured value.
  • AFM atomic force microscope
  • the nanoindentation elastic modulus (Er) can be measured using, for example, a scanning probe microscope SPI3800N manufactured by SII Nano Technology.
  • a triangular pyramid type diamond indenter called a Belkovic indenter (tip ridge angle 142.3 °) can be used.
  • a triangular pyramid-shaped diamond indenter is applied at right angles to the sample surface, a load is gradually applied, and the load is gradually returned to 0 after reaching the maximum load.
  • a value P / A obtained by dividing the maximum load P at this time by the projected area A of the indenter contact portion is calculated as nanoindentation hardness (H).
  • the nanoindentation elastic modulus (Er) is calculated using the following formula, assuming the slope S of the unloading curve. In the following formula, ⁇ represents a circular ratio.
  • the functional film laminate 10 is easily deformed by heat because the base material 21 and the protective base material 31 are often formed mainly of a resin film. For this reason, in the manufacturing process of the functional film laminate 10, when a film forming method involving heating is employed when the functional layer 22 is produced, the base material 21 and the protective base material 31 are easily deformed by heat. . In order to suppress deformation of the base material 21 and the protective base material 31 due to heat, the base material laminate 25 in which the protective film 30 is bonded to the base material 21 is wound around the cooling roller, It is necessary to produce the functional layer 22. Therefore, in order to suppress deformation of the base material 21 and the protective base material 31 due to heat, the adhesion between the base material laminate 25 including the base material 21 and the protective film 30 and the cooling roller is important.
  • the surface roughness (Ra) of the back surface of the protective film 30 relating to the slipperiness of the contact surface is within a predetermined range. Is generally considered.
  • the transport of the substrate laminate 25 is performed in a state where the back surface side of the substrate laminate 25 is in contact with the film forming roller or the transport roller. For this reason, adjustment of the slipperiness of the back surface side of the base material laminated body 25, ie, the back surface side of the protective film 30, becomes important.
  • the slipperiness on the back side of the protective film 30 can be adjusted by the surface roughness (Ra) of the layer exposed on the back side of the protective film 30.
  • cushioning property is the ability to relieve stress applied to the substrate laminate 25 during transport by absorption, dispersion, or buffering.
  • the cushioning property of the protective film 30 can be defined by a combination of the elastic modulus in the thickness direction of the protective film 30 and the thickness of the protective film 30. Since the protective film 30 has a specific range of elastic modulus and a specific range of thickness, the stress acting in the direction away from the cooling roller can be sufficiently relaxed. However, if the cushioning property is too high, the influence on the stress generated with respect to the normal conveyance tension becomes too large, and thus a problem is likely to occur in the conveyance of the substrate laminate 25.
  • the ratio of the protective film 30 with respect to the base-material laminated body 25 is too small, even if the elastic modulus of the protective film 30 is large when the thickness of the protective film 30 is too small, the effect of stress relaxation is fully exhibited. I can't. On the other hand, if the thickness of the protective film 30 is too large, the entire thickness of the functional film laminate 10 becomes too large, so that it becomes difficult to handle the functional layer 22 in the manufacturing apparatus and to form a film.
  • the protective film 30 requires a specific range of thickness and elastic modulus suitable for transporting the substrate laminate 25. Furthermore, a specific range of surface roughness (Ra) suitable for transporting the substrate laminate 25 is also required on the back side of the protective film 30. Therefore, in the functional film laminate 10, the thickness of the protective film 30 is set to 20 ⁇ m to 100 ⁇ m, and the elastic modulus in the thickness direction of the protective film 30 is specified to 4.0 GPa to 6.5 GPa. Furthermore, the surface roughness (Ra) on the back surface side of the protective film 30 which is the back surface side of the protective film 30 is specified to be 150 nm or more and 800 nm or less.
  • the protective film 30 when the thickness, the elastic modulus in the thickness direction, and the surface roughness (Ra) of the back surface satisfy the above-described rules, the adhesion between the substrate laminate 25 and the cooling roller is improved. That is, the protective film 30 has the ability to relieve the stress acting in the direction of separating the base material laminate 25 from the cooling roller, which occurs when the balance of the conveyance stress is lost, so that the base material laminate 25 is cooled. It becomes difficult to separate from the roller. Furthermore, the influence on the stress generated with respect to the normal conveyance tension is small, and a problem in conveyance of the base material laminate 25 is unlikely to occur.
  • the protective film 30 satisfies the above-mentioned regulations, the balance (balance and stability) of the conveyance stress during the conveyance of the substrate laminate 25 can be maintained, and the adhesion between the substrate laminate 25 and the cooling roller can be maintained. Can be improved. For this reason, separation between the cooling roller and the base material laminate 25 can be suppressed, and deformation of the base material 21 and the protective base material 31 due to heat can be suppressed. As a result, deformation of the functional film laminate 10 during production can be suppressed.
  • the functional film laminate 10 preferably has a total thickness of 30 ⁇ m or more and 150 ⁇ m or less.
  • the adhesion between the substrate laminate 25 and the cooling roller can be improved, but the total thickness of the functional film laminate 10 produced at this time is If it is within the range, the relaxation effect by the protective film 30 against the stress in the separating direction is more easily exhibited.
  • the base material laminate 25 is conveyed in a state where the functional layer 22 is formed on the base material 21.
  • the ratio of the protective film 30 to the conveyed functional layer 22 and the substrate laminate 25 is reduced. It becomes difficult to obtain a stress relaxation effect. Therefore, if the thickness of the functional film laminate 10 to be produced is within the above range, the effect of relaxing the stress in the separating direction by the protective film 30 can be more easily obtained without being affected by the functional layer 22. .
  • each structure of the functional film laminated body 10 is demonstrated.
  • the following description is an example of a structure of the functional film laminated body 10, and is not limited to these.
  • the functional film laminated body 10 may have a structure other than these.
  • the functional film 20 includes a base material 21 and a functional layer 22 formed on one surface (first surface, surface) side of the base material 21. If the functional layer 22 has a desired function and the protective film 30 can be peeled from the base material 21, the material used for each structure will not be specifically limited. Further, the thickness of the functional film 20 is not particularly limited, but is preferably 30 ⁇ m or more and 150 ⁇ m or less.
  • Examples of the base material 21 used for the functional film 20 of the functional film laminate 10 include a resin film.
  • the resin film is not particularly limited in material, thickness, and the like as long as it can hold a functional layer such as a barrier layer, and can be appropriately selected according to the purpose of use.
  • As the resin film a conventionally known resin film can be used.
  • the base material 21 may be formed from a plurality of materials.
  • As the resin film a resin film capable of realizing the desired functional film 20 from a substrate generally applied to an optical film can be appropriately selected and used. Examples thereof include resin films described in paragraphs [0124] to [0136] of JP2013-226758A, paragraphs [0044] to [0047] of International Publication No. 2013/002026, and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • COP polycycloolefin
  • the elastic modulus of the base material 21 is preferably 4.0 GPa or more and 6.5 GPa or less, similarly to the elastic modulus of the protective film 30.
  • the protective film 30 satisfies the above regulations, and the elastic modulus of the base material 21 is approximately the same. If there is, it is easier to obtain the effect.
  • the base material 21 may be a single resin film or a plurality of resin films, and may be formed of a plurality of layers.
  • the shape of the base material 21 is not limited to a single wafer shape and a roll shape, the roll shape which can respond also by a roll to roll system from a viewpoint of productivity is preferable.
  • the thickness of the substrate 21 is not particularly limited, but is preferably about 5 to 500 ⁇ m. Moreover, it is more preferable that the thickness of the base material 21 is 20 ⁇ m or more and 130 ⁇ m or less so that the thickness of the functional film laminate 10 is 30 ⁇ m or more and 150 ⁇ m or less.
  • Examples of the functional layer 22 include a barrier layer, a protective layer, a smooth layer, a bleed-out layer, an anchor coat layer, a desiccant layer, and the like. These layers may be formed as a single-layer functional layer 22 on the base material 21 or may be formed as a functional layer 22 composed of a plurality of layers.
  • the functional film 20 has an oxygen permeability of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less as the functional layer 22 measured by a method according to JIS K 7126-1987, and JIS K
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to 7129-1992 is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less. It is preferable to provide a barrier layer.
  • barrier layer As a barrier layer which comprises the functional layer 22, if it is a layer which has barrier property, the structure in which the film formation by a conventionally well-known roll to roll system can be applied without limitation.
  • a barrier layer formed by vapor deposition of a general inorganic compound can be given.
  • a barrier layer formed by vapor deposition of an inorganic compound contains an inorganic compound.
  • the inorganic compound is not particularly limited, and examples thereof include metal oxides, metal nitrides, metal carbides, metal oxynitrides, and metal oxycarbides.
  • Inorganic compounds include oxides, nitrides, carbides, oxynitrides containing at least one metal selected from Si, Al, In, Sn, Zn, Ti, Cu, Ce, and Ta in terms of gas barrier performance. Or an acid carbide etc. are preferable.
  • suitable inorganic compounds include composites such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, aluminum oxide, titanium oxide, and aluminum silicate.
  • the barrier layer containing an inorganic compound may contain an element other than the inorganic compound as a secondary component.
  • the gas barrier property of the vapor-phase film-forming barrier layer is preferably such that the water vapor transmission rate (WVTR) calculated in the laminate in which the barrier layer is formed on a substrate is 0.1 g / (m 2 ⁇ day) or less. .
  • the film thickness of the vapor deposition barrier layer is not particularly limited, but is preferably 5 to 1000 nm. If it is such a range, it will be excellent in high gas barrier performance, bending tolerance, and cutting processability.
  • the vapor deposition barrier layer may be composed of two or more layers.
  • a decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, nitrous oxide
  • examples thereof include gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, and water vapor.
  • the decomposition gas may be used by mixing with an inert gas such as argon gas or helium gas.
  • a desired vapor deposition barrier layer can be obtained by appropriately selecting a source gas containing a raw material compound and a decomposition gas.
  • FIG. 2 shows an example of a schematic diagram of an inter-roller discharge plasma CVD apparatus using a roll-to-roll method, which is applied to the vacuum plasma CVD method.
  • the film forming apparatus used when the barrier layer is manufactured by the above plasma CVD method is not particularly limited.
  • the barrier layer can be manufactured by a roll-to-roll method using the plasma CVD method.
  • the manufacturing method of the barrier layer will be described in detail with reference to FIG.
  • FIG. 2 is a schematic view showing an example of an inter-roller discharge plasma CVD apparatus to which a magnetic field is applied, which can be suitably used in the manufacture of the barrier layer.
  • An inter-roller discharge plasma CVD apparatus (hereinafter also simply referred to as a plasma CVD apparatus) 50 to which a magnetic field shown in FIG. 2 is applied mainly includes a feeding roller 51, a transport roller 52, a transport roller 54, a transport roller 55, and a transport.
  • Roller 57, film formation roller 53 and film formation roller 56, film formation gas supply pipe 59, plasma generation power supply 63, magnetic field generator 61 installed inside film formation roller 53, film formation roller 56 are provided with a magnetic field generator 62 and a take-up roller 58.
  • a plasma CVD manufacturing apparatus In such a plasma CVD manufacturing apparatus, at least the film forming rollers 53 and 56, the film forming gas supply pipe 59, the plasma generating power source 63, and the magnetic field generating apparatuses 61 and 62 are not shown in the vacuum. Located in the chamber. In FIG. 2, electrode drums connected to a plasma generating power source 63 are installed on the film forming rollers 53 and 56. Further, in such a plasma CVD manufacturing apparatus, a vacuum chamber (not shown) is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by this vacuum pump. Yes.
  • each film forming roller generates plasma so that a pair of film forming rollers (film forming roller 53 and film forming roller 56) can function as a pair of counter electrodes.
  • the power supply 63 is connected.
  • the pair of film forming rollers 53 and 56 are preferably arranged so that their central axes are substantially parallel on the same plane.
  • a magnetic field generator 61 and a magnetic field generator 62 fixed so as not to rotate even when the film forming roller rotates are provided inside the film forming roller 53 and the film forming roller 56, respectively.
  • known rollers can be used as appropriate.
  • As the film forming roller 53 and the film forming roller 56 it is preferable to use rollers having the same diameter from the viewpoint of efficiently forming a thin film.
  • the feed roller 51 and the transport rollers 52, 54, 55, 57 used in such a plasma CVD manufacturing apparatus known rollers can be appropriately selected and used.
  • the winding roller 58 is not particularly limited as long as it can wind the base material 60 on which the barrier layer is formed, and a known roller can be used as appropriate.
  • the film forming gas supply pipe 59 one capable of supplying or discharging the source gas and the oxygen gas at a predetermined rate can be appropriately used.
  • the plasma generating power source 63 a conventionally known power source of a plasma generating apparatus can be used.
  • a power source AC power source or the like
  • it is more preferable that such a plasma generating power source 63 is one that can apply electric power in a range of 100 W to 10 kW and an AC frequency in a range of 50 Hz to 500 kHz.
  • the magnetic field generators 61 and 62 a known magnetic field generator can be used as appropriate.
  • a desired barrier layer can be produced by appropriately adjusting the conveyance speed of the substrate.
  • a film-forming gas (raw material gas or the like) is supplied into a vacuum chamber, and plasma discharge is performed while a magnetic field is generated between a pair of film-forming rollers 53 and 56.
  • the film gas (raw material gas or the like) is decomposed by plasma, and a barrier layer is formed on the surface of the substrate 60 held by the film forming roller 53 and on the surface of the substrate 60 held by the film forming roller 56. .
  • the substrate 60 is conveyed by the feed roller 51, the conveyance rollers 52, 54, 55, 57, the take-up roller 58, the film formation rollers 53, 56, etc.
  • a barrier layer can be formed by a continuous film forming process of a to-roll method.
  • Deposition gas As a film forming gas used in the plasma chemical vapor deposition method, a raw material gas containing an organosilicon compound and an oxygen gas are used, and the content of the oxygen gas in the film forming gas is the same as that of the organic silicon compound in the film forming gas. It is preferable that the amount is less than the theoretical oxygen amount necessary for complete oxidation of the whole amount.
  • organosilicon compound containing at least silicon is preferable to use as a raw material gas constituting the film forming gas used for producing the barrier layer.
  • organosilicon compound applicable to the production of the barrier layer include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, and dimethylsilane.
  • organosilicon compounds hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoint of handling during film formation and gas barrier properties of the resulting barrier layer.
  • these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
  • the ratio of the source gas to the oxygen gas is the oxygen gas that is theoretically necessary for completely reacting the source gas and the oxygen gas. It is preferable not to make the oxygen gas ratio excessively higher than the ratio of the amount.
  • description, such as international publication 2012/046767, can be referred, for example.
  • the conveyance speed (line speed) of the substrate 60 can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is within the range of 0.25 to 100 m / min. Preferably, it is more preferably in the range of 0.5 to 20 m / min. If the line speed is within the range, wrinkles due to the heat of the resin base material hardly occur, and the thickness of the formed barrier layer can be sufficiently controlled.
  • the carbon distribution curve showing the relationship with the ratio of the amount of carbon atoms to the total amount of oxygen atoms and carbon atoms (100 at%) (carbon atom ratio (at%)) has an extreme value, and the carbon atoms of the carbon distribution curve
  • the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the ratio is 3 at% or more.
  • the average atomic ratio of each atom with respect to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is the following formula (A) or (B) It has the order of magnitude relationship represented by.
  • the etching time is generally correlated with the distance from the surface of the barrier layer in the layer thickness direction of the barrier layer. For this reason, the distance from the surface of the barrier layer calculated from the relationship between the etching rate and the etching time used in the XPS depth profile measurement is adopted as the “distance from the surface of the barrier layer in the thickness direction of the barrier layer”. can do. Moreover, it is preferable to set it as the following measurement conditions as a sputtering method employ
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value): 10 nm
  • X-ray photoelectron spectrometer Model name "VG Theta Probe", manufactured by Thermo Fisher Scientific Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m oval
  • the barrier layer contains carbon atoms, silicon atoms, and oxygen atoms as constituent elements.
  • the composition continuously changes in the layer thickness direction, and the carbon distribution curve satisfies the requirement (1) among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy.
  • the concentration gradient is continuously changed in a specific region of the barrier layer in the carbon atom ratio from the viewpoint of achieving both gas barrier properties and flexibility.
  • the minimum value is an inflection point at which the atomic ratio value of the element changes from decrease to increase when the distance from the surface of the barrier layer is changed, and the thickness direction from the position of the inflection point
  • the atomic ratio value of the element at the position changed by 4 to 20 nm is increased by 3 at% or more. That is, the maximum value and the minimum value are points where the atomic ratio value of the element decreases or increases by 3 at% or more in any range when the position in the thickness direction is changed in the range of 4 to 20 nm.
  • the barrier layer is characterized by containing carbon atoms, silicon atoms and oxygen atoms as constituent elements. Preferred embodiments of the ratio of each atom and the maximum and minimum values of the ratio of each atom will be described below. To do.
  • the absolute value of the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) in the oxygen distribution curve is preferably 3 at% or more, and more preferably 5 at% or more. preferable.
  • the absolute value of the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) in the silicon distribution curve is preferably less than 10 at%, and more preferably less than 5 at%. preferable. If the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) is less than 10 at%, sufficient gas barrier properties and mechanical strength can be obtained for the barrier layer.
  • the barrier layer preferably includes at least one barrier layer that satisfies the above requirements (1) and (2) at the same time, but may include two or more layers that satisfy such a condition. Furthermore, when two or more barrier layers are provided, the materials of the plurality of barrier layers may be the same or different.
  • the silicon atom ratio to the total amount of silicon atoms, oxygen atoms and carbon atoms is preferably in the range of 19 to 40 at%, and in the range of 30 to 40 at%. It is more preferable that Further, the oxygen atom ratio with respect to the total amount of silicon atoms, oxygen atoms and carbon atoms in the barrier layer is preferably in the range of 33 to 67 at%, and more preferably in the range of 41 to 62 at%. Further, the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms and carbon atoms in the barrier layer is preferably in the range of 1 to 19 at%, more preferably in the range of 3 to 19 at%.
  • a method for forming a barrier layer that simultaneously satisfies the requirements (1) and (2) is not particularly limited, and a known method can be used. From the viewpoint of forming a barrier layer in which element distribution is precisely controlled, discharge plasma chemistry having a discharge space between rollers to which a magnetic field is applied using the inter-roller discharge plasma CVD apparatus shown in FIG. A method of forming by vapor deposition is preferred. For example, the method described in paragraphs [0049] to [0069] of International Publication No. 2012/046767 can be referred to.
  • barrier layer As the barrier layer constituting the functional layer 22, a barrier layer formed by a wet coating method using a coating liquid containing a silicon compound together with a barrier layer formed by vapor deposition of the inorganic compound described above, or a transition A barrier layer containing a metal can also be used.
  • barrier layer As a barrier layer formed by a wet coating method using a coating solution containing a silicon compound, a barrier formed by applying a coating solution containing a polysilazane compound by a known wet coating method and then modifying the coating film Layer.
  • the polysilazane compound used for forming the barrier layer is a polymer that is a precursor of silicon oxynitride having a silicon-nitrogen bond in the structure.
  • the polysilazane compound those having the structure of the following general formula (1) are preferably used.
  • each of R 1 , R 2 , and R 3 represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
  • Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as a polysilazane-containing coating solution as it is.
  • Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials.
  • a coating film using a solution containing a polysilazane compound can be formed by applying a solution containing a polysilazane compound and an additive on a substrate. Any appropriate method can be adopted as the solution coating method. Examples thereof include spin coating, roll coating, flow coating, ink jet, spray coating, printing, dip coating, casting film formation, bar coating, and gravure printing. After applying the solution, it is preferable to dry the coating film. By drying the coating film, the organic solvent contained in the coating film can be removed.
  • paragraphs [0058] to [0064] of JP-A No. 2014-151571, paragraphs [0052] to [0056] of JP-A No. 2011-183773, and the like can be referred to.
  • the modification treatment is treatment for performing a conversion reaction of the polysilazane compound to silicon oxide or silicon oxynitride.
  • a known method for the conversion reaction of the polysilazane compound can be used.
  • As the reforming treatment a conversion reaction using plasma, ozone, or ultraviolet rays that can be converted at a low temperature is preferable.
  • a conventionally known method can be used for the conversion reaction using plasma, ozone, or ultraviolet rays.
  • the modification treatment is preferably performed by irradiating the coating film of the polysilazane compound-containing liquid with vacuum ultraviolet rays (VUV) having a wavelength of 200 nm or less.
  • VUV vacuum ultraviolet rays
  • the thickness of the barrier layer formed by the wet coating method is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 300 nm.
  • the entire barrier layer may be a modified layer, and the thickness of the modified layer subjected to the modification treatment may be 1 to 50 nm, preferably 1 to 10 nm.
  • VUV irradiation step it is preferable that at least a part of the polysilazane is modified to silicon oxynitride.
  • the illuminance of VUV in the coating film surface for receiving the coating film containing a polysilazane compound is in the range of 30 ⁇ 200mW / cm 2, and more preferably in the range of 50 ⁇ 160mW / cm 2 .
  • the illuminance of the VUV By setting the illuminance of the VUV to 30 mW / cm 2 or more, sufficient reforming efficiency can be obtained, and when it is 200 mW / cm 2 or less, the rate of damage to the coating film is extremely suppressed and damage to the substrate is also reduced. Can be made.
  • a rare gas excimer lamp is preferably used as the vacuum ultraviolet light source. Since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process is likely to decrease. Therefore, it is preferable to perform VUV irradiation in a state where the oxygen concentration is as low as possible. That is, the oxygen concentration at the time of VUV irradiation is preferably in the range of 10 to 10,000 ppm, more preferably in the range of 50 to 5000 ppm, still more preferably in the range of 80 to 4500 ppm, and most preferably in the range of 100 to 1000 ppm.
  • dry inert gas is preferable, and dry nitrogen gas is particularly preferable from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rates of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the intermediate layer When laminating barrier layers, it is preferable to provide an intermediate layer between the barrier layers. As the intermediate layer, it is preferable to apply a polysiloxane modified layer.
  • the polysiloxane-modified layer can be formed by applying a coating solution containing polysiloxane onto the barrier layer using a wet coating method and drying it, and then irradiating the dried coating film with vacuum ultraviolet rays. it can.
  • the coating solution used for forming the intermediate layer mainly contains polysiloxane and an organic solvent.
  • the polysiloxane applicable to the formation of the intermediate layer is not particularly limited, but an organopolysiloxane represented by the following general formula (2) is particularly preferable.
  • R 4 to R 9 each represent the same or different organic group having 1 to 8 carbon atoms.
  • at least one group of R 4 to R 9 includes either an alkoxy group or a hydroxyl group.
  • m is an integer of 1 or more.
  • the organopolysiloxane represented by the general formula (2) it is particularly preferable that m is 1 or more and the mass average molecular weight in terms of polystyrene is 1000 to 20000. If the weight average molecular weight in terms of polystyrene of the organopolysiloxane is 1000 or more, the intermediate layer to be formed is hardly cracked and the gas barrier property can be maintained, and if it is 20000 or less, the formed intermediate layer is cured. And sufficient hardness as an intermediate layer can be obtained.
  • the dry film thickness of the intermediate layer is preferably in the range of 100 nm to 10 ⁇ m, more preferably 50 nm to 1 ⁇ m. If the thickness of the intermediate layer is 100 nm or more, sufficient gas barrier properties can be ensured. Moreover, if the film thickness of the intermediate layer is 10 ⁇ m or less, stable coating properties can be obtained when forming the intermediate layer.
  • the barrier layer is preferably a laminated form of a transition metal (M2) -containing layer and an inorganic element (M1) -containing layer other than the transition metal.
  • M2 transition metal
  • M1 inorganic element
  • a barrier layer formed by a wet coating method using a coating solution containing the silicon compound is preferable.
  • the transition metal M2 is a Group 5 element (particularly Nb) and the inorganic element M1 whose details will be described later is Si, a significant barrier property improvement effect can be obtained. is there. This is presumably because the bond between Si and the Group 5 element (particularly Nb) is particularly likely to occur.
  • the transition metal M2 is particularly preferably Nb or Ta from which a compound with good transparency can be obtained.
  • the thickness of the A region is preferably in the range of 2 to 50 nm, more preferably in the range of 4 to 25 nm, and more preferably in the range of 5 to 15 nm from the viewpoint of achieving both barrier properties and optical characteristics. More preferably.
  • the B region in the inorganic element (M1) -containing layer refers to a region containing an inorganic material other than the transition metal as the main component b.
  • an inorganic element selected from metals of Group 12 to Group 14 of the long-period periodic table is preferable.
  • the inorganic element M1 is not particularly limited, and any metal of Group 12 to Group 14 can be used alone or in combination. Examples thereof include Si, Al, Zn, In, and Sn.
  • the inorganic element M1 preferably contains Si, Sn or Zn, more preferably contains Si, and particularly preferably Si alone.
  • the thickness of the region B is preferably in the range of 10 to 1000 nm, more preferably in the range of 20 to 500 nm, and in the range of 50 to 300 nm from the viewpoint of achieving both barrier properties and productivity. Is particularly preferred.
  • M1 represents an inorganic element
  • M2 represents a transition metal
  • O represents oxygen
  • N represents nitrogen
  • x, y, and z are stoichiometric coefficients, respectively
  • a represents the maximum valence of M1
  • b represents the maximum valence of M2.
  • the maximum valence of each element is calculated by weighted averaging with the abundance ratio of each element.
  • the combined valence is adopted as the value of a and b of each “maximum valence”.
  • the mixed region is a region where the value of x satisfies [0.02 ⁇ x ⁇ 49 (0 ⁇ y, 0 ⁇ z)]. This is the same definition as defining the region where the value of the atomic ratio of transition metal M2 / inorganic element M1 is in the range of 0.02 to 49 and the thickness is 5 nm or more.
  • the thickness of the mixed region in which good barrier properties can be obtained is 5 nm or more as the sputtering thickness in terms of SiO 2 in the XPS analysis method described later, and this thickness is preferably 8 nm or more, preferably 10 nm. More preferably, it is more preferably 20 nm or more.
  • the thickness of the mixed region is not particularly limited from the viewpoint of barrier properties, but is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 30 nm or less from the viewpoint of optical characteristics. .
  • composition analysis by XPS analysis and measurement of the thickness of the mixed region XPS depth profile measurement using the X-ray photoelectron spectroscopy (abbreviation: XPS) described above for the mixed region of the barrier layer, the composition distribution in the A region and the B region, and the thickness of each region. It can ask for.
  • the functional film 20 may have a smooth layer (underlayer, primer layer) between the base material 21 and the functional layer 22.
  • the smooth layer is provided in order to flatten the rough surface of the substrate 21 on which protrusions and the like exist.
  • the material for forming such a smooth layer is not limited, but preferably contains a curable resin.
  • the elastic modulus of the protective substrate 31 can be adjusted by the resin composition of the resin film constituting the protective substrate 31.
  • the protective base material 31 having a desired elastic modulus can be produced by using a resin having an elastic modulus within the above-mentioned definition or by mixing a plurality of resins.
  • an elastic modulus can be adjusted by laminating
  • the surface roughness (Ra) of the protective film 30 is defined by the surface roughness on the back side of the protective substrate 31. For this reason, the surface roughness of the back surface side of the protective base material 31 is adjusted so that it may become in the said prescription
  • Examples of the elastic modulus and surface roughness adjustment method by the production of the resin film as described above include, for example, the production method of the intermediate layer of the resin film and the production method of the roughened layer described in JP-A-2014-24940. Can be applied.
  • the adhesive layer 32 includes an adhesive.
  • the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer 32 is not particularly limited as long as the pressure-sensitive adhesive force required for the functional film laminate 10 can be obtained, and conventionally known materials can be used.
  • a self-adhesive type a self-adhesive type described in Japanese Patent No. 5997961 or a coating type described in Japanese Patent Application Laid-Open No. 2014-101443 can be used.
  • the self-adhesive type adhesive layer 32 is preferably composed of, for example, a hydrogenated styrene elastomer (A1) as a main component and further a polypropylene resin (A2).
  • a hydrogenated styrene elastomer (A1) include hydrogenated styrene-butadiene copolymer (HSBR) and styrene-ethylene / butylene-styrene copolymer (SEBS). Hydrogenated styrene elastomers are easy to adjust the adhesive strength and have excellent processability.
  • the polypropylene resin (A2) mainly include propylene homopolymer and propylene / ⁇ -olefin random polymer.
  • propylene-ethylene-1 butene random copolymer propylene-ethylene random copolymer, and the like are preferable.
  • the polypropylene resin is used for the purpose of increasing the interlayer strength of the self-adhesive protective film 30. Furthermore, when a random polypropylene resin is selected, the adhesive strength tends to increase.
  • Examples of the hydroxyl group-containing copolymerizable monomer include hydroxyalkyl (meth) acrylates and hydroxyl group-containing (meth) acrylamides.
  • Examples of the hydroxyl group-containing copolymerizable monomer include 8-hydroxyoctyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, N-hydroxy It is preferable that at least one selected from the group consisting of (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, and N-hydroxyethyl (meth) acrylamide. It is preferable to contain 0.1 to 15 parts by mass of a hydroxyl group-containing copolymerizable monomer with respect to 100 parts by mass of the acrylic polymer.
  • the pressure-sensitive adhesive composition preferably crosslinks the pressure-sensitive adhesive polymer when forming the pressure-sensitive adhesive layer.
  • crosslinking may be performed by photocrosslinking such as ultraviolet (UV), but the pressure-sensitive adhesive composition preferably contains a crosslinking agent.
  • the crosslinking agent include bifunctional or trifunctional or higher isocyanate compounds, bifunctional or trifunctional or higher epoxy compounds, bifunctional or trifunctional or higher acrylate compounds, and metal chelate compounds.
  • polyisocyanate compounds (bifunctional or trifunctional or higher functional isocyanate compounds) are preferable, and trifunctional or higher functional isocyanate compounds are more preferable. It is preferable to contain 0.1 to 5 parts by mass of a crosslinking agent with respect to 100 parts by mass of the acrylic polymer.
  • the trifunctional or higher functional isocyanate compound may be a polyisocyanate compound having at least three isocyanate (NCO) groups in one molecule.
  • Polyisocyanate compounds are classified into aliphatic isocyanates, aromatic isocyanates, acyclic isocyanates, alicyclic isocyanates, etc., and any of them may be used.
  • Specific examples of the polyisocyanate compound include aliphatic isocyanate compounds such as hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and trimethylhexamethylene diisocyanate (TMDI), diphenylmethane diisocyanate (MDI), and xylylene diisocyanate (XDI).
  • aromatic isocyanate compounds such as hydrogenated xylylene diisocyanate (H6XDI), dimethyldiphenylene diisocyanate (TOID), and tolylene diisocyanate (TDI).
  • trifunctional or higher functional isocyanate compound include diuret compounds (compounds having two NCO groups in one molecule), modified burettes and isocyanurates, trivalent or higher polyols such as trimethylolpropane (TMP) and glycerin.
  • TMP trimethylolpropane
  • adduct bodies polyol-modified bodies with (a compound having at least 3 or more OH groups in one molecule).
  • the adhesive composition preferably contains an antistatic agent in order to impart antistatic performance to the adhesive layer 32.
  • the antistatic agent is preferably solid at room temperature (eg, 30 ° C.), and more specifically, the antistatic agent is preferably an ionic compound having a melting point of 30 to 50 ° C.
  • the antistatic agent may be an acryloyl group-containing quaternary ammonium salt type ionic compound. Since these antistatic agents have a low melting point and have a long-chain alkyl group, it is presumed that they have a high affinity with acrylic polymers.
  • An ionic compound having a melting point of 30 to 50 ° C. can be obtained by selecting the chain length of the alkyl group, the position and number of substituents, and the like.
  • the cation is preferably a quaternary nitrogen-containing onium cation, such as a quaternary pyridinium cation such as 1-alkylpyridinium (the carbon atom at the 2-6 position may be substituted or unsubstituted), Examples include quaternary imidazolium cations such as 3-dialkylimidazolium (the carbon atoms at the 2, 4, and 5 positions may be substituted or unsubstituted), and quaternary ammonium cations such as tetraalkylammonium.
  • the antistatic agent which is an ionic compound having a melting point of 30 to 50 ° C. is preferably contained in an amount of 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the acrylic polymer.
  • PF 6 ⁇ hexafluorophosphate
  • SCN ⁇ thiocyanate
  • F-containing imide salt R F 2 N -
  • R F F-containing imide salt
  • trifluoromethanesulfonyl group and perfluoro alkane sulfonyl group or fluorosulfonyl group, such as pentafluoroethane sulfonyl group.
  • F-containing imide salt include bis (fluorosulfonyl) imide salt [(FSO 2 ) 2 N ⁇ ], bis (trifluoromethanesulfonyl) imide salt [(CF 3 SO 2 ) 2 N ⁇ ], bis (pentafluoroethanesulfonyl).
  • Bissulfonylimide salts such as imide salts [(C 2 F 5 SO 2 ) 2 N ⁇ ].
  • the acryloyl group-containing quaternary ammonium salt type ionic compound is preferably copolymerized in an acrylic polymer in an amount of 0.1 to 5.0% by mass.
  • dimethylaminomethyl (meth) acrylate bis (fluorosulfonyl) imidomethyl salt [(CH 3 ) 3 N + CH 2 OCOCQ ⁇ CH 2 ⁇ (FSO 2 ) 2 N ⁇ , where Q ⁇ H or CH 3 ] and the like.
  • the pressure-sensitive adhesive composition contains a polyether-modified siloxane compound.
  • the polyether-modified siloxane compound is a siloxane compound having a polyether group, and in addition to a normal siloxane unit [—SiR 1 2 —O—], a siloxane unit having a polyether group [—SiR 1 (R 2 O ( R 3 O) n R 4 ) —O—].
  • R 1 is one or more alkyl groups or aryl groups
  • R 2 and R 3 are one or more alkylene groups
  • R 4 is one or more alkyl groups or acyl groups.
  • the polyether group include polyoxyalkylene groups such as a polyoxyethylene group [(C 2 H 4 O) n ] and a polyoxypropylene group [(C 3 H 6 O) n ].
  • the polyether-modified siloxane compound is preferably a polyether-modified siloxane compound having an HLB value of 7 to 12.
  • the polyether-modified siloxane compound is preferably contained in an amount of 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the acrylic polymer.
  • HLB is a hydrophilic / lipophilic balance (hydrophilic / lipophilic ratio) defined in, for example, JIS K3211 (surfactant term).
  • the polyether-modified siloxane compound can be obtained, for example, by grafting an organic compound having an unsaturated bond and a polyoxyalkylene group to a polyorganosiloxane main chain having a silicon hydride group by a hydrosilylation reaction.
  • the pressure-sensitive adhesive composition may contain a crosslinking retarder.
  • crosslinking retarders include ⁇ -ketoesters such as methyl acetoacetate, ethyl acetoacetate, octyl acetoacetate, oleyl acetoacetate, lauryl acetoacetate, stearyl acetoacetate, and ⁇ -ketoesters such as acetylacetone, 2,4-hexanedione, and benzoylacetone. -Diketones.
  • ketoenol tautomeric compounds and in an adhesive composition having a polyisocyanate compound as a crosslinking agent, the excess viscosity of the adhesive composition after blending of the crosslinking agent is blocked by blocking the isocyanate group of the crosslinking agent.
  • the rise and gelation can be suppressed, and the pot life of the pressure-sensitive adhesive composition can be extended.
  • the crosslinking retarder is preferably a ketoenol tautomer compound, and particularly preferably at least one selected from the group of compounds consisting of acetylacetone and ethyl acetoacetate. When the crosslinking retarder is added, the crosslinking retarder is preferably contained in an amount of 1.0 to 5.0 parts by mass with respect to 100 parts by mass of the acrylic polymer.
  • the pressure-sensitive adhesive composition may contain a crosslinking catalyst.
  • the crosslinking catalyst may be any substance that functions as a catalyst for the reaction (crosslinking reaction) between the acrylic polymer and the crosslinking agent when a polyisocyanate compound is used as the crosslinking agent.
  • organic metal compounds such as organic tin compounds, organic lead compounds, and organic zinc compounds.
  • the tertiary amine include trialkylamine, N, N, N ′, N′-tetraalkyldiamine, N, N-dialkylamino alcohol, triethylenediamine, morpholine derivative, piperazine derivative and the like.
  • the pressure-sensitive adhesive composition may contain a polyether compound.
  • the polyether compound is a compound having a polyalkylene oxide group, and examples thereof include polyether polyols such as polyalkylene glycol and derivatives thereof.
  • Examples of the alkylene group of the polyalkylene glycol and the polyalkylene oxide group include, but are not limited to, an ethylene group, a propylene group, and a butylene group.
  • the polyalkylene glycol may be a copolymer of two or more polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polybutylene glycol.
  • copolymer of polyalkylene glycol examples include polyethylene glycol-polypropylene glycol, polyethylene glycol-polybutylene glycol, polypropylene glycol-polybutylene glycol, polyethylene glycol-polypropylene glycol-polybutylene glycol and the like. It may be a block copolymer or a random copolymer.
  • polyalkylene glycol derivatives examples include polyoxyalkylene alkyl ethers such as polyoxyalkylene monoalkyl ether and polyoxyalkylene dialkyl ether, polyoxyalkylene alkenyl ethers such as polyoxyalkylene monoalkenyl ether and polyoxyalkylene dialkenyl ether, Polyoxyalkylene aryl ethers such as oxyalkylene monoaryl ether and polyoxyalkylene diaryl ether, polyoxyalkylene glycol fatty acid esters such as polyoxyalkylene glycol monofatty acid ester and polyoxyalkylene glycol monofatty acid ester, Polyoxyalkylene sorbitan fatty acid ester, polyoxyal Alkylene alkyl amines, polyoxyalkylene diamine and the like.
  • polyoxyalkylene alkyl ethers such as polyoxyalkylene monoalkyl ether and polyoxyalkylene dialkyl ether
  • polyoxyalkylene alkenyl ethers such as polyoxyal
  • examples of the alkyl ether in the polyalkylene glycol derivative include lower alkyl ethers such as methyl ether and ethyl ether, and higher alkyl ethers such as lauryl ether and stearyl ether.
  • examples of the alkenyl ether in the polyalkylene glycol derivative include vinyl ether, allyl ether, oleyl ether and the like.
  • Examples of the fatty acid ester in the polyalkylene glycol derivative include saturated fatty acid esters such as acetic acid esters and stearic acid esters, and unsaturated fatty acid esters such as (meth) acrylic acid esters and oleic acid esters.
  • the polyether compound is preferably a compound containing an ethylene oxide group, and more preferably a compound containing a polyethylene oxide group.
  • the polyether compound When the polyether compound has a polymerizable functional group, it can be copolymerized with a (meth) acrylic polymer.
  • a vinyl functional group such as a (meth) acryl group, a vinyl group, or an allyl group is preferable.
  • the polyether compound having a polymerizable functional group include polyalkylene glycol mono (meth) acrylic acid ester, polyalkylene glycol di (meth) acrylic acid ester, alkoxy polyalkylene glycol (meth) acrylic acid ester, and polyalkylene glycol monoallyl.
  • the manufacturing method of the functional film laminate 10 includes a step of bonding the peelable protective film 30 to the second surface side of the base material 21, and a step of forming the functional layer 22 on the first surface of the base material 21.
  • the functional film laminate 10 forms the functional layer 22 on the surface side of the base material 21 of the base material laminate 25 after forming the base material laminate 25 in which the protective film 30 is bonded to the base material 21. It is produced by doing.
  • the protective film 30 can be prepared by preparing a resin film to be the protective substrate 31 in the same manner as the substrate 21 and then forming an adhesive layer 32 on one surface of the resin film.
  • a self-adhesive stretched film in which the protective substrate 31 and the adhesive layer 32 are integrated may be produced as the protective film 30.
  • a commercially available resin film with an adhesive layer may be prepared as the protective film 30.
  • a conventionally known manufacturing method can be applied to the production of the protective film 30.
  • the protective film 30 In the preparation of the protective film 30, if the above-described thicknesses of 20 ⁇ m to 100 ⁇ m, the elastic modulus of 4.0 GPa to 6.5 GPa, and the back surface roughness (Ra) of 150 nm to 800 nm are satisfied.
  • the materials and production methods used are not particularly limited.
  • a clear hard coat layer or a layer having other functions may be formed on the surface of the protective base material 31.
  • these layers may also be included in the base material 21 as a part of the structure of the base material 21. Therefore, even when a specific layer is provided on the surface of the protective substrate 31, it is preferable that the surface roughness (Ra) of the outermost layer on the back surface side of the protective film 30 satisfies the above definition.
  • the thickness, elastic modulus, and surface roughness of the protective film 30 are governed by the thickness, elastic modulus, and surface roughness of the protective substrate 31, and the protective substrate 31. Therefore, each regulation of the protective film 30 is almost determined. For this reason, it is preferable to prepare a resin film that satisfies the respective specifications of the thickness, elastic modulus, and surface roughness of the protective film 30 as the protective substrate 31.
  • the adhesive composition containing the adhesive for forming the adhesion layer 32 is prepared.
  • the pressure-sensitive adhesive composition can be prepared, for example, by mixing a curing agent, a solvent, an additive, or the like with the above-described various resins serving as a pressure-sensitive adhesive as necessary.
  • a conventionally known method can be applied to the preparation of the adhesive composition.
  • the prepared adhesive composition is applied to one surface (surface) side of the protective substrate 31.
  • the pressure-sensitive adhesive composition is applied so that the thickness of the pressure-sensitive adhesive layer 32 after curing satisfies the regulation of the thickness in the protective film 30.
  • the coating method of an adhesive composition is not specifically limited, A conventionally well-known method can be applied.
  • the pressure-sensitive adhesive composition 32 is cured to form the pressure-sensitive adhesive layer 32 by drying, heating, or irradiating active energy rays to the formed coating film.
  • Various methods for curing the pressure-sensitive adhesive composition and various conditions can be arbitrarily set according to the pressure-sensitive adhesive, solvent, additive, and the like to be used.
  • the formation method of the adhesion layer 32 will not be specifically limited if the protective film 30 can be bonded to the base material 21 and it can be formed so that the protective film 30 can be peeled from the base material 21.
  • a self-adhesive stretched film can be produced by sequential biaxial stretching using a four-layer coextrusion T-die film forming machine and a tenter biaxial stretching machine by melting and kneading a resin as a raw material at a predetermined blending ratio. .
  • the protective film 30 is bonded to the base material 21.
  • the adhesive layer 32 of the protective film 30 is bonded to the second surface (back surface) of the substrate 21 to produce the substrate laminate 25.
  • the bonding method of the protective film 30 to the base material 21 is not specifically limited, It can apply with a conventionally well-known method.
  • the functional layer 22 is produced on the surface side of the base material 21.
  • any configuration may be selected from the various functional layers 22 described above, and layers other than the various functional layers 22 described above may be manufactured.
  • the roll-to-roll system which unwinds the base material laminated body 25 with which the protective film 30 was bonded by the base material 21 from a roller, and forms the functional layer 22 on a film-forming roller. It is preferable to use the manufacturing apparatus and the manufacturing method.
  • a method for forming the functional layer 22 using a roll-to-roll manufacturing apparatus for example, a plasma CVD film forming apparatus using the roll-to-roll method having the configuration shown in FIG. 2 is preferably used.
  • the protective film 30 satisfies the above-mentioned rules for thickness, elastic modulus, and surface roughness, and thus the base material laminate in which the protective film 30 is bonded to the base material 21.
  • the adhesion between the body 25 and the roller is increased.
  • the base-material laminated body 25 is efficiently cooled with a cooling roller also with respect to the heating at the time of film-forming, a base material 21 and the thermal deformation of the protective substrate 31 can be suppressed.
  • the functional layer 22 it is preferable to produce the functional layer 22 by combining a roll-to-roll manufacturing apparatus and manufacturing method with another film forming method such as the wet coating method described above.
  • a suitable manufacturing method and manufacturing conditions can be applied depending on the material constituting each layer.
  • the functional film laminate 10 composed of the functional film 20 and the protective film 30 can be produced.
  • bonding of the protective film 30 to the base material 21 and film formation of the functional layer 22 are performed by bonding the protective film 30 to the base material 21 and using the winding shaft between the base material 21 and the protective film 30.
  • the base material laminate 25 composed of the base material 21 and the protective film 30 is unwound in a separate process, and the functional layer 22 is formed on the base material 21 by an off-line method. There may be.
  • ⁇ Preparation of functional film of sample 113> On the surface resin cured layer of the base material 0, a barrier layer having a film thickness of 120 nm was produced as a functional layer under the above plasma CVD conditions. The effective width of the barrier layer was 1000 mm. Thereby, the functional film of the sample 113 which consists of the base material 0 and a functional layer was produced.
  • represents the circumference ratio.
  • Table 12 shows the measurement results of the elastic modulus of the protective films A to L and the back surface side of the substrate 0.
  • the obtained strip S was placed on the stage so that the barrier layer was on top. And the place (arrow part) where the strip piece S floated 1 mm or more from the surface of the stage was counted along the longitudinal direction of the strip piece S 10 minutes after leaving still at 25 degreeC50% RH. Specifically, the number ca of the floating points in the entire area in the longitudinal direction of the strip S when visually observed from one side a in the width direction of the strip S was counted. However, among the plurality of floating portions, the floating portions at both ends in the longitudinal direction of the strip S were not counted. Similarly, the number cb of the lifted portions when observed from the other side b in the width direction of the strip S was counted. The larger value of the obtained numbers ca and cb was defined as “the number c of the raised portions”. The same measurement was performed on the five strips S.
  • the surface roughness (Ra) and the elastic modulus are within the specified range as in the sample 110, and if the protective film is too thin, the transportability and flatness are worst.
  • the thickness of the protective film is within the specified range as in the sample 112 and the surface roughness (Ra) and the elastic modulus are lower than the above specified range, the transportability and flatness are the worst.
  • the protective film is too thin, or if the surface roughness (Ra) and elastic modulus of the protective film do not satisfy the specifications, the stress relaxation effect by the protective film when producing the functional layer is obtained.
  • the protective film and the cooling roller are likely to be separated from each other during film formation. For this reason, it is thought that the base material is easily deformed by heat at the time of forming the functional layer, and the transportability is lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

製造時の変形を抑制することが可能な機能性フィルム積層体を提供する。基材の第1面側に形成された機能性層を有する機能性フィルムと、基材の第2面側に貼合された剥離可能な保護フィルムとを備え、保護フィルムの厚さが20μm以上100μm以下、表面粗さ(算術平均粗さ;Ra)が150nm以上800nm以下、厚さ方向の弾性率が4.0GPa以上6.5GPa以下を満たす、機能性フィルム積層体を構成する。

Description

機能性フィルム積層体、及び、機能性フィルム積層体の製造方法
 本発明は、機能性フィルムと保護フィルムとを備える機能性フィルム積層体、及び、この機能性フィルム積層体の製造方法に係わる。
 電子デバイス等に適用される機能性フィルムとして、基材上に機能性層を備える構成が知られている。このような機能性フィルムの製造方法としては、生産性の高さからロールトゥロール(Roll to Roll)で機能性層を形成する方法が広く用いられている。
 ロールトゥロールを用いた機能性層の形成工程では、例えば、減圧下で基材を冷却ローラーに巻き付けながら、冷却ローラー上で基材表面にガスバリア層等の機能性層を、加熱を伴って形成する方法が知られている。この方法では、搬送の際に基材に掛かる応力(以下、搬送応力)の均衡(釣り合い、安定性)が崩れる等により、冷却ローラーから基材が浮く(基材が冷却ローラーから離れる)と、基材を冷却できず、基材に変形等の熱ダメージが生じる。このため、機能性フィルムに変形が生じてしまう。
 このような機能性フィルムの変形を防ぐ方法として、基材の裏面側に保護フィルムを貼合する方法(例えば、特許文献1参照)や、裏面に特定表面粗さパラメータを有する樹脂層を設けて搬送を安定化させる方法(例えば、特許文献2参照)が提案されている。
特開2011-184770号公報 特開2014-000782号公報
 しかしながら、より高い性能の機能性フィルムを実現するために、機能性層を形成する工程において、印加される熱が増加する条件を選択する場合がある。この場合には、単に保護フィルムを貼合する方法や、基材の裏面の表面粗さのみを制御する方法では、機能性フィルムの変形を十分に防げていない。
 上述した問題の解決のため、本発明においては、製造時の変形を抑制することが可能な機能性フィルム積層体、及び、機能性フィルム積層体の製造方法を提供する。
 本発明の機能性フィルム積層体は、基材、及び、基材の第1面側に形成された機能性層を有する機能性フィルムと、基材の第2面側に貼合された剥離可能な保護フィルムとを備える。そして、保護フィルムは、厚さが20μm以上100μm以下、表面の算術平均粗さ(Ra)が150nm以上800nm以下、及び、厚さ方向の弾性率が4.0GPa以上6.5GPa以下を満たす。
 本発明の機能性フィルム積層体の製造方法は、基材の第2面側に、剥離可能な、厚さが20μm以上100μm以下、表面の算術平均粗さ(Ra)が150nm以上800nm以下、及び、厚さ方向の弾性率が4.0GPa以上6.5GPa以下を満たす保護フィルムを貼合する工程と、基材の第1面に機能性層を形成する工程とを有し、保護フィルムを貼合する工程の後に、機能性層を形成する工程を行う。
 本発明によれば、製造時の変形を抑制することが可能な機能性フィルム積層体、及び、機能性フィルム積層体の製造方法を提供することができる。
機能性フィルム積層体の構成を示す図である。 ローラー間放電プラズマCVD装置の一例を示す模式図である。
 以下、本発明を実施するための形態の例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.機能性フィルム積層体の実施の形態
2.機能性フィルム積層体の製造方法
〈1.機能性フィルム積層体の実施の形態〉
 機能性フィルム積層体の具体的な実施の形態について説明する。図1に、機能性フィルム積層体の概略構成を示す。
 図1に示す機能性フィルム積層体10は、機能性フィルム20と、保護フィルム30とから構成される。具体的には、機能性フィルム20は、基材21と機能性層22とを有する。機能性層22は、基材21の一方の面(第1面、又は、表面)側を覆うように形成されている。また、保護フィルム30は、粘着層32と保護基材31とを有する。粘着層32は、保護基材31の一方の面(第1面、又は、表面)側を覆うように形成されている。そして、機能性フィルム20の基材21の他方の面(第2面、又は、裏面)側に、粘着層32を介して保護基材31が貼合されている。すなわち、図1に示す機能性フィルム積層体10は、一方の面(表面)側に機能性層22が露出し、他方の面(裏面)側に保護基材31の第2面が露出している。
 また、保護フィルム30は、機能性フィルム20の基材21から剥離可能なように貼合されている。このため、機能性フィルム積層体10は、機能性フィルム20の基材21と、保護フィルム30の粘着層32との間において、保護フィルム30と機能性フィルム20との剥離が可能である。
 上記構成の機能性フィルム積層体10は、例えば、以下の方法で製造することができる。まず、保護基材31に粘着層32を形成して保護フィルム30を作製する。この後、基材21の裏面側に保護フィルム30を貼合して、基材21と保護フィルム30とからなる積層体(以下、基材積層体25)を作製する。さらに、この基材積層体25を機能性層22の成膜装置に配置し、成膜装置内を搬送しながら基材21の表面に機能性層22を成膜する。これにより、基材21の表面に機能性層22が形成され、基材21の裏面に保護フィルム30が貼合された機能性フィルム積層体10を作製することができる。
 上記機能性フィルム積層体10において、保護フィルム30は、厚さが20μm以上100μm以下、表面粗さ(算術平均粗さ;Ra)が150nm以上800nm以下、及び、厚さ方向の弾性率が4.0GPa以上6.5GPa以下を満たす。保護フィルム30における、厚さ、表面粗さ(Ra)、及び、厚さ方向の弾性率は、以下のように定義される。
 保護フィルム30の厚さは、保護フィルム30において、機能性フィルム20と貼合する粘着層32の表面から、粘着層32の表面とは反対側の保護フィルム30の表面(保護フィルム30の裏面)までの長さである。図1に示す保護フィルム30では、粘着層32の基材21と接する面から保護基材31の第2面(裏面側)までの長さが、保護フィルム30の厚さである。このため、保護フィルム30の厚さは、保護基材31と粘着層32との間に他の構成が設けられている場合には、この他の構成を含む合計の厚さである。また、保護基材31の裏面側に他の層が形成されている場合には、粘着層32の表面から保護基材31の裏面側に形成されている他の層の表面までの長さである。
 保護フィルム30の表面粗さは、算術平均粗さ(Ra)で表され、機能性フィルム積層体10の裏面に露出される層の表面の粗さである。このため、図1に示す構成の機能性フィルム積層体10では、保護基材31の裏面側の表面粗さが、保護フィルム30の表面粗さである。なお、保護基材31の裏面側に他の層が設けられている場合には、保護フィルム30の表面粗さは、保護基材31の裏面側に形成されている他の層の表面粗さである。保護フィルム30の表面粗さ(Ra)は、非接触型干渉顕微鏡(WYKO)を用いて観察された算術平均粗さ(Ra)で定義する。WYKOを用いたRaの測定は、従来公知の方法を適用することができる。
 保護フィルム30の弾性率は、機能性フィルム積層体10の裏面側に露出する保護フィルム30の裏面側から、保護フィルム30の厚さ方向に測定する値である。このため、図1に示す構成の機能性フィルム積層体10では、保護基材31の裏面側のから厚さ方向に測定される値が、保護フィルム30の弾性率である。なお、保護基材31の裏面側に他の層が設けられている場合には、保護フィルム30の弾性率は、保護基材31の裏面側に形成されている他の層の表面において厚さ方向に測定される値である。
 保護フィルム30の弾性率は、ナノインデンテーション法により測定することができる。ナノインデンテーション法とは、原子間力顕微鏡(AFM)に、押し込み硬度測定用モジュール(トランスデューサーと押し込みチップとで構成される)を付加することにより、ナノメートル単位での押し込み硬度測定を行う測定方法である。さらに詳しくは、測定用試料に微小なダイヤモンド圧子を押し込みながら、荷重と押し込み深さ(変位量)との関係を測定し、測定値から塑性変形硬さを算出する方法である。
 ナノインデンテーション弾性率(Er)は、例えば、エスアイアイ・ナノテクノロジー社製の走査プローブ顕微鏡SPI3800Nを用いて測定することができる。圧子としては、ベルコビッチ型圧子(先端稜角142.3°)と呼ばれる三角錘型ダイヤモンド製圧子を用いることができる。
 測定では、三角錘型ダイヤモンド製圧子を試料表面に直角に当て、徐々に荷重を印加し、最大荷重到達後に荷重を0まで徐々に戻す。このときの最大荷重Pを圧子接触部の投影面積Aで除した値P/Aをナノインデンテーション硬度(H)として算出する。ナノインデンテーション弾性率(Er)は、除荷曲線の傾きSとしたとき、下記式を用いて算出する。なお、下記式においてπは円周率を示す。
 Er=(S×√π)/(2√A)
 なお、ナノインデンテーション弾性率(Er)は、附属の溶融石英を押し込んで得られる硬さが9.5±1.5GPaとなるよう、事前に測定装置を校正して測定する。原理の詳細は、Handbook of Micro/Nano Tribology(BhaRat Bhushan編 CRC)に記載されている。測定試料は、スライドガラス上に東亞合成社製の接着剤アロンアルファ(登録商標)を1滴滴下した後、約1cm角に切った試料を載せ、24時間放置して硬化させる。最大荷重Pは、最大深さが15nmとなるようにあらかじめ設定(例えば、50μN)しておき、負荷及び除荷とを5秒で行う。
(機能性フィルム積層体の物性)
 機能性フィルム積層体10は、基材21及び保護基材31が樹脂フィルムを主体として形成されることが多いため、熱によって変形しやすい。このため、機能性フィルム積層体10の製造工程において、機能性層22を作製する際に、加熱を伴う成膜方法が採用されると、基材21及び保護基材31が熱によって変形しやすい。この基材21及び保護基材31の熱による変形を抑制するためには、基材21に保護フィルム30が貼合された基材積層体25を冷却ローラー上に巻き付けて、この冷却ローラー上で機能性層22の作製を行う必要がある。従って、基材21及び保護基材31の熱による変形を抑制するためには、基材21と保護フィルム30とからなる基材積層体25と、冷却ローラーとの密着性が重要となる。
 例えば、基材積層体25を搬送する際に、基材積層体25の搬送応力の均衡(釣り合い、安定性)が崩れると、成膜装置内の全体での基材積層体25の搬送速度がずれるため、基材積層体25が部分的に冷却ローラーから離れる(離間する)場合がある。このように、基材積層体25に冷却ローラーから離れる部分があると、この離れた部分が冷却されないため、基材21や保護基材31に熱変形が発生してしまう。
 従って、基材21及び保護基材31の熱変形を抑制するためには、機能性フィルム積層体10の製造装置内や、製造工程中で、冷却ローラー等の冷却機能を備える構成と基材積層体25との密着性を向上させる必要がある。これには、製造工程中において、冷却ローラーや搬送ローラーと接触する保護フィルム30の物性が重要となる。
 ローラーと基材積層体25との密着性を向上させるために必要な物性として、接触面の滑りやすさに係わる保護フィルム30の裏面の表面粗さ(Ra)を所定の範囲内とすることが、一般的に考えられている。基材積層体25の搬送は、基材積層体25の裏面側が成膜ローラーや搬送ローラーと接触した状態で行われる。このため、基材積層体25の裏面側、すなわち保護フィルム30の裏面側の滑りやすさの調整が重要となる。保護フィルム30の裏面側の滑りやすさは、保護フィルム30の裏面側に露出される層の表面粗さ(Ra)によって調整することができる。保護フィルム30の裏面側の表面粗さ(Ra)が大きすぎると、基材積層体25が滑りにくく、スムーズな搬送ができずに、搬送する際に基材積層体25に掛かる張力(搬送張力)を一定に保つことが難しくなる。また、保護フィルム30の裏面側の表面粗さ(Ra)が小さすぎると、基材積層体25が滑り過ぎてしまうため、装置内で搬送応力の均衡が崩れやすくなる。
 しかしながら、保護フィルム30の裏面の表面粗さ(Ra)の規定だけでは、基材積層体25と冷却ローラーとの離間を十分に抑制することができず、基材21や保護基材31に熱変形が発生する場合がある。すなわち、保護フィルム30の裏面の表面粗さ(Ra)を所定範囲に規定するだけでは、基材21や保護基材31の熱変形の抑制に十分な効果がえられない。このため、保護フィルム30の裏面の表面粗さ(Ra)だけでなく、保護フィルム30の他の条件を規定する必要がある。
 基材積層体25とローラーとの離間を抑制するためには、装置内での搬送応力のバランスが崩れた際に発生する、基材積層体25をローラーから離間させる方向に働く応力を、緩和する必要がある。そこで、機能性フィルム積層体10では、装置内での搬送応力のバランスが崩れた際に発生する、基材積層体25を冷却ローラーから離間させる方向に働く応力を、保護フィルム30で緩和できるように、保護フィルム30の物性を調整する。保護フィルム30が、基材積層体25を冷却ローラーから離間させる方向に働く応力を緩和する能力を有することにより、基材積層体25が冷却ローラーから離間しにくくなる。
 このためには、保護フィルム30の裏面の表面粗さ(Ra)に加えて、保護フィルム30にクッション性を持たせることが必要となる。クッション性とは、搬送の際に基材積層体25に加わる応力を、吸収、分散、又は、緩衝等によって緩和する能力である。保護フィルム30がクッション性を有することにより、搬送の際に基材積層体25に加わる応力を緩和することができる。保護フィルム30のクッション性は、保護フィルム30の厚さ方向の弾性率と、保護フィルム30の厚さとの組合せによって規定することができる。保護フィルム30が、特定範囲の弾性率を有し、かつ、特定範囲の厚さを有することにより、冷却ローラーから離間させる方向に働く応力を十分に緩和することができる。但し、クッション性が高すぎると、通常の搬送張力に対して発生する応力への影響が大きくなり過ぎるため、基材積層体25の搬送に不具合が発生しやすい。
 また、保護フィルム30の厚さが小さすぎると、保護フィルム30の弾性率が大きくても、基材積層体25に対する保護フィルム30の割合が小さすぎるため、応力緩和の効果を十分に発揮することができない。一方、保護フィルム30の厚さが大きすぎると、機能性フィルム積層体10の全体の厚さが大きくなりすぎるため、機能性層22の製造装置内での取り扱いや、成膜が困難になる。
 従って、保護フィルム30には、基材積層体25の搬送に好適な、特定範囲の厚さと弾性率とが必要になる。さらに、保護フィルム30の裏面側にも、基材積層体25の搬送に好適な、特定範囲の表面粗さ(Ra)が必要になる。そこで、機能性フィルム積層体10において、保護フィルム30の厚さを20μm以上100μm以下、保護フィルム30の厚さ方向の弾性率を4.0GPa以上6.5GPa以下に規定する。さらに、保護フィルム30の裏面側である、保護フィルム30の裏面側の表面粗さ(Ra)を150nm以上800nm以下に規定する。
 保護フィルム30において、厚さ、厚さ方向の弾性率、及び、裏面の表面粗さ(Ra)が上述の規定を満たすことにより、基材積層体25と冷却ローラーとの密着性が向上する。すなわち、保護フィルム30が、搬送応力のバランスが崩れた際に発生する基材積層体25を冷却ローラーから離間させる方向に働く応力を、緩和する能力を有することにより、基材積層体25が冷却ローラーから離間しにくくなる。さらに、通常の搬送張力に対して発生する応力への影響が小さく、基材積層体25の搬送での不具合が発生しにくい。
 また、保護フィルム30が上記規定を満たすことにより、基材積層体25の搬送時の搬送応力の均衡(釣り合い、安定性)を保つことができ、基材積層体25と冷却ローラーとの密着性を向上させることができる。このため、冷却ローラーと基材積層体25との離間を抑制することができ、基材21及び保護基材31の熱による変形を抑制することができる。この結果、製造時の機能性フィルム積層体10の変形を抑制することができる。
 また、機能性フィルム積層体10は、全体の厚さが30μm以上150μm以下であることが好ましい。保護フィルム30が上述の規定を満たすことにより、基材積層体25と冷却ローラーとの密着性を向上させることができるが、このとき作製される機能性フィルム積層体10の全体の厚さが上記範囲内であると、離間する方向の応力に対する保護フィルム30による緩和効果がより発揮されやすい。
 例えば、機能性層22の成膜を複数回に分けて行う場合には、基材21上に機能性層22が形成された状態で、基材積層体25が搬送される。このとき、機能性層22の厚さや基材21の厚さが大きすぎる場合には、搬送される機能性層22と基材積層体25に対する保護フィルム30の割合が小さくなり、保護フィルム30による応力緩和効果が得られにくくなる。従って、作製される機能性フィルム積層体10の厚さが上記範囲内であれば、機能性層22による影響を受けずに、保護フィルム30による離間する方向の応力の緩和効果をより得やすくなる。このため、機能性層22の成膜時において、基材積層体25の搬送時の基材積層体25と冷却ローラーとの密着性が向上しやすくなり、製造時の機能性フィルム積層体10の変形をより抑制することができる。
[機能性フィルム]
 以下、機能性フィルム積層体10の各構成について説明する。なお、以下の説明は、機能性フィルム積層体10の構成の一例であり、これらに限定されない。また、機能性フィルム積層体10は、これら以外の構成を有していてもよい。
 機能性フィルム20は、基材21と、基材21の一方の面(第1面、表面)側に形成された機能性層22とを備える。機能性フィルム20は、機能性層22が所望の機能を有し、基材21から保護フィルム30が剥離可能であれば、各構成に用いられる材料は特に限定されない。また、機能性フィルム20の厚さは、特に制限されないが、30μm以上150μm以下であることが好ましい。
[基材]
 機能性フィルム積層体10の機能性フィルム20に用いられる基材21としては、例えば、樹脂フィルム等が挙げられる。樹脂フィルムは、バリア層等の機能性層を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。樹脂フィルムとしては、従来公知の樹脂フィルムを用いることができる。基材21は、複数の材料から形成されていてもよい。樹脂フィルムとしては、一般的に光学フィルムに適用される基材から、所望の機能性フィルム20を実現可能な樹脂フィルムを、適宜選択して用いることができる。例えば、特開2013-226758号公報の段落[0124]~[0136]、国際公開第2013/002026号の段落[0044]~[0047]等に記載された樹脂フィルムを挙げることができる。
 基材21として用いることができる樹脂フィルムのより好ましい具体例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリシクロオレフィン(COP)が挙げられる。
 好ましくは、基材21の弾性率が、保護フィルム30の弾性率と同様に、4.0GPa以上6.5GPa以下であることが好ましい。機能性層22の成膜では、基材21と保護フィルム30とからなる基材積層体25を搬送するため、保護フィルム30が上記規定を満たし、さらに、基材21の弾性率が同程度であれば、より効果が得られやすい。
 基材21は、樹脂フィルムが単独、又は、複数用いられていてもよく、複数の層から形成されていてもよい。基材21の形状は、枚葉形状及びロール形状に限定されないが、生産性の観点からロールトゥロール方式でも対応できるロール形状が好ましい。また、基材21の厚さは、特に制限されないが、5~500μm程度が好ましい。また、機能性フィルム積層体10の厚さが30μm以上150μm以下となるように、基材21の厚さは、20μm以上130μm以下であることがより好ましい。
[機能性層]
 機能性層22としては、例えば、バリア層、保護層、平滑層、ブリードアウト層、アンカーコート層、デシカント層等が挙げられる。これらの層は、基材21上に単層の機能性層22として形成されていてもよく、複数層からなる機能性層22として形成されていてもよい。
 特に、機能性フィルム20は、機能性層22として、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のバリア層を備えることが好ましい。
[バリア層]
 機能性層22を構成するバリア層としては、バリア性を有する層であれば、特に限定されることなく、従来公知のロールトゥロール方式での成膜が可能な構成を適用することができる。例えば、一般的な無機化合物の気相成膜によって形成されたバリア層が挙げられる。
[バリア層;気相成膜]
 無機化合物の気相成膜によって形成されたバリア層(以下、気相成膜バリア層ともいう)は、無機化合物を含む。無機化合物は、特に限定されないが、例えば、金属酸化物、金属窒化物、金属炭化物、金属酸窒化物又は金属酸炭化物が挙げられる。無機化合物としては、ガスバリア性能の点で、Si、Al、In、Sn、Zn、Ti、Cu、Ce及びTaから選ばれる1種以上の金属を含む、酸化物、窒化物、炭化物、酸窒化物又は酸炭化物等が好ましい。好適な無機化合物として具体的には、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素、酸化アルミニウム、酸化チタン、及び、アルミニウムシリケート等の複合体が挙げられる。無機化合物を含むバリア層は、副次的な成分として、上記の無機化合物以外の元素を含有してもよい。
 気相成膜バリア層のガスバリア性は、基材上に上記バリア層を形成した積層体において算出する水蒸気透過率(WVTR)が、0.1g/(m・day)以下であることが好ましい。
 気相成膜バリア層の膜厚は、特に制限されないが、5~1000nmであること好ましい。このような範囲であれば、高いガスバリア性能、折り曲げ耐性、断裁加工適性に優れる。また、気相成膜バリア層は2層以上から構成されていてもよい。
 気相成膜バリア層を形成するための気相成膜方法としては、特に限定されない。気相成膜方法としては、既存の薄膜堆積技術を用いることができる。例えば、従来公知の蒸着法、反応性蒸着法、スパッタ法、反応性スパッタ法、化学気相成長法等の気相成膜法を用いることができる。これらの気相成膜法によるバリア層は、公知の条件を適用して作製することができる。
 例えば、化学気相成長法(Chemical Vapor Deposition:CVD)は、基材上に、目的とする薄膜の成分を含む原料ガスを供給し、基材表面又は気相での化学反応により膜を堆積する方法である。また、化学反応を活性化する目的で、プラズマを発生させる方法等があり、熱CVD法、触媒化学気相成長法、光CVD法、プラズマを励起源としたプラズマCVD法(PECVD法)である真空プラズマCVD法、大気圧プラズマCVD法等の公知のCVD法が挙げられる。特に、PECVD法が好ましい方法である。以下、化学気相成長法の好ましい手法として、真空プラズマCVD法について詳しく説明する。
[真空プラズマCVD法]
 真空プラズマCVD法は、プラズマ源を搭載した真空容器に材料ガスを流入させ、電源からプラズマ源に電力供給することで真空容器内に放電プラズマを発生させ、プラズマで材料ガスを分解反応させ、生成された反応種を基材に堆積させる方法である。真空プラズマCVD法により得られる気相成膜バリア層では、原材料である金属化合物、分解ガス、分解温度、投入電力等の条件を選ぶことで、目的の化合物からなるバリア層を製造できる。
 原材料の化合物としては、ケイ素化合物、チタン化合物、及び、アルミニウム化合物等のケイ素を含む化合物及び金属を含む化合物を用いることが好ましい。これら原材料の化合物は、単独でも又は2種以上組み合わせて用いてもよい。
 これらのケイ素化合物、チタン化合物、及び、アルミニウム化合物としては、従来公知の化合物を用いることができる。例えば、公知の化合物としては、特開2013-063658号公報の段落[0028]~[0031]、特開2013-047002号公報の段落[0078]~[0081]等に記載された化合物を挙げることができる。好ましくは、シラン、テトラメトキシシラン、テトラエトキシシラン、ヘキサメチルジシロキサン、等が挙げられる。
 また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、及び、水蒸気等が挙げられる。また、上記分解ガスを、アルゴンガス、ヘリウムガス等の不活性ガスと混合して用いてもよい。原材料の化合物を含む原料ガスと、分解ガスを適宜選択することで所望の気相成膜バリア層を得ることができる。
(真空プラズマCVD装置)
 以下、好適な形態である真空プラズマCVD法について具体的に説明する。図2に、真空プラズマCVD法に適用される、ロールトゥロール(Roll to Roll)方式を用いたローラー間放電プラズマCVD装置の模式図の一例を示す。
 上述のプラズマCVD法でバリア層を製造する際に用いる成膜装置は、特に制限されない。例えば、図2に示す製造装置を用いた場合には、プラズマCVD法を利用しながら、ロールトゥロール方式でバリア層を製造することができる。以下、図2を参照しながら、バリア層の製造方法について詳細に説明する。なお、図2は、バリア層の製造において好適に利用することができる、磁場を印加したローラー間放電プラズマCVD装置の一例を示す模式図である。
 図2に示す磁場を印加したローラー間放電プラズマCVD装置(以下、単にプラズマCVD装置ともいう。)50は、主には、繰り出しローラー51と、搬送ローラー52、搬送ローラー54、搬送ローラー55及び搬送ローラー57と、成膜ローラー53及び成膜ローラー56と、成膜ガス供給管59と、プラズマ発生用電源63と、成膜ローラー53の内部に設置された磁場発生装置61と、成膜ローラー56の内部に設置された磁場発生装置62と、巻取りローラー58とを備えている。また、このようなプラズマCVD製造装置においては、少なくとも成膜ローラー53,56と、成膜ガス供給管59と、プラズマ発生用電源63と、磁場発生装置61,62とが、図示を省略した真空チャンバー内に配置されている。また、図2においては、成膜ローラー53,56にプラズマ発生用電源63に接続された電極ドラムが設置される。更に、このようなプラズマCVD製造装置において、真空チャンバー(不図示)は、真空ポンプ(不図示)に接続されており、この真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能となっている。
 このようなプラズマCVD製造装置においては、一対の成膜ローラー(成膜ローラー53と成膜ローラー56)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源63に接続されている。成膜ローラー53と成膜ローラー56とにプラズマ発生用電源63から電力を供給することにより、成膜ローラー53と成膜ローラー56との間の空間に放電してプラズマを発生させることができる。このようなプラズマCVD製造装置においては、一対の成膜ローラー53,56は、その中心軸が同一平面上において略平行となるように配置することが好ましい。このように、一対の成膜ローラー53,56を配置することにより、成膜レートを倍にでき、尚かつ、同様の構成の膜を形成できる。
 また、成膜ローラー53及び成膜ローラー56の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置61及び磁場発生装置62がそれぞれ設けられている。
 成膜ローラー53及び成膜ローラー56としては、適宜公知のローラーを用いることができる。成膜ローラー53及び成膜ローラー56としては、効率よく薄膜を形成する観点から、直径が同一のローラーを使うことが好ましい。また、このようなプラズマCVD製造装置に用いる繰り出しローラー51及び搬送ローラー52,54,55,57としては、公知のローラーを適宜選択して用いることができる。巻取りローラー58も、バリア層を形成した基材60を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。
 成膜ガス供給管59としては、原料ガス及び酸素ガスを所定の速度で供給又は排出することが可能なものを適宜用いることができる。さらに、プラズマ発生用電源63としては、従来公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源63としては、効率よくプラズマCVD法を実施することが可能となることから、一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源等)を利用することが好ましい。また、このようなプラズマ発生用電源63としては、印加電力を100W~10kWの範囲とすることができ、かつ交流の周波数を50Hz~500kHzの範囲とすることが可能なものであることがより好ましい。また、磁場発生装置61,62としては、適宜、公知の磁場発生装置を用いることができる。
 図2に示すプラズマCVD装置50を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、磁場発生装置の強度、真空チャンバー内の圧力(減圧度)、成膜ローラーの直径、基材の搬送速度等を適宜調整することにより、所望のバリア層を製造することができる。
 図2に示すプラズマCVD装置50において、成膜ガス(原料ガス等)を真空チャンバー内に供給し、一対の成膜ローラー53,56間に、磁場を発生させながらプラズマ放電を行うことにより、成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー53が保持する基材60の表面上、及び、成膜ローラー56が保持する基材60の表面上に、バリア層が形成される。なお、このような成膜に際しては、基材60が繰り出しローラー51、搬送ローラー52,54,55,57、巻取りローラー58、及び、成膜ローラー53,56等で搬送されることにより、ロールトゥロール方式の連続的な成膜プロセスでバリア層を形成することができる。
(成膜ガス)
 プラズマ化学気相成長法に用いる成膜ガスとしては、有機ケイ素化合物を含む原料ガスと酸素ガスとを用い、その成膜ガス中の酸素ガスの含有量が、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。
 バリア層の作製に用いる成膜ガスを構成する原料ガスとしては、少なくともケイ素を含有する有機ケイ素化合物を用いることが好ましい。バリア層の作製に適用可能な有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等が挙げられる。これらの有機ケイ素化合物の中でも、成膜での取り扱い及び得られるバリア層のガスバリア性等の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。また、これらの有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 成膜ガスは、原料ガスの他に反応ガスとして、酸素ガスを含有することができる。酸素ガスは、原料ガスと反応して酸化物等の無機化合物となるガスである。また、成膜ガスとしては、原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガスや水素ガスを用いることができる。
 成膜ガスが有機ケイ素化合物を含む原料ガスと酸素ガスとを含有する場合、原料ガスと酸素ガスとの比率は、原料ガスと酸素ガスとを完全に反応させるために理論上必要となる酸素ガスの量の比率よりも、酸素ガスの比率を過剰にし過ぎないことが好ましい。これについては、例えば、国際公開第2012/046767号等の記載を参照することができる。
(真空度)
 真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5~100Paの範囲とすることが好ましい。
(ローラー成膜)
 図2に示すプラズマCVD装置50を用いたプラズマCVD法において、成膜ローラー53,56間に放電するために、プラズマ発生用電源63に接続された電極ドラムに印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができる。電極ドラムに印加する電力としては、例えば、0.1~10kWの範囲内とすることが好ましい。このような範囲の印加電力であれば、パーティクル(不正粒子)の発生を抑制することができ、成膜時に発生する熱量も制御範囲内であるため、成膜時の基材表面温度の上昇による、基材の熱変形、熱による性能劣化や成膜時の皺の発生を抑制することができる。
 プラズマCVD装置50において、基材60の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲内とすることが好ましく、0.5~20m/minの範囲内とすることがより好ましい。ライン速度が範囲内であれば、樹脂基材の熱に起因する皺も発生し難く、形成されるバリア層の厚さも十分に制御可能となる。
(バリア層の組成)
 ロールトゥロール方式によって成膜されるバリア層は、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、下記要件(1)及び(2)を同時に満たすことが好ましい。
(1)バリア層において、X線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該バリア層の層厚方向におけるバリア層表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する炭素原子の量の比率(炭素原子比率(at%))との関係を示す炭素分布曲線が、極値を有し、炭素分布曲線の炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が3at%以上である。
(2)バリア層の全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。
 式(A):(炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
 式(B):(酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)
 なお、バリア層と基材との界面領域における測定精度は、基材の構成原子のノイズ等でやや精度が低下するため、上記要件(2)においては、バリア層の全層厚の90~95%の範囲内の領域で上記式(A)又は式(B)で規定する関係を満たすことが好ましい。ここで、バリア層の膜厚の少なくとも90%以上とは、バリア層中で連続していなくてもよく、単に90%以上の部分で上記式(A)又は式(B)で規定する関係を満たしていればよい。
(X線光電子分光法による深さ方向の元素分布測定)
 バリア層内における炭素原子の含有比率の平均値は、以下のXPSデプスプロファイルの測定によって求めることができる。
 バリア層の層厚方向におけるケイ素分布曲線、酸素分布曲線、及びケイ素分布曲線等は、X線光電子分光法(XPS:X-Ray Photoelectron Spectroscopy)の測定と、アルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間が、バリア層の層厚方向におけるバリア層の表面からの距離におおむね相関する。このため、XPSデプスプロファイル測定の際に採用するエッチング速度とエッチング時間との関係から算出されるバリア層の表面からの距離を「バリア層の層厚方向におけるバリア層の表面からの距離」として採用することができる。また、このようなXPSデプスプロファイル測定に際して採用するスパッタ法としては、以下の測定条件とすることが好ましい。
(測定条件)
 エッチングイオン種:アルゴン(Ar
 エッチング速度(SiO熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO換算値):10nm
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名"VG Theta Probe"
 照射X線:単結晶分光AlKα
 X線のスポット及びサイズ:800×400μmの楕円形
 炭素分布曲線は実質的に連続であることが好ましい。ここで、炭素分布曲線が実質的に連続とは、具体的には、エッチング速度とエッチング時間とから算出されるバリア層のうちの少なくとも1層の膜厚方向における該バリア層の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係において、[(dC/dx)≦0.5]で表される条件を満たすことをいう。
(バリア層における炭素原子プロファイル)
 バリア層は、構成元素として炭素原子、ケイ素原子及び酸素原子を含む。そして、層厚方向に組成が連続的に変化し、X線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、炭素分布曲線が上記要件(1)を満たす。また、炭素原子比率がバリア層の特定の領域において、濃度勾配が連続的に変化する構成を有することが、ガスバリア性と屈曲性を両立する観点から好ましい。
 このような炭素原子プロファイルを有するバリア層においては、層内における炭素分布曲線が少なくとも1つの極値を有することがより好ましい。更に、炭素分布曲線が、少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することが特に好ましい。炭素分布曲線が極値を有すると、バリア層を有するフィルムを屈曲させた場合でも、ガスバリア性を十分に確保できる。また、炭素分布曲線が少なくとも2つ又は3つの極値を有する場合は、1つの極値とこれに隣接する他の極値との厚さ方向の距離の差の絶対値が200nm以下であることが好ましく、100nm以下であることがより好ましく、75nm以下であることが特に好ましい。
 なお、上記分布曲線の極値とは、バリア層の厚さ方向において、バリア層の表面からの距離に対する元素の原子比率の極大値又は極小値である。極大値とは、バリア層の表面からの距離を変化させた場合に元素の原子比率の値が増加から減少に変わる変曲点であり、且つ、その変曲点の位置から厚さ方向に4~20nm変化させた位置の元素の原子比率の値が3at%以上減少する点のことをいう。また、極小値とは、バリア層の表面からの距離を変化させた場合に元素の原子比の値が減少から増加に変わる変曲点であり、且つ、その変曲点の位置から厚さ方向に4~20nm変化させた位置の元素の原子比率の値が3at%以上増加する点のことをいう。すなわち、極大値及び極小値は、厚さ方向の位置を4~20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上減少又は増加する点である。
(バリア層における各原子プロファイル)
 バリア層は、構成元素として炭素原子、ケイ素原子及び酸素原子を含有することを特徴とするが、各原子の比率と、各原子の比率の最大値及び最小値についての好ましい態様を、以下に説明する。
(炭素原子比率の最大値と最小値の関係)
 バリア層では、炭素分布曲線における炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が3at%以上であることが好ましく、5at%以上であることがより好ましい。炭素原子比率の最大値及び最小値の差を3at%以上とすることにより、作製したバリア層を屈曲させた際のガスバリア性が十分得られる。最大値及び最小値の差が5at%以上であれば、バリア層を有するフィルムを屈曲させた場合におけるガスバリア性がより向上する。
(酸素原子比率の最大値と最小値の関係)
 バリア層においては、酸素分布曲線における最大の極値(極大値)と最小の極値(極小値)との差の絶対値が3at%以上であることが好ましく、5at%以上であることがより好ましい。
(ケイ素原子比率の最大値と最小値の関係)
 バリア層においては、ケイ素分布曲線における最大の極値(極大値)と最小の極値(極小値)との差の絶対値が10at%未満であることが好ましく、5at%未満であることがより好ましい。最大の極値(極大値)と最小の極値(極小値)との差が10at%未満であれば、バリア層に十分なガスバリア性及び機械的強度が得られる。
 また、膜面全体の均一性やガスバリア性を向上させるためには、バリア層が膜面方向(バリア層の表面に平行な方向)で実質的に一様であることが好ましい。バリア層が膜面方向で実質的に一様とは、XPSデプスプロファイル測定によるバリア層の膜面の任意の2箇所の測定箇所において、酸素分布曲線、炭素分布曲線、及び、酸素-炭素合計の分布曲線を作成した際に、任意の2箇所の測定箇所で得られる炭素分布曲線の極値の数が同じであり、且つ、各炭素分布曲線における炭素の原子比率の最大値及び最小値の差の絶対値が、互いに同じであるか、又は、5at%以内の差であることをいう。
 バリア層は、上記要件(1)及び(2)を同時に満たすバリア層を少なくとも1層備えることが好ましいが、そのような条件を満たす層を、2層以上を備えていてもよい。さらに、バリア層を2層以上備える場合には、複数のバリア層の材質は、同一であってもよく、異なっていてもよい。
 また、ケイ素分布曲線、酸素分布曲線及び炭素分布曲線において、ケイ素原子、酸素原子及び炭素原子の合計量に対するケイ素原子比率は、19~40at%の範囲であることが好ましく、30~40at%の範囲であることがより好ましい。また、バリア層中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する酸素原子比率は、33~67at%の範囲であることが好ましく、41~62at%の範囲であることがより好ましい。さらに、バリア層中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する炭素原子比率は、1~19at%の範囲であることが好ましく、3~19at%の範囲であることがより好ましい。
 上記のバリア層のその他の構成については、国際公開第2012/046767号の段落[0025]~[0047]、特開2014-000782号公報の段落[0029]~[0040]等に記載された構成を適宜参照及び採用することができる。
(バリア層の厚さ)
 バリア層の厚さは、5~1000nmの範囲内であることが好ましく、10~800nmの範囲内であることより好ましく、100~500nmの範囲内であることが特に好ましい。バリア層の厚さが範囲内であれば、酸素ガスバリア性、水蒸気バリア性等のガスバリア性に優れ、屈曲された状態でも良好なガスバリア性が得られる。さらに、バリア層の厚さの合計値が範囲内であると、上記効果に加えて所望の平面性を実現することができる。
(バリア層の形成方法)
 上記要件(1)及び(2)を同時に満たすバリア層を形成する方法としては、特に限定されず公知の方法を用いることができる。緻密に元素分布が制御させたバリア層を形成することができる観点からは、上述の図2に示すローラー間放電プラズマCVD装置を用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法によって形成する方法が好ましい。また、例えば、国際公開第2012/046767号の段落[0049]~[0069]等に記載の方法を参照することができる。
 より詳しくは、図2に示すローラー間放電プラズマCVD装置において、磁場を印加したローラー間放電プラズマ処理装置を用い、基材を一対の成膜ローラーに巻き回し、この一対の成膜ローラー間に成膜ガスを供給しながらプラズマ放電する、プラズマ化学気相成長法でバリア層を形成することが好ましい。また、一対の成膜ローラー間に磁場を印加しながら放電する際には、一対の成膜ローラー間の極性を交互に反転させることが好ましい。このように、一対の成膜ローラー上に基材を巻き回して、この一対の成膜ローラー間にプラズマ放電をすることにより、基材と放電空間との距離が変化し、基材表面でのプラズマ強度が連続的に変化することによって、炭素原子比率が濃度勾配を有し、且つ、炭素原子比率が層内で連続的に変化するバリア層を形成することが可能となる。
 また、成膜時に一方の成膜ローラー上に存在する基材の表面に成膜しつつ、且つ、対となる他方の成膜ローラー上に存在する基材の表面にも同時に成膜することが可能となる。すなわち、成膜効率を倍にでき、且つ、同様の構成の膜を成膜できるため、炭素分布曲線の極値を倍増させることが可能となり、効率よく上記要件(1)及び(2)を同時に満たすバリア層を形成することが可能となる。
[バリア層;その他]
 機能性層22を構成するバリア層としては、上述の無機化合物の気相成膜によって形成されたバリア層と共に、ケイ素化合物を含む塗布液を用いて湿式塗布法によって形成されたバリア層や、遷移金属を含むバリア層を用いることもできる。
[バリア層;湿式塗布]
 ケイ素化合物を含む塗布液を用いた湿式塗布法によって形成されたバリア層としては、ポリシラザン化合物を含む塗布液を公知の湿式塗布法により塗布した後、塗膜に改質処理を行って形成するバリア層が挙げられる。
(ポリシラザン化合物)
 バリア層の形成に用いるポリシラザン化合物とは、構造内にケイ素-窒素結合を持つ酸窒化ケイ素の前駆体となるポリマーである。ポリシラザン化合物としては、下記一般式(1)の構造を有するものが好ましく用いられる。
Figure JPOXMLDOC01-appb-C000001
 式中、R、R、及びRは、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、又はアルコキシ基を表す。
 バリア層の膜としての緻密性の観点からは、R、R及びRの全てが水素原子であるパーヒドロポリシラザンを用いることが好ましい。その他、ポリシラザンの詳細については、特開2013-255910号公報の段落[0024]~[0040]、特開2013-188942号公報の段落[0037]~[0043]、特開2013-151123号公報の段落[0014]~[0021]、特開2013-052569号公報の段落[0033]~[0045]、特開2013-129557号公報の段落[0062]~[0075]、特開2013-226758号公報の段落[0037]~[0064]等を参照することができる。
 ポリシラザンは、有機溶媒に溶解した溶液の状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ社製のNN120-20、NAX120-20、NL120-20等が挙げられる。
(ポリシラザン化合物を用いたバリア層の形成方法)
 ポリシラザン化合物を含有する溶液を用いた塗膜は、ポリシラザン化合物と添加剤等を含有する溶液を、基材上に塗布して形成することができる。溶液の塗布法としては、任意の適切な方法を採用できる。例えば、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。溶液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜に含まれる有機溶媒を除去することができる。塗膜の形成方法については、特開2014-151571号公報の段落[0058]~[0064]、特開2011-183773号公報の段落[0052]~[0056]等を参照することができる。
(改質処理)
 改質処理とは、ポリシラザン化合物の酸化ケイ素又は酸化窒化珪素への転化反応を行うための処理である。改質処理は、ポリシラザン化合物の転化反応についての公知の方法を用いることができる。改質処理としては、低温で転化反応が可能な、プラズマやオゾンや紫外線を使う転化反応が好ましい。プラズマやオゾンや紫外線を使う転化反応は、従来公知の方法を用いることができる。改質処理は、ポリシラザン化合物含有液の塗膜に、波長200nm以下の真空紫外線(VUV)を照射して行うことが好ましい。
 湿式塗布法により形成するバリア層の厚さは、1~500nmの範囲が好ましい、より好ましくは10~300nmの範囲である。バリア層は、全体が改質層であってもよく、改質処理された改質層の厚さが1~50nm、好ましくは1~10nmであってもよい。
(真空紫外線処理)
 ポリシラザン化合物を含む塗膜にVUVを照射する工程では、ポリシラザンの少なくとも一部が酸窒化ケイ素に改質されることが好ましい。VUV照射工程において、ポリシラザン化合物を含む塗膜が受ける塗膜面でのVUVの照度は30~200mW/cmの範囲であることが好ましく、50~160mW/cmの範囲であることがより好ましい。VUVの照度を30mW/cm以上とすることで、改質効率を十分に得ることができ、200mW/cm以下では、塗膜への損傷発生率を極めて抑え、基材への損傷も低減させることができる。
 ポリシラザン化合物を含む塗膜の表面におけるVUVの照射エネルギー量は、200~10000mJ/cmの範囲であることが好ましく、500~5000mJ/cmの範囲であることがより好ましい。VUVの照射エネルギー量を200mJ/cm以上とすることで、ポリシラザンの改質が十分に行われる。また、10000mJ/cm以下とすることにより、過剰改質を抑えてバリア層のクラックや、基材の熱変形の発生を極力抑えることができる。
 真空紫外線の光源としては、希ガスエキシマランプが好ましく用いられる。
 真空紫外線は酸素による吸収があるため、紫外線照射工程での効率が低下しやすいことから、VUVの照射は、可能な限り酸素濃度の低い状態で行うことが好ましい。すなわち、VUV照射時の酸素濃度は、10~10000ppmの範囲とすることが好ましく、より好ましくは50~5000ppmの範囲、さらに好ましく80~4500ppmの範囲、最も好ましくは100~1000ppmの範囲である。
 また、VUV照射時に用いられる照射雰囲気を満たすガスとしては、乾燥不活性ガスが好ましく、特にコストの観点から乾燥窒素ガスが好ましい。酸素濃度の調整は、照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
 これらの改質処理は、例えば、特開2012-086394号公報の段落[0055]~[0091]、特開2012-006154号公報の段落[0049]~[0085]、特開2011-251460号公報の段落[0046]~[0074]等に記載の内容を参照することができる。
(中間層)
 バリア層を積層する場合には、各バリア層の間に中間層を設けることが好ましい。中間層としては、ポリシロキサン改質層を適用することが好ましい。ポリシロキサン改質層は、ポリシロキサンを含有する塗布液を、湿式塗布法を用いてバリア層上に塗布して乾燥した後、その乾燥した塗膜に真空紫外線を照射することによって形成することができる。
 中間層形成用の塗布液の塗布方法としては、スピンコート、ディッピング、ローラーブレード、スプレー法等が挙げられる。真空紫外線としては、上述したポリシラザン化合物の改質処理と同様のVUV照射を用いることが好ましい。
 中間層を形成するために用いる塗布液は、主に、ポリシロキサン及び有機溶媒を含有する。中間層の形成に適用可能なポリシロキサンとしては、特に制限はないが、下記一般式(2)で表されるオルガノポリシロキサンが特に好ましい。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(2)において、R~Rは、各々同一又は異なる炭素数1~8の有機基を表す。ここで、R~Rの少なくとも1つの基は、アルコキシ基及び水酸基のいずれかを含む。mは1以上の整数である。
 上記一般式(2)で表されるオルガノポリシロキサンにおいて、mが1以上で、かつ、ポリスチレン換算の質量平均分子量が1000~20000であることが特に好ましい。オルガノポリシロキサンのポリスチレン換算の質量平均分子量が、1000以上であれば、形成する中間層に亀裂が生じ難く、ガスバリア性を維持することができ、20000以下であれば、形成される中間層の硬化が充分となり、中間層として十分な硬度が得られる。
 中間層の乾燥膜厚としては、100nm~10μmの範囲が好ましく、50nm~1μmであることがより好ましい。中間層の膜厚が100nm以上であれば、十分なガスバリア性を確保することができる。また、中間層の膜厚が10μm以下であれば、中間層形成時に安定した塗布性を得ることができる。
 その他、ポリシロキサンの詳細については、特開2013-151123号公報の段落[0028]~[0032]、特開2013-086501号公報の段落[0050]~[0064]、特開2013-059927号公報の段落[0063]~[0081]、特開2013-226673号公報の段落[0119]~[0139]等を参照することができる。
[バリア層;遷移金属含有層]
 また、バリア層としては、遷移金属(M2)含有層と、遷移金属以外の無機元素(M1)含有層との積層形態であることが好ましい。無機元素(M1)含有層としては、上記ケイ素化合物を含む塗布液を用いて湿式塗布法によって形成されたバリア層が好ましい。
 遷移金属含有層と遷移金属以外の無機元素含有層との積層形態からなるバリア層は、少なくとも厚さ方向において、無機元素M1と遷移金属M2とを含有する混合領域を有し、混合領域における無機元素M1に対する遷移金属M2の原子数比の値(M2/M1)が、0.02~49の範囲内にある領域を、厚さ方向に連続して5nm以上有することが好ましい。
 さらに、上記バリア層において遷移金属含有層は、第3族~第11族の遷移金属を主成分aとして含有するA領域と、第12族~第14族の無機元素を主成分bとして含有するB領域との間に、主成分a及び主成分bに由来する化合物を含有する混合領域を有することが好ましい。
 無機元素M1と遷移金属M2とを含有する混合領域では、遷移金属M2と無機元素M1に加えて酸素が含有されていることが好ましい。また、この混合領域は、遷移金属の酸化物と無機元素の酸化物との混合物、又は、遷移金属M2と無機元素M1との複合酸化物の少なくとも一方を含有することが好ましく、遷移金属M2と無機元素M1との複合酸化物を含有することがより好ましい。
(遷移金属(M2)含有層:A領域)
 遷移金属(M2)含有層におけるA領域とは、金属として遷移金属M2を主成分aとして含有する領域をいう。
 遷移金属M2としては、特に制限されず、任意の遷移金属が単独で又は組み合わせて用いられる。ここで、遷移金属とは、長周期型周期表の第3族元素から第11族元素を指し、遷移金属としては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、及びAu等が挙げられる。
 なかでも、良好なバリア性が得られる遷移金属M2としては、Nb、Ta、V、Zr、Ti、Hf、Y、La、Ce等が挙げられる。これらのなかでも、種々の検討結果から、特に第5族元素であるNb、Ta、Vが、バリア層に含有される無機元素M1に対する結合が生じやすい観点から好ましい。
 特に、遷移金属M2が第5族元素(特に、Nb)であって、詳細を後述する無機元素M1がSiである場合には、著しいバリア性の向上効果を得ることができ、特に好ましい組み合わせである。これは、Siと第5族元素(特に、Nb)との結合が特に生じやすいためであると考えられる。さらに、光学特性の観点から、遷移金属M2は、透明性が良好な化合物が得られるNb、Taが特に好ましい。
 A領域の厚さとしては、バリア性と光学特性との両立の観点から、2~50nmの範囲であることが好ましく、4~25nmの範囲であることがより好ましく、5~15nmの範囲であることがさらに好ましい。
(無機元素(M1)含有層:B領域)
 無機元素(M1)含有層におけるB領域とは、遷移金属以外の無機材料を主成分bとして含有する領域をいう。無機元素M1としては、長周期型周期表の第12族~第14族の金属から選択される無機元素が好ましい。無機元素M1としては、特に制限されず、第12族~第14族の任意の金属を単独で又は組み合わせて用いることができるが、例えば、Si、Al、Zn、In及びSn等が挙げられる。無機元素M1としては、Si、Sn又はZnを含むことが好ましく、Siを含むことがより好ましく、Si単独であることが特に好ましい。
 B領域の厚さは、バリア性と生産性との両立の観点から、10~1000nmの範囲であることが好ましく、20~500nmの範囲であることがより好ましく、50~300nmの範囲であることが特に好ましい。
(混合領域)
 混合領域は、長周期型周期表の第12族~第14族の金属から選択される無機元素M1、及び、第3族元素から第11族の金属から選択される遷移金属M2が含有されている領域であって、無機元素M1に対する遷移金属M2の原子数比の値(M2/M1)が、0.02~49の範囲内である領域を、厚さ方向に連続して5nm以上有する領域である。ここで、混合領域は、構成成分の化学組成が相互に異なる複数の領域として形成されていてもよく、また、構成成分の化学組成が連続して変化している領域として形成されていてもよい。
(酸素欠損組成)
 上記混合領域において、一部の組成は、酸素が欠損した非化学量論的組成(酸素欠損組成)であることが好ましい。酸素欠損組成とは、混合領域の組成を下記化学組成式(1)で表したとき、下記関係式(2)で規定する条件を満たすことをいう。また、混合領域における酸素欠損程度を表す酸素欠損度指標としては、混合領域における[(2y+3z)/(a+bx)]を算出して得られる値の最小値を用いる。
 化学組成式(1):(M1)(M2)
 関係式(2):(2y+3z)/(a+bx)<1.0
 なお、下記組成式(1)及び関係式(2)において、M1は無機元素、M2は遷移金属、Oは酸素、Nは窒素を表す。x、y、zは、それぞれ化学量論係数であり、aはM1の最大価数、bはM2の最大価数を表す。また、以降の説明では、特別の区別が必要ない場合、上記化学組成式(1)で表す組成を、単に複合領域の組成と言う。
 上述したように、無機元素M1と遷移金属M2との複合領域の組成は、式(1)である(M1)(M2)で示される。この組成からも明らかなように、上記複合領域の組成は、一部窒化物の構造を含んでいてもよく、また、窒化物の構造を含んでいる方がバリア性の観点から好ましい。
 無機元素M1の最大価数をa、遷移金属M2の最大価数をb、Oの価数を2、Nの価数を3とすると、上記複合領域の組成(一部が窒化物となっていてもよい)が化学量論的組成になっている場合は、[(2y+3z)/(a+bx)=1.0]となる。この場合、この式は、無機元素M1及び遷移金属M2の結合手の合計と、O、Nの結合手の合計とが同数であることを意味し、この場合、無機元素M1と遷移金属M2とがともに、O及びNのいずれか一方と結合していることになる。なお、無機元素M1として2種以上が併用される場合や、遷移金属M2として2種以上が併用される場合には、各元素の最大価数を各元素の存在比率によって加重平均することにより算出される複合価数を、それぞれの「最大価数」のa及びbの値として採用する。
 一方、混合領域において、関係式(2)で示す[(2y+3z)/(a+bx)<1.0]となる場合には、無機元素M1及び遷移金属M2の結合手の合計に対して、O、Nの結合手の合計が不足していることを意味する。この様な状態が上記の「酸素欠損」である。酸素欠損状態においては、無機元素M1及び遷移金属M2の余った結合手は互いに結合する可能性を有している。無機元素M1や遷移金属M2の金属同士が直接結合すると、金属の間にOやNを介して結合した場合よりも緻密で高密度な構造が形成される。その結果として、バリア性が向上すると考えられる。
 また、混合領域は、xの値が、[0.02≦x≦49(0<y、0≦z)]を満たす領域である。これは、遷移金属M2/無機元素M1の原子数比率の値が0.02~49の範囲内にあり、厚さが5nm以上である領域と定義する、としたことと同一の定義である。
 この領域では、無機元素M1及び遷移金属M2の双方が金属同士の直接結合に関与する。このため、この条件を満たす混合領域が所定値以上(5nm)の厚さで存在することで、バリア性の向上に寄与すると考えられる。なお、無機元素M1及び遷移金属M2の存在比率が近いほどバリア性の向上に寄与すると考えられることから、混合領域は、[0.1≦x≦10]を満たす領域を5nm以上の厚さで含むことが好ましく、[0.2≦x≦5]を満たす領域を5nm以上の厚さで含むことがより好ましく、[0.3≦x≦4]を満たす領域を5nm以上の厚さで含むことが更に好ましい。
 ここで、上述した混合領域の範囲内に、関係式(2)で示す[(2y+3z)/(a+bx)<1.0]の関係を満たす領域が存在すれば、バリア性の向上効果が発揮されることが確認されるが、混合領域は、その組成の少なくとも一部が[(2y+3z)/(a+bx)≦0.9]を満たすことが好ましく、[(2y+3z)/(a+bx)≦0.85]を満たすことがより好ましく、[(2y+3z)/(a+bx)≦0.8]を満たすことがさらに好ましい。ここで、混合領域における[(2y+3z)/(a+bx)]の値が小さくなるほど、バリア性の向上効果は高くなるが、可視光の吸収が大きくなる。従って、透明性が望まれる用途に使用するバリア層の場合には、[(2y+3z)/(a+bx)≧0.2]であることが好ましく、[(2y+3z)/(a+bx)≧0.3]であることがより好ましく、[(2y+3z)/(a+bx)≧0.4]であることがさらに好ましい。
 なお、良好なバリア性が得られる混合領域の厚さは、後述するXPS分析法におけるSiO換算のスパッタ厚さとして、5nm以上であり、この厚さは、8nm以上であることが好ましく、10nm以上であることがより好ましく、20nm以上であることがさらに好ましい。混合領域の厚さは、バリア性の観点からは特に上限はないが、光学特性の観点から、100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることがさらに好ましい。
(XPS分析法による組成分析と混合領域の厚さの測定)
 バリア層の混合領域や、A領域及びB領域における組成分布や各領域の厚さ等は、上述のX線光電子分光法(X-Ray Photoelectron Spectroscopy、略称:XPS)を用いた、XPSデプスプロファイル測定により求めることができる。
[保護層]
 機能性フィルム20は、バリア層等の機能性層22の上部(最表面部)に、有機化合物等を含む保護層を有していてもよい。保護層に用いられる有機化合物としては、有機モノマー、オリゴマー、ポリマー等の有機樹脂、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂を好ましく用いることができる。さらに、上述した中間層としてのポリシロキサン改質層を、保護層として用いることが特に好ましい。
 保護層は、有機樹脂や無機材料に、必要に応じて他の成分を希釈溶剤に配合して塗布液を調製し、この塗布液を基材表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することが好ましい。
[平滑層]
 機能性フィルム20は、基材21と機能性層22との間に平滑層(下地層、プライマー層)を有していてもよい。平滑層は突起等が存在する基材21の粗面を平坦化するために設けられる。このような平滑層を形成するための材料は限定されないが、硬化性樹脂を含むことが好ましい。
 硬化性樹脂としては特に限定されず、紫外線等の活性エネルギー線の照射により硬化する活性エネルギー線硬化性樹脂や、加熱により硬化する熱硬化性樹脂等が挙げられる。硬化性樹脂は、単独でも2種以上組み合わせて用いてもよい。活性エネルギー線硬化性樹脂及び熱硬化性樹脂の材料としては、従来公知の材料を用いることができる。
 平滑層の形成方法は、特に制限はないが、硬化性材料を含む塗布液をスピンコーティング法、スプレー法、ブレードコーティング法、ディップ法、グラビア印刷法等のウエットコーティング法、又は、蒸着法等のドライコーティング法により塗布して塗膜を形成した後、可視光線、赤外線、紫外線、X線、α線、β線、γ線、電子線等の活性エネルギー線の照射、加熱等により、塗膜を硬化させる方法が好ましい。
 平滑層の平滑性は、JIS B 0601:2001年で規定される表面粗さの値で、最大断面高さRt(p)が、10nm以上、30nm以下であることが好ましい。表面粗さは、AFM(原子間力顕微鏡)を用いた極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定した微細な凹凸の振幅に関する粗さである。平滑層の厚さとしては、特に制限されないが、0.1~10μmの範囲が好ましい。
 平滑層の詳細については、特開2014-141056号公報の段落[0125]~[0143]、特開2014-141055号公報の段落[0138]~[0150]、特開2013-226757号公報の段落[0131]~[0143]等を参照して採用することができる。
[ブリードアウト層]
 機能性フィルム20は、ブリードアウト防止層を有していてもよい。ブリードアウト防止層は、樹脂フィルム上に上記平滑層を形成した場合に、加熱によって未反応のオリゴマー等が樹脂フィルムの表面へ移行して、接触する面を汚染する現象を抑制する目的で、平滑層を有する基材21の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に上述した平滑層と同じ構成を適用することができる。
[アンカーコート層]
 機能性フィルム20は、基材21と機能性層22との接着性(密着性)の向上を目的として、基材21上にアンカーコート層を有していてもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレン・ビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、及び、アルキルチタネート等を、1種又は2種以上併せて使用することができる。これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。上記アンカーコート剤は、市販品を使用してもよい。具体的には、シロキサン系UV硬化性ポリマー溶液として、信越化学工業社製、「X-12-2400」の3%イソプロピルアルコール溶液を用いることができる。
 上記のアンカーコート層は、アンカーコート剤を、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により、基材上にコーティングし、溶剤、希釈剤等を乾燥除去することにより形成することができる。
[デシカント層]
 機能性フィルム20は、デシカント層(水分吸着層)を有してもよい。デシカント層に用いられる材料としては、例えば、酸化カルシウムや有機金属酸化物等が挙げられる。酸化カルシウムは、バインダー樹脂等に分散させて用いることが好ましく、市販品としては、例えば、サエスゲッター社のAqvaDryシリーズ等が好ましい。また、有機金属酸化物としては、双葉電子工業社製のOleDry(登録商標)シリーズ等を用いることができる。
[保護フィルム]
 保護フィルム30は、保護基材31と、保護基材31を機能性フィルム20の基材21の裏面側に貼合するための粘着層32とを備える。保護フィルム30は、粘着層32において基材21からの剥離が可能であり、且つ、厚さ20μm以上100μm以下、弾性率4.0GPa以上6.5GPa以下、及び、裏面側の表面粗さ(Ra)150nm以上800nm以下の上記規定を満たすことができれば、保護基材31及び粘着層32に用いられる材料は特に限定されない。保護フィルム30としては、上記規定を満たせば市販のフィルムを用いることもできる。
 また、保護フィルム30としては、自己粘着性の共押出延伸多層フィルムを用いることもできる。このような自己粘着性の共押出延伸多層フィルムとしては、例えば、フタムラ化学社製の自己粘着性OPPフィルムFSA-010M、FSA-020M、FSA-050M、FSA-100M、FSA-150M、FSA-300M、FSA-010B等を用いることができる。
 保護フィルム30の弾性率は、例えば、後述する保護基材31の弾性率を調整することにより、調整することができる。
 また、保護フィルム30の裏面側の表面の粗さ(Ra)は、保護フィルム30の裏面側に露出する層を構成する材料の配合比率や厚さにより調整することができる。或いは、作製された層に対して公知の粗面化処理を行うことにより、調整することができる。
[保護基材]
 保護基材31としては、上述の機能性フィルム20の基材21と同じ樹脂フィルムから、上記保護フィルム30の各規定を満たすことが可能な樹脂フィルムを選択して用いることができる。例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)等を用いることが好ましい。また、保護基材31は、樹脂フィルムが単独、又は、複数用いられていてもよく、複数の層から形成されていてもよい。保護基材31は、枚葉形状及びロール形状に限定されないが、生産性の観点からロールトゥロール方式でも対応できるロール形状が好ましい。
 一般的に、保護フィルム30のような保護基材31と粘着層32とからなる積層体の弾性率は、保護基材31の弾性率が支配的となるため、保護フィルム30の弾性率が保護基材31の弾性率に依存する。これは、保護フィルム30の裏面側において、保護基材31の表面に樹脂フィルム以外の特定の機能を有する層を有する場合においても、この特性の機能を有する層の厚さが相当に厚くない限り、保護フィルム30の弾性率が保護基材31の弾性率に依存する。
 また、保護フィルム30では、保護基材31の裏面側に他の層を有する場合を除き、裏面側に保護基材31が配置されるため、保護フィルム30の裏面側の表面粗さも、保護基材31の裏面側の表面粗さにより決められる。さらに、保護フィルム30において、粘着性や剥離性を考慮すると、粘着層32の厚さの自由度はそれほど大きくないため、保護フィルム30の全体の厚さを決める要因として、保護基材31の厚さの影響が大きい。従って、保護基材31として上記規定を満たすことが可能な材料を用いることが好ましい。
 このため、保護基材31の弾性率は、保護基材31を構成する樹脂フィルムの樹脂組成によって調整することができる。例えば、上記規定内の弾性率を有する樹脂を用いることにより、又は、複数の樹脂を混合することにより、所望の弾性率を有する保護基材31を作製することができる。また、異なる樹脂フィルムを積層することにより、弾性率を調整することができる。或いは、一軸延伸や二軸延伸等の製法を適用して、樹脂フィルムの加工方法により、樹脂フィルムの弾性率を調整することも可能である。
 また、保護フィルム30の裏面側に保護基材31が露出する場合には、保護フィルム30の表面粗さ(Ra)が、保護基材31の裏面側の表面粗さによって規定される。このため、保護基材31の裏面側の表面粗さを、上記規定内となるように調整する。
 上述のような樹脂フィルムの作製による弾性率や、表面粗さ調整方法としては、例えば、特開2014-24940号公報に記載の樹脂フィルムの中間層の作製方法や粗面化層の作製方法を適用することができる。
[粘着層]
 粘着層32は、粘着剤を含んで構成される。粘着層32に用いられる粘着剤は、機能性フィルム積層体10に要求される粘着力を得ることができれば特に限定されず、従来公知の材料を用いることができる。例えば、自己粘着タイプは特許5997961号に記載された自己粘着型や、特開2014-101443号公報に記載された塗布型を用いることができる。
(自己粘着型の粘着層)
 自己粘着型の粘着層32は、例えば、水添スチレン系エラストマー(A1)を主要成分とし、さらにポリプロピレン系樹脂(A2)が配合されることが好ましい。水添スチレン系エラストマー(A1)としては、水添スチレン-ブタジエン共重合体(HSBR)、スチレン-エチレン・ブチレン-スチレン共重合体(SEBS)等が挙げられる。水添スチレン系エラストマーは、粘着強度の調整が容易で加工性に優れる。ポリプロピレン系樹脂(A2)としては、主にプロピレンホモポリマー、プロピレン・α-オレフィンランダムポリマー等が挙げられる。
 具体的には、プロピレン-エチレン-1ブテンランダム共重合体、プロピレン-エチレンランダム共重合体等が好ましい。ポリプロピレン系樹脂は自己粘着型の保護フィルム30の層間強度を高める目的で用いられる。さらに、ランダムポリプロピレン系樹脂を選択すると粘着力が高まる傾向にある。
(塗布型の粘着層)
 塗布型の粘着層32は、粘着剤組成物を保護基材31上に塗布及び乾燥することにより作製することができる。粘着剤組成物としては、例えば、炭素数が4~10のアルキル基を有するアルキル(メタ)アクリレートを主成分とするアクリル系ポリマーからなり、アクリル系ポリマーの100質量部に対して、主成分のアルキル(メタ)アクリレートを85~98.5質量部と、ヒドロキシル基含有の共重合性モノマーを0.1~15質量部と、カルボキシル基含有の共重合性モノマーを0.1~2質量部と、架橋剤を0.1~5質量部と、を含有してなり、アクリル系ポリマーの酸価が0.01~8.0であり、帯電防止剤が融点30~50℃のイオン性化合物であり、ポリエーテル変性シロキサン化合物を含有することが好ましい。
 主成分のアルキル(メタ)アクリレートとしては、炭素数が4~10のアルキル基を有するアルキル(メタ)アクリレートが好ましく、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレートからなる化合物群の中から選択された1種以上であることが好ましい。アクリル系ポリマーの100質量部に対して、主成分のアルキル(メタ)アクリレートを85~98.5質量部含有することが好ましい。
 ヒドロキシル基含有の共重合性モノマーとしては、ヒドロキシアルキル(メタ)アクリレート類や、水酸基含有(メタ)アクリルアミド類等が挙げられる。
 ヒドロキシル基含有の共重合性モノマーとしては、8-ヒドロキシオクチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、N-ヒドロキシ(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミドからなる化合物群の中から選択された、少なくとも一種以上であることが好ましい。アクリル系ポリマーの100質量部に対して、ヒドロキシル基含有の共重合性モノマーを0.1~15質量部含有することが好ましい。
 カルボキシル基含有の共重合性モノマーとしては、(メタ)アクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシプロピルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルマレイン酸、カルボキシポリカプロラクトンモノ(メタ)アクリレート、2-(メタ)アクリロイロキシエチルテトラヒドロフタル酸からなる化合物群から選択された、1種以上が好ましい。アクリル系ポリマーの100質量部に対して、カルボキシル基含有の共重合性モノマーを0.1~2質量部含有することが好ましい。
 粘着剤組成物は、粘着剤層を形成する際に粘着剤ポリマーを架橋させることが好ましい。架橋反応をさせる方法としては、紫外線(UV)等の光架橋で架橋しても良いが、粘着剤組成物が架橋剤を含むことが好ましい。架橋剤としては、2官能又は3官能以上のイソシアネート化合物、2官能又は3官能以上のエポキシ化合物、2官能又は3官能以上のアクリレート化合物、金属キレート化合物等が挙げられる。なかでも、ポリイソシアネート化合物(2官能又は3官能以上のイソシアネート化合物)が好ましく、3官能以上のイソシアネート化合物がより好ましい。アクリル系ポリマーの100質量部に対して、架橋剤を0.1~5質量部含有することが好ましい。
 3官能以上のイソシアネート化合物としては、1分子中に少なくとも3個以上のイソシアネート(NCO)基を有するポリイソシアネート化合物であればよい。ポリイソシアネート化合物には、脂肪族系イソシアネート、芳香族系イソシアネート、非環式系イソシアネート、脂環式系イソシアネート等の分類があるが、いずれでもよい。ポリイソシアネート化合物の具体例としては、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、トリメチルヘキサメチレンジイソシアネート(TMDI)等の脂肪族系イソシアネート化合物や、ジフェニルメタンジイソシアネート(MDI)、キシリレンジイソシアネート(XDI)、水添キシリレンジイソシアネート(H6XDI)、ジメチルジフェニレンジイソシアネート(TOID)、トリレンジイソシアネート(TDI)等の芳香族系イソシアネート化合物が挙げられる。
 3官能以上のイソシアネート化合物としては、ジイソシアネート類(1分子中に2個のNCO基を有する化合物)のビュレット変性体やイソシアヌレート変性体、トリメチロールプロパン(TMP)やグリセリン等の3価以上のポリオール(1分子中に少なくとも3個以上のOH基を有する化合物)とのアダクト体(ポリオール変性体)等が挙げられる。
 粘着剤組成物は、粘着層32に帯電防止性能を付与するため、帯電防止剤を含有することが好ましい。帯電防止剤は、常温(例えば30℃)で固体であることが好ましく、より具体的には、帯電防止剤が融点30~50℃のイオン性化合物であることが好ましい。帯電防止剤は、アクリロイル基含有の4級アンモニウム塩型イオン性化合物であってもよい。これらの帯電防止剤は、融点が低いため、また、長鎖のアルキル基を有するため、アクリル系ポリマーとの親和性が高いと推測される。
 融点が30~50℃のイオン性化合物である帯電防止剤としては、カチオンとアニオンを有するイオン性化合物であって、カチオンが、ピリジニウムカチオン、イミダゾリウムカチオン、ピリミジニウムカチオン、ピラゾリウムカチオン、ピロリジニウムカチオン、アンモニウムカチオン等の含窒素オニウムカチオンや、ホスホニウムカチオン、スルホニウムカチオン等であり、アニオンが、六フッ化リン酸塩(PF )、チオシアン酸塩(SCN)、アルキルベンゼンスルホン酸塩(RCSO )、過塩素酸塩(ClO )、四フッ化ホウ酸塩(BF )等の無機、又は、有機アニオンである化合物が挙げられる。アルキル基の鎖長や置換基の位置、個数等の選択により、融点が30~50℃のイオン性化合物を得ることができる。カチオンは、好ましくは4級含窒素オニウムカチオンであり、1-アルキルピリジニウム(2~6位の炭素原子は置換基を有しても無置換でもよい。)等の4級ピリジニウムカチオンや、1,3-ジアルキルイミダゾリウム(2,4,5位の炭素原子は置換基を有しても無置換でもよい。)等の4級イミダゾリウムカチオン、テトラアルキルアンモニウム等の4級アンモニウムカチオン等が挙げられる。融点が30~50℃のイオン性化合物である帯電防止剤は、アクリル系ポリマーの100質量部に対して、0.1~5.0質量部含まれることが好ましい。
 アクリロイル基含有の4級アンモニウム塩型イオン性化合物としては、カチオンとアニオンを有するイオン性化合物であって、カチオンが、(メタ)アクリロイルオキシアルキルトリアルキルアンモニウム[R-C2n-OCOCQ=CH、ただし、Q=H又はCH、R=アルキル]等の(メタ)アクリロイル基含有4級アンモニウムであり、アニオンが、六フッ化リン酸塩(PF )、チオシアン酸塩(SCN)、有機スルホン酸塩(RSO )、過塩素酸塩(ClO )、四フッ化ホウ酸塩(BF )、F含有イミド塩(R )等の無機、又は、有機アニオンである化合物が挙げられる。F含有イミド塩(R )のRとしては、トリフルオロメタンスルホニル基、ペンタフルオロエタンスルホニル基等のパーフルオロアルカンスルホニル基やフルオロスルホニル基が挙げられる。F含有イミド塩としては、ビス(フルオロスルホニル)イミド塩[(FSO]、ビス(トリフルオロメタンスルホニル)イミド塩[(CFSO]、ビス(ペンタフルオロエタンスルホニル)イミド塩[(CSO]等のビススルホニルイミド塩が挙げられる。アクリロイル基含有の4級アンモニウム塩型イオン性化合物は、アクリル系ポリマー中に0.1~5.0質量%共重合されることが好ましい。
 帯電防止剤の具体例としては、特に限定されるものでないが、融点が30~50℃であるイオン性化合物の具体例としては、1-オクチルピリジニウム ドデシルベンゼンスルホン酸塩、1-ドデシルピリジニウム チオシアン酸塩、3-メチル-1-ドデシルピリジニウム 六フッ化リン酸塩、1-ドデシルピリジニウム ドデシルベンゼンスルホン酸塩、4-メチル-1-オクチルピリジニウム 六フッ化リン酸塩等が挙げられる。
 また、アクリロイル基含有の4級アンモニウム塩型イオン性化合物の具体例としては、ジメチルアミノメチル(メタ)アクリレート 六フッ化リン酸メチル塩[(CHCHOCOCQ=CH・PF 、ただし、Q=H又はCH]、ジメチルアミノエチル(メタ)アクリレート ビス(トリフルオロメタンスルホニル)イミドメチル塩[(CH(CHOCOCQ=CH・(CFSO、ただし、Q=H又はCH]、ジメチルアミノメチル(メタ)アクリレート ビス(フルオロスルホニル)イミドメチル塩[(CHCHOCOCQ=CH・(FSO、ただし、Q=H又はCH]等が挙げられる。
 粘着剤組成物は、ポリエーテル変性シロキサン化合物を含有する。ポリエーテル変性シロキサン化合物を粘着剤組成物に配合することにより、粘着剤の粘着力及びリワーク性能を改善することができる。ポリエーテル変性シロキサン化合物は、ポリエーテル基を有するシロキサン化合物であり、通常のシロキサン単位[-SiR -O-]の他に、ポリエーテル基を有するシロキサン単位[-SiR(RO(RO))-O-]を有する。ここで、Rは1種又は2種以上のアルキル基又はアリール基、R及びRは1種又は2種以上のアルキレン基、Rは1種又は2種以上のアルキル基やアシル基等(末端基)を示す。ポリエーテル基としては、ポリオキシエチレン基[(CO)]やポリオキシプロピレン基[(CO)]等のポリオキシアルキレン基が挙げられる。
 ポリエーテル変性シロキサン化合物は、HLB値が7~12であるポリエーテル変性シロキサン化合物であることが好ましい。また、アクリル系ポリマーの100質量部に対して、ポリエーテル変性シロキサン化合物が0.01~0.5質量部含まれることが好ましい。より好ましくは、0.1~0.5質量部である。
 HLBとは、例えばJIS K3211(界面活性剤用語)等に規定する親水親油バランス(親水性親油性比)である。
 ポリエーテル変性シロキサン化合物は、例えば、水素化ケイ素基を有するポリオルガノシロキサン主鎖に対し、不飽和結合及びポリオキシアルキレン基を有する有機化合物をヒドロシリル化反応によりグラフトさせることによって得ることができる。具体的には、ジメチルシロキサン・メチル(ポリオキシエチレン)シロキサン共重合体、ジメチルシロキサン・メチル(ポリオキシエチレン)シロキサン・メチル(ポリオキシプロピレン)シロキサン共重合体、ジメチルシロキサン・メチル(ポリオキシプロピレン)シロキサン重合体等が挙げられる。
 粘着剤組成物は、架橋遅延剤を含有してもよい。架橋遅延剤としては、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸オクチル、アセト酢酸オレイル、アセト酢酸ラウリル、アセト酢酸ステアリル等のβ-ケトエステルや、アセチルアセトン、2,4-ヘキサンジオン、ベンゾイルアセトン等のβ-ジケトンが挙げられる。これらはケトエノール互変異性化合物であり、ポリイソシアネート化合物を架橋剤とする粘着剤組成物において、架橋剤の有するイソシアネート基をブロックすることにより、架橋剤の配合後における粘着剤組成物の過剰な粘度上昇やゲル化を抑制し、粘着剤組成物のポットライフを延長することができる。
 架橋遅延剤は、ケトエノール互変異性化合物であることが好ましく、特にアセチルアセトン、アセト酢酸エチルからなる化合物群の中から選択された、少なくとも一種以上であることが好ましい。架橋遅延剤を添加する場合、アクリル系ポリマーの100質量部に対して、架橋遅延剤が1.0~5.0質量部含まれることが好ましい。
 粘着剤組成物は、架橋触媒を含有してもよい。架橋触媒は、ポリイソシアネート化合物を架橋剤とする場合に、アクリル系ポリマーと架橋剤との反応(架橋反応)に対して触媒として機能する物質であればよく、第三級アミン等のアミン系化合物、有機錫化合物、有機鉛化合物、有機亜鉛化合物等の有機金属化合物等が挙げられる。
 第三級アミンとしては、トリアルキルアミン、N,N,N’,N’-テトラアルキルジアミン、N,N-ジアルキルアミノアルコール、トリエチレンジアミン、モルホリン誘導体、ピペラジン誘導体等が挙げられる。
 有機錫化合物としては、ジアルキル錫オキシドや、ジアルキル錫の脂肪酸塩、第1錫の脂肪酸塩等が挙げられる。
 架橋触媒は、有機錫化合物であることが好ましく、特にジオクチル錫オキシド、ジオクチル錫ジラウレートからなる化合物群の中から選択された、少なくとも一種以上であることが好ましい。
 架橋触媒を添加する場合、アクリル系ポリマーの100質量部に対して、0.01~0.5質量部含まれることが好ましい。
 粘着剤組成物は、ポリエーテル化合物を含有してもよい。ポリエーテル化合物としては、ポリアルキレンオキサイド基を有する化合物であり、ポリアルキレングリコール等のポリエーテルポリオールやこれらの誘導体が挙げられる。ポリアルキレングリコール及びポリアルキレンオキサイド基の有するアルキレン基としては、エチレン基、プロピレン基、ブチレン基等が挙げられるが、これらに限定されない。ポリアルキレングリコールが、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等の2種以上のポリアルキレングリコールの共重合体であってもよい。ポリアルキレングリコールの共重合体としては、ポリエチレングリコール-ポリプロピレングリコール、ポリエチレングリコール-ポリブチレングリコール、ポリプロピレングリコール-ポリブチレングリコール、ポリエチレングリコール-ポリプロピレングリコール-ポリブチレングリコール等が挙げられ、該共重合体は、ブロック共重合体、ランダム共重合体であってもよい。
 ポリアルキレングリコールの誘導体としては、ポリオキシアルキレンモノアルキルエーテルやポリオキシアルキレンジアルキルエーテル等のポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンモノアルケニルエーテルやポリオキシアルキレンジアルケニルエーテル等のポリオキシアルキレンアルケニルエーテル、ポリオキシアルキレンモノアリールエーテルやポリオキシアルキレンジアリールエーテル等のポリオキシアルキレンアリールエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレングリコールモノ脂肪酸エステルやポリオキシアルキレングリコールジ脂肪酸エステル等のポリオキシアルキレングリコール脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステル、ポリオキシアルキレンアルキルアミン、ポリオキシアルキレンジアミン等が挙げられる。
 ここで、ポリアルキレングリコール誘導体におけるアルキルエーテルとしては、メチルエーテルやエチルエーテル等の低級アルキルエーテル、ラウリルエーテルやステアリルエーテル等の高級アルキルエーテルが挙げられる。ポリアルキレングリコール誘導体におけるアルケニルエーテルとしては、ビニルエーテル、アリルエーテル、オレイルエーテル等が挙げられる。また、ポリアルキレングリコール誘導体における脂肪酸エステルとしては、酢酸エステルやステアリン酸エステル等の飽和脂肪酸エステル、(メタ)アクリル酸エステルやオレイン酸エステル等の不飽和脂肪酸エステルが挙げられる。
 ポリエーテル化合物が、エチレンオキシド基を含有する化合物であることが好ましく、ポリエチレンオキシド基を含有する化合物であることがより好ましい。
 ポリエーテル化合物が、重合性官能基を有する場合、(メタ)アクリル系ポリマーと共重合させることもできる。重合性官能基としては、(メタ)アクリル基、ビニル基、アリル基等のビニル性官能基が好ましい。重合性官能基を有するポリエーテル化合物としては、ポリアルキレングリコールモノ(メタ)アクリル酸エステル、ポリアルキレングリコールジ(メタ)アクリル酸エステル、アルコキシポリアルキレングリコール(メタ)アクリル酸エステル、ポリアルキレングリコールモノアリルエーテル、ポリアルキレングリコールジアリルエーテル、アルコキシポリアルキレングリコールアリルエーテル、ポリアルキレングリコールモノビニルエーテル、ポリアルキレングリコールジビニルエーテル、アルコキシポリアルキレングリコールビニルエーテル等が挙げられる。
 さらに、その他成分として、アルキレンオキサイドを含有する共重合可能な(メタ)アクリルモノマー、(メタ)アクリルアミドモノマー、ジアルキル置換アクリルアミドモノマー、界面活性剤、硬化促進剤、可塑剤、充填剤、硬化遅延剤、加工助剤、老化防止剤、酸化防止剤等の公知の添加剤を適宜に配合することができる。これらは、単独で、又は、2種以上併せて用いられる。
 粘着剤組成物に用いられる主剤のアクリル系ポリマーは、炭素数が4~10のアルキル基を有するアルキル(メタ)アクリレートと、ヒドロキシル基含有の共重合性モノマーと、カルボキシル基含有の共重合性モノマーとを共重合させることで合成することができる。アクリル系ポリマーの重合方法は特に限定されるものではなく、溶液重合、乳化重合等、適宜の重合方法が使用可能である。
 アクリル系ポリマーには、ポリアルキレングリコールモノ(メタ)アクリル酸エステルモノマー、水酸基を含有しない窒素含有ビニルモノマー、アルコキシ基含有アルキル(メタ)アクリレートモノマー、アクリロイル基含有の4級アンモニウム塩型イオン性化合物等の他のモノマーを共重合させてもよい。
 粘着剤組成物は、上記のアクリル系ポリマーに、架橋剤、帯電防止剤、さらに適宜任意の添加剤を配合することで調製することができる。
 また、アクリル系ポリマーの酸価が0.01~8.0であることが好ましい。これにより、汚染性を改善し、糊残りの発生を防止する性能を向上させることができる。ここで、「酸価」とは、酸の含有量を表す指標の一つであり、カルボキシル基を含有するポリマー1gを中和するのに要する、水酸化カリウムのmg数で表される。
〈2.機能性フィルム積層体の製造方法〉
 次に、機能性フィルム積層体の製造方法について説明する。なお、以下の機能性フィルム積層体の製造方法においては、製造される機能性フィルム積層体の一例として、上述の図1に示す構成の機能性フィルム積層体10の製造方法について説明する。機能性フィルム積層体10の各構成については、上述の機能性フィルム積層体の実施形態と同様の構成を適用することができる。
 機能性フィルム積層体10は、機能性フィルム20と保護フィルム30とが貼合されて形成される。機能性フィルム20は、基材21と、基材21の第1面(表面)側に形成された機能性層22とを有する。保護フィルム30は、保護基材31と、保護基材31の第1面(表面)側に形成された粘着層32とを有する。そして、機能性フィルム20の基材21の第2面(裏面)側に、保護フィルム30の粘着層32が貼合された構成である。従って、機能性フィルム積層体10は、保護フィルム30の保護基材31の第2面側(裏面)側が、最外面に露出される構成である。
 機能性フィルム積層体10の製造方法は、基材21の第2面側に剥離可能な保護フィルム30を貼合する工程と、基材21の第1面に機能性層22を形成する工程とを有する。すなわち、機能性フィルム積層体10は、基材21に保護フィルム30を貼合した基材積層体25を形成した後に、基材積層体25の基材21の表面側に機能性層22を形成することで作製される。
 機能性フィルム積層体10の製造では、厚さが20μm以上100μm以下、表面粗さRaが150nm以上800nm以下、及び、厚さ方向の弾性率が4.0GPa以上6.5GPa以下を満たす保護フィルム30を用いる。これらの各規定は、上述の機能性フィルム積層体10における説明と同様である。
 また、機能性フィルム積層体10の製造において、機能性層22を形成する工程では、基材21に保護フィルム30が貼合された基材積層体25を、搬送ローラーを用いて装置内を搬送する、いわゆるロールトゥロール方式の製造方法を適用することが好ましい。そして、ロールトゥロール方式の製造方法を用いて基材積層体25を搬送する際に、保護フィルム30の裏面側が搬送ローラーに直に接することが好ましい。
 保護フィルム30が、上記規定を満たすことにより、冷却ローラーや搬送ローラーと密着しやすく、基材21や保護基材31の熱変形を抑制することができる。このため、ロールトゥロール方式の製造工程中において、基材21と保護フィルム30とからなる基材積層体25、及び、これに機能性層22が形成された機能性フィルム積層体10の変形を抑制することができる。
 以下、機能性フィルム積層体の製造方法における各工程について説明する。なお、以下の説明は、機能性フィルム積層体の製造工程の一例であり、これらに限定されない。また、機能性フィルム積層体の製造において、これら以外の工程を有していてもよい。
[基材準備]
 まず、機能性フィルム20を作製するための基材21を準備する。基材21は、ロールトゥロール方式の製造方法で機能性層22を作製することが可能な、樹脂フィルムを作製する。或いは、ロールトゥロール方式の製造方法で機能性層22を作製することが可能な、市販の樹脂フィルムを基材21として準備する。樹脂フィルムとしては、上述の各種樹脂フィルムを用いることができる。また、樹脂フィルムを作製には、従来公知の樹脂フィルムの作製方法を適用することができる。
[保護フィルムの作製]
 保護フィルム30は、上記基材21と同様の方法で保護基材31となる樹脂フィルムを準備した後、この樹脂フィルムの一方の面に粘着層32を形成して作製することができる。また、保護基材31と粘着層32とが一体化した自己粘着性の延伸フィルムを保護フィルム30として作製してもよい。或いは、市販の粘着層着きの樹脂フィルムを保護フィルム30として準備してもよい。保護フィルム30の作製には、従来公知の製造方法を適用することができる。
 保護フィルム30の準備においては、上述の厚さ20μm以上100μm以下、弾性率4.0GPa以上6.5GPa以下、及び、裏面側の表面粗さ(Ra)150nm以上800nm以下の規定を満たしていれば、用いる材料や製法等は特に限定されない。
 また、保護基材31を準備する工程において、保護基材31の表面に、クリアハードコート層やその他の機能を有する層を形成してもよい。これらの層を形成する場合においては、これらの層も基材21の一部の構成として基材21に含めてもよい。従って、保護基材31の表面に特定の層を有する場合においても、保護フィルム30の裏面側の最表面となる層の表面粗さ(Ra)が、上記規定を満たすことが好ましい。
(保護基材の準備)
 上述のように、保護フィルム30の厚さ、弾性率、及び、表面粗さの各規定は、保護基材31の厚さ、弾性率、及び、表面粗さが支配的となり、保護基材31により保護フィルム30の各規定がほぼ決まる。このため、保護基材31としては、上述の保護フィルム30の厚さ、弾性率、及び、表面粗さの各規定を満たす樹脂フィルムを準備することが好ましい。
(粘着層の作製)
 粘着層32の作製では、まず、粘着層32を形成するための粘着剤を含む粘着性組成物を調製する。粘着性組成物は、例えば、粘着剤となる上述の各種樹脂に、必要に応じて硬化剤や溶剤、添加剤等を混合することで調製することができる。粘着性組成物の調製には、従来公知の方法を適用することができる。
 次に、調製した粘着性組成物を、保護基材31の一方の面(表面)側に塗工する。粘着性組成物の塗工は、硬化後の粘着層32の厚さが保護フィルム30における厚さの規定を満たすように形成する。粘着性組成物の塗工方法は特に限定されず、従来公知の方法を適用することができる。
 次に、形成した塗膜に対し、乾燥、加熱、又は、活性エネルギー線の照射等を行うことにより、粘着性組成物を硬化して粘着層32を形成する。粘着性組成物を硬化するための各種手法、及び、各条件は、使用する粘着剤や溶媒、添加剤等に応じて任意に設定することができる。また、保護フィルム30を基材21に貼合することができ、且つ、基材21から保護フィルム30を剥離可能なように形成することができれば、粘着層32の形成方法は特に限定されない。
(自己粘着性の延伸フィルム)
 自己粘着性の延伸フィルムは、所定の配合割合で原料となる樹脂を溶融、混練して四層共押出Tダイフィルム成形機、テンター二軸延伸機を用い逐次二軸延伸により作製することができる。
[保護フィルムの貼合]
 次に、基材21に、保護フィルム30を貼合する。保護フィルム30の貼合では、基材21の第2面(裏面)に対して、保護フィルム30の粘着層32を貼合して、基材積層体25を作製する。基材21への保護フィルム30の貼合方法は特に限定されず、従来公知の方法と適用することができる。
[機能性層の作製]
 次に、基材21の表面側に機能性層22を作製する。作製する機能性層22の種類及び製法は、上述の各種機能性層22から任意の構成を選択すればよく、上述の各種機能性層22以外の層を作製してもよい。
 また、機能性層22の作製では、基材21に保護フィルム30が貼合された基材積層体25をローラーから巻き出して、成膜ローラー上で機能性層22を形成するロールトゥロール方式の製造装置、製造方法を用いることが好ましい。ロールトゥロール方式の製造装置を用いた機能性層22の成膜方法としては、例えば、上述の図2に示す構成のロールトゥロール方式を用いたプラズマCVD成膜装置を用いることが好ましい。
 ロールトゥロール方式の製造装置及び製造方法においては、保護フィルム30が、厚さ、弾性率及び表面粗さについての上記規定を満たすため、基材21に保護フィルム30が貼合された基材積層体25とローラーとの密着性が高くなる。このため、ロールトゥロール方式を用いた機能性層22を形成する成膜工程において、成膜時の加熱に対しても、基材積層体25が冷却ローラーによって効率よく冷却されるため、基材21及び保護基材31の熱変形を抑制できる。
 また、ロールトゥロール方式の製造装置及び製造方法に、上述の湿式塗布法等のその他の成膜方法を組み合わせて、機能性層22を作製することが好ましい。機能性層22として複数の層を有する場合には、各層を構成する材料に応じて、それぞれ好適な製造方法、及び、製造条件を適用することができる。
 以上の工程により、機能性フィルム20と、保護フィルム30とからなる機能性フィルム積層体10を作製することができる。なお、基材21への保護フィルム30の貼合と、機能性層22の成膜とは、基材21に保護フィルム30を貼合し、巻き取り軸で基材21と保護フィルム30との基材積層体25を巻き取った後、別工程で基材21と保護フィルム30とからなる基材積層体25を巻き出して、基材21上に機能性層22の形成を行うオフライン方式であってもよい。また、基材21への保護フィルム30の貼合と、機能性層22の成膜とは、保護フィルム30の貼合と連続して機能性層22の形成を行うオンライン方式で行うことが好ましい。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
〈試料101~112の機能性フィルム積層体の作製〉
 まず、下記の方法で保護フィルムA~Lを作製した。また、基材の両面(表面、裏面)に下記の方法で樹脂硬化層を作製した。そして、基材の裏面樹脂硬化層上に、保護フィルムA~Lのいずれかを貼合して、基材積層体を作製した。さらに、基材積層体の基材の表面樹脂硬化層上に機能性層として下記の条件でバリア層を作製し、試料101~112の機能性フィルム積層体を作製した。
[保護フィルムA~K]
 保護フィルムA~Kとして、下記の表1~表11に記載されている各樹脂材料を所定の配合割合で溶融、混練して四層共押出Tダイフィルム成形機とテンター二軸延伸機を用いて、逐次二軸延伸により四層構成の自己粘着性の延伸フィルムを作製した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
[保護フィルムL]
 保護基材として、50μm厚のPETフィルムを準備した。ロールトゥロール方式の塗布ラインを用い、保護基材の片面にコロナ処理をした後、コロナ処理面に後述する方法で、粘着層塗布液を、後述する乾燥膜厚となるように塗布、乾燥して、粘着層を形成した。次に、後に剥離する離形層付きPETフィルムを粘着層面に貼合し、巻き取り、保護フィルムLを作製した。
(粘着層の作製)
 下記の方法でアクリルポリマー溶液を作製し、さらに、アクリルポリマー溶液を用いて粘着層塗布液を作製した。そして、粘着層塗布液を保護基材上に乾燥膜厚が20μmとなるように塗布し、80℃で乾燥して粘着層を形成した。
(アクリルポリマー溶液の調製)
 撹拌機、温度計、還流冷却器及び窒素導入管を備えた反応装置に、窒素ガスを導入して、反応装置内の空気を窒素ガスで置換した。その後、反応装置に2-エチルヘキシルアクリレート92質量部、8-ヒドロキシオクチルアクリレート7質量部、メタクリル酸1.0質量部とともに溶剤(酢酸エチル)を60質量部加えた。その後、重合開始剤としてアゾビスイソブチロニトリル0.1質量部を2時間かけて滴下し、65℃で6時間反応させ、重量平均分子量50万のアクリルポリマー溶液(固形分60質量%のアクリルポリマーの酢酸エチル溶液)を得た。
(粘着層塗布液の調製)
 下記の素材を混合し、さらに、100質量部のメチルエチルケトンで希釈した後、ろ過して粘着層塗布液を得た。
 アクリルポリマー溶液:98.00質量部
 1-オクチルピリジニウム ドデシルベンゼンスルホン酸塩:1.30質量部
 ポリイソシアネート(東ソー社製、コロネートHX):0.66質量部
 シロキサン化合物(信越シリコーン社製、KF-351A):0.04質量部
[基材準備]
 機能性フィルムの基材を構成する樹脂フィルムとして、両面に易接着処理した厚さ50μmのポリエチレンテレフタレートフィルム(東レ社製、ルミラー(登録商標)(U48))のロールを準備した。そして、準備した基材に対して、保護フィルムを貼合する裏面側(第2面側)に、下記の方法で裏面樹脂硬化層を形成した。さらに、基材に対し、機能性層を作製する表面側(第1面側)に、下記の方法で表面樹脂硬化層を形成した。これにより、両面に樹脂硬化層を有する基材0を得た。基材0は、機能性層の作製にあたって、1200mm幅にスリットし、巻き取ったロールとして用いた。
(裏面樹脂硬化層)
 JSR社製のUV硬化型樹脂(JSR社製、オプスターZ7535)と、平均粒子径0.3μmのシリカ微粒子とを、固形分中の微粒子の含有比率が0.05質量%となるように混合及び分散し、裏面樹脂硬化層塗布液を得た。得られた塗布液を、乾燥膜厚が2.0μmとなるように基材の裏面側に塗布した。乾燥温度は80℃とし、UV硬化処理は0.7J/cmとした。そして、塗膜を硬化させた後、巻き取った。以上の方法で、基材の裏面側に、裏面樹脂硬化層を形成した。
(表面樹脂硬化層)
 表面樹脂硬化層塗布液として、UV硬化型樹脂(JSR社製、オプスターZ7527)を用いた。表面樹脂硬化層塗布液を、乾燥膜厚が3.0μmとなるように塗布した。乾燥温度は80℃とし、UV硬化処理は0.5J/cmとした。そして、塗膜を硬化させた後、巻き取った。
[基材積層体A~Lの作製:基材0と保護フィルムA~Lとの貼合]
 ロールトゥロール方式の貼合ラインを用いて、基材0の裏面樹脂硬化層面に、保護フィルムA~Lのいずれかを貼合し、巻き取った。次に、1200mm幅にスリットし、巻き取った。このようにして、基材積層体A~Lを得た。
[機能性層の作製]
 基材積層体A~Lの表面樹脂硬化層上に、機能性層としてバリア層を作製し、試料101~112の機能性フィルム積層体を作製した。バリア層は、図2に示す製造装置を用いたプラズマCVD法により膜厚120nmで作製した。バリア層の有効幅は1000mmとした。
(プラズマCVD条件)
 原料ガス(HMDSO)供給量:150sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O)供給量:500sccm
 真空チャンバー内の真空度:2.0Pa
 プラズマ発生用電源からの印加電力:4.0kW
 プラズマ発生用電源の周波数:80kHz
 フィルムの搬送速度:3.0m/min
〈試料113の機能性フィルムの作製〉
 基材0の表面樹脂硬化層上に、機能性層として、上記プラズマCVD条件により膜厚120nmのバリア層を作製した。バリア層の有効幅は1000mmとした。これにより、基材0と機能性層とからなる試料113の機能性フィルムを作製した。
〈評価〉
[保護フィルムの表面粗さ(Ra)]
 保護フィルムA~L、及び、基材0の裏面側の表面粗さ(Ra)を、Veeco社製の非接触3次元表面形状粗さ計WykoNT9300を用いて、VSIモード、測定倍率40倍にて測定した。1回の測定での測定領域は、159.2μm×119.3μmとし、測定点は640×480点(画像表示ではピクセル数)とした。測定は、樹脂硬化層の表面の任意の5点で行い、5回の測定値の平均値とした。保護フィルムA~L、及び、基材0の裏面側の表面粗さ(Ra)の測定結果を表12に示す。
[弾性率]
 保護フィルムA~L、及び、基材0の裏面側の弾性率をエスアイアイ・ナノテクノロジー社製、走査型プローブ顕微鏡SPI3800NとHysitoron社製Triboscopeを用いて測定した。圧子としては、cube corner tip(90°)を用いた。
 測定では、圧子を試料表面に直角に当て、徐々に荷重を印加し、最大荷重到達後に荷重を0まで徐々に戻した。このときの最大荷重Pを圧子接触部の投影面積Aで除した値P/Aをナノインデンテーション硬度(H)として算出した。ナノインデンテーション弾性率(Er)は、除荷曲線の傾きをSとして[Er=(S×√π)/(2√A)]を用いて算出した。なお、πは円周率を示す。保護フィルムA~L、及び、基材0の裏面側の弾性率の測定結果を表12に示す。
 なお、弾性率の測定においては、標準試料として、付属の溶融石英を押し込んだ結果得られる硬さが9.5±1.5GPaとなるよう、事前に測定装置を校正して測定した。測定試料は、スライドガラス上に東亞合成株式会社製接着剤アロンアルファ(登録商標)を1滴滴下した後、約1cm角に切った試料を載せ、24時間放置して硬化させた。最大荷重Pは20μNに設定して測定を行った。負荷及び除荷はともに5秒で行った。
[搬送性]
 各基材積層体を用いて機能性層を作製した際に、成膜ロール電極上での基材の浮きを観察した。なお、基材の浮きは、成膜ロール電極間に形成されるプラズマの乱れとして観察される。成膜時間5分間で浮きが発生した回数を、下記の基準で評価した。
A:1回以下
B:2~5回
C:6~19回
D:20回以上
[基材変形・平面性評価]
 特許5971402号に記載の方法と同様に、ガスバリア性フィルムの平面性を、以下の手順で測定した。
 (1)作製した長尺状の機能性フィルム積層体から、幅方向に平行な短冊片Sを切り出した。このとき、切り出す短冊片Sの大きさは、機能性フィルム積層体の長手方向において20mm、幅方向においてバリア層の幅方向両端部を含む有効幅(1000mm)とした。なお、短冊片Sにおいては、20mm側を幅方向、1000mmを長手方向とする。さらに、短冊片Sを、ガスバリア性フィルムの長手方向に100mmおきに5枚切り出した。次に、短冊片Sにおいて、保護フィルムが貼合されている試料(試料101~112)は、短冊片Sから保護フィルムを剥離した。
 (2)次に、得られた短冊片Sを、バリア層が上になるようにステージ上に配置した。そして、25℃50%RH下で静置して10分経過後に、短冊片Sがステージの表面から1mm以上浮き上がっている箇所(矢印部分)を、短冊片Sの長手方向に沿ってカウントした。具体的には、短冊片Sの幅方向の一方のサイドaから目視観察したときの、短冊片Sの長手方向の全領域において、浮き上がっている箇所の数caをカウントした。ただし、複数の浮き上がっている箇所のうち、短冊片Sの長手方向の両端部の浮き上がっている箇所は、カウントしなかった。同様にして、短冊片Sの幅方向の他方のサイドbから観察した場合の浮き上がり箇所の数cbをカウントした。そして、得られた数caとcbのうち、大きい方の値を「浮き上がっている箇所の数c」とした。5枚の短冊片Sについて、同様の測定を行った。
 (3)上記(2)で得られた、5枚の短冊片Sの浮き上がっている箇所の数cの平均値を「平面性指標」とし、下記の基準で評価した。
A:1未満
B:1以上、2未満
C:2以上、5未満
D:5以上
 上述の方法で作製した試料101~113の機能性フィルム積層体において、各試料と保護フィルムA~Lとの組み合わせ、及び、保護フィルムの厚さ、保護フィルムの裏面(試料113は基材0の裏面)側の表面粗さ(Ra)と弾性率、並びに、搬送性、平面性の評価結果を、下記表12に示す。
Figure JPOXMLDOC01-appb-T000014
 表12に示すように、保護フィルムを有していない試料113は、搬送性と平面性とが悪い。これに対し、保護フィルムが、厚さ20μm以上100μm以下、表面粗さ(Ra)150nm以上800nm以下、及び、厚さ方向の弾性率4.0GPa以上6.5GPa以下を満たす試料101~試料107は、搬送性、及び、平面性の両方の評価において、良好な結果が得られた。従って、上記規定を満たす保護フィルムを用いることにより、変形が抑制された機能性フィルム積層体を作製することができる。
 一方、保護フィルムを有していても、試料110のように、表面粗さ(Ra)と弾性率とが規定内であって、保護フィルムが薄すぎる場合には、搬送性と平面性とが最も悪い。同様に、試料112のように、保護フィルムの厚さが規定内であり、表面粗さ(Ra)と弾性率とが上記規定よりも低い場合には、搬送性と平面性とが最も悪い。これは、保護フィルムが薄すぎる場合や、保護フィルムの表面粗さ(Ra)と弾性率とが規定を満たさない場合には、機能性層を作製する際の保護フィルムによる応力緩和効果を得ることができず、成膜時において保護フィルムと冷却ローラーとが離間しやすくなる。このため、機能性層の成膜時の熱によって基材が変形しやすなり、搬送性が低下したと考えられる。
 また、保護基材の厚さと弾性率とが規定内であっても、試料108ように表面粗さ(Ra)が小さすぎる場合には、搬送性、平面性ともに悪い。これは、表面粗さ(Ra)が小さすぎるため、機能性フィルム積層体と搬送ローラーとの抵抗が小さくなり、ローラー上での機能性フィルム積層体に滑り等の意図しない移動が発生したためと考えられる。
 さらに、試料111のように表面粗さ(Ra)が大きすぎる場合には、搬送性、平面性ともにやや悪い結果となった。これは、機能性フィルム積層体と搬送ローラーとの抵抗が大きすぎるため、ローラー上での機能性フィルム積層体の搬送に際し、基材積層体に対して過剰な負荷が発生したためと考えられる。
 また、試料109のように、保護フィルムの厚さと表面粗さ(Ra)とが規定内であり、弾性率が上記規定よりも低い場合には、搬送性と平面性とが悪い。これは、保護フィルムと冷却ローラーとの密着性が悪く、冷却ローラーから保護フィルムが部分的に浮いた状態となり、機能性層の成膜時に熱変形が発生したためと考えられる。
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。
 10・・・機能性フィルム積層体、20・・・機能性フィルム、21,60・・・基材、22・・・機能性層、25・・・基材積層体、30・・・保護フィルム、31・・・保護基材、32・・・粘着層、50・・・プラズマCVD装置、51・・・繰り出しローラー、52,54,55,57・・・搬送ローラー、53,56・・・成膜ローラー、58・・・巻取りローラー、59・・・成膜ガス供給管、61,62・・・磁場発生装置、63・・・プラズマ発生用電源

Claims (6)

  1.  基材、及び、前記基材の第1面側に形成された機能性層を有する機能性フィルムと、
     前記基材の第2面側に貼合された、剥離可能な保護フィルムと、を備え、
     前記保護フィルムは、厚さが20μm以上100μm以下、表面の算術平均粗さ(Ra)が150nm以上800nm以下、及び、厚さ方向の弾性率が4.0GPa以上6.5GPa以下を満たす
     機能性フィルム積層体。 
  2.  前記機能性フィルム積層体の全体の厚さが、30μm以上150μm以下である請求項1に記載の機能性フィルム積層体。 
  3.  前記機能性フィルムが、前記機能性層としてバリア層を含む請求項1に記載の機能性フィルム積層体。
  4.  基材の第2面側に、剥離可能な、厚さが20μm以上100μm以下、表面の算術平均粗さ(Ra)が150nm以上800nm以下、及び、厚さ方向の弾性率が4.0GPa以上6.5GPa以下を満たす保護フィルムを貼合する工程と、
     前記基材の第1面に機能性層を形成する工程と、を有し、
     前記保護フィルムを貼合する工程の後に、前記機能性層を形成する工程を行う
     機能性フィルム積層体の製造方法。 
  5.  前記機能性層を形成する工程において、前記基材と前記保護フィルムとの搬送に搬送ローラーを用いる請求項4に記載の機能性フィルム積層体の製造方法。 
  6.  前記保護フィルムを前記搬送ローラーに当接して、前記基材と前記保護フィルムとを搬送する請求項5に記載の機能性フィルム積層体の製造方法。
PCT/JP2018/000086 2017-01-26 2018-01-05 機能性フィルム積層体、及び、機能性フィルム積層体の製造方法 WO2018139175A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018564452A JPWO2018139175A1 (ja) 2017-01-26 2018-01-05 機能性フィルム積層体、及び、機能性フィルム積層体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-011986 2017-01-26
JP2017011986 2017-01-26

Publications (1)

Publication Number Publication Date
WO2018139175A1 true WO2018139175A1 (ja) 2018-08-02

Family

ID=62978311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000086 WO2018139175A1 (ja) 2017-01-26 2018-01-05 機能性フィルム積層体、及び、機能性フィルム積層体の製造方法

Country Status (2)

Country Link
JP (1) JPWO2018139175A1 (ja)
WO (1) WO2018139175A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7383231B2 (ja) 2020-01-16 2023-11-20 Toppanホールディングス株式会社 剥離フィルム付き蛍光体保護フィルム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143327A (ja) * 2002-10-25 2004-05-20 Tatsuta Kagaku Kk 光学部材用の表面保護フィルム
WO2008136346A1 (ja) * 2007-04-26 2008-11-13 Zeon Corporation 表示画面用保護フィルムおよび偏光板
JP2009173029A (ja) * 2007-12-28 2009-08-06 Japan Polypropylene Corp 表面保護用フィルム
JP2010100788A (ja) * 2008-09-24 2010-05-06 Sekisui Chem Co Ltd 表面保護フィルム
JP2010242079A (ja) * 2009-03-18 2010-10-28 Sekisui Chem Co Ltd 表面保護フィルム
JP2013035910A (ja) * 2011-08-05 2013-02-21 Nitto Denko Corp 粘着テープ
WO2014142192A1 (ja) * 2013-03-15 2014-09-18 日東電工株式会社 粘着シート
WO2015163422A1 (ja) * 2014-04-25 2015-10-29 コニカミノルタ株式会社 ガスバリアーフィルム及びガスバリアーフィルムの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6965509B2 (ja) * 2016-11-21 2021-11-10 三菱ケミカル株式会社 フィルム巻層体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143327A (ja) * 2002-10-25 2004-05-20 Tatsuta Kagaku Kk 光学部材用の表面保護フィルム
WO2008136346A1 (ja) * 2007-04-26 2008-11-13 Zeon Corporation 表示画面用保護フィルムおよび偏光板
JP2009173029A (ja) * 2007-12-28 2009-08-06 Japan Polypropylene Corp 表面保護用フィルム
JP2010100788A (ja) * 2008-09-24 2010-05-06 Sekisui Chem Co Ltd 表面保護フィルム
JP2010242079A (ja) * 2009-03-18 2010-10-28 Sekisui Chem Co Ltd 表面保護フィルム
JP2013035910A (ja) * 2011-08-05 2013-02-21 Nitto Denko Corp 粘着テープ
WO2014142192A1 (ja) * 2013-03-15 2014-09-18 日東電工株式会社 粘着シート
WO2015163422A1 (ja) * 2014-04-25 2015-10-29 コニカミノルタ株式会社 ガスバリアーフィルム及びガスバリアーフィルムの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7383231B2 (ja) 2020-01-16 2023-11-20 Toppanホールディングス株式会社 剥離フィルム付き蛍光体保護フィルム

Also Published As

Publication number Publication date
JPWO2018139175A1 (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
CN108503870B (zh) 阻气性膜
TWI643739B (zh) Gas barrier film
JP6252493B2 (ja) ガスバリア性フィルム
JP6340843B2 (ja) ガスバリア性フィルム
WO2014203892A1 (ja) ガスバリア性フィルム、およびその製造方法
WO2014178332A1 (ja) ガスバリア性フィルムおよびその製造方法
JP6879209B2 (ja) 積層体
WO2018139175A1 (ja) 機能性フィルム積層体、及び、機能性フィルム積層体の製造方法
WO2018123724A1 (ja) ガスバリアー性フィルム及びガスバリアー性フィルムの製造方法
WO2015147221A1 (ja) ガスバリア性フィルムおよびガスバリア性フィルムの製造方法
JP6885412B2 (ja) 機能性フィルム積層体、及び、電子デバイスの製造方法
JP6918446B2 (ja) ガスバリア性フィルム
WO2018150924A1 (ja) 電子デバイス
KR102355268B1 (ko) 가스 배리어성 필름
JP6601216B2 (ja) ガスバリア性フィルム、それを用いた電子デバイス、およびガスバリア性フィルムの製造方法
JP7017041B2 (ja) 積層体
JPWO2015053189A1 (ja) ガスバリアーフィルム及びその製造方法
JP2018144283A (ja) 機能性フィルム積層体の製造方法
WO2019198414A1 (ja) 機能性フィルム積層体、及び、電子デバイスの製造方法
WO2015029732A1 (ja) ガスバリアフィルムおよびガスバリアフィルムの製造方法
JP2018154012A (ja) 機能性フィルム、及び、電子デバイスの製造方法
JP2018149703A (ja) 機能性フィルム積層体、及び、機能性フィルムの欠陥検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744230

Country of ref document: EP

Kind code of ref document: A1