WO2018139154A1 - 撮像素子および撮像素子の製造方法 - Google Patents

撮像素子および撮像素子の製造方法 Download PDF

Info

Publication number
WO2018139154A1
WO2018139154A1 PCT/JP2017/046792 JP2017046792W WO2018139154A1 WO 2018139154 A1 WO2018139154 A1 WO 2018139154A1 JP 2017046792 W JP2017046792 W JP 2017046792W WO 2018139154 A1 WO2018139154 A1 WO 2018139154A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
wall portion
carrier
light receiving
wall
Prior art date
Application number
PCT/JP2017/046792
Other languages
English (en)
French (fr)
Inventor
智史 中山
良次 安藤
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to EP17894269.4A priority Critical patent/EP3576150B1/en
Priority to JP2018564179A priority patent/JP6992768B2/ja
Priority to CN201780071882.2A priority patent/CN109983582B/zh
Publication of WO2018139154A1 publication Critical patent/WO2018139154A1/ja
Priority to US16/507,218 priority patent/US10636819B2/en
Priority to US16/860,782 priority patent/US20200295061A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing

Definitions

  • the present invention relates to an image sensor and a method for manufacturing the image sensor.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-098601
  • dark current components generated on the substrate may be accumulated in the photodiode.
  • a first conductivity type substrate a first conductivity type element forming portion having a lower concentration than the substrate, provided in the element forming portion, a light receiving element, Each having a second-conductivity-type carrier absorption portion provided in a region different from the light receiving element, and a plurality of pixel portions arranged in a two-dimensional manner, and at least one pixel among the plurality of pixel portions The portion is provided closer to the substrate than the light receiving element so as to overlap at least a part of the light receiving element in the arrangement direction of the plurality of pixel portions, and a first conductivity type first wall portion having a higher concentration than the substrate, There is provided an imaging device having a carrier passage region in which the first wall portion is not provided in the arrangement direction of the pixel portions.
  • a first conductivity type substrate is prepared, a first conductivity type element forming portion having a lower concentration than that of the substrate is formed on the substrate, and in the substrate or in the element formation.
  • Forming a first-conductivity-type first wall portion having a higher concentration than the substrate and a carrier passage region in which the first wall portion is not provided in the portion; and a light-receiving element and a light-receiving element in the element-forming portion Forming a second-conductivity-type carrier absorption portion provided in a different region from each other and arranging a plurality of pixel portions each having a light-receiving element and a carrier absorption portion in a two-dimensional manner, At least one pixel portion among the pixel portions provides a method of manufacturing an image sensor in which a light receiving element is formed so as to overlap at least a part of the first wall portion in the arrangement direction of the plurality of pixel portions.
  • FIG. 6 shows a cross-sectional view of an image sensor 500 according to Comparative Example 1. Sectional drawing of the image pick-up element 500 which concerns on the comparative example 2 is shown.
  • FIG. 6 shows a cross-sectional view of an image sensor 500 according to Comparative Example 3.
  • An example of the structure of the image pick-up element 100 which concerns on Example 2 is shown.
  • An example of the structure of the image pick-up element 100 which concerns on Example 3 is shown.
  • An example of the formation process of the 1st wall part 41a is shown.
  • An example of the formation process of the element formation part 20 is shown.
  • An example of the formation process of the 2nd wall part 42 is shown.
  • An example of the formation process of the light receiving element 32 and the carrier absorption part 80 is shown.
  • FIG. 1A illustrates an example of a top view of the image sensor 100 according to the first embodiment.
  • FIG. 1B illustrates an example of a cross-sectional view taken along the line AA ′ of the image sensor 100 according to the first embodiment.
  • FIG. 1C illustrates an example of a BB ′ cross-sectional view of the image sensor 100 according to the first embodiment.
  • the imaging device 100 of this example includes a substrate 10, an element forming unit 20, a pixel unit 30, a wiring layer 50, a color filter 60, and a lens unit 70.
  • the wiring layer 50 has a wiring part 55.
  • the substrate 10 has the first conductivity type.
  • the substrate 10 of this example is a P-type semiconductor substrate.
  • the conductivity type of the substrate 10 may be selected according to the wavelength band received by the image sensor 100 or the like.
  • the P-type substrate 10 is used when the image sensor 100 receives an infrared wavelength band.
  • carriers may be generated from the substrate 10.
  • the substrate 10 of this example electrons are generated as carriers.
  • the carrier generated by the substrate 10 becomes a dark current component of the image sensor 100.
  • the first conductivity type is assumed to be P-type
  • the second conductivity type is assumed to be N-type. However, the same applies when the first conductivity type is N-type and the second conductivity type is P-type.
  • the element forming unit 20 is provided above the substrate 10.
  • the element forming unit 20 is a P-type semiconductor layer having a lower concentration than the substrate 10.
  • the element forming unit 20 in this example is an epitaxial layer or a well layer formed on the substrate 10.
  • the direction on the positive side of the Z axis is referred to as “upward”, and the direction on the negative side of the Z axis is referred to as “downward”.
  • the surface of the substrate 10 is an XY plane perpendicular to the Z axis.
  • the pixel unit 30 receives light incident on the image sensor 100.
  • the image sensor 100 of the present example includes a plurality of pixel units 30 arranged in a two-dimensional manner.
  • Each of the plurality of pixel units 30 includes a light receiving element 32 and a carrier absorbing unit 80.
  • the plurality of pixel units 30 are arranged in a direction parallel to the X axis and the Y axis on the XY plane. In this specification, a direction parallel to the X axis and the Y axis is referred to as an arrangement direction of the pixel units 30.
  • At least one pixel unit 30 among the plurality of pixel units 30 includes a first wall portion 41.
  • the light receiving element 32 is a photodiode arranged two-dimensionally.
  • the light receiving element 32 of this example includes a photodiode PD1 and a photodiode PD2.
  • the photodiode PD1 and the photodiode PD2 are each arranged in the X-axis direction.
  • Each photodiode PD1 and photodiode PD2 are provided adjacent to each other in the Y-axis direction.
  • the first wall 41 suppresses the carriers generated on the substrate 10 from being accumulated in the light receiving element 32.
  • the first wall portion 41 is a P-type semiconductor layer having a higher concentration than the substrate 10.
  • the first wall portion 41 is provided closer to the substrate 10 than the light receiving element 32.
  • the first wall portion 41 is provided so as to overlap at least a part of the light receiving element 32 in the arrangement direction of the plurality of pixel portions 30. That is, the first wall portion 41 has a planar shape substantially parallel to the XY plane, and is provided so as to overlap at least a part of the light receiving element 32 in a plan view shown in FIG. 1A.
  • the first wall portion 41 of this example is provided in the substrate 10.
  • the first wall portion 41 is provided at the boundary with the element forming portion 20 of the substrate 10.
  • the first wall portion 41 may be formed including the boundary between the substrate 10 and the element forming portion 20. Further, the first wall portion 41 may be formed on the substrate forming side of the element forming portion 20. Providing the first wall portion 41 at these boundaries is optimal for restricting the carriers generated on the substrate 10 from proceeding to the light receiving element 32.
  • the first wall portion 41 may be formed inside the element forming portion 20.
  • the carrier passage region Rcp indicates a region through which carriers generated on the substrate 10 pass. That is, the carrier passage region Rcp is a portion where the first wall portion 41 is not provided in the arrangement direction of the plurality of pixel portions 30. The carrier passage region Rcp is provided so as to overlap at least a part of the carrier absorption unit 80 in the arrangement direction of the plurality of pixel units 30.
  • the carrier absorption unit 80 absorbs carriers generated by the substrate 10.
  • the carrier absorbing unit 80 is provided in a region different from the light receiving element 32 in plan view.
  • the plan view refers to a viewpoint in the Z-axis direction.
  • the carrier absorbing portion 80 in this example is an N-type impurity layer that absorbs electrons generated on the substrate 10.
  • the carrier absorption unit 80 is a floating diffusion layer (floating diffusion: FD) formed in the pixel unit 30.
  • the carrier absorbing unit 80 is not limited to this as long as it can absorb the carrier generated by the substrate 10.
  • the carrier absorption unit 80 connects the floating diffusion (FD), the source or drain of the selection transistor (SEL), the source or drain of the reset transistor (RST), the source or drain of the amplification transistor (SF), and a plurality of floating diffusions. Including at least one of the source or drain of the switch (TX1, TX2) and the diffusion region of the power supply (VDD).
  • the carrier generated in the substrate 10 passes through the carrier passage region Rcp between the first wall portions 41 and is absorbed by the carrier absorbing portion 80.
  • the carrier absorption unit 80 is set to a predetermined potential.
  • the carrier absorber 80 is preferably provided in a region that is not electrically floating.
  • the carrier absorber 80 is fixed to the power supply voltage.
  • the carrier absorption unit 80 is fixed at 5V as the power supply voltage.
  • the element isolation unit 22 blocks electrical connection between adjacent pixel units 30. Thereby, the element separation unit 22 separates adjacent pixel units 30.
  • the element isolation part 22 is provided on the upper end side of the element formation part 20.
  • the element isolation unit 22 is provided adjacent to the carrier absorption unit 80 in a plan view.
  • the element isolation part 22 is formed by STI (shallow trench isolation) in which a groove is formed in the element forming part 20 and an oxide film is embedded in the groove.
  • the pixel unit 30 of this example includes a first wall 41 and a carrier passage region Rcp for each pixel unit.
  • the pixel unit 30 includes a carrier absorption unit 80 for each pixel unit. Thereby, the pixel unit 30 causes the carrier absorption unit 80 of each pixel unit 30 to absorb the carrier generated in the substrate 10.
  • a dark current component is not accumulated in the light receiving element 32 of each pixel unit 30. Therefore, noise due to dark current is reduced, and the image quality of an image captured by the image sensor 100 is improved.
  • the pixel unit 30 may share a part of the configuration with the adjacent pixel unit 30.
  • the power supply, the selection transistor, the amplification transistor, and the reset transistor may be shared by a plurality of adjacent pixel units 30.
  • a power source, a selection transistor, an amplification transistor, and a reset transistor are shared by two pixel units 30 adjacent in the Y-axis direction. That is, a power supply, a selection transistor, an amplification transistor, and a reset transistor are provided for each of the two photodiodes PD1 and PD2.
  • the imaging device 100 of this example guides the carrier generated on the substrate 10 to the carrier absorption unit 80 by the first wall portion 41. Thereby, the image sensor 100 suppresses accumulation of the dark current component from the substrate 10 in the light receiving element 32.
  • the imaging device 100 of this example not only suppresses the carriers generated on the substrate 10 by the potential barrier of the first wall portion 41 but also guides them to the carrier absorbing portion 80 through the carrier passage region Rcp. That is, the first wall portion 41 also has a function as a guide member that guides the carrier to the carrier passage region Rcp. For this reason, the dark current suppression effect is higher than when carriers are simply suppressed by a potential barrier.
  • FIG. 2 is a cross-sectional view of the image sensor 500 according to the first comparative example.
  • the imaging element 500 of this example includes a substrate 510, an element formation portion 520, a pixel portion 530, a wiring layer 550, a color filter 560, and a lens portion 570.
  • a light receiving element 532 and a floating diffusion layer 580 are formed in the element forming portion 520.
  • the wiring layer 550 has a wiring portion 555.
  • the imaging element 500 includes a P + type substrate 510 and a P ⁇ type element forming portion 520.
  • the substrate 510 may include a defect. For example, when a defect is included in the substrate 510, carriers are generated from the defect and a dark current may be generated. When dark current is generated in the substrate 510, it flows into the light receiving element 532 and the characteristics of the imaging element 500 are deteriorated.
  • FIG. 3 is a cross-sectional view of an image sensor 500 according to Comparative Example 2.
  • the image sensor 500 of this example is different from the image sensor 500 according to the comparative example 1 in that the substrate 510 has a higher density.
  • the image sensor 500 recombines electrons generated on the substrate 510 by increasing the P-type impurity concentration of the substrate 510. Thereby, generation of dark current is suppressed.
  • a high concentration substrate 510 it is difficult to adjust the concentration of the element formation portion 520 formed on the substrate 510. For example, when the element formation portion 520 is epitaxially grown on the substrate 510, autodoping occurs in which impurities on the substrate 510 diffuse into the element formation portion 520.
  • FIG. 4 is a cross-sectional view of an image sensor 500 according to Comparative Example 3.
  • the image sensor 500 of this example is different from the image sensor 500 according to the comparative example 1 in that the image sensor 500 has a wall portion 541.
  • the wall portion 541 is a P-type impurity layer provided on the entire surface of the substrate 10.
  • the wall portion 541 suppresses electrons generated on the substrate 510 from being released to the element forming portion 520.
  • the imaging device 500 of this example does not have a way to escape electrons generated on the substrate 510. Therefore, part of electrons generated in the substrate 510 may enter the element formation portion 520 through the wall portion 541. Therefore, although the imaging element 500 of this example has an effect of reducing the dark current, it cannot completely suppress the dark current.
  • a method of providing a cooling device is also conceivable as a method for suppressing the dark current of the image sensor 500.
  • By cooling the image sensor 500 generation of electrons on the substrate 510 is suppressed.
  • there are large demerits such as an increase in size of the device and an increase in cost due to the provision of the cooling device.
  • the thermal diffusion of electrons is reduced in the cooling method, the charge transfer characteristics from the photodiode to the floating diffusion layer are deteriorated.
  • FIG. 5 illustrates an example of the configuration of the image sensor 100 according to the second embodiment.
  • the image sensor 100 of this example is different from the image sensor 100 according to the first embodiment in that it includes a second wall portion 42. In this example, differences from Example 1 will be mainly described.
  • the second wall portion 42 suppresses accumulation of carriers that have passed through the carrier passage region Rcp in the light receiving element 32. That is, the second wall portion 42 is provided so as to guide the carrier that has passed through the carrier passage region Rcp to the carrier absorption portion 80.
  • the second wall portion 42 is provided in the element forming portion 20 so as to intersect with the arrangement direction of the plurality of pixel portions 30.
  • the 2nd wall part 42 of this example is plate-shaped, and has the surface direction in the Z-axis direction.
  • the second wall portion 42 is a P-type semiconductor layer having a higher concentration than the element forming portion 20.
  • the second wall portion 42 is preferably formed in contact with the first wall portion 41.
  • the second wall portion 42 is provided in contact with the element isolation portion 22.
  • the position of the upper end of the second wall portion 42 may be positioned closer to the upper end side of the element forming portion 20 than the position of the lower end of the carrier absorbing portion 80.
  • the second wall portion 42 in this example is provided below the element isolation portion 22. Thereby, the second wall portion 42 prevents carriers generated on the substrate 10 from being accumulated in the light receiving element 32 without being absorbed by the carrier absorbing portion 80.
  • the position where the second wall portion 42 is provided is not limited to this as long as the carrier generated on the substrate 10 can be guided to the carrier absorbing portion 80.
  • the surface direction of the second wall 42 may be provided as long as it intersects with the arrangement direction of the plurality of pixel units 30.
  • the second wall portion 42 may be inclined so as to approach the carrier absorbing portion 80 in plan view as it goes from below to above.
  • the 2nd wall part 42 does not necessarily need to be plate shape, for example, may be a step shape or a curved surface shape.
  • the impurity concentration of the second wall portion 42 is the same as the impurity concentration of the first wall portion 41 in one example. However, the impurity concentration of the second wall portion 42 may be different from the impurity concentration of the second wall portion 42. In one example, the impurity concentration of the first wall portion 41 is higher than the impurity concentration of the second wall portion 42.
  • the impurity concentration of the first wall portion 41 and the second wall portion 42 may be formed by ion implantation with the same dopant concentration. The case where the first wall portion 41 is formed on the substrate 10 having a high concentration and the second wall portion 42 is formed on the element forming portion 20 having a lower concentration than the substrate 10 is a case where ions are implanted with the same dopant concentration. Even so, the impurity concentration of the first wall portion 41 is higher than the impurity concentration of the second wall portion 42.
  • FIG. 6 illustrates an example of the configuration of the image sensor 100 according to the third embodiment.
  • the imaging device 100 of this example includes a plurality of stacked first wall portions 41a, 41b, and 41c.
  • the first wall portion 41a is formed on the upper surface of the substrate 10 in the same manner as the first wall portion 41 according to the first and second embodiments.
  • the first wall portion 41a of this example is provided so as to cover the entire surface of the light receiving element 32 in plan view.
  • the first wall 41b is provided below the first wall 41a.
  • the first wall portion 41b is provided in a region corresponding to the center side of the light receiving element 32 in plan view.
  • the first wall 41b is provided in a region narrower than the first wall 41a in plan view.
  • the impurity concentration of the first wall portion 41b is the same as the impurity concentration of the first wall portion 41a. However, the impurity concentration of the first wall portion 41b may be different from the impurity concentration of the first wall portion 41a.
  • the first wall 41c is provided below the first wall 41a.
  • the first wall portion 41c is provided below the first wall portion 41b.
  • the first wall portion 41c is provided in a region corresponding to the center side of the light receiving element 32 in plan view. Further, the first wall portion 41c is provided in a region narrower than the first wall portion 41a and the first wall portion 41b in plan view. That is, the plurality of first wall portions 41 a, 41 b, 41 c are provided such that their regions become narrower toward the substrate 10 side than the light receiving element 32.
  • the impurity concentration of the first wall portion 41c is the same as the impurity concentration of the first wall portion 41a and the first wall portion 41b. However, the impurity concentration of the first wall portion 41c may be different from the impurity concentration of the first wall portion 41a and the first wall portion 41b.
  • the electron potential distribution in the Z-axis direction becomes high near the first wall portion 41a.
  • the first wall portion 41 of this example is formed in the order of the first wall portion 41a, the first wall portion 41b, and the first wall portion 41c from the positive side direction of the Z axis.
  • the region where the first wall portion 41a is formed is wider than the region where the first wall portion 41b is formed.
  • region in which the 1st wall part 41b is formed is wider than the area
  • the first walls 41c, 41b, 41 and the respective regions become wider from the bottom toward the top.
  • the first wall portions 41c, 41b, 41a and the region having a higher potential in the X-axis direction become wider from the bottom to the top. Therefore, the electrons formed on the substrate 10 are easily guided to the carrier passage region Rcp when going from the lower side to the upper side.
  • FIG. 7A to 7D show an example of a method for manufacturing the image sensor 100.
  • FIG. The manufacturing method of this example is an example, and the image sensor 100 may be manufactured by a different method.
  • FIG. 7A shows an example of the formation process of the first wall portion 41.
  • a P-type substrate 10 is prepared.
  • the first wall portion 41 is formed by ion implantation on the surface side of the substrate 10.
  • the first wall portion 41 of this example is formed at a concentration higher than the impurity concentration of the substrate 10 by ion implantation of a P-type dopant.
  • the step of forming the first wall portion 41 of this example is executed before the step of forming the element forming portion 20 above the substrate 10. Thereby, the first wall portion 41 is formed on the upper surface of the substrate 10. Further, by implanting ions before forming the element forming portion 20, the first wall portion 41 can be formed with a small acceleration energy.
  • FIG. 7B shows an example of a process for forming the element forming unit 20.
  • a P-type element forming portion 20 having a lower concentration than the substrate 10 is formed above the substrate 10.
  • the element forming portion 20 of this example is formed by epitaxial growth on the substrate 10. Further, a well layer for forming a peripheral circuit may be formed after the element forming portion 20 is formed.
  • the first wall portion 41 is formed not on the substrate 10 but on the element forming portion 20, the element forming portion 20 is formed without forming the first wall portion 41 shown in FIG.
  • the first wall portion 41 may be formed by ion implantation of a P-type dopant.
  • the element forming portion 20 may be further formed above the first wall portion 41.
  • FIG. 7C shows an example of the formation process of the second wall portion 42.
  • a step of forming the second wall portion 42 on the element forming portion 20 may be further provided after the step of forming the element forming portion 20 above the substrate 10.
  • the second wall portion 42 of this example is formed together after the element forming portion 20 is completely formed.
  • the second wall portion 42 in this example is formed by ion-implanting a P-type dopant from above the element forming portion 20.
  • a step of forming the second wall portion 42 in the element forming portion 20 may be provided before the element forming portion 20 is completely formed above the substrate 10.
  • the formation of the element forming portion 20 and the formation of the second wall portion 42 may be performed in a plurality of times.
  • the second wall portion 42 is formed by repeating the step of forming the element forming portion 20 above the substrate 10 and the step of forming the second wall portion 42 on the element forming portion 20 a plurality of times.
  • the second wall portion 42 can be formed by dividing the ion implantation into the element forming portion 20 into a plurality of times.
  • FIG. 7D shows an example of a process for forming the light receiving element 32 and the carrier absorbing portion 80.
  • the light receiving element 32 and the carrier absorbing part 80 may be formed in the element forming part 20 by a general semiconductor process.
  • the light receiving element 32 is formed corresponding to the first wall portion 41.
  • the light receiving element 32 is formed so as to at least partially overlap the first wall portion 41 in plan view. Further, all the regions of the light receiving element 32 may be formed so as to overlap the first wall portion 41 in plan view.
  • the light receiving element 32 is formed on the surface side of the element forming unit 20.
  • the first wall portion 41 of this example is formed closer to the substrate 10 than the light receiving element 32 so as to overlap at least a part of the light receiving element 32 in the arrangement direction of the plurality of pixel portions 30.
  • the carrier absorbing portion 80 is formed corresponding to the carrier passage region Rcp.
  • the carrier absorbing portion 80 is formed so as to at least partially overlap the carrier passage region Rcp in plan view. Further, all the regions of the carrier absorbing portion 80 may be formed so as to overlap with the carrier passage region Rcp in plan view.
  • the wiring layer 50, the color filter 60, and the lens part 70 are formed by a general process.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

第1導電型の基板(10)と,基板上に設けられ,基板よりも低濃度の第1導電型の素子形成部(20)と,素子形成部に設けられ,受光素子(32)と,受光素子とは異なる領域に設けられた第2導電型のキャリア吸収部(80)とをそれぞれ有し,2次元状に配列された複数の画素部(30)とを備え,複数の画素部のうち少なくとも一つの画素部は,受光素子よりも基板側に,複数の画素部の配列方向において受光素子の少なくとも一部と重なるように設けられ,基板よりも高濃度の第1導電型の第1壁部(41)と,複数の画素部の配列方向において第1壁部が設けられていないキャリア通過領域(Rcp)とを有する撮像素子を提供する。

Description

撮像素子および撮像素子の製造方法
 本発明は、撮像素子および撮像素子の製造方法に関する。
 従来、フォトダイオードを有する撮像素子が知られている(例えば、特許文献1参照)。
 特許文献1 特開2008-098601号公報
 しかしながら、従来の撮像素子では、基板に生じた暗電流成分がフォトダイオードに蓄積される場合がある。
一般的開示
 本発明の第1の態様においては、第1導電型の基板と、基板上に設けられ、基板よりも低濃度の第1導電型の素子形成部と、素子形成部に設けられ、受光素子と、受光素子とは異なる領域に設けられた第2導電型のキャリア吸収部とをそれぞれ有し、2次元状に配列された複数の画素部とを備え、複数の画素部のうち少なくとも一つの画素部は、受光素子よりも基板側に、複数の画素部の配列方向において受光素子の少なくとも一部と重なるように設けられ、基板よりも高濃度の第1導電型の第1壁部と、複数の画素部の配列方向において第1壁部が設けられていないキャリア通過領域とを有する撮像素子を提供する。
 本発明の第2の態様においては、第1導電型の基板を用意することと、基板よりも低濃度の第1導電型の素子形成部を基板上に形成することと、基板内または素子形成部内に、基板よりも高濃度の第1導電型の第1壁部と、第1壁部が設けられていないキャリア通過領域とを形成することと、素子形成部に、受光素子と、受光素子とは異なる領域に設けられた第2導電型のキャリア吸収部とを形成して、受光素子とキャリア吸収部とをそれぞれ有する複数の画素部を2次元状に配列させることとを含み、複数の画素部のうち少なくとも一つの画素部は、複数の画素部の配列方向において第1壁部の少なくとも一部と重なるように受光素子が形成される撮像素子の製造方法を提供する。
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
実施例1に係る撮像素子100の上面図の一例を示す。 実施例1に係る撮像素子100のA-A'断面図の一例を示す。 実施例1に係る撮像素子100のB-B'断面図の一例を示す。 比較例1に係る撮像素子500の断面図を示す。 比較例2に係る撮像素子500の断面図を示す。 比較例3に係る撮像素子500の断面図を示す。 実施例2に係る撮像素子100の構成の一例を示す。 実施例3に係る撮像素子100の構成の一例を示す。 第1壁部41aの形成工程の一例を示す。 素子形成部20の形成工程の一例を示す。 第2壁部42の形成工程の一例を示す。 受光素子32およびキャリア吸収部80の形成工程の一例を示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 [実施例1]
 図1Aは、実施例1に係る撮像素子100の上面図の一例を示す。図1Bは、実施例1に係る撮像素子100のA-A'断面図の一例を示す。図1Cは、実施例1に係る撮像素子100のB-B'断面図の一例を示す。本例の撮像素子100は、基板10、素子形成部20、画素部30、配線層50、カラーフィルタ60およびレンズ部70を備える。配線層50は、配線部55を有する。
 基板10は、第1導電型を有する。本例の基板10は、P型の半導体基板である。基板10の導電型は、撮像素子100が受光する波長帯域等に応じて選択されてよい。例えば、撮像素子100が赤外の波長帯域を受光する場合に、P型の基板10が用いられる。基板10に欠陥が含まれる場合、基板10からキャリアが生成される場合がある。本例の基板10には、キャリアとして電子が生成されている。基板10で生成されたキャリアは、撮像素子100の暗電流成分となる。なお、本明細書において、第1導電型をP型とし、第2導電型をN型として説明する。但し、第1導電型をN型とし、第2導電型をP型とした場合も同様である。
 素子形成部20は、基板10の上方に設けられる。素子形成部20は、基板10よりも低濃度のP型の半導体層である。本例の素子形成部20は、基板10上に形成されたエピタキシャル層又はウェル層である。なお、本明細書において、Z軸の正側の方向を上方と称し、Z軸の負側の方向を下方と称する。基板10の面をZ軸と垂直なXY平面とする。
 画素部30は、撮像素子100に入射した光を受光する。本例の撮像素子100は、2次元状に配列された複数の画素部30を備える。複数の画素部30のそれぞれは、受光素子32およびキャリア吸収部80を有する。複数の画素部30は、XY平面において、X軸およびY軸と平行な方向に配列されている。本明細書において、X軸およびY軸と平行な方向を画素部30の配列方向と称する。複数の画素部30のうち少なくとも一つの画素部30は、第1壁部41を有する。
 受光素子32は、2次元状に配列されたフォトダイオードである。本例の受光素子32は、フォトダイオードPD1およびフォトダイオードPD2を有する。フォトダイオードPD1およびフォトダイオードPD2は、それぞれX軸方向に配列されている。それぞれのフォトダイオードPD1およびフォトダイオードPD2は、Y軸方向に隣接して設けられている。
 第1壁部41は、基板10に生成されたキャリアが受光素子32に蓄積されるのを抑制する。一例において、第1壁部41は、基板10よりも高濃度のP型の半導体層である。第1壁部41は、受光素子32よりも基板10側に設けられる。また、第1壁部41は、複数の画素部30の配列方向において受光素子32の少なくとも一部と重なるように設けられる。即ち、第1壁部41は、XY平面にほぼ平行な平面形状であり、図1Aに示す平面視で受光素子32の少なくとも一部と重なるように設けられる。本例の第1壁部41は、基板10内に設けられる。第1壁部41は、基板10の素子形成部20との境界に設けられている。第1壁部41は、基板10と素子形成部20との境界を含んで形成されてよい。また、第1壁部41は、素子形成部20の基板10側に形成されてもよい。第1壁部41がこれらの境界に設けられることが、基板10で発生するキャリアが受光素子32に進むことを規制するうえで最適である。なお、第1壁部41は、素子形成部20の内部に形成されてもよい。
 キャリア通過領域Rcpは、基板10で生成されたキャリアが通過する領域を指す。即ち、キャリア通過領域Rcpは、複数の画素部30の配列方向において第1壁部41が設けられていない部分である。キャリア通過領域Rcpは、複数の画素部30の配列方向においてキャリア吸収部80の少なくとも一部と重なるように設けられる。
 キャリア吸収部80は、基板10で生成されたキャリアを吸収する。キャリア吸収部80は、平面視で、受光素子32とは異なる領域に設けられる。本明細書において、平面視とは、Z軸方向の視点を指す。本例のキャリア吸収部80は、基板10で生成された電子を吸収するN型の不純物層である。例えば、キャリア吸収部80は、画素部30に形成された浮遊拡散層(フローティングディフュージョン:FD)である。但し、キャリア吸収部80は、基板10で生成されたキャリアを吸収できるものであれば、これに限られない。
 例えば、キャリア吸収部80は、フローティングディフュージョン(FD)、選択トランジスタ(SEL)のソースまたはドレイン、リセットトランジスタ(RST)のソースまたはドレイン、増幅トランジスタ(SF)のソースまたはドレイン、複数のフローティングディフュージョンを連結するスイッチ(TX1,TX2)のソースまたはドレインおよび電源(VDD)の拡散領域の少なくとも1つを含む。これにより、基板10で生成されたキャリアは、第1壁部41の間のキャリア通過領域Rcpを通過してキャリア吸収部80で吸収される。
 一例において、キャリア吸収部80は、予め定められた電位に設定される。キャリア吸収部80は、電気的にフローティング状態でない領域に設けられることが好ましい。キャリア吸収部80が電源の拡散領域である場合、キャリア吸収部80が電源電圧に固定される。例えば、キャリア吸収部80は、電源電圧として5Vに固定される。
 素子分離部22は、隣接する画素部30同士の電気的な接続を遮断する。これにより、素子分離部22は、隣接する画素部30を分離する。素子分離部22は、素子形成部20の上端側に設けられる。また、素子分離部22は、平面視でキャリア吸収部80に隣接して設けられる。一例において、素子分離部22は、素子形成部20に溝を形成し、その溝に酸化膜を埋め込むSTI(シャロートレンチアイソレーション)により形成される。
 本例の画素部30は、第1壁部41とキャリア通過領域Rcpを画素部毎に備える。また、画素部30は、画素部毎にキャリア吸収部80を有する。これにより、画素部30は、基板10で生じたキャリアをそれぞれの画素部30のキャリア吸収部80に吸収させる。それぞれの画素部30の受光素子32には、暗電流成分が蓄積されない。よって、暗電流によるノイズが低減し、撮像素子100で撮像する画像の画質が向上する。
 なお、画素部30は、構成の一部を隣接する画素部30と共有してよい。例えば、電源、選択トランジスタ、増幅トランジスタおよびリセットトランジスタは、隣接する複数の画素部30で共有されてよい。本例では、Y軸方向に隣接する2つの画素部30で電源、選択トランジスタ、増幅トランジスタおよびリセットトランジスタを共有している。即ち、フォトダイオードPD1およびフォトダイオードPD2の2つのフォトダイオードに対して、電源、選択トランジスタ、増幅トランジスタおよびリセットトランジスタが1つずつ設けられる。
 本例の撮像素子100は、基板10で生成されたキャリアを、第1壁部41によりキャリア吸収部80に誘導する。これにより、撮像素子100は、基板10からの暗電流成分の受光素子32への蓄積を抑制する。本例の撮像素子100は、基板10で生成されたキャリアを第1壁部41のポテンシャル障壁で抑制するだけではなく、キャリア通過領域Rcpを通してキャリア吸収部80に誘導する。即ち、第1壁部41は、キャリアをキャリア通過領域Rcpに誘導する誘導部材としての機能も有する。そのため、単にポテンシャル障壁でキャリアを抑制する場合に比べて、暗電流の抑制効果が高い。
 [比較例1]
 図2は、比較例1に係る撮像素子500の断面図を示す。本例の撮像素子500は、基板510、素子形成部520、画素部530、配線層550、カラーフィルタ560およびレンズ部570を備える。素子形成部520には、受光素子532および浮遊拡散層580が形成されている。配線層550は、配線部555を有する。
 撮像素子500は、P+型の基板510とP-型の素子形成部520とを有する。基板510には、欠陥が含まれる場合がある。例えば、基板510に欠陥が含まれると、欠陥からキャリアが生じ、暗電流が発生する場合がある。基板510において暗電流が生じると、受光素子532に流れ込み撮像素子500の特性が悪化する。
 [比較例2]
 図3は、比較例2に係る撮像素子500の断面図を示す。本例の撮像素子500は、基板510をより高濃度としている点で比較例1に係る撮像素子500と異なる。
 撮像素子500は、基板510のP型不純物濃度を増加させることにより、基板510で生じた電子を再結合させる。これにより、暗電流の発生が抑制される。しかしながら、高濃度の基板510を用いる場合、基板510上に形成する素子形成部520の濃度の調整が困難となる。例えば、素子形成部520を基板510上にエピタキシャル成長させる場合、基板510の不純物が素子形成部520に拡散するオートドープが生じる。
 [比較例3]
 図4は、比較例3に係る撮像素子500の断面図を示す。本例の撮像素子500は、壁部541を有する点で比較例1に係る撮像素子500と異なる。
 壁部541は、基板10の全面に設けられたP型の不純物層である。壁部541は、基板510で発生した電子が素子形成部520に抜けるのを抑制する。しかしながら、本例の撮像素子500には、基板510で生成された電子が抜ける逃げ道がない。そのため、基板510で発生した電子の一部が壁部541を抜けて素子形成部520に侵入する場合がある。よって、本例の撮像素子500は、暗電流を低減する効果があるものの、完全に暗電流を抑制することができない。
 なお、撮像素子500の暗電流を抑制する方法として、冷却装置を設ける方法も考えられる。撮像素子500を冷却することにより、基板510における電子の生成が抑制される。しかしながら、冷却装置を設ける方法では、冷却装置を設けることによる装置の大型化やコストの増大などのデメリットが大きい。さらに、冷却する方法では電子の熱拡散が低減するので、フォトダイオードから浮遊拡散層への電荷転送特性が悪化する。
 [実施例2]
 図5は、実施例2に係る撮像素子100の構成の一例を示す。本例の撮像素子100は、第2壁部42を備える点で実施例1に係る撮像素子100と異なる。本例では、実施例1と異なる点について主に説明する。
 第2壁部42は、キャリア通過領域Rcpを通過したキャリアが受光素子32に蓄積するのを抑制する。即ち、第2壁部42は、キャリア通過領域Rcpを通過したキャリアをキャリア吸収部80に導くように設けられる。第2壁部42は、複数の画素部30の配列方向と交差して、素子形成部20内に設けられる。本例の第2壁部42は、板状の形状であり、Z軸方向にその面方向を有して設けられている。第2壁部42は、素子形成部20よりも高濃度のP型の半導体層である。第2壁部42は、第1壁部41と接して形成されることが好ましい。
 一例において、第2壁部42は、素子分離部22と接して設けられる。この場合、第2壁部42の上端の位置は、キャリア吸収部80の下端の位置よりも素子形成部20の上端側に位置してよい。本例の第2壁部42は、素子分離部22の下方に設けられる。これにより、第2壁部42は、基板10で生成されたキャリアがキャリア吸収部80に吸収されずに受光素子32に蓄積されるのを防止する。第2壁部42を設ける位置は、基板10で生成されたキャリアをキャリア吸収部80に誘導できるものであれば、これに限られない。例えば、第2壁部42は、複数の画素部30の配列方向と交わる方向であれば、その面方向が傾斜して設けられてもよい。具体的に、第2壁部42は、下方から上方へ向かうにつれて、平面視においてキャリア吸収部80に近づくように傾斜してもよい。キャリア通過領域Rcpからキャリア吸収部80への領域が徐々に狭まるように第2壁部42が設けられることで、基板10で生成されたキャリアがキャリア吸収部80に誘導されやすくなる。なお、第2壁部42は、必ずしも板状である必要はなく、例えば階段状の形状や、曲面形状であってもよい。
 第2壁部42の不純物濃度は、一例において、第1壁部41の不純物濃度と同一である。但し、第2壁部42の不純物濃度は、第2壁部42の不純物濃度と異なっていてもよい。一例において、第1壁部41の不純物濃度は、第2壁部42の不純物濃度よりも高い。第1壁部41および第2壁部42の不純物濃度は、同一のドーパント濃度でイオン注入することにより形成されてよい。第1壁部41が高濃度の基板10に形成され、第2壁部42が基板10よりも低濃度の素子形成部20に形成される場合、同一のドーパント濃度でイオン注入された場合であっても、第1壁部41の不純物濃度は、第2壁部42の不純物濃度よりも高くなる。
 [実施例3]
 図6は、実施例3に係る撮像素子100の構成の一例を示す。本例の撮像素子100は、複数の積層された第1壁部41a,41b,41cを有する。
 第1壁部41aは、実施例1および2に係る第1壁部41と同様に、基板10の上面に形成される。本例の第1壁部41aは、平面視で、受光素子32の全面を覆うように設けられている。
 第1壁部41bは、第1壁部41aの下方に設けられる。第1壁部41bは、平面視における受光素子32の中心側に対応する領域に設けられる。また、第1壁部41bは、平面視で、第1壁部41aよりも狭い領域に設けられている。第1壁部41bの不純物濃度は、第1壁部41aの不純物濃度と同一である。但し、第1壁部41bの不純物濃度は、第1壁部41aの不純物濃度と異なっていてもよい。
 第1壁部41cは、第1壁部41aの下方に設けられる。第1壁部41cは、第1壁部41bの下方に設けられる。第1壁部41cは、平面視における受光素子32の中心側に対応する領域に設けられる。また、第1壁部41cは、平面視で、第1壁部41aおよび第1壁部41bよりも狭い領域に設けられている。即ち、複数の第1壁部41a、41b、41cは、受光素子32よりも基板10側に向かうほどそれぞれの領域が狭くなるように設けられている。第1壁部41cの不純物濃度は、第1壁部41aおよび第1壁部41bの不純物濃度と同一である。但し、第1壁部41cの不純物濃度は、第1壁部41aおよび第1壁部41bの不純物濃度と異なっていてもよい。
 Z軸方向の電子のポテンシャル分布は、第1壁部41aの付近で高くなる。本例の第1壁部41は、Z軸の正側方向から、第1壁部41a、第1壁部41bおよび第1壁部41cの順に形成されている。第1壁部41aの形成される領域は、第1壁部41bが形成される領域よりも広い。また、第1壁部41bの形成される領域は、第1壁部41cが形成される領域よりも広い。そのため、Z軸方向の電子のポテンシャル分布は、第1壁部41aの深さ位置で高くなり、第1壁部41bおよび第1壁部41cの深さ位置で低くなるように傾斜が設けられている。よって、基板10で形成され電子は、第1壁部41a側から下方に誘導されやすくなる。したがって、電子が第1壁部41aを超えて受光素子32に蓄積されるのを抑制する効果が高くなる。
 一方、X軸方向では、上記のように、第1壁部41c,41b,41と下方から上方に向かうほどそれぞれの領域が広くなる。これにより、第1壁部41c,41b,41aと下方から上方に向かうほどX軸方向のポテンシャルの高い領域が広くなる。よって、基板10で形成された電子は、下方から上方へ向かう際にキャリア通過領域Rcpに誘導されやすくなる。
 図7A~図7Dは、撮像素子100の製造方法の一例を示す。本例の製造方法は一例であり、異なる方法によって撮像素子100が製造されてもよい。
 図7Aは、第1壁部41の形成工程の一例を示す。まず、P型の基板10を用意する。第1壁部41は、基板10の表面側にイオン注入することにより形成される。本例の第1壁部41は、P型のドーパントをイオン注入することにより基板10の不純物濃度よりも高濃度に形成される。このように、本例の第1壁部41を形成する段階は、素子形成部20を基板10の上方に形成する段階の前に実行される。これにより、基板10の上面に第1壁部41を形成する。また、素子形成部20を形成する前にイオン注入することにより、少ない加速エネルギーで第1壁部41を形成できる。
 図7Bは、素子形成部20の形成工程の一例を示す。基板10よりも低濃度のP型の素子形成部20を基板10の上方に形成する。本例の素子形成部20は、基板10へのエピタキシャル成長によって形成される。また、素子形成部20の形成後に、周辺回路を形成するためのウェル層が形成されてもよい。なお、第1壁部41を基板10ではなく素子形成部20に形成する場合、図7Aに示す第1壁部41の形成を行わずに素子形成部20を形成した後、素子形成部20にP型のドーパントをイオン注入することにより第1壁部41を形成してもよい。また、第1壁部41を形成した後、第1壁部41の上方にさらに素子形成部20を形成してもよい。
 図7Cは、第2壁部42の形成工程の一例を示す。素子形成部20を基板10の上方に形成する段階の後に、第2壁部42を素子形成部20に形成する段階を更に備えてよい。例えば、本例の第2壁部42は、素子形成部20を完全に形成した後にまとめて形成される。本例の第2壁部42は、素子形成部20の上方からP型のドーパントをイオン注入することにより形成される。
 また、素子形成部20を基板10の上方に完全に形成する前に、第2壁部42を素子形成部20に形成する段階を有してもよい。この場合、素子形成部20の形成と第2壁部42の形成は、複数回に分けて実施されてよい。例えば、素子形成部20を基板10の上方に形成する段階と、第2壁部42を素子形成部20に形成する段階とを複数回繰り返すことにより、第2壁部42が形成される。ここで、第2壁部42のイオン注入の加速エネルギーに限度があり、一度に素子形成部20にイオン注入できない場合もある。この場合であっても、素子形成部20へのイオン注入を複数回に分けることで、第2壁部42の形成が実現する。
 図7Dは、受光素子32およびキャリア吸収部80の形成工程の一例を示す。素子形成部20には、一般的な半導体プロセスにより受光素子32およびキャリア吸収部80が形成されてよい。
 受光素子32は、第1壁部41に対応して形成される。一例において、受光素子32は、平面視で、第1壁部41と少なくとも一部が重なるように形成される。また、受光素子32の全ての領域が、平面視で、第1壁部41と重なるように形成されてもよい。受光素子32は、素子形成部20の表面側に形成される。本例の第1壁部41は、受光素子32よりも基板10側に、複数の画素部30の配列方向において受光素子32の少なくとも一部と重なるように形成される。
 キャリア吸収部80は、キャリア通過領域Rcpと対応して形成される。一例において、キャリア吸収部80は、平面視で、キャリア通過領域Rcpと少なくとも一部が重なるように形成される。また、キャリア吸収部80の全ての領域が、平面視で、キャリア通過領域Rcpと重なるように形成されてもよい。なお、受光素子32およびキャリア吸収部80を形成した後は、一般的な工程により、配線層50、カラーフィルタ60およびレンズ部70が形成される。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10・・・基板、20・・・素子形成部、22・・・素子分離部、30・・・画素部、32・・・受光素子、41・・・第1壁部、42・・・第2壁部、50・・・配線層、55・・・配線部、60・・・カラーフィルタ、70・・・レンズ部、80・・・キャリア吸収部、100・・・撮像素子、500・・・撮像素子、510・・・基板、520・・・素子形成部、530・・・画素部、532・・・受光素子、541・・・壁部、550・・・配線層、555・・・配線部、560・・・カラーフィルタ、570・・・レンズ部、580・・・浮遊拡散層

Claims (14)

  1.  第1導電型の基板と、
     前記基板上に設けられ、前記基板よりも低濃度の第1導電型の素子形成部と、
     前記素子形成部に設けられ、受光素子と、前記受光素子とは異なる領域に設けられた第2導電型のキャリア吸収部とをそれぞれ有し、2次元状に配列された複数の画素部と
     を備え、
     前記複数の画素部のうち少なくとも一つの画素部は、
     前記受光素子よりも前記基板側に、前記複数の画素部の配列方向において前記受光素子の少なくとも一部と重なるように設けられ、前記基板よりも高濃度の第1導電型の第1壁部と、
     前記複数の画素部の配列方向において前記第1壁部が設けられていないキャリア通過領域と
     を有する撮像素子。
  2.  前記キャリア通過領域は、前記複数の画素部の配列方向において前記キャリア吸収部の少なくとも一部と重なるように設けられる請求項1に記載の撮像素子。
  3.  前記第1壁部は、前記基板内に設けられる
     請求項1又は2に記載の撮像素子。
  4.  前記第1壁部は、前記基板の前記素子形成部との境界に設けられる
     請求項3に記載の撮像素子。
  5.  前記複数の画素部の配列方向と交差して前記素子形成部内に設けられ、前記素子形成部よりも高濃度の第1導電型の第2壁部を更に有する
     請求項1から4のいずれか一項に記載の撮像素子。
  6.  前記第2壁部の一方の端は、前記キャリア吸収部の前記基板側の端の位置よりも、前記基板の反対側に位置する
     請求項5に記載の撮像素子。
  7.  前記素子形成部の上端側であって、平面視で前記キャリア吸収部に隣接して設けられた素子分離部を更に備え、
     前記第2壁部は、前記素子分離部と接して設けられている
     請求項5又は6に記載の撮像素子。
  8.  前記第1壁部の濃度は、前記第2壁部の濃度よりも高い
     請求項5から7のいずれか一項に記載の撮像素子。
  9.  前記第1壁部は、積層して複数設けられ、
     複数の前記第1壁部は、前記受光素子よりも前記基板側に向かうほどそれぞれの領域が狭くなる
     請求項1から8のいずれか一項に記載の撮像素子。
  10.  前記キャリア吸収部は、フローティングディフュージョン、選択トランジスタのソースまたはドレイン、リセットトランジスタのソースまたはドレイン、増幅トランジスタのソースまたはドレイン、複数の前記フローティングディフュージョンを連結するスイッチのソースまたはドレインおよび電源の拡散領域の少なくとも1つを含む
     請求項1から9のいずれか一項に記載の撮像素子。
  11.  前記キャリア吸収部は、予め定められた電位に設定されている
     請求項1から10のいずれか一項に記載の撮像素子。
  12.  第1導電型の基板を用意することと、
     前記基板よりも低濃度の第1導電型の素子形成部を前記基板上に形成することと、
     前記基板内または素子形成部内に、前記基板よりも高濃度の第1導電型の第1壁部と、前記第1壁部が設けられていないキャリア通過領域とを形成することと、
     前記素子形成部に、受光素子と、前記受光素子とは異なる領域に設けられた第2導電型のキャリア吸収部とを形成して、前記受光素子と前記キャリア吸収部とをそれぞれ有する複数の画素部を2次元状に配列させることとを含み、
     前記複数の画素部のうち少なくとも一つの画素部は、前記複数の画素部の配列方向において前記第1壁部の少なくとも一部と重なるように前記受光素子が形成される
     撮像素子の製造方法。
  13.  前記素子形成部を前記基板上に形成した後に、前記基板よりも高濃度の第1導電型の第2壁部を前記素子形成部に形成することを更に含む
     請求項12に記載の撮像素子の製造方法。
  14.  前記素子形成部を前記基板上に形成することと、前記第2壁部を前記素子形成部に形成することを複数回繰り返す
     請求項13に記載の撮像素子の製造方法。
PCT/JP2017/046792 2017-01-30 2017-12-26 撮像素子および撮像素子の製造方法 WO2018139154A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17894269.4A EP3576150B1 (en) 2017-01-30 2017-12-26 Image-capture element and method for manufacturing image-capture element
JP2018564179A JP6992768B2 (ja) 2017-01-30 2017-12-26 撮像素子および撮像素子の製造方法
CN201780071882.2A CN109983582B (zh) 2017-01-30 2017-12-26 摄像元件及摄像元件的制造方法
US16/507,218 US10636819B2 (en) 2017-01-30 2019-07-10 Imaging device and manufacturing method thereof
US16/860,782 US20200295061A1 (en) 2017-01-30 2020-04-28 Imaging device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-014915 2017-01-30
JP2017014915 2017-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/507,218 Continuation US10636819B2 (en) 2017-01-30 2019-07-10 Imaging device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2018139154A1 true WO2018139154A1 (ja) 2018-08-02

Family

ID=62978252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046792 WO2018139154A1 (ja) 2017-01-30 2017-12-26 撮像素子および撮像素子の製造方法

Country Status (6)

Country Link
US (2) US10636819B2 (ja)
EP (1) EP3576150B1 (ja)
JP (1) JP6992768B2 (ja)
CN (1) CN109983582B (ja)
TW (1) TWI765949B (ja)
WO (1) WO2018139154A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3095720A1 (fr) * 2019-04-30 2020-11-06 Stmicroelectronics (Research & Development) Limited Pixels de capteur d’image présentant un pas réduit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019486A (ja) * 2004-07-01 2006-01-19 Nikon Corp 増幅型固体撮像素子
JP2008098601A (ja) 2006-10-13 2008-04-24 Magnachip Semiconductor Ltd 改善されたカラークロストークを有するイメージセンサ
US8946845B1 (en) * 2011-02-02 2015-02-03 Aptina Imaging Corporation Stacked pixels for high resolution CMOS image sensors with BCMD charge detectors
US20150054997A1 (en) * 2013-08-23 2015-02-26 Aptina Imaging Corporation Image sensors having pixel arrays with non-uniform pixel sizes
JP2015188049A (ja) * 2014-03-14 2015-10-29 キヤノン株式会社 固体撮像装置及び撮像システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021875A (ja) * 2006-07-13 2008-01-31 Toshiba Corp 固体撮像装置
US8072015B2 (en) * 2007-06-04 2011-12-06 Sony Corporation Solid-state imaging device and manufacturing method thereof
US7915637B2 (en) * 2008-11-19 2011-03-29 Nantero, Inc. Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same
JP5471174B2 (ja) * 2009-08-28 2014-04-16 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器
JP5971565B2 (ja) * 2011-06-22 2016-08-17 パナソニックIpマネジメント株式会社 固体撮像装置
JP6491509B2 (ja) * 2015-03-25 2019-03-27 キヤノン株式会社 固体撮像装置及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019486A (ja) * 2004-07-01 2006-01-19 Nikon Corp 増幅型固体撮像素子
JP2008098601A (ja) 2006-10-13 2008-04-24 Magnachip Semiconductor Ltd 改善されたカラークロストークを有するイメージセンサ
JP2013219382A (ja) * 2006-10-13 2013-10-24 Intellectual Venturesii Llc 改善されたカラークロストークを有するイメージセンサ
US8946845B1 (en) * 2011-02-02 2015-02-03 Aptina Imaging Corporation Stacked pixels for high resolution CMOS image sensors with BCMD charge detectors
US20150054997A1 (en) * 2013-08-23 2015-02-26 Aptina Imaging Corporation Image sensors having pixel arrays with non-uniform pixel sizes
JP2015188049A (ja) * 2014-03-14 2015-10-29 キヤノン株式会社 固体撮像装置及び撮像システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3095720A1 (fr) * 2019-04-30 2020-11-06 Stmicroelectronics (Research & Development) Limited Pixels de capteur d’image présentant un pas réduit

Also Published As

Publication number Publication date
CN109983582A (zh) 2019-07-05
CN109983582B (zh) 2023-10-20
TWI765949B (zh) 2022-06-01
EP3576150A4 (en) 2020-05-20
JP6992768B2 (ja) 2022-01-13
US10636819B2 (en) 2020-04-28
US20200295061A1 (en) 2020-09-17
JPWO2018139154A1 (ja) 2019-11-21
EP3576150B1 (en) 2021-11-03
US20190333948A1 (en) 2019-10-31
EP3576150A1 (en) 2019-12-04
TW201832353A (zh) 2018-09-01

Similar Documents

Publication Publication Date Title
US20200357832A1 (en) Solid-state image sensor and method of manufacturing the same
US7855407B2 (en) CMOS image sensor and method for manufacturing the same
US8829636B2 (en) Solid-state image pickup deviceand fabrication process thereof
US20100207231A1 (en) Solid-state image device and method of manufacturing the same
JP5818452B2 (ja) 固体撮像装置
JP2015170650A (ja) 固体撮像装置及びその製造方法
JP2015220339A (ja) 固体撮像装置
WO2018139154A1 (ja) 撮像素子および撮像素子の製造方法
JP2007036034A (ja) 固体撮像素子の製造方法及び固体撮像素子
JP2018037672A (ja) 固体撮像装置およびカメラ
JP2012191097A (ja) 固体撮像装置
JP2015005699A (ja) 撮像装置、および、撮像システム
JP6012831B2 (ja) 固体撮像装置
WO2015190026A1 (ja) 固体撮像素子、及びその製造方法
JP2012069641A (ja) 固体撮像装置及びその製造方法
KR20110079329A (ko) 이미지 센서 및 그 제조방법
KR20120120669A (ko) Cmos 이미지 센서
JP2013239473A (ja) 固体撮像装置および固体撮像装置の製造方法
JP2011222802A (ja) 固体撮像素子及びその製造方法
JP2012231026A (ja) 固体撮像装置
CN114937675A (zh) 图像传感器及其制备方法
KR20100138325A (ko) 이미지 센서 및 그 제조 방법
JP2011198851A (ja) 固体撮像素子、撮像装置
KR20110079340A (ko) 이미지 센서 및 그 제조방법
KR20090044607A (ko) 이미지센서 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017894269

Country of ref document: EP

Effective date: 20190830