WO2018137507A1 - 物理分相动态聚合物及其应用 - Google Patents

物理分相动态聚合物及其应用 Download PDF

Info

Publication number
WO2018137507A1
WO2018137507A1 PCT/CN2018/072460 CN2018072460W WO2018137507A1 WO 2018137507 A1 WO2018137507 A1 WO 2018137507A1 CN 2018072460 W CN2018072460 W CN 2018072460W WO 2018137507 A1 WO2018137507 A1 WO 2018137507A1
Authority
WO
WIPO (PCT)
Prior art keywords
atom
group
boron
bond
segment
Prior art date
Application number
PCT/CN2018/072460
Other languages
English (en)
French (fr)
Inventor
梁愫
郭琼玉
张欢
林淦
欧阳勇
翁文桂
Original Assignee
翁秋梅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 翁秋梅 filed Critical 翁秋梅
Publication of WO2018137507A1 publication Critical patent/WO2018137507A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/08Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/021Block or graft polymers containing only sequences of polymers of C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • C08G81/027Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyester or polycarbonate sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to a dynamic polymer, and in particular to a physically phased dynamic polymer comprising a polymer molecule comprising a boron-containing dynamic covalent bond and having a hard segment and a soft segment.
  • Crosslinking is a general method in which a polymer forms a three-dimensional network structure to achieve effects such as improved polymer elasticity, thermal stability, and mechanical properties.
  • Crosslinking can be chemical (covalent) crosslinking or physical (non-covalent/supramolecular) crosslinking.
  • Physical cross-linking has become a direction for the development of polymer elastomers because it is particularly useful for improving the processing properties of polymer elastomers and the like.
  • the cross-linked polymer tends to be soft and the mechanical properties are poor;
  • the crosslink density is high (the chain between the crosslinks is longer/the crosslink function is higher), the crosslinked polymer is often hard and brittle and cannot be used as an elastomer; and in order to keep the material stable
  • the physical cross-linking temperature of the physical cross-linking needs to be higher than the working temperature of the material. Therefore, physical cross-linking lacks dynamics at the working temperature of the material.
  • the present invention provides a physically phase-separated dynamic polymer.
  • the phase-separated physical cross-linking formed by the hard segment of the polymer molecule maintains the thermal stability, mechanical properties, dimensional stability, etc. of the polymer, and introduces a dynamic boron-containing dynamic covalent bond and a selectively present supramolecular hydrogen.
  • the bond function can further increase the crosslink density and enhance its stability and mechanical properties.
  • the dynamic covalent bond containing boron and the cleavable and re-formation of the selectively present supramolecular hydrogen bond make up for the crystallization/phase separation based on the use temperature.
  • the lack of dynamics of physical cross-linking makes the polymer itself have a certain self-healing property and good toughness; the presence of dynamic bonds can also consume stress, increase the toughness of the material and provide damping, shock absorption and impact resistance.
  • a physically phase-separated dynamic polymer comprising a dynamic polymer molecule having both a hard segment and a soft segment, the hard segments of the dynamic polymer molecule being intermixed or independently or both Partially intermixed and partially independently form a crystalline phase or a phase incompatible with a soft segment or a phase having both a crystalline phase and a soft segment, and forming a solid phase-based physical cross-linking or simultaneous intersection a union polymerization; each soft segment of the dynamic polymer molecule is in an amorphous state; the dynamic polymer molecule contains at least one boron-containing dynamic covalent bond in the molecule, the boron-containing dynamic covalent bond Contains the structure shown below:
  • X is selected from the group consisting of a boron atom, a carbon atom, and a silicon atom; wherein Expressed as at least one of a group and a linkage; wherein a is associated with X Number, when X is a boron atom, a is 2; when X is a carbon atom and a silicon atom, a is 3; the boron-containing dynamic covalent bond is passed through at least one of Access to the polymer chain.
  • the dynamic polymer molecules having both the hard segment A and the soft segment B contained in the physical phase-separated dynamic polymer have one or more of the structures described in the following formulas. The combination:
  • the formula (1B) is a linear structure, and the two end segments are hard segments, and n is the number of hard segment-soft segment alternating units, which is greater than or equal to 0;
  • the formula (1D) is a branched structure, x is the number of hard segment branch chain units connected to the soft segment B; n is the number of hard segment-soft segment alternating units, which is greater than or equal to 0; y is connected in soft The number of hard segment-soft segment branch chain units on segment B; x, y is greater than or equal to 0, and the sum of x and y is greater than or equal to 3;
  • the formula (1E) is a branched structure, x is the number of hard segment branch chain units connected to the soft segment B; n is the number of hard segment-soft segment alternating units, which is greater than or equal to 0; y is connected in soft The number of branch-chain units on the segment B where the hard segment-soft segment alternates and the hard segment is the end segment; x, y is greater than or equal to 0, and the sum of x and y is greater than or equal to 3;
  • formula (1F) is a branched structure
  • x is the number of soft segment branch chain units connected to hard segment A
  • n is the number of soft segment-hard segment alternating units, which is greater than or equal to 0
  • y is connected in hard The number of soft segment-hard segment branch chain units on segment A;
  • formula (1G) is a branched structure
  • x is the number of soft segment branch chain units connected to hard segment A
  • n is the number of soft segment-hard segment alternating units, which is greater than or equal to 0
  • y is connected in hard The number of branch-chain units on the segment A where the soft segment-hard segment alternates and the soft segment is the end segment
  • x, y is greater than or equal to 0, and the sum of x and y is greater than or equal to 3
  • At least one soft segment B contains a hydrogen bonding group having both a donor and a acceptor
  • the formula (1H) is a cyclic structure
  • n is the number of hard segment-soft segment alternating units, which is greater than or equal to 1
  • the soft segment B contains hydrogen bonds having both a donor and a acceptor. Group.
  • a physically phased dynamic polymer is present in the soft segment backbone backbone of the dynamic polymer molecule.
  • the boron-containing dynamic covalent bond is selected from the group consisting of an organic boronic acid monoester bond, an inorganic boronic acid monoester bond, an organoboronic acid cyclic ester bond, an inorganic boronic acid cyclic ester bond, and an organoborate silicon ester bond.
  • an inorganic boronic acid silicate bond At least one of an inorganic boronic acid silicate bond, an organic boronic anhydride bond, an inorganic boronic anhydride bond, and an organic-inorganic boronic anhydride bond;
  • organoborate monoester bond is selected from at least one of the following structures:
  • L is a direct bond (including a single bond, a double bond) At least a divalent linking group other than a bond, a triple bond, a methylene group or a substituted methylene group;
  • the inorganic boronic acid monoester bond is selected from at least one of the following structures:
  • L is at least divalent in addition to a direct bond (including a single bond, a double bond, a triple bond), a methylene group or a substituted methylene group.
  • each Z atom is independent of each; each Z atom is independently selected from a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a sulfur atom, a nitrogen atom, and a boron atom. a silicon atom, and at least one Z atom in the same formula is selected from the group consisting of a sulfur atom, a boron atom, a nitrogen atom, and a silicon atom;
  • b is connected to Z The number, when Z is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, b is 0; when Z is a sulfur atom, b is 1; when Z is a nitrogen atom, a boron atom, b is 2; When Z is a silicon atom, b is 3;
  • organoborate cyclic ester bond is selected from at least one of the following structures:
  • one boron atom simultaneously forms a cyclic organoborate unit with two oxygen atoms, wherein the boron atom in the structure is bonded to one carbon atom through a boron-carbon bond, and at least one organic group passes through the boron-carbon bond. Connected to a boron atom;
  • inorganic boronic acid cyclic ester bond is selected from at least one of the following structures:
  • one boron atom forms a cyclic inorganic boronic acid ester unit with two oxygen atoms at the same time, and the boron atom in the structure is not directly connected to any carbon atom;
  • the Z atom is selected from a sulfur atom, a boron atom, a nitrogen atom, a silicon atom.
  • b is connected to Z a number; when Z is a sulfur atom, b is 1; when Z is a nitrogen atom, a boron atom, b is 2; when Z is a silicon atom, b is 3;
  • the linkers L 0 are each independently of any of the following structures, wherein * represents a position to which an oxygen atom is attached:
  • organoboronic acid silicate bond is selected from at least one of the following structures:
  • At least one carbon atom in the structure is bonded to the boron atom through a boron-carbon bond, and at least one organic group is bonded to the boron atom through the boron-carbon bond;
  • the inorganic boronic acid silicate bond is selected from at least one of the following structures:
  • each Z atom is independent of each; each Z atom is independently selected from a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a sulfur atom, a nitrogen atom, and a boron atom. a silicon atom, and at least one Z atom in the same formula is selected from the group consisting of a sulfur atom, a boron atom, a nitrogen atom, and a silicon atom;
  • b is connected to Z The number, when Z is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, b is 0; when Z is a sulfur atom, b is 1; when Z is a nitrogen atom, a boron atom, b is 2; When Z is a silicon atom, b is 3;
  • organic boronic anhydride bond has the following structure:
  • At least one carbon atom in the structure is bonded to the boron atom through a boron-carbon bond, and at least one organic group is bonded to the boron atom through the boron-carbon bond;
  • the inorganic boronic anhydride bond is selected from at least one of the following structures:
  • each Z atom is independent of each; each Z atom is independently selected from a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a sulfur atom, a nitrogen atom, and a boron atom. a silicon atom, and at least one Z atom in the same formula is selected from the group consisting of a sulfur atom, a boron atom, a nitrogen atom, and a silicon atom;
  • b is connected to Z The number, when Z is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, b is 0; when Z is a sulfur atom, b is 1; when Z is a nitrogen atom, a boron atom, b is 2; When Z is a silicon atom, b is 3;
  • organic-inorganic boronic anhydride bond is selected from at least one of the following structures:
  • one of the boron atoms in the structure is directly bonded to at least one carbon atom through a boron-carbon bond, and at least one organic group is bonded to the boron atom through a boron-carbon bond formed; the other boron atom in the structure is not Carbon atoms are directly connected;
  • each Z atom is independent of each; each Z atom is independently selected from a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a sulfur atom, a nitrogen atom, and a boron atom. a silicon atom, and at least one Z atom in the same formula is selected from the group consisting of a sulfur atom, a boron atom, a nitrogen atom, and a silicon atom;
  • b is connected to Z The number, when Z is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, b is 0; when Z is a sulfur atom, b is 1; when Z is a nitrogen atom, a boron atom, b is 2; When Z is a silicon atom, b is 3.
  • the main chain of the hard segment of the dynamic polymer molecule is selected from the group consisting of a carbon chain structure and a carbon hetero chain structure; and the main chain of the soft segment of the dynamic polymer is selected from the carbon chain structure. , carbon hetero chain structure, elemental hetero chain structure, carbon hetero chain structure.
  • the hard segment of the dynamic polymer molecule is selected from the group consisting of an amorphous polymer segment having a high glass transition temperature, a polymer segment rich in a hydrogen bond group, or a group. a polymer segment or group rich in a crystalline phase.
  • the soft segment of the dynamic polymer molecule further contains a hydrogen bond group containing both a hydrogen bond donor and a hydrogen bond acceptor.
  • the physical phase-separated dynamic polymer or composition containing the same has any of the following properties: ordinary solids, elastomers, gels, foams.
  • a physically phase-separated dynamic polymer thermoplastic elastomer comprising a dynamic polymer molecule having both a hard segment and a soft segment, the hard segments of the dynamic polymer molecule being intermixed or independently or mutually mixed and independently Forming a crystalline phase or a phase incompatible with the soft segment or a crystalline phase and a phase incompatible with the soft segment; each soft segment of the dynamic polymer molecule is amorphous; the dynamic polymer molecule is The molecule contains at least one boron-containing dynamic covalent bond, and the boron-containing dynamic covalent bond has a structure represented by the following formula:
  • X is selected from the group consisting of a boron atom, a carbon atom, and a silicon atom; wherein Expressed as at least one of a group and a linkage; wherein a is associated with X Number, when X is a boron atom, a is 2; when X is a carbon atom and a silicon atom, a is 3; the boron-containing dynamic covalent bond is passed through at least one of Access to the polymer chain.
  • the boron-containing dynamic covalent bond in the physically phased dynamic polymeric thermoplastic elastomer is present in the soft segment backbone backbone of the dynamic polymer molecule.
  • the boron-containing dynamic covalent bond in the physically phase-separated dynamic polymer thermoplastic elastomer is selected from the group consisting of an organoborate monoester bond, an inorganic boronic acid monoester bond, an organoborate cyclic ester bond, At least one of an inorganic boronic acid cyclic ester bond, an organoborate silicon ester bond, an inorganic boronic acid silicon ester bond, an organic boronic anhydride bond, an inorganic boronic anhydride bond, and an organic-inorganic boronic anhydride bond.
  • the soft transition temperatures of the various soft segments of the dynamic covalent polymer molecules in the physically phased dynamic polymeric thermoplastic elastomer are each no greater than 25 °C.
  • the soft segment of the dynamic polymer molecule in the physically phased dynamic polymeric thermoplastic elastomer contains hydrogen bonding groups that both contain a hydrogen bond donor and a hydrogen bond acceptor.
  • the formulation component constituting the physical phase separation dynamic polymer or the physical phase separation dynamic polymer thermoplastic elastomer further includes any one or any of the following additives or usable materials.
  • Other polymers, additives, fillers are selected from any one or more of the following: a natural polymer compound, a synthetic resin, a synthetic rubber, a synthetic fiber; and the auxiliary agent is selected from any one or more of the following: a catalyst , initiator; stabilizer, including antioxidants, light stabilizers, heat stabilizers, dispersants, emulsifiers, flame retardants, chain extenders, tougheners, coupling agents, solvents, lubricants, mold release Agent, plasticizer, thickener, thixotropic agent, leveling agent, coloring agent, fluorescent whitening agent, matting agent, antistatic agent, bactericidal fungicide, foaming agent, nucleating agent, rheological agent, a dynamic regulator; the filler is selected from any one or
  • the physical phase separation dynamic polymer or physical phase separation dynamic polymer thermoplastic elastomer is applied to the following materials or articles: shock absorbers, cushioning materials, impact resistant materials, sports protection Products, military and police protective products, self-healing coatings, self-healing sheets, self-healing adhesives, self-healing sealing materials, ductile materials, tough elastomer materials, laminated adhesives, self-adhesive toys, energy storage device materials , shape memory materials, force sensors.
  • An energy absorbing method for providing a physically phased dynamic polymer thermoplastic elastomer and absorbing energy as an energy absorbing material the physical phase separation dynamic polymer thermoplastic elastomer comprising both hard segments and soft a dynamic polymer molecule of a segment, wherein the hard segments of the dynamic polymer molecule are mixed with each other or are independently or mutually mixed and independently form a crystalline phase or a phase or crystalline phase incompatible with the soft segment and a soft segment An incompatible phase; each soft segment of the dynamic polymer molecule is in an amorphous state; the dynamic polymer molecule contains at least one boron-containing dynamic covalent bond in the molecule, and the boron-containing dynamic The valence bond contains a structure as shown below:
  • X is selected from the group consisting of a boron atom, a carbon atom, and a silicon atom; wherein Expressed as at least one of a group and a linkage; wherein a is associated with X Number, when X is a boron atom, a is 2; when X is a carbon atom and a silicon atom, a is 3; the boron-containing dynamic covalent bond is passed through at least one of Access to the polymer chain.
  • the present invention has the following beneficial effects:
  • the physical phase separation dynamic polymer of the present invention comprises a dynamic polymer molecule having a hard segment and a soft segment, which simultaneously contains a physical phase separation and a boron-containing dynamic covalent bond, and the physical phase separation has a non-covalent bond property.
  • the boron-containing dynamic covalent bond has dynamic covalent properties, which combines the properties of non-covalent bonds and dynamic covalent bonds.
  • the organic combination of the two can achieve rich synergistic and orthogonal material properties.
  • Physical phase separation is generally more sensitive to temperature and solvent, while boron-containing dynamic covalent bonds are generally highly dynamic, ie, capable of rapid switching between keying and breaking.
  • Physical phase separation is convenient as a more stable polymerization/crosslinking junction, while boron-containing dynamic covalent bonds are used to provide chain dynamics.
  • boron-containing dynamic covalent bonds are used to provide chain dynamics.
  • a solid phase based on crystallization/phase separation forms a phase-separated physical cross-linking and provides a balanced structure for the material while a boron-containing dynamic covalent bond is in the soft segment, a dynamic elastomer/gel can be obtained.
  • thermoplastic elastomers Making full use of the dynamics of the boron-containing dynamic covalent bond can impart the dilatancy performance of the polymer, and it can protect against shock and shock absorption, etc.
  • the material can be self-repairing after being damaged by external forces. Since the physical phase separation can be dissociated by heating and/or solvent, even if physical cross-linking based on physical phase separation is formed, the material has good processing properties, so that self-repairing, shaping, recycling, and re-achieving are performed to a large extent. Process utilization makes polymer materials have a wider range of applications and longer service life, which is not possible in existing polymer systems. In addition, by selectively controlling other conditions (such as adding an auxiliary agent, adjusting the reaction temperature, etc.), the dynamic reversible equilibrium can be accelerated or quenched to a desired state in an appropriate environment.
  • other conditions such as adding an auxiliary agent, adjusting the reaction temperature, etc.
  • an optional supramolecular hydrogen bonding action may be used on the one hand to supplement the phase-separated physical cross-linking and on the other hand to provide additional Dynamic.
  • the hydrogen bond group is on the side group and/or the side chain of the soft segment, the hydrogen bond group is a group hanging on the side of the skeleton chain, and the movement of the group and the chain is more free, and thus the dynamics are stronger. It is more conducive to the effective dissipation of external forces, and is also particularly conducive to self-repair after the external force is lifted. At the same time, hydrogen bonding is easily dissociated at high temperatures, and the material maintains good processing properties, which is not achievable in existing polymer systems.
  • a physical phase separation dynamic polymer of the present invention has good controllability.
  • parameters such as raw materials and preparation methods, it is possible to prepare a controllable polymer having a chemical structure, a topological structure, a molecular weight, etc., and obtain a dynamic polymer having different apparent characteristics, adjustable properties, and a wide range of uses, particularly a thermoplastic elastomer;
  • the type, number and position of boron-containing dynamic covalent bonds and optional hydrogen bonding groups By controlling the type, number and position of boron-containing dynamic covalent bonds and optional hydrogen bonding groups, the dynamics of dynamic reversible bonds in polymer materials can be combined and regulated in a wider range, and the structure can be more abundant.
  • the dynamic covalent bond of boron and the ratio of hydrogen bonding components can prepare dynamic polymers with different mechanical properties, different energy absorption effects, different toughness, different self-repairing properties, etc.;
  • the segmental thermal transition temperature allows the preparation of dynamic polymers with shape memory for different temperatures. This is even more difficult to achieve in traditional polymer systems.
  • the present invention relates to a physically phase-separated dynamic polymer (hereinafter referred to as "physical phase-separated dynamic polymer” simply referred to as “dynamic polymer”), which comprises a dynamic polymer molecule having both a hard segment and a soft segment, said dynamic polymerization
  • the hard segments of the molecules of the molecules are intermixed with each other and/or independently form a crystalline phase and/or a phase incompatible with the soft segments to form a solid segment-based phase-separated physical cross-linking or simultaneous cross-linking and polymerization;
  • Each soft segment of the dynamic polymer molecule is in an amorphous state;
  • the dynamic polymer molecule contains at least one boron-containing dynamic covalent bond in the molecule, and optionally contains at least one capable of forming a dynamic supramolecular hydrogen The hydrogen bond group of the bond.
  • the "polymerization” described in the present invention is a chain growth process/action, that is, formation of a straight chain, a branch, a ring, and a second by an intermolecular reaction/action (including a covalent chemical reaction and a non-covalent/supermolecular action).
  • Dimensional/three-dimensional clusters polymers of three-dimensional infinite network structures.
  • crosslinking refers to a process of forming a product having a three-dimensional infinite network shape by intermolecular and/or intramolecular interaction by covalent bond and/or non-covalent/supermolecular action.
  • cross-linking In the cross-linking process, the polymer chains generally grow in the two-dimensional/three-dimensional direction, gradually forming clusters (which can be two-dimensional or three-dimensional), and then develop into three-dimensional infinite networks. Therefore, cross-linking can be considered as a special form of polymerization.
  • the degree of cross-linking when just reaching a three-dimensional infinite network is called a gel point, also known as a percolation threshold.
  • the crosslinked structure of the present invention comprises only a three-dimensional infinite network structure above the gel point, and the non-crosslinked structure comprises a two-dimensional/three-dimensional cluster structure below the gel point and a line type with a degree of cross-linking of zero.
  • Non-linear structure comprises only a three-dimensional infinite network structure above the gel point, and the non-crosslinked structure comprises a two-dimensional/three-dimensional cluster structure below the gel point and a line type with a degree of cross-linking of zero.
  • the dynamic polymer molecule having both a hard segment and a soft segment contains a total number of hard segments and soft segments of 2 or greater, i.e., contains at least one hard segment and at least one soft segment.
  • the hard segments are intermixed with each other and/or independently form a crystalline phase and/or a phase that is incompatible with the soft segments to form a solid segment-based phase-separated physical cross-linking or simultaneous cross-linking and polymerization.
  • the physical polymerization causes the polymer chain to grow (including cross-linking); the physical cross-linking gives the polymer a cross-linking physical property similar to covalent cross-linking, including but not limited to an apparent molecular weight increase, elasticity, Dimensional stability, mechanical strength, hard segmentation, physical cross-linking are particularly suitable for providing a balanced structure of the dynamic polymer of the present invention, i.e., dimensional stability.
  • the phase-separated physical cross-linking formed by the crystallization/phase separation of the hard segment in the present invention means that in the case where the boron-containing dynamic covalent bond and the selectively present hydrogen bond are completely dissociated.
  • the crosslinked structure can be formed by merely relying on the crosslinked structure which can be formed by the phase separation itself, or the phase separation and the boron-containing dynamic covalent bond and the selectively existing hydrogen bond.
  • the number of hard segments is greater than or equal to 2 and is connected to each other through the soft segments, the crystallization/phase separation of the hard segments will more effectively form the physical cross-linking between the phases, which can effectively provide the strength and polymerization of the phase-separated physical cross-linking.
  • the equilibrium structure of the material and the mechanical properties of the physical phase-separating polymer therefore preferably containing at least two hard segments and at least one soft segment forming a hard segment-soft segment alternating structure.
  • the chain topology of the polymer molecule is not particularly limited, and may be a linear structure, a branched structure (including but not limited to a star shape, an H type, a dendritic shape, a comb shape, a hyperbranched structure), or a cyclic structure (including Not limited to monocyclic, polycyclic, bridged, nested rings), two-dimensional/three-dimensional cluster structures, particles crosslinked above gel points, and combinations of two or any of them, preferably linear and branched structure.
  • a branched structure a portion of the hard segment/soft segment may be on the main chain and a portion of the hard segment/soft segment may be on the side chain/branched/furcation chain.
  • each hard segment in the dynamic polymer molecule having both a hard segment and a soft segment, each hard segment may be the same or different, and each soft segment may be the same or different; wherein the hard segment and the soft segment may be Each of which independently comprises two or more identical or different sub-segments; the sub-segments may be smaller segments in the same chain as the main chain, or may be in side chains, branches, and branched chains. Smaller segments above; the differences include, but are not limited to, different chemical compositions, different molecular weights, different topologies, and different spatial configurations.
  • each hard segment, soft segment, and sub-segment thereof may be a homopolymer segment or a copolymer segment, and may be a homopolymer cluster or a copolymer cluster, which may be The crosslinked particles above the gel point of the poly or copolymerization may also be a functional group and any combination of the above.
  • the topology of any segment in the hard segment is not particularly limited, and may be a linear structure or a branched structure (including but not limited to star, H, dendritic, comb, hyperbranched ), cyclic structures (including but not limited to monocyclic, polycyclic, bridged, nested rings), two-dimensional/three-dimensional cluster structures, particles crosslinked above gel points, and combinations of two or more It is preferably a linear and branched structure.
  • the topology of any segment in the soft segment is not particularly limited, and may be a linear structure, a branched structure (including but not limited to a star shape, an H type, a dendritic shape, a comb shape, a hyperbranched), and a ring structure (including Not limited to single-ring, multi-ring, bridged ring, nested ring), two-dimensional/three-dimensional cluster structure, particles crosslinked above gel point, and combinations of two or any of them, preferably linear, branched Structure and cluster structure.
  • the formula (1A) is a linear structure
  • Formula (1B) is a linear structure, and the two end segments are hard segments, and n is the number of hard segment-soft segment alternating units, which is greater than or equal to 0;
  • Formula (1D) is a branched structure, x is the number of hard segment branch chain units connected to soft segment B; n is the number of hard segment-soft segment alternating units, which is greater than or equal to 0; y is connected to soft segment B Upper hard segment - the number of soft segment branch chain units; x, y is greater than or equal to 0, and the sum of x, y is greater than or equal to 3;
  • Formula (1E) is a branched structure, x is the number of hard segment branch chain units connected to soft segment B; n is the number of hard segment-soft segment alternating units, which is greater than or equal to 0; y is connected to soft segment B Upper hard segment - the number of branching chain units in which the soft segments are alternated and the hard segment is the end segment; x, y are greater than or equal to 0, and the sum of x and y is greater than or equal to 3;
  • the structure of the dynamic polymer molecule having both the hard segment and the soft segment of the present invention may also be any combination of the above-exemplified preferred structures and any other suitable structure, and those skilled in the art may according to the logic of the present invention. The context is given reasonably.
  • the boron-containing dynamic covalent bond may be present in the dynamic polymer molecule at a position including but not limited to: a soft segment backbone backbone, a soft segment side chain/branched/branched chain backbone , soft segment main chain side group, soft segment main chain end group, soft segment side chain / branch chain / bifurcation chain side group, soft segment side chain / branch chain / bifurcation chain end group, hard segment main chain skeleton, hard segment side chain / branch chain / bifurcated chain skeleton, hard segment main chain side group, hard segment main chain end group, hard segment side chain / branch / bifurcation chain side group, hard segment side chain / branch chain / bifurcated chain end group, soft segment and hard segment A linking group of a linking group, a main chain, and a side chain/branched/bifurcation chain. It is preferably present on the soft segment backbone skeleton and the linking groups of the soft segment and the hard segment, and more preferably
  • the "backbone” is the main chain of the polymer molecule/segment, usually the chain with the most links;
  • the “side chain/branched” refers to the same polymer backbone The chain structure in which the skeletons are connected and distributed on the side of the main chain skeleton; wherein the "bifurcation chain” may be a side chain/branched chain or other chain structure branched from any chain.
  • the "side group” refers to a chemical group which is linked to the polymer chain skeleton and distributed on the side of the chain skeleton.
  • the term “end group” refers to a chemical group at the end of any polymer chain.
  • side chain / branch / bifurcation chain which may have a multi-stage structure, that is, the side chain may continue to have a side chain, and the side chain of the side chain may continue to have Side chains, others are similar.
  • a side group and an end group specifically refer to a group having a molecular weight of not more than 1000 Da and a subunit group attached to the side of the polymer chain skeleton; and the specific molecular weight of the side chain/branched/bifurcation chain exceeds 1000Da segment.
  • the molecular weight of the side chain, the branched chain, and the branched chain exceeds 1000 Da, it is collectively referred to as a side chain unless otherwise specified.
  • the physical cross-linking/polymerization involved in the present invention is reversible, that is, the physical cross-linking/polymerization can be decrosslinked/depolymerized by physical crosslinking/polymerization under heating or in a good solvent or other suitable stimulation; Physical crosslinking/polymerization can be reformed under cooling conditions or in poor solvents or after de-stimulation.
  • the hard segment generally has a higher glass transition temperature and/or a crystalline phase formed than the soft segment and/or a thermal stability that is incompatible with the soft segment compared to the phase formed by the soft segment. And / or higher mechanical strength and / or lower solubility.
  • the dynamic polymer usually has a soft phase composed of a soft segment and a hard phase composed of a hard phase; however, different hard phases formed by different hard segments may also be incompatible, Different soft phases formed by different soft segments may also be incompatible, i.e., there may be two or even three or more incompatible phases in the dynamic polymer.
  • the phase topology (phase morphology) formed by the soft phase formed by the soft segment and the hard phase formed by the hard segment is not limited, and includes but is not limited to a spherical shape, a cylindrical shape, a spiral shape, a layer shape, and Combination. Any one phase, including different soft phases and between different hard phases, may be dispersed in another phase, may also form interpenetrating double/multiple continuous phases with other phases, or may be independent continuous phases. .
  • the soft phase is a continuous phase
  • the hard phase is a discontinuous phase dispersed in the soft phase, and more preferably the hard phase is dispersed in a soft phase in a spherical phase, so that the polymer can be more conveniently more Good softness and elasticity are more suitable for dynamic dynamic covalent bonds.
  • the discontinuous hard phase typically has a size of no greater than 100 microns, more preferably no greater than 10 microns, more preferably no greater than 1 micron, and most preferably no greater than 100 nanometers.
  • the total content of the hard segments of the dynamic polymer is not particularly limited, and is preferably between 1% and 50% by weight of the total weight, more preferably between 5% and 35% of the total weight, to facilitate formation of effective phase separation physical crosslinking. .
  • the cross-phase physical cross-linking degree formed by the hard segment may be above and below the gel point, and the dynamic covalent cross-linking formed by the dynamic covalent bond may also be above and below the gel point.
  • the supramolecular hydrogen bond crosslink formed by the selectively present hydrogen bond group can also be above and below its gel point; preferably the phase separation physical crosslink formed by the hard segment and the dynamic covalent crosslink formed by the boron-containing dynamic covalent bond.
  • the sum of the supramolecular hydrogen bonds formed by the selectively present hydrogen bond groups is above the total gel point of the polymer; preferably the degree of cross-linking of the phase-separated physical crosslink formed by the hard segment is at its gel point ( Containing gel points, the same below), to obtain a three-dimensional infinite network based on hard-phase phase-separated physical cross-linking, dynamic covalent cross-linking formed by boron-containing dynamic covalent bonds and selective hydrogen bond supramolecular cross-linking In the case of complete dissociation
  • the soft phase of the dynamic polymer may have no glass transition temperature or have one or more glass transition temperatures, preferably wherein at least one of the glass transition temperatures is not above the operating temperature range
  • the lower limit; the hard phase may also have no glass transition temperature, or have one or more glass transition temperatures, and may also have one or more phase-dissociated physical cross-linking temperatures, preferably any hard segment solution.
  • the phase physical crosslinking temperature is above the upper limit of the operating temperature range.
  • the dynamic polymer contains an auxiliary agent such as a plasticizer or a filler such that at least one glass transition temperature of the soft segment is not higher than the lower limit of the working temperature range, the decrosslinking temperature of the hard segment is higher than the operating temperature range.
  • the upper limit the composition also belongs to the "dynamic polymer” referred to in the present invention.
  • the glass transition temperature of each component of the entire soft segment is lower than the lower limit of the working temperature range, which is advantageous for obtaining a highly soft polymer, particularly an elastomer having a wide range of applications such as damping.
  • the elastomer thus obtained is not only dynamic, but also thermoplastic for molding and reworking. This thermoplastic dynamic elastomer has very important applications in terms of energy absorption, sealing and force sensing.
  • the glass transition temperature of each soft segment of the thermoplastic dynamic elastomer is more preferably not higher than 25 ° C, and can be used as an elastomer at room temperature.
  • the dynamics of the reversible phase separation physical crosslinking/polymerization of the hard segment is lower than the dynamics of the boron-containing dynamic covalent bond and the optional hydrogen bond in the soft segment, more preferably the hard segmentation
  • the decrosslinking temperature and mechanical stability of physical cross-linking are also higher than the thermal stability temperature and mechanical stability of the boron-containing dynamic covalent bond and the optional hydrogen bond in the soft segment, respectively. Therefore, it is convenient to achieve a hard segmented phase physical crosslinking to maintain a balanced structure, and the boron-containing dynamic covalent bond of the soft segment and the optional hydrogen bond provide a dynamic effect.
  • the chemical composition of the hard segment is not particularly limited, and may be selected from, but not limited to, a carbon chain structure, a carbon chain structure, a carbon chain structure, an element chain structure, an element hetero chain structure, A polymer segment of a carbon hetero chain structure.
  • the carbon chain structure is a structure in which a main chain skeleton contains only carbon atoms; and the carbon hetero chain structure has a structure in which a main chain skeleton contains both a carbon atom and any one or more hetero atoms, wherein the hetero atom
  • the structure includes, but is not limited to, silicon, boron, aluminum
  • the element chain structure is a structure in which the main chain skeleton contains only element atoms; the element hetero chain structure is a structure in which the main chain skeleton contains at least one hetero atom and at least one element atom;
  • the carbon element chain structure is a structure in which a main chain skeleton contains carbon atoms, hetero atoms, and element atoms.
  • the hard segment of the dynamic polymer may be a segment based on the following polymer segments, groups or any combination thereof, but is not limited thereto: an amorphous polymer segment having a high glass transition temperature Such as polystyrene, polyvinyl pyridine, hydrogenated polybornene, polyetheretherketone, polyaromatic carbonate, polysulfone, etc.; hydrogen-rich group-rich polymer segments, groups, such as polyamide, poly a peptide, a urea bond-rich segment, a urethane bond-rich segment, a ureidopyrimidinone-based segment, etc.; a crystalline phase-rich polymer segment, a group such as crystalline polyethylene, Crystalline polypropylene, crystalline polyester, crystalline polyether, liquid crystal polymer, liquid crystal group, etc.; ionic polymer segment,
  • an amorphous polymer segment having a high glass transition temperature, a polymer segment/group rich in hydrogen bond groups, a polymer segment/group rich in a crystalline phase, and a raw material are easily available.
  • the industrial preparation technology is mature; more preferably, it is an amorphous polymer having a high glass transition temperature, a polymer rich in a crystalline phase, and a polymer segment/group capable of forming a hydrogen bond of more than six teeth.
  • the soft segment polymer backbone may be selected from, but not limited to, a carbon chain structure, a carbon chain structure, a carbon chain structure, an element chain structure, an element hetero chain structure, and a carbon element chain structure.
  • the polymer segment preferably a carbon chain structure, a carbon hetero chain structure, an element hetero chain structure and a carbon hetero chain structure, is easy to obtain raw materials and has a mature preparation technique.
  • the soft segment polymer chain backbone (including the backbone and side chains/branched/branched chains) and/or pendant groups/end groups may optionally contain hydrogen bonding groups.
  • the hydrogen bond group contained therein does not crystallize and does not form phase separation from the soft segment, and the number of teeth is preferably not higher than four teeth.
  • the soft segment can be obtained by the reaction of the synthetic polymer and/or the natural polymer precursor (including introduction of the terminal group and/or the side group active site, introduction of the side group and/or side chain, grafting, chain extension, etc.), or It is obtained by polymerization of a monomer and/or a prepolymer/oligomer, or a combination of the above two methods.
  • the soft segment polymer chain backbone may be a segment based on the following polymers, but the invention is not limited thereto: acrylate polymers, saturated olefin polymers, unsaturated olefin polymers, halogen-containing olefins A homopolymer or copolymer of a polymer, a polyacrylonitrile polymer, a polyvinyl alcohol polymer, a silicone polymer, a polyether polymer, a polyester polymer, a biopolyester polymer or the like.
  • the boron-containing dynamic covalent bond contained in the dynamic polymer molecule contains a structure as shown in the formula (2A):
  • X is selected from the group consisting of a boron atom, a carbon atom, and a silicon atom; Represents any suitable group and/or linkage, including but not limited to any suitable hydrogen atom, hetero atom group, small molecular group having a molecular weight of not more than 1000 Da, polymer chain residues having a molecular weight greater than 1000 Da, and molecular weight not exceeding 1000 Da a small inorganic molecular chain residue, a linkage of inorganic macromolecular chain residues having a molecular weight greater than 1000 Da, and two linked to the same atom Can be connected to another atom at the same time to form a double bond, three connected to the same atom Can be connected to another atom at the same time to form a triple bond, of which two Connected to or not ringed, the ring may be selected from, but not limited to, an aliphatic ring, an ether ring, a condensed ring or a combination thereof, and may also be attached
  • boron-containing dynamic covalent bond is passed through at least one of the Access to the polymer chain.
  • the boron-containing dynamic covalent bond may more specifically include, but is not limited to, the following structures: an organic boronic acid monoester bond, an inorganic boronic acid monoester bond, an organic boronic acid cyclic ester bond, an inorganic boronic acid cyclic ester bond, and an organic A combination of a silicon borate bond, an inorganic boronic acid silicate bond, an organic boronic anhydride bond, an inorganic boronic anhydride bond, an organic-inorganic boronic anhydride bond, and various types of boron-containing dynamic covalent bonds described above.
  • the organoborate monoester bond described in the present invention preferably contains at least one of the following structures:
  • L is at least a direct bond (including a single bond, a double bond, a triple bond), a methylene group or a substituted methylene group.
  • the divalent linking group wherein L is a direct bond, a methylene group or a substituted methylene group to form a five-membered or six-membered ring, is considered to be an organoboronic acid cyclic ester bond in the present invention and is not included herein.
  • the organoborate monoester bond can pass Access to the polymer chain can also be accessed through the atoms/groups on L.
  • the atoms/groups on L can also be on both sides of C. Connected into a ring.
  • the organoborate monoester bond of the present invention is more preferably an aminomethylphenylboronic acid cyclic ester bond, which preferably contains at least one of the structures shown by the following formula:
  • the organoborate monoester bond described in the present invention is preferably formed by reacting an organoboronic acid unit with a monohydrocarbyl hydroxyl group.
  • the organoboronic acid group has a structure in which a boron atom is directly connected to at least one carbon atom through a boron-carbon bond, and at least one organic group is bonded to the boron atom through a boron-carbon bond formed, and the boron atom is simultaneously connected At least one boronic hydroxyl group or a group or atom hydrolyzable to form a boronic hydroxyl group;
  • the organoboronic acid based moiety may be selected from, but not limited to, an organic boronic acid group, an organic boronic acid ester group, an organic borate group, an organoboron. base.
  • organoboronic acid group preferably contains at least one of the following structures:
  • organoborate group preferably contains at least one of the following structures:
  • R 1 , R 2 , and R 3 are a monovalent organic group or a monovalent organosilicon group directly bonded to an oxygen atom, which are directly bonded to an oxygen atom through a carbon atom or a silicon atom, each of which is independently selected from the following Any structure: a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, a small molecular silane group having a molecular weight of not more than 1000 Da, a polymer chain residue having a molecular weight of more than 1000 Da, preferably a small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a molecular weight of not more than 1000 Da a small molecular silane group, more preferably a small molecular hydrocarbon group having a carbon number of not more than 4 and a small molecular silane group having a molecular weight of not more than 200 Da; R 4 is a divalent organic group or a divalent organic silicon directly linked to two oxygen atom
  • a group directly connected to an oxygen atom through a carbon atom or a silicon atom which is selected from any one of the following structures: a divalent small molecule alkylene group having a molecular weight of not more than 1000 Da, a divalent small molecule silylene group having a molecular weight of not more than 1000 Da, a divalent polymer chain residue having a molecular weight of more than 1000 Da, preferably a small molecular alkylene group having a molecular weight of not more than 1000 Da, and a small molecular silyl group having a molecular weight of not more than 1000 Da, more preferably Is methylene, ethylene, substituted methylene, substituted ethylene and a molecular weight not exceeding 200Da of small molecule silane groups.
  • organoborate group preferably contains at least one of the following structures:
  • M is any suitable metal element in the periodic table or any suitable ionic group
  • n is a valence of M, preferably +1 valence, +2 valence, +3 valence, such as lithium ion, potassium ion, sodium Ions, magnesium ions, calcium ions, iron ions, copper ions and ammonium ions.
  • organoboron haloalkyl group preferably contains at least one of the following structures:
  • R 5 , R 6 and R 7 are each independently selected from a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • organoboronic acid radicals are exemplified below, but the invention is not limited thereto:
  • x, y are a fixed value or an average value, x is 0 or an integer greater than or equal to 1, and y is an integer greater than or equal to 1;
  • it is linked to other reactive groups, facilitates access to the dynamic polymer by ordinary covalent bonds, or is linked to the linking structure G to form an organoboronic acid group containing two or more of the organoboronic acid groups described above.
  • a raw material which may be at least one of a small molecule compound, an oligomer, and a polymer.
  • the linking structure G may be selected from any one or more of the following: a single bond, a divalent or polyvalent hetero atom linking group, a divalent or polyvalent small molecular hydrocarbon group having a molecular weight of not more than 1000 Da, and a molecular weight of more than 1000 Da. Valence or multivalent polymer chain residues. It is important to note that when G is selected from the polymer chain residues, the selected polymer chain also acts as a hard or soft segment of the dynamic polymer, or as part of a hard or soft segment.
  • G when G is selected from a single bond, it may be selected from a boron boron single bond, a carbon carbon single bond, a carbon nitrogen single bond, a nitrogen nitrogen single bond, a boron carbon single bond, a boron nitrogen single bond; preferably a boron boron single Key, boron single bond, carbon carbon single bond.
  • G When G is selected from a hetero atom linking group, it may be selected from any one or a combination of any of the following: an ether group, a thio group, a thioether group, a divalent tertiary amine group, a trivalent tertiary amine group, and a divalent silicon.
  • G is selected from a divalent or polyvalent small molecule hydrocarbon group having a molecular weight of not more than 1000 Da, it generally has 1 to 71 carbon atoms, and the valence of the hydrocarbon group may be 2 to 144, which may contain a hetero atom group. It may also contain no hetero atom groups.
  • the divalent or polyvalent small molecule hydrocarbyl group may be selected from any of the following groups, an unsaturated form of either, a substituted form of either, or a hybridized form of either: Two to one hundred and forty four valences C 1-71 alkyl, two to one hundred and forty four valence ring C 3-71 alkyl, two to six valent phenyl, two to eight benzyl, two to one hundred four a tetrakis-valent aromatic hydrocarbon group, preferably a di-tetravalent methyl group, a di-hexavalent ethyl group, a di-octavalent propyl group, a di-hexavalent cyclopropyl group, a di- to 8-valent cyclobutyl group, a di- to 10-valent cyclopentane group Base, two to twelve valence cyclohexyl, two to six valent phenyl.
  • G is selected from divalent or polyvalent polymer chain residues having a molecular weight greater than 1000 Da
  • it can be any suitable divalent or polyvalent polymer chain residue including, but not limited to, divalent or polyvalent carbon chain polymers.
  • G When G is selected from a divalent or multivalent carbon chain polymer residue, it may be any suitable polymer residue in which the macromolecular backbone is mainly composed of carbon atoms, which may be selected from any one of the following groups.
  • G is preferably a divalent or polyvalent polyethylene chain residue, a divalent or polyvalent polypropylene chain residue, a divalent or polyvalent polystyrene chain residue, a divalent or polyvalent polyvinyl chloride chain residue, and a divalent Or a polyvalent polybutadiene chain residue, a divalent or polyvalent polyisoprene chain residue, a divalent or polyvalent polyacrylic acid chain residue, a divalent or polyvalent polyacrylamide chain residue, a divalent Or a polyvalent polyacrylonitrile chain residue.
  • G When G is selected from a divalent or multivalent heterochain polymer residue, it may be any suitable macromolecular backbone having a polymer residue mainly composed of a carbon atom and a hetero atom such as nitrogen, oxygen or sulfur. Any of the following groups, any of the unsaturated forms, any of the substituted forms, or any of the hybrid forms: divalent or polyvalent polyether chain residues, such as divalent or more Valence of ethylene oxide chain residues, divalent or polyvalent polyoxypropylene chain residues, divalent or polyvalent polytetrahydrofuran chain residues, divalent or polyvalent epoxy resin chain residues, divalent or more a phenolic resin chain residue, a divalent or polyvalent polyphenylene ether chain residue, etc.; a divalent or multivalent polyester chain residue such as a divalent or polyvalent polycaprolactone chain residue, divalent or more Valence polyvalerolactone chain residue, divalent or polyvalent polylactide chain residue, divalent or polyvalent polyethylene terephthalate
  • G preferably a divalent or polyvalent polyethylene oxide chain residue, a divalent or polyvalent polytetrahydrofuran chain residue, a divalent or polyvalent epoxy resin chain residue, a divalent or polyvalent polycaprolactone chain residue a base, a divalent or polyvalent polylactide chain residue, a divalent or multivalent polyamide chain residue, a divalent or polyvalent polyurethane chain residue.
  • G When G is selected from a divalent or multivalent organic polymer residue, it may be any suitable macromolecular backbone mainly composed of inorganic element heteroatoms such as silicon, boron, aluminum and the like, and heteroatoms such as nitrogen, oxygen, sulfur and phosphorus.
  • a polymer residue constituting which may be selected from any one of the following groups, an unsaturated form of any one, a substituted form of any one, or a hybridized form of either: divalent or polyvalent silicone Polymer-like chain residues, such as divalent or polyvalent polyorganosilane chain residues, divalent or polyvalent polyorganosiloxane chain residues, divalent or polyvalent polyorganosilane chain residues, divalent Or polyvalent polyorganosilane chain residues, divalent or polyvalent polyorganosiloxane chain residues, divalent or polyvalent polyorganophosphosiloxane chain residues, divalent or polyvalent polyorganometallic silicon Oxylkane chain residue; divalent or polyvalent organoboron polymer chain residue, such as a divalent or polyvalent polyorganobane chain residue, a divalent or polyvalent polyboroxene chain residue, a divalent Or polyvalent polyorganosulfide chain residue, divalent or polyvalent polyorganophosphorane chain residue,
  • the other reactive group refers to a group capable of spontaneously or capable of performing a chemical reaction under an initiator or light, heat, irradiation, catalysis, etc. to form a common covalent bond, a suitable group.
  • a suitable group Including but not limited to: hydroxyl, carboxyl, carbonyl, acyl, amide, acyloxy, amino, aldehyde, sulfonate, sulfonyl, decyl, alkenyl, alkynyl, cyano, xylyl, decyl, fluorene Base, mercapto group, halogen, isocyanate group, anhydride group, epoxy group, acrylate group, acrylamide group, maleimide group, succinimide group, norbornene group a group, an azo group, an azide group, a heterocyclic group, a triazolinedione, a carbon radical, an oxygen radical, etc.; preferably an amino group, a
  • suitable organic boron-based materials are exemplified below, but the invention is not limited thereto:
  • x, y, and z are each independently a fixed value or an average value, and each is independently selected from an integer greater than or equal to 1.
  • the monohydrocarbyl hydroxyl group which may be selected from, but not limited to, a monoalkanol hydroxyl group, a monoenol hydroxyl group, a monophenolic hydroxyl group, a polyphenolic hydroxyl group in the meta position, a polyphenolic hydroxyl group in the para position, and at least four intervals. a hydroxyl group in an atomic polyhydroxy compound.
  • the monoalkanol hydroxy group means that the carbon atom directly bonded to the hydroxy group is an alkane group carbon atom, including a hetero atom-bonded alkane; the monoenol hydroxy group, which is directly connected to the hydroxy group
  • the carbon atom is an unsaturated olefin-based carbon atom, including a hetero atom-bonded olefin;
  • the monophenolic hydroxyl group which means that the carbon atom directly bonded to the hydroxyl group is an aromatic hydrocarbon carbon atom, including a heteroaromatic hydrocarbon;
  • the presence of two or more monohydrocarbyl hydroxyl groups may be at least a polyphenolic hydroxyl group in the meta position, a polyphenolic hydroxyl group in the para position, and a hydroxyl group in the at least four atomic polyhydroxy compound.
  • x, y are a fixed value or an average value, x is 0 or an integer greater than or equal to 1, and y is an integer greater than or equal to 1;
  • it is linked to other reactive groups as described above, facilitates access to the dynamic polymer by ordinary covalent bonds, or is linked to the linking structure G to form a monohydrocarbyl hydroxy group having two or more of the hydroxy groups described.
  • Primitive materials wherein, the definition, selection range and preferred range of the connection structure G are the same as above.
  • x, y, z, k are each independently a fixed value or an average value, each independently selected from an integer greater than or equal to 1.
  • the inorganic boronic acid monoester bond described in the present invention may be selected from, but not limited to, the following structure:
  • the boron atom in the structure is not directly bonded to any carbon atom;
  • L is the same as the definition, selection range and preferred range of L in the above organoborate monoester bond, and L is a direct bond, a methylene group or a substituted methylene group.
  • the case of forming a five-membered or six-membered ring in the present invention is regarded as an inorganic boronic acid cyclic ester bond in the present invention and is not included herein.
  • each Z atom is independent of each; each Z atom is independently selected from a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a sulfur atom, a nitrogen atom, and a boron atom. a silicon atom, and at least one Z atom in the same formula is selected from a sulfur atom, a boron atom, a nitrogen atom, and a silicon atom.
  • b is connected to Z The number, when Z is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, b is 0; when Z is a sulfur atom, b is 1; when Z is a nitrogen atom, a boron atom, b is 2; When Z is a silicon atom, b is 3.
  • the inorganic boronic acid monoester bond passes Access to the polymer chain can also be accessed through the atoms/groups on L.
  • the atoms/groups on L can also be on both sides of C. Connected into a ring.
  • the inorganic boronic acid monoester bond described in the present invention is preferably formed by reacting an inorganic boronic acid group with a monohydrocarbyl hydroxyl group (supra).
  • the inorganic boronic acid group has a structure in which a boron atom is not directly connected to a carbon atom, and may be selected from, but not limited to, an inorganic boronic acid group, an inorganic boronic acid ester group, an inorganic borate group, an inorganic boron alkane.
  • Base inorganic borane.
  • the inorganic boronic acid group refers to a structural unit (B-OH) composed of at least one boron atom and a hydroxyl group connected to the boron atom in the structure of the compound, and the compound directly with the boron atom
  • the atom to be bonded is selected from a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a boron atom, a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, preferably a bromine atom, a chlorine atom, an oxygen atom and a boron atom.
  • the inorganic borate group refers to a structure comprising at least one structural group consisting of a boron atom, an oxygen atom bonded to the boron atom, and a hydrocarbon group or a silane group bonded to the oxygen atom.
  • the atom to be bonded is selected from a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a boron atom, a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, preferably a bromine atom, a chlorine atom, an oxygen atom and a boron atom.
  • the inorganic borate group refers to a structural unit (BO - ) composed of at least one boron atom and an oxygen anion connected to the boron atom in the structure of the compound and at least one positive ion (M n+ ), and the atom directly bonded to the boron atom in the compound is selected from the group consisting of a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a boron atom, a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, preferably a bromine atom. , chlorine atom, oxygen atom and boron atom.
  • the inorganic boron haloalkyl group means that the compound structure contains at least one structural unit composed of a boron atom and a halogen atom (F, Cl, Br, I) connected to the boron atom ( BF, B-Cl, B-Br, BI), and the atom directly bonded to the boron atom in the compound is selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a boron atom, a nitrogen atom, an oxygen atom, a silicon atom, and sulfur.
  • the atom is preferably a bromine atom, a chlorine atom, an oxygen atom and a boron atom.
  • the inorganic boron alkyl group means that the compound structure contains at least one structural unit (B-H) composed of a boron atom and a hydrogen atom connected to the boron atom.
  • suitable inorganic boron-based materials include, but are not limited to, orthoboric acid, metaboric acid, pyroboric acid, tetrahydroxydiboron, trimethyl borate, triethyl borate, tricyclohexyl borate, tricresyl borate, Tribenzyl borate, triphenyl borate, triallyl borate, tris(dodecyl)borate, tris(octadecyl)borate, tri-tert-butyl borate, phenylethylidene borate , bis-pinacol borate, bis-catechol carbonate, bis(2-methyl-2,4-pentanediol) borate, duplex (2-methyl-2,4 - pentanediol) borate, bis(D-tartrate) borate, bis(L-tartrate) borate, tetraphenylpentaoxide, boron trifluoride, Bor
  • the organoborate cyclic ester bond described in the present invention preferably contains at least one of the following structures:
  • one boron atom simultaneously forms a cyclic organoborate unit with two oxygen atoms, wherein the boron atom in the structure is bonded to one carbon atom through a boron-carbon bond, and at least one organic group passes through the boron-carbon bond. Connected to a boron atom.
  • the organoborate cyclic ester bond of the present invention is more preferably an aminomethylphenylboronic acid cyclic ester bond, which preferably contains at least one of the structures shown by the following formula:
  • the organoborate cyclic ester bond described in the present invention is preferably produced by reacting an organoboronic acid group represented by Formulas 3E, 3G, 3H, 3J, and 3L with a dihydroxy group.
  • the dihydroxyl unit may be selected from, but not limited to, at least one of a 1,2-diol group, a 1,3-diol group, an o-diphenol hydroxyl group, and a 2-hydroxymethylphenol hydroxyl group.
  • the 1,2-diol group may be selected from residues formed after the ethylene glycol molecule loses at least one non-hydroxyl hydrogen atom;
  • the 1,3-diol group may be selected from 1,3-propanediol a residue formed after the molecule loses at least one non-hydroxyl hydrogen atom;
  • the ortho-diphenol moiety may be selected from residues formed after the o-diphenol loses at least one non-hydroxyl atom on the aromatic ring;
  • a hydroxymethylphenol group which may be selected from residues formed after the 2-hydroxymethylphenol loses at least one non-hydroxyl hydrogen atom.
  • suitable dihydroxy motifs include, but are not limited to:
  • x is a fixed value or an average value, x ⁇ 1;
  • it is linked to the other reactive groups described above, and is convenient to be inserted into the dynamic polymer through a common covalent bond, or is linked to the linking structure G to form a dihydroxy group containing two or more of the dihydroxy groups described above.
  • the definition, selection range and preferred range of the connection structure G are the same as above.
  • suitable dihydroxyl-based materials include, but are not limited to:
  • y is a fixed value or an average value and is an integer greater than or equal to 1.
  • the inorganic boronic acid cyclic ester bond described in the present invention preferably contains at least one of the following structures:
  • one boron atom simultaneously forms a cyclic inorganic boronic acid ester unit with two oxygen atoms, and the boron atom in the structure is not directly connected to any carbon atom;
  • the definition, selection range and preferred range of Z and b are the same as the above inorganic boronic acid.
  • the definition, selection range and preferred range of the corresponding Z, b in the monoester bond; the linkers L 0 are each independently of any of the following structures, wherein * represents a position attached to the oxygen atom:
  • the inorganic boronic acid cyclic ester bond described in the present invention is preferably formed by reacting an inorganic boronic acid unit (supra) with a dihydroxy group (supra).
  • the organoboronic acid silicate bond described in the present invention preferably contains the following structure:
  • At least one carbon atom in the structure is bonded to the boron atom through a boron-carbon bond, and at least one organic group is bonded to the boron atom through the boron-carbon bond.
  • the organoborate silicon ester bond of the present invention is preferably a silicon methyl phenyl borohydride bond selected from the structure shown by the following formula. At least one:
  • the organoboronic acid silicate bond described in the present invention is preferably formed by reacting an organoboronic acid moiety (supra) with a silanol group.
  • a silanol group refers to at least one of a silanol group or a silanol precursor.
  • the silanol group is a structural unit composed of a silicon atom and a hydroxyl group connected to the silicon atom.
  • the silanol group may be a silicone hydroxyl group (ie, a silicon atom in the silanol group is bonded to at least one carbon atom through a silicon carbon bond, and at least one organic group is bonded to the silicon atom through the silicon carbon bond), or It is an inorganic silicon hydroxy group (that is, a silicon atom in the silicon hydroxy group is not bonded to an organic group), and is preferably a silicone hydroxy group.
  • the silanol precursor refers to a structural unit composed of a silicon atom and a group capable of hydrolyzing a hydroxyl group attached to the silicon atom, wherein a group capable of hydrolyzing to obtain a hydroxyl group is It may be selected from the group consisting of halogen, cyano, oxycyano, thiocyano, alkoxy, amino, sulfate, borate, acyl, acyloxy, acylamino, ketoximino, alkoxide.
  • silanol hydroxyl groups include, but are not limited to:
  • x is a fixed value or an average value, and x is an integer greater than or equal to 1;
  • it is linked to other reactive groups as described above, facilitates access to the dynamic polymer by ordinary covalent bonds, or is linked to the linking structure G to form a silanol group containing two or more of the silanol hydroxyl groups described above.
  • the definition, selection range and preferred range of the connection structure G are the same as above.
  • suitable silanol-based materials include, but are not limited to:
  • x, y, and z are the number of repeating units, and may be a fixed value or an average value, and are integers greater than or equal to 1.
  • the inorganic boronic acid silicate bond described in the present invention may be selected from, but not limited to, the following structure:
  • the boron atom in the structure is not directly connected to any carbon atom; the definition, selection range and preferred range of Z, b are the same as the definition, selection range and preferred range of the corresponding Z, b in the above inorganic boronic acid monoester bond.
  • the inorganic boronic acid silicate bond described in the present invention is preferably formed by reacting an inorganic boronic acid unit (supra) with a silanol group (supra).
  • the organoborane anhydride bond described in the present invention preferably has the following structure:
  • each boron atom in the structure is directly connected to at least one carbon atom to form a boron-carbon bond.
  • Each boron atom in the structure may form one or two organoborate bonds, and different organoborate bonds may be joined to form a ring.
  • the case of looping may include the following structure, but is not limited to this:
  • organoboronic anhydride bond described in the present invention is preferably formed by the reaction between organoboronic acid moieties (supra).
  • the inorganic boron anhydride bond described in the present invention has the following structure:
  • each boron atom in the structure is not directly connected to any carbon atom, and each of the four Z atoms is independent, and its definition, selection range and preferred range are the same as above.
  • Each boron atom in the structure may form one, two or three inorganic boron anhydride linkages, and different inorganic boron anhydride linkages may be joined to form a ring.
  • the inorganic boron anhydride bond described in the present invention is preferably formed by the reaction between inorganic boronic acid units (supra).
  • the organic-inorganic boronic anhydride bond has the following structure:
  • one of the boron atoms in the structure is directly bonded to at least one carbon atom through a boron-carbon bond, and at least one organic group is bonded to the boron atom through a boron-carbon bond formed; the other boron atom in the structure is not The carbon atoms are directly connected.
  • the organic-inorganic boron anhydride bond described in the present invention is preferably formed by reacting an organoboronic acid moiety (supra) with an inorganic boronic acid moiety (supra).
  • the boron-containing dynamic covalent bond described in the present invention may also be a combination of the above various boron-containing dynamic covalent bonds, by way of example, including but not limited to:
  • the boron-containing dynamic covalent bond is selected from the group consisting of an organoborate silicon ester bond and an aminomethylphenyl boronic acid cyclic ester bond, because both have strong dynamic properties and facilitate good dynamic formation.
  • Thermoplastic elastomer is selected from the group consisting of an organoborate silicon ester bond and an aminomethylphenyl boronic acid cyclic ester bond, because both have strong dynamic properties and facilitate good dynamic formation.
  • the dynamic polymer molecule contains at least two boron-containing dynamic covalent bonds, at least one selected from the group consisting of a silicone borate bond and an aminomethylphenyl boronate cyclic ester bond. This can not only give the material a good dynamic, but also use different dynamic covalent bond combinations to regulate the dynamics.
  • the position of the boron-containing dynamic covalent bond in the polymer molecule is not limited at all, and it is preferred that the polymer molecule after the boron-containing dynamic covalent bond is broken still has the hard segment of the present invention - Soft segment structure.
  • the boron-containing dynamic covalent bond is located in the soft phase composed of the soft segment, the dynamic property can be better reflected, and therefore it is more preferably located in the main chain skeleton of the soft segment.
  • the dynamic polymer molecule also contains optional hydrogen bonding groups at any suitable position in its soft and/or hard segments.
  • Selective hydrogen bonding groups located at the same or different positions in the same or different polymer molecules can form hydrogen bonds with each other, and can also be combined with other other polymer molecules, fillers, small molecules, etc. Hydrogen bonds are formed.
  • hydrogen bonding may or may not form cross-linking, and may form any degree of cross-linking when hydrogen bond cross-linking is formed, preferably above the gel point of the hydrogen bond cross-linking, that is, only hydrogen bond cross-linking may be formed.
  • Three-dimensional unlimited network is possible.
  • the optional hydrogen bonding of the present invention includes, but is not limited to, the formation of interchain supermolecular hydrogen between soft segments of different molecules between the soft segment side chains and/or the hydrogen bond groups in the pendant groups.
  • Dynamic crosslinking of the bond forming a soft segmental inter-hydrogen bond crosslink between the hydrogen bond group in the soft segment side chain and/or the pendant group and the hydrogen bond group in the optional soft segment backbone backbone;
  • the hydrogen bond group in the side chain and/or the side group of the soft segment forms an interchain between the hydrogen bond group in the hard segment side chain and/or the side group of the different molecule and/or the hydrogen bond group in the hard segment backbone skeleton.
  • Crosslinking hydrogen bonding groups in the soft chain side chain and/or pendant groups and hydrogen bonding groups in the soft segment backbone chain and hydrogen bonding groups in the hard segment side chain and/or pendant groups and in the hard segment backbone backbone Hydrogen bond groups form hydrogen bond crosslinks; some of the hydrogen bond groups in the side chain and/or the side groups independently form a chain inner ring by hydrogen bonding; part of the hydrogen bond groups in the main chain skeleton The groups are independently hydrogen-bonded to form an intrachain ring; a part of the side chain and/or a hydrogen bond group in the side group cooperate to form an intrachain ring or the like by hydrogen bonding.
  • the selectively present hydrogen bonding group is preferably located in the backbone backbone, pendant groups and/or side chains of the soft segment, more preferably in the pendant group or side chain of the soft segment; accordingly, selectively present hydrogen bonds
  • the hydrogen bonding formed by the group preferably involves the formation of interchain hydrogen bonding crosslinks in the soft segment side chain and/or the hydrogen bonding group in the pendant group.
  • the hydrogen bond group may be a hydrogen bond group containing only a hydrogen bond donor, or may be a hydrogen bond group containing only a hydrogen bond acceptor, or may contain hydrogen at the same time.
  • a bond donor and a hydrogen bond group of a hydrogen bond acceptor When some of the hydrogen bond groups contain only hydrogen bond donors or hydrogen bond acceptors, the polymer must contain a corresponding hydrogen bond acceptor or hydrogen bond donor or other additives must contain corresponding hydrogen bonds in the system.
  • the hydrogen bond donor is a hydrogen atom (H), which is an electronegative atom accepting a hydrogen atom, including but not limited to an oxygen atom (O), a nitrogen atom (N), and a sulfur atom (S).
  • a hydrogen bond group including a hydrogen bond donor and a hydrogen bond acceptor such as an amide group, a urethane group, a urea group, or a thiocarbamic acid, is preferable.
  • the ester group, the imidazole, the azole, and the derivative of the above group, etc. more preferably contain at least one of the following structural components:
  • a hydrogen bond group in a side group and/or a terminal group may be mentioned, but the present invention is not limited thereto.
  • m, n, and x are the number of repeating groups, and may be a fixed value or an average value. m and n are in the range of 0 and an integer greater than or equal to 1; x ranges from an integer greater than or equal to 1.
  • the optional main chain skeleton and the hydrogen bond group in the side chain skeleton chain contained in the soft segment and the hard segment may also be a group having both a hydrogen bond acceptor and a hydrogen bond donor. It may also be a group containing only a hydrogen bond acceptor or a hydrogen bond donor, or a part of the hydrogen bond group may contain a hydrogen bond donor and another part of the hydrogen bond group may contain a hydrogen bond acceptor.
  • the hydrogen bonding group contained in the hard segment may be any suitable hydrogen bonding group, but the hydrogen bonding group involved in the soft segment does not crystallize and does not form phase separation with the soft segment, and the number of teeth is preferably not high. In four teeth.
  • a hydrogen bond group on the backbone of the soft segment main chain/side chain (including the branched chain and the branched chain) as described below may be mentioned, but the present invention is not limited thereto.
  • a hydrogen bond group on the backbone of the hard segment main chain/side chain (including the branched chain and the branched chain) as described below may be mentioned, but the present invention is not limited thereto.
  • the hydrogen bond group and other additives introduced as additives may be passed through Hydrogen bonding groups on the components form hydrogen bonding.
  • Hydrogen bonding groups on the components form hydrogen bonding.
  • Such other components that may participate in the formation of hydrogen bonding include, but are not limited to, small molecules, polymers, inorganic materials, wherein the hydrogen bonding group contained therein may be any group that can form a hydrogen bond with the hydrogen bonding group. . Hydrogen bonds can also form between such other components.
  • Such materials may be selected from the group consisting of linear, cyclic, branched, clustered polymers and covalently crosslinked polymeric particles, surface modified organic, inorganic particles, fibers.
  • the dynamic polymer in addition to the polymer component having a hard segment-soft segment multi-segment structure, may also contain other multi-stage polymer components that do not contain boron-containing dynamic covalent bonds.
  • the polymer molecule having a multi-stage structure as described in the present invention accounts for 5-100% of the total weight of the dynamic polymer composition, preferably 50-100% of the total weight of the dynamic polymer composition.
  • the present invention also provides a physically phase-separated dynamic polymer thermoplastic elastomer comprising dynamic polymer molecules having both hard and soft segments, the hard segments of the dynamic polymer molecules being intermixed or independently or mixed with each other. Further independently forming a crystalline phase or a phase incompatible with the soft segment or a crystalline phase and a phase incompatible with the soft segment; the soft segments of the dynamic polymer molecule are amorphous; the dynamics
  • the polymer molecule contains at least one boron-containing dynamic covalent bond in the molecule, and the boron-containing dynamic covalent bond contains a structure as shown in the following formula:
  • X is selected from a boron atom, a carbon atom, a silicon atom, and a is connected to X.
  • the boron-containing dynamic covalent bond is passed through at least one of the Access to the polymer chain.
  • the present invention also provides a method for absorbing energy based on a physical phase-separated dynamic polymer thermoplastic elastomer, providing a physically phase-separated dynamic polymer thermoplastic elastomer and absorbing energy as an energy absorbing material, said physical phase separation
  • the dynamic polymer thermoplastic elastomer comprises dynamic polymer molecules having both hard segments and soft segments, and the hard segments of the dynamic polymer molecules are mixed with each other or independently or mixed with each other and independently form a crystalline phase or a soft segment incompatible phase or crystalline phase and a phase incompatible with the soft segment; each soft segment of the dynamic polymer molecule is in an amorphous state; the dynamic polymer molecule contains at least one species in the molecule A boron-containing dynamic covalent bond, the boron-containing dynamic covalent bond having a structure as shown in the following formula:
  • X is selected from a boron atom, a carbon atom, a silicon atom, and a is connected to X. Number; when X is a boron atom, a is 2; when X is a carbon atom and a silicon atom, a is 3; the boron-containing dynamic covalent bond is passed through at least one of Access to the polymer chain.
  • the preparation of the polymer molecules of the hard segment-soft segment contained in the dynamic polymer may be any suitable means in principle. There are generally two ways to start the polymerization of soft segments or hard and soft segments from the inside out or from the outside to the outside; or to separately synthesize the hard segments and soft functional groups of the end groups and/or side groups. The segment or multi-stage copolymer is then directly subjected to the reaction between the segments, or by other small molecules to achieve coupling or copolymerization.
  • the preparation of the polymer molecules of the hard segment-soft segment structure may also be based on a combination of the above two methods, for example, preparing a hard segment or a soft segment into a macroinitiator to initiate polymerization of adjacent soft segments and hard segments. And then, if necessary, carry out end group reaction between the segments; for example, a soft segment-hard segment diblock copolymer, and then couple two or more diblock molecules to obtain the hard segment of the present invention - Dynamic polymer molecules in soft segment structures.
  • the formation or introduction of a boron-containing dynamic covalent bond and an optional hydrogen bond group can be carried out before, after or during the connection of the soft and hard segments.
  • the polymer segment When a polymer containing a hard segment and a soft segment is reintroduced or formed into the boron-containing dynamic covalent bond and the supramolecular dynamic hydrogen bond group, the polymer segment must contain a corresponding active site, as an example including Not limited to amino group, secondary amino group, hydroxyl group, carboxyl group, aldehyde group, mercapto group, isocyanate group, epoxy group, ester group, halogen atom, acid halide group, acid anhydride, carbon-carbon double bond, maleimide, carbon-carbon triple bond , azido, nitrile, hydrazine, tetrazine, succinimide ester.
  • a corresponding active site as an example including Not limited to amino group, secondary amino group, hydroxyl group, carboxyl group, aldehyde group, mercapto group, isocyanate group, epoxy group, ester group, halogen atom, acid halide group, acid anhydride, carbon-
  • the polymerization method according to the type of the prepolymer selected includes, but not limited to, polycondensation, polyaddition, coordination polymerization and ring-opening polymerization, and the addition polymerization includes but is not limited to radical polymerization, living radical polymerization, anionic polymerization, cationic polymerization. Wait.
  • the polymerization process may be carried out in a solvent or a solventless bulk polymerization.
  • the initiation of the above partial polymerization process requires the use of an initiator capable of causing activation of monomer molecules during the polymerization reaction.
  • an initiator capable of causing activation of monomer molecules during the polymerization reaction.
  • Different types of initiators can be selected as needed in embodiments of the invention.
  • the use of a monofunctional initiator facilitates the preparation of single-ended functionalized segments or double-ended heterofunctionalized segments; for example, the use of dual/multifunctional initiators facilitates the preparation of dual/multi-end functional or dual/multi-terminal heterogeneous functions.
  • a macroinitiator prepared using a single-ended functionalized segment or a telechelic polymer segment can continue to initiate polymerization of other monomers to yield a block copolymer.
  • the preparation of the single, double, and multi-end functionalized polymer segments is achieved by rationally selecting an initiator with a reactive group, rationally selecting a chain transfer agent, and rationally using a functional reagent that can react with the initiator residue.
  • a partial polymerization reaction also requires the use of a catalyst to change the reaction pathway during the polymerization reaction and to reduce the activation energy of the reaction to accelerate the reaction rate of the reactants during the reaction.
  • a part of the polymerization process also requires the use of additives such as dispersants and emulsifiers.
  • a dispersant is required during the suspension polymerization
  • an emulsifier is required during the emulsion polymerization.
  • the dispersing agent can disperse the solid floc cluster in the polymer mixture into fine particles and suspend in the liquid, uniformly disperse solid and liquid particles which are difficult to be dissolved in the liquid, and also prevent sedimentation and aggregation of the particles.
  • a stable suspension is formed.
  • the emulsifier can improve the surface tension between various constituent phases in the polymer mixture containing the auxiliary agent to form a uniform and stable dispersion or emulsion, and is preferably used for emulsion polymerization.
  • the polymerization method selectable by the present invention includes, but is not limited to, thermal initiation of ordinary radical polymerization of styrenes, (meth) acrylate monomers, styrenes, (meth) acrylates.
  • Photoinitiated free radical polymerization of monomers initiated transfer polymerization of vinyl chloride monomer, free radical polymerization, atom transfer radical polymerization (ATRP) of styrenes, (meth)acrylate monomers, styrene, (Methyl) acrylates, acrylonitrile monomers reversible addition-fragmentation transfer radical polymerization (RAFT), nitrogen-oxygen stable radical polymerization (NMP), ethylene, propylene coordination polymerization, anions of styrene monomers Polymerization, ring-opening polymerization of lactone, ring-opening polymerization of lactam, epoxy ring-opening polymerization, ring-opening metathesis polymerization of alkene, polycondensation between a dibasic acid and a glycol, and between a dibasic acid and a diamine Polycondensation, click reaction polymerization between a dibasic thiol and a diene/alkyne,
  • the formation or introduction of the boron-containing dynamic covalent bond may take any suitable reaction, including but not limited to the following types: halogenated boron, boric acid, borax, boronic anhydride, borate, etc.
  • the formation or introduction of a hydrogen bond group may employ any suitable reaction, including but not limited to the following types: reaction of an isocyanate with an amino group, a hydroxyl group, a thiol group, a carboxyl group, an acrylate radical reaction, and a double bond free Base reaction, double bond cyclization reaction, reaction of epoxy with amino group, hydroxyl group, sulfhydryl group, azide-alkyne click reaction, thiol-double bond/alkyne click reaction, urea-amine reaction, amidation reaction, tetrazine-lower
  • the reaction of borneol the reaction of active ester with amino group, hydroxyl group, sulfhydryl group, condensation reaction of silanol group; reaction of isocyanate with amino group, hydroxyl group, sulfhydryl group, reaction of urea-amine, reaction of active ester with amino group, hydroxyl group, sulfhydryl group;
  • a soft segment hard segment or a common covalent bond in the segment may be obtained by a reaction between the reactive groups at the end of the segment such as the following: reaction of an isocyanate with an amino group, a hydroxyl group, a thiol group, a carboxyl group , reaction of epoxy with amino, hydroxyl, sulfhydryl, phenolic, azide-alkyne click reaction, thiol-double bond/alkyne click reaction, urea-amine reaction, amidation reaction, esterification reaction, tetrazine-norbornene Reaction, reaction of an active ester with an amino group, a hydroxyl group, a thiol group, and a silanol condensation reaction.
  • the dynamic polymer composition may also contain other polymers including, but not limited to, any other suitable hard and soft segment structures that are compatible or incompatible with the dynamic polymer molecules described.
  • Polymer components as well as other polymer components.
  • the other polymer component comprising a hard segment and a soft segment structure does not contain the boron-containing dynamic covalent bond, but may or may not contain a hydrogen bond group to form an additional hydrogen bond.
  • the other polymer components may or may not contain boron-containing dynamic covalent bonds, and may or may not contain hydrogen bonding groups to form additional hydrogen bonding.
  • the other polymer component and/or other polymer component comprising a hard segment and a soft segment structure may form a compatible crosslinked network with the dynamic polymer molecule, or may form a compatible or incompatible mutual A crosslinked network of mixed/interpenetrating/semi-interpenetrating structures.
  • the dynamic polymer and the composition containing the composition may be a general solid, an elastomer, a gel, a foam or the like. Ordinary solids are preferred because they have better mechanical properties and are the easiest to prepare.
  • the thermoplastic elastomer and its foam have a function of damping/absorption, and are more preferable.
  • a dynamic polymer gel can be prepared in a dynamic polymer by introducing a solvent that is compatible with the soft phase but incompatible with the hard phase.
  • the solvent may include, but is not limited to, water, an organic solvent, an ionic liquid, an oligomer, a plasticizer.
  • the oligomer can also be regarded as a plasticizer.
  • a water-swellable system is used as a hydrogel; an organic solvent-swellable system is called an organogel, and an ionic liquid, an oligomer, and a plasticizer-swelled gel may also be referred to as an organogel.
  • a dynamic polymer gel provided by the present invention preferably an ionic liquid gel, an oligomer swollen gel, and a plasticizer swollen gel, more preferably a plasticizer swollen gel.
  • Gels have the advantage of being soft, while plasticizers have advantages because of their high boiling point and good stability.
  • a preferred method for preparing a dynamic polymer ionic liquid gel of the present invention comprises, but is not limited to, the following steps: blending a raw material for preparing a dynamic polymer with an ionic liquid, and making a mass fraction of the raw material for preparing the dynamic polymer 0.5 to 0.5 70%, by a suitable means of polymerization, coupling or other type of chemical reaction, after the reaction is completed, a dynamic polymer ionic liquid gel is prepared.
  • a preferred method for preparing a dynamic polymer ionic liquid gel of the present invention includes, but is not limited to, the following steps: swelling a dynamic polymer in a solvent containing an ionic liquid such that the mass fraction of the dynamic polymer is 0.5 to 70%.
  • the ionic liquid is generally composed of an organic cation and an inorganic anion.
  • the cation is selected from the group consisting of, but not limited to, an alkyl quaternary ammonium ion, an alkyl quaternary phosphonium ion, a 1,3-dialkyl substituted imidazolium ion, and N- An alkyl-substituted pyridinium ion or the like; an anion selected from the group consisting of, but not limited to, a halogen ion, a tetrafluoroborate ion, a hexafluorophosphate ion, also a CF 3 SO 3 - , (CF3SO 2 ) 2 N - , C 3 F 7 COO - , C 4 F 9 SO 3 - , CF 3 COO - , (CF 3 SO 2
  • the cation is preferably an imidazolium cation
  • the anion is preferably a hexafluorophosphate ion and a tetrafluoroborate ion.
  • the dynamic polymer molecule from which the ionic liquid gel is prepared is preferably a polymer soft segment backbone based on a polymer segment comprising an acrylate monomer-containing polymer, a fluorine-substituted polysaturated olefin, an acrylonitrile-containing polymer.
  • a preferred method for preparing a dynamic polymer oligomer swollen gel of the present invention includes, but is not limited to, the following steps: blending a raw material for preparing a dynamic polymer and an oligomer to obtain a mass fraction of a raw material for preparing a dynamic polymer From 0.5 to 70%, polymerization, coupling or other type of chemical reaction is carried out by the appropriate means, and after completion of the reaction, a gel which is swollen by a dynamic polymer oligomer is prepared.
  • a preferred method for preparing a dynamic polymer oligomer swollen gel of the present invention includes, but is not limited to, the step of swelling a dynamic polymer in a solvent containing an oligomer such that the mass fraction of the dynamic polymer is 0.5. ⁇ 70%, after fully swelling, removes the solvent to form a gel that swells with a dynamic polymer oligomer.
  • the oligomers described above include, but are not limited to, polyethylene glycol oligomers, polyvinyl alcohol oligomers, polyvinyl acetate oligomers, polybutyl n-butyl acrylate oligomers, liquid paraffin, and the like.
  • a preferred method for preparing a dynamic polymer plasticizer swollen gel of the present invention includes, but is not limited to, the following steps: blending a raw material for preparing a dynamic polymer and a plasticizer to obtain a mass fraction of a raw material for preparing a dynamic polymer From 0.5 to 70%, polymerization, coupling or other types of chemical reactions are carried out by the appropriate means, and after completion of the reaction, a gel which is swollen by a dynamic polymer plasticizer is prepared.
  • a preferred method for preparing a dynamic polymer plasticizer swollen gel of the present invention includes, but is not limited to, the step of swelling a dynamic polymer in a solvent containing a plasticizer such that the mass fraction of the dynamic polymer is 0.5.
  • the plasticizer is selected from the group consisting of, but not limited to, any one or more of the following: phthalates: dibutyl phthalate, dioctyl phthalate, diisooctyl phthalate Ester, diheptyl phthalate, diisononyl phthalate, diisononyl phthalate, butyl benzyl phthalate, butyl phthalate, butyl phthalate, phthalate Dicyclohexyl formate, bis(tridecyl) phthalate, di(2-ethyl)hexyl terephthalate; phosphates such as tricresyl phosphate, diphenyl-2-ethyl Hexyl ester; fatty acid esters such as di(2-ethyl)hexyl adipate, di(2-ethyl)hexyl adipate, di(2-ethyl)hexyl adipate, di(2-eth
  • epoxidized soybean oil is an environmentally-friendly plastic plasticizer with excellent performance. It is prepared by epoxidation of refined soybean oil and peroxide, and it is resistant to volatilization, migration, and loss in polymer products. This is very beneficial for maintaining the light, thermal stability and longevity of the product.
  • Epoxidized soybean oil is extremely toxic and has been approved for use in food and pharmaceutical packaging materials in many countries. It is the only epoxy plasticizer approved by the US Food and Drug Administration for use in food packaging materials.
  • the plasticizer is preferably epoxidized soybean oil.
  • the dynamic polymer for preparing the plasticizer swollen gel is preferably a polymer soft segment based on a polymer containing a vinyl chloride monomer, a polymer containing a norbornene monomer, a polymer chain of a polymer containing a saturated olefin monomer. segment.
  • another preferred form of dynamic polymer and its composition is a foam.
  • Foam materials are particularly advantageous for reducing the density of materials and are also suitable as energy absorbing materials.
  • the structure of the dynamic polymer foam material involves three types of an open-cell structure, a closed-cell structure, and a half-open half-close structure.
  • the open-cell structure the cells and the cells are connected to each other or completely connected, and the single or three-dimensional can pass through a gas or a liquid, and the bubble diameter ranges from 0.01 to 3 mm.
  • the closed cell structure has an independent cell structure, and the inner cell is separated from the cell by a wall membrane, and most of them are not connected to each other, and the bubble diameter is 0.01 to 3 mm.
  • the cells contained in the cells are connected to each other and have a semi-open structure.
  • the foaming method can be classified into two types, physical foaming method and chemical foaming method, depending on the foaming agent used.
  • the physical foaming method utilizes a physical method to foam a dynamic polymer.
  • a physical method to foam a dynamic polymer there are three methods: (1) first dissolving an inert gas under a pressure in a dynamic polymer, and then releasing the gas under reduced pressure, thereby Forming pores in the material to foam; (2) foaming by vaporizing the low-boiling liquid dissolved in the polymer or its raw material components; (3) adding hollow spheres to the raw material components and/or The foamed polymer microspheres are foamed or the like formed during or after the formation of the dynamic polymer.
  • the physical foaming agent used in the physical foaming method has relatively low cost, especially the low cost of carbon dioxide and nitrogen, and is flame-retardant and non-polluting, so the application value is high; and the physical foaming agent has no residue after foaming. Little effect on material properties.
  • the use of foamable polymer microspheres is the easiest in terms of process.
  • the chemical foaming method uses a chemical method to generate a gas to foam a dynamic polymer.
  • a chemical blowing agent added to a dynamic polymer (raw material) to decompose and release a gas. Foaming; (2) It is also possible to foam by using a gas released from a chemical reaction between the raw material components, for example, a reaction of a carbonate with an acid releases carbon dioxide.
  • the physical blowing agent may be selected from, but not limited to, an inert gas and a low boiling solvent, including, but not limited to, carbon dioxide, nitrogen, argon, methane, ethane, butane, isobutane, hydrochlorofluorocarbon-22, Hydrochlorofluorocarbon-142b, hydrofluorocarbon-134a, hydrofluorocarbon-152a, chlorofluorocarbon-11, chlorofluorocarbon-12, chlorofluorocarbon-114, among which, environmentally friendly and harmless carbon dioxide and nitrogen are preferred.
  • Argon more preferably more efficient carbon dioxide, most preferably supersaturated carbon dioxide.
  • the chemical foaming agent is divided into an inorganic foaming agent and an organic foaming agent.
  • the former includes, but is not limited to, sodium hydrogencarbonate, ammonium carbonate, sodium carbonate, an azide compound, a boron hydride compound, etc., the latter including but not by way of example Limited to azodicarbonamide, azobisisobutyronitrile, N,N-dinitrosopentamethylenetetramine, N,N'-dimethyl-N,N'-dinitroso-p-benzene, Benzene sulfonyl hydrazide, 4,4'-oxobisbenzenesulfonyl hydrazide, 3,3'-disulfonyl hydrazide diphenyl sulfone, 1,3-benzene diaphoryl hydrazide, p-toluenesulfonyl semicarbazide, benzenesulfonylamino Urea, tridecyltriazine, diazoaminobenzene, and the like.
  • a part of the polymer generates a gas during polymerization or other chemical reaction, and no additional blowing agent is required at this time.
  • the physical foaming agent used in the physical foaming method has relatively low cost, and is flame-retardant and non-polluting, and the physical foaming agent has no residue after foaming, has little effect on the performance of the foaming polymer, so In the embodiment of the invention, physical foaming is preferred. Gel-like materials are particularly suitable for foaming using hollow spheres and/or foamable polymeric microspheres.
  • foam stabilizers are often required in addition to blowing agents.
  • the foam stabilizer is selected from, but not limited to, silicone oil, sulfonated fatty alcohol, sulfonated fatty acid, sodium lauryl sulfate, dodecyl dimethyl amine oxide, alkyl alcohol amide, polyethylene oxide, alkyl aryl Polyoxyethylene alcohol, tridecyl ether, polyoxyethylene sorbitan glycerol laurate, block copolymer of siloxane-ethylene oxide, and the like.
  • a foaming material can also be prepared using a freeze drying method.
  • a method of preparing a foam using a freeze-drying method comprising the steps of: freezing a dynamic polymer swelled in a solvent compatible with a soft phase, incompatible with a hard phase, and volatile, and then sublimating under near vacuum conditions The way to escape the solvent.
  • the dynamic polymer can maintain the shape before freezing during the escape of the solvent and after the escape, thereby obtaining a porous sponge-like foam.
  • the dynamic polymer for preparing the foam material is preferably a polyurethane-based, polyurea-based polymer, that is, a polymer having a urethane bond and a urea bond as a linking group, preferably wherein the soft segment is based on a saturated olefin, unsaturated A polymer of an olefin, a halogenated olefin, a polyether, a polyester, a silicone rubber, a polyacrylate-based polymer, a polyvinyl alcohol-based polymer, a polyvinyl acetate-based polymer, and a polyacrylonitrile-based polymer.
  • the dynamic polymeric foam material provided by the present invention also relates to converting the dynamic polymeric foam material into any desired shape by welding, gluing, cutting, gouging, perforating, stamping, laminating, and thermoforming.
  • tubes, rods, sheaths, containers, spheres, sheets, rolls and belts use of the dynamic polymeric foam material in floating devices; use of the dynamic polymeric foam materials in any desired shape for thermal insulation or thermal insulation Combining the dynamic polymeric foam material with sheets, films, foams, fabrics, reinforcements, and other materials known to those skilled in the art by lamination, bonding, fusing, and other joining techniques Sandwich structure; use of the dynamic polymeric foam material in a gasket or seal; use of the dynamic polymeric foam material in a packaging material or in a container.
  • the foamable dynamic polymers are of a type that allows them to be deformed by extrusion, injection molding, compression molding, or other forming techniques known to those skilled in the art.
  • the other polymer can act as an additive to improve material properties, impart new properties to materials, improve material use and economic efficiency, and achieve comprehensive utilization of materials.
  • Other polymers which may be added may be selected from natural polymer compounds, synthetic resins, synthetic rubbers, synthetic fibers.
  • the present invention does not limit the properties of the added polymer and the molecular weight thereof, and may be an oligomer or a high polymer depending on the molecular weight, and may be a homopolymer or a copolymer depending on the polymerization form. In the specific use process, it should be selected according to the performance of the target material and the needs of the actual preparation process.
  • the other polymer is selected from natural polymer compounds
  • it may be selected from any one or any of the following natural polymer compounds: natural rubber, chitosan, chitin, natural protein, and the like.
  • the other polymer when selected from a synthetic resin, it may be selected from any one or any of the following synthetic resins: polychlorotrifluoroethylene, chlorinated polyethylene, chlorinated polyvinyl chloride, polyvinyl chloride, poly Vinylidene chloride, low density polyethylene, medium density polyethylene, high density polyethylene, ultra high molecular weight polyethylene, melamine-formaldehyde resin, polyamide, polyacrylic acid, polyacrylamide, polyacrylonitrile, polybenzimidazole, poly Ethylene terephthalate, polybutylene terephthalate, polycarbonate, polydimethylsiloxane, polyethylene glycol, polyester, polyethersulfone, polyarylsulfone, polyether ether Ketone, tetrafluoroethylene-perfluoropropane copolymer, polyimide, polyacrylate, polyacrylonitrile, polyphenylene ether, polypropylene, polyphenylene sulfide, polypheny
  • the other polymer is selected from synthetic rubber
  • it may be selected from any one or any of the following synthetic rubbers: isoprene rubber, butadiene rubber, styrene butadiene rubber, nitrile rubber, neoprene, butyl Rubber, ethylene propylene rubber, silicone rubber, fluororubber, polyacrylate rubber, urethane rubber, chloroether rubber, thermoplastic elastomer, etc.
  • the other polymer is selected from synthetic fibers
  • it may be selected from any one or any of the following synthetic fibers: viscose fiber, cuprammonium fiber, diethyl ester fiber, triethyl ester fiber, polyamide fiber, Polyester fiber, polyurethane fiber, polyacrylonitrile fiber, polyvinyl chloride fiber, polyolefin fiber, fluorine-containing fiber, and the like.
  • the other polymers are preferably natural rubber, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polyurethane, polyvinyl chloride, polyacrylic acid, polyacrylamide, polyacrylate, Epoxy resin, phenolic resin, isoprene rubber, butadiene rubber, styrene butadiene rubber, nitrile rubber, neoprene, butyl rubber, ethylene propylene rubber, silicone rubber, urethane rubber, thermoplastic elastomer.
  • the auxiliary agent may include, but not limited to, one or a combination of the following, such as a synthetic auxiliary agent, including a catalyst, an initiator; a stabilizing auxiliary agent, including an antioxidant, a light stabilizer, a heat stabilizer, and a dispersion.
  • a synthetic auxiliary agent including a catalyst, an initiator
  • a stabilizing auxiliary agent including an antioxidant, a light stabilizer, a heat stabilizer, and a dispersion.
  • Agents emulsifiers, flame retardants; additives to improve mechanical properties, including chain extenders, toughening agents, coupling agents; additives to improve processing properties, including solvents, lubricants, mold release agents, plasticizers, Thickeners, thixotropic agents, leveling agents; additives for changing shades, including colorants, fluorescent whitening agents, matting agents; other additives, including antistatic agents, fungicides, foaming agents, nucleating agents Agent, rheological agent, dynamic regulator, etc.
  • the catalyst in the auxiliary agent is capable of accelerating the reaction rate of the reactants in the reaction process by changing the reaction pathway and reducing the activation energy of the reaction. It includes but is not limited to any one or any of the following catalysts: 1 catalyst for polyurethane synthesis: amine catalysts such as triethylamine, triethylenediamine, bis(dimethylaminoethyl)ether, 2-(2) -dimethylamino-ethoxy)ethanol, trimethylhydroxyethylpropanediamine, N,N-bis(dimethylaminopropyl)isopropanolamine, N-(dimethylaminopropyl)diisopropyl Alcoholamine, N,N,N'-trimethyl-N'-hydroxyethyl bisamine ethyl ether, tetramethyldipropylene triamine, N,N-dimethylcyclohexylamine, N,N , N', N'-tetramethylalkylene diamine, N
  • the initiator in the auxiliary agent which can cause activation of the monomer molecule during the polymerization reaction to generate a radical, increase the reaction rate, and promote the reaction, including but not limited to any one or more of the following initiators: 1 initiator for radical polymerization: organic peroxides, such as lauroyl peroxide, benzoyl peroxide (BPO), diisopropyl peroxydicarbonate, dicyclohexyl peroxydicarbonate, peroxydicarbonate Bis(4-tert-butylcyclohexyl)ester, tert-butylperoxybenzoate, tert-butylperoxypivalate, di-tert-butyl peroxide, dicumyl hydroperoxide; azo compound, Such as azobisisobutyronitrile (AIBN), azobisisoheptanenitrile; inorganic peroxides, such as ammonium persulfate, potassium persulfate, etc.; 2
  • the initiator is preferably lauroyl peroxide, benzoyl peroxide, azobisisobutyronitrile or potassium persulfate.
  • the amount of the initiator to be used is not particularly limited and is usually from 0.1 to 1% by weight.
  • the antioxidant in the auxiliary agent which can delay the oxidation process of the polymer sample, ensure the material can be processed smoothly and prolong its service life, including but not limited to any one or any of the following antioxidants: blocked Phenols such as 2,6-di-tert-butyl-4-methylphenol, 1,1,3-tris(2-methyl-4hydroxy-5-tert-butylphenyl)butane, tetra[ ⁇ - (3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid] pentaerythritol ester, 2,2'-methylenebis(4-methyl-6-tert-butylphenol); sulfur-containing hindered phenols Such as 4,4'-thiobis-[3-methyl-6-tert-butylphenol], 2,2'-thiobis-[4-methyl-6-tert-butylphenol]; triazine a hindered phenol, such as 1,3,5-bis[ ⁇ -(3,5-di-tert-
  • the light stabilizer in the auxiliary agent can prevent photoaging of the polymer sample and prolong its service life, including but not limited to any one or any of the following light stabilizers: a light shielding agent such as carbon black, Titanium dioxide, zinc oxide, calcium sulfite; ultraviolet absorbers such as 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octyloxybenzophenone, 2-(2-hydroxy- 3,5-di-tert-butylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2,4,6-tris(2-hydroxyl -4-n-butoxyphenyl)-1,3,5-s-triazine, 2-ethylhexyl 2-cyano-3,3-diphenylacrylate; pioneering UV absorbers such as salicylic acid P-tert-butylphenyl ester, bisphenol A disalicylate; UV quencher, such as bis(3,5-di-tert
  • the heat stabilizer in the auxiliary agent can make the polymer sample not undergo chemical change due to heat during processing or use, or delay the change to achieve the purpose of prolonging the service life, including but not limited to any of the following Or any of several heat stabilizers: lead salts, such as tribasic lead sulfate, lead dibasic phosphite, lead dibasic stearate, lead dibasic lead, lead tribasic maleate , salt-based lead silicate, lead stearate, lead salicylate, lead dibasic phthalate lead, basic lead carbonate, silica gel coprecipitated lead silicate; metal soap: such as cadmium stearate, hard Barium citrate, calcium stearate, lead stearate, zinc stearate; organotin compounds such as di-n-butyltin dilaurate, di-n-octyltin dilaurate, di(n-butyl) maleate, double horse Acid monooctyl ester di
  • the dispersing agent in the auxiliary agent can disperse the solid floc cluster in the polymer mixture into fine particles and suspend in the liquid, uniformly disperse solid and liquid particles which are difficult to be dissolved in the liquid, and also prevent the particles from being Settling and coagulation to form a stable suspension, including but not limited to any one or any of the following dispersants: anionic, such as sodium alkyl sulfate, sodium alkylbenzene sulfonate, sodium petroleum sulfonate; cationic Non-ionic, such as fatty alcohol polyoxyethylene ether, sorbitan fatty acid polyoxyethylene ether; inorganic type, such as silicate, condensed phosphate; polymer type, such as starch, gelatin, water-soluble glue, egg Phospholipids, carboxymethylcellulose, hydroxyethylcellulose, sodium alginate, lignosulfonate, polyvinyl alcohol, and the like.
  • anionic such as sodium alkyl sulfate, sodium
  • the dispersing agent is preferably sodium dodecylbenzenesulfonate, naphthalene methylenesulfonate (dispersant N), or fatty alcohol polyoxyethylene ether.
  • the amount of the dispersing agent used is not particularly limited, and is generally 0.3-0.8 wt. %.
  • the emulsifier in the auxiliary agent can improve the surface tension between various constituent phases in the polymer mixture containing the auxiliary agent to form a uniform and stable dispersion system or emulsion, including but not limited to the following Any one or more emulsifiers: anionic, such as higher fatty acid salts, alkyl sulfonates, alkyl benzene sulfonates, sodium alkyl naphthalene sulfonates, succinate sulfonates, petroleum sulfonates , fatty alcohol sulfate, castor oil sulfate, sulfated butyl ricinate, phosphate ester, fatty acyl-peptide condensate; cationic, such as alkyl ammonium salt, alkyl quaternary ammonium salt, alkyl pyridine Salt; zwitterionic type, such as carboxylate type, sulfonate type, sulfate type, phosphate type;
  • sodium dodecylbenzenesulfonate, sorbitan fatty acid ester, and triethanolamine stearate are preferred, and the amount of the emulsifier used is not particularly limited, and is usually from 1 to 5% by weight.
  • the flame retardant in the auxiliary agent can increase the flame resistance of the material, including but not limited to any one or any of the following flame retardants: phosphorus, such as red phosphorus, tricresyl phosphate, triphenyl phosphate Ester, tricresyl phosphate, toluene diphenyl phosphate; halogen-containing phosphates such as tris(2,3-dibromopropyl)phosphate, tris(2,3-dichloropropyl) phosphate; organic halide Such as high chlorine content chlorinated paraffin, 1,1,2,2-tetrabromoethane, decabromodiphenyl ether, perchlorocyclopentanane; inorganic flame retardants, such as antimony trioxide, aluminum hydroxide , magnesium hydroxide, zinc borate; reactive flame retardants, such as chloro-bromic anhydride, bis(2,3-dibromopropyl) fumarate, tet
  • the chain extender in the auxiliary agent can react with a reactive group on the reactant molecular chain to expand the molecular chain and increase the molecular weight, including but not limited to any one or more of the following chain extenders.
  • Polyol chain extenders such as ethylene glycol, propylene glycol, diethylene glycol, glycerin, trimethylolpropane, pentaerythritol, 1,4-butanediol, 1,6-hexanediol, p-benzene Diphenol dihydroxyethyl ether (HQEE), resorcinol bishydroxyethyl ether (HER), p-hydroxyethyl bisphenol A; polyamine chain extender, such as diaminotoluene, diaminoxylene, Tetramethylxylylenediamine, tetraethyldibenzylidenediamine, tetraisopropyldiphenylidenediamine, m-phenylenediamine
  • the toughening agent in the auxiliary agent can reduce the brittleness of the polymer sample, increase the toughness, and improve the load bearing strength of the material, including but not limited to any one or any of the following toughening agents: methyl methacrylate- Butadiene-styrene copolymer resin, chlorinated polyethylene resin, ethylene-vinyl acetate copolymer resin and modified product thereof, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-butadiene copolymer , ethylene propylene rubber, EPDM rubber, butadiene rubber, styrene butadiene rubber, styrene-butadiene-styrene block copolymer, etc.; among them, the toughening agent is preferably ethylene propylene rubber, acrylonitrile-butadiene -styrene copolymer (ABS), styrene-butadiene-sty
  • the coupling agent in the auxiliary agent can improve the interface property between the polymer sample and the inorganic filler or the reinforcing material, reduce the viscosity of the material melt during the plastic processing, and improve the dispersion of the filler to improve the processing performance, and further
  • the article is provided with good surface quality and mechanical, thermal and electrical properties, including but not limited to any one or any of the following coupling agents: organic acid chromium complex, silane coupling agent, titanate coupling agent , a sulfonyl azide coupling agent, an aluminate coupling agent, etc.; wherein the coupling agent is preferably ⁇ -aminopropyltriethoxysilane (silane coupling agent KH550), ⁇ -(2,3-epoxy) Propoxy)propyltrimethoxysilane (silane coupling agent KH560).
  • the amount of the coupling agent to be used is not particularly limited and is usually from 0.5 to 2% by weight.
  • the solvent in the auxiliary agent can adjust the viscosity, facilitate the process operation, and is used in the product preparation process or preparation. It includes but is not limited to any one or more of the following: hydrocarbons (such as cyclohexane, heptane), halogenated hydrocarbons (such as dichloromethane, chloroform, tetrachloromethane), aromatic hydrocarbons (such as toluene, xylene), Ketones (such as acetone, methyl ethyl ketone), ethers (such as diethyl ether, tetrahydrofuran, dioxane), esters (such as ethyl acetate, butyl acetate), glycol ether esters (such as ethylene glycol ether) Acetate, propylene glycol monomethyl ether acetate, dimethylformamide (DMF), N-methylpyrrolidone (NMP), and the like.
  • the amount of the solvent to be used is not particularly limited
  • the lubricant in the auxiliary agent can improve the lubricity of the polymer sample, reduce friction and reduce interfacial adhesion performance, including but not limited to any one or any of the following lubricants: saturated hydrocarbons and halogenated hydrocarbons Such as solid paraffin, microcrystalline paraffin, liquid paraffin, low molecular weight polyethylene, oxidized polyethylene wax; fatty acids such as stearic acid, hydroxystearic acid; fatty acid esters, such as fatty acid lower alcohol esters, fatty acid polyol esters , natural waxes, ester waxes and saponified waxes; aliphatic amides such as stearic acid amide or stearic acid amide, oleamide or oleic acid amide, erucamide, N, N'-ethylene bis stearamide; fatty alcohols and Polyols such as stearyl alcohol, cetyl alcohol, pentaerythritol; metal soaps such as lead stearate
  • the release agent in the auxiliary agent which can make the polymer sample easy to demold, the surface is smooth and clean, including but not limited to any one or any of the following mold release agents: paraffin hydrocarbon, soap, two Methyl silicone oil, ethyl silicone oil, methyl phenyl silicone oil, castor oil, waste engine oil, mineral oil, molybdenum disulfide, polyethylene glycol, vinyl chloride resin, polystyrene, silicone rubber, polyvinyl alcohol, etc.;
  • the release agent is preferably dimethicone or polyethylene glycol.
  • the amount of the releasing agent to be used is not particularly limited and is usually from 0.5 to 2% by weight.
  • plasticizer in the additive capable of increasing the plasticity of the polymer sample, resulting in a decrease in hardness, modulus, softening temperature, and embrittlement temperature of the polymer, and an increase in elongation, flexibility, and flexibility.
  • plasticizers include but not limited to any one or any of the following plasticizers: phthalates: dibutyl phthalate, dioctyl phthalate, diisooctyl phthalate, ortho-benzene Diheptyl formate, diisononyl phthalate, diisononyl phthalate, butyl benzyl phthalate, butyl phthalate, butyl phthalate, dicyclohexyl phthalate , bis(tris) phthalate, di(2-ethyl)hexyl terephthalate; phosphates such as tricresyl phosphate, diphenyl-2-ethylhexyl phosphate; fatty acids Esters, such as di
  • the thickener in the auxiliary agent can impart good thixotropy and proper consistency to the polymer mixture, and is generally used in the production and semi-finished product storage process of the present invention, including but not limited to any one of the following or Several thickeners: low molecular substances such as fatty acid salts, fatty alcohol polyoxyethylene ether sulfates, alkyl dimethylamine oxides, fatty acid monoethanolamides, fatty acid diethanolamides, fatty acid isopropylamides, sorbitan Tricarboxylate, glycerol trioleate, cocoamidopropyl betaine, 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazoline, titanate coupling agent; polymeric substances such as soap Soil, artificial hectorite, micronized silica, colloidal aluminum, plant polysaccharides, microbial polysaccharides, animal protein, cellulose, starch, alginic acid, polymethacrylate, methacrylic acid
  • the thixotropic agent in the auxiliary agent is added to the hybrid dynamic polymer system to increase the thixotropy of the polymer system.
  • These include, but are not limited to, any one or more of the following: fumed silica, hydrogenated castor oil, bentonite, silicic anhydride, silicic acid derivatives, urea derivatives, and the like.
  • the amount of the thixotropic agent to be used is not particularly limited and is usually from 0.5 to 2% by weight.
  • the leveling agent in the auxiliary agent can ensure the smoothness and uniformity of the polymer coating film, improve the surface quality of the coating film, and improve the decorative property, including but not limited to any one or any of the following leveling agents: Dimethylsiloxane, polymethylphenylsiloxane, cellulose acetate butyrate, polyacrylate, silicone resin, etc.; wherein the leveling agent is preferably polydimethylsiloxane or polyacrylate .
  • the amount of the leveling agent to be used is not particularly limited and is usually from 0.5 to 1.5% by weight.
  • the coloring agent in the auxiliary agent can make the polymer product exhibit the desired color and increase the surface color, including but not limited to any one or any of the following coloring agents: inorganic pigments such as titanium white and chrome yellow. , cadmium red, iron red, molybdenum chrome red, ultramarine blue, chrome green, carbon black; organic pigments, such as Lisol Baohong BK, lake red C, blush, Jiaji R red, turnip red, permanent magenta HF3C, plastic red R and clomo red BR, permanent orange HL, fast yellow G, Ciba plastic yellow R, permanent yellow 3G, permanent yellow H2G, indigo blue B, indigo green, plastic purple RL, Aniline black; organic dyes, such as thioindigo, reduced yellow 4GF, Shilin blue RSN, salt-based rose essence, oil-soluble yellow, etc.; wherein the colorant is selected according to the color requirements of the sample, and is not particularly limited.
  • the amount of the coloring agent to be used is not
  • the fluorescent whitening agent in the auxiliary agent can obtain the effect of the fluorite-like glittering of the dyed substance, including but not limited to any one or any of the following fluorescent whitening agents: stilbene type, a coumarin type, a pyrazoline type, a benzoxyl type, a phthalimide type, etc., wherein the fluorescent whitening agent is preferably sodium stilbene biphenyl disulfonate (fluorescent whitening agent CBS), 4 , 4-bis(5-methyl-2-benzoxazolyl)stilbene (fluorescent brightener KSN), 2,2-(4,4'-distyryl)bisbenzoxazole (fluorescence Brightener OB-1).
  • the amount of the fluorescent whitening agent to be used is not particularly limited and is usually from 0.002 to 0.03 % by weight.
  • the matting agent in the auxiliary agent enables diffuse reflection when incident light reaches the surface of the polymer, resulting in a low-gloss matt and matte appearance, including but not limited to any one or any of the following matting agents:
  • the amount of the matting agent to be used is not particularly limited and is usually from 2 to 5% by weight.
  • the antistatic agent in the auxiliary agent can guide or eliminate the harmful charges accumulated in the polymer sample, so that it does not cause inconvenience or harm to production and life, including but not limited to any one or any of the following Electrostatic agent: anionic antistatic agent, such as alkyl sulfonate, sodium p-nonylphenoxypropane sulfonate, alkyl phosphate diethanolamine salt, alkylphenol polyoxyethylene ether sulfonic acid triethanolamine, paralysis Potassium diphenyl ether sulfonate, alkyl polyoxyethylene ether sulfonate triethanolamine, phosphate derivative, phosphate, polyethylene oxide alkyl ether alcohol ester, alkyl bis [2 (2-hydroxyethyl) Phosphate, phosphate derivative, fatty amine sulfonate, sodium butyrate sulfonate; cationic antistatic agent, such as fatty ammonium hydrochloride, lauryl trimethyl ammonium chlor
  • the dehydrating agent in the auxiliary agent can remove water in the system, including but not limited to any one or more of the following: an oxazolidine compound (such as 3-ethyl-2-methyl-2-() 3-methylbutyl)-1,3-oxazolidine), p-toluenesulfonyl isocyanate, triethyl orthoformate, vinyl silane, calcium oxide, and the like.
  • an oxazolidine compound such as 3-ethyl-2-methyl-2-() 3-methylbutyl-1,3-oxazolidine
  • p-toluenesulfonyl isocyanate such as 3-ethyl-2-methyl-2-() 3-methylbutyl-1,3-oxazolidine
  • p-toluenesulfonyl isocyanate such as 3-ethyl-2-methyl-2-() 3-methylbutyl-1,3-oxazolidine
  • the bactericidal antifungal agent in the auxiliary agent can inhibit the growth of bacteria, maintain the neat appearance of the product, prolong the service life, or protect the user and improve the health of the user, such as reducing athlete's foot.
  • It includes organic and inorganic substances including, but not limited to, any one or any of the following: isothiazolinone derivatives such as 5-chloro-2-methyl-4-isothiazolin-3-one, 2-methyl 4-isothiazolin-3-one, N-n-butyl-1,2-benzisothiazolin-3-one, octylisothiazolinone, 2,4,4-trichloro-2- Hydroxy-diphenyl ether, 2-(4-thiazolyl)benzimidazole, copper quinolate or bis(8-hydroxyquinolinyl) copper; organotin compounds such as tributyltin fumarate, acetic acid Butyltin, bis(tributyltin) sulfide
  • the foaming agent in the auxiliary agent can foam the polymer sample into pores, thereby obtaining a lightweight, heat-insulating, sound-insulating, elastic polymer material, including but not limited to any one or more of the following Blowing agent: physical foaming agent, such as propane, methyl ether, pentane, neopentane, hexane, isopentane, heptane, isoheptane, petroleum ether, acetone, benzene, toluene, butane, ether , methyl chloride, dichloromethane, dichloroethylene, dichlorodifluoromethane, chlorotrifluoromethane; inorganic foaming agents, such as sodium bicarbonate, ammonium carbonate, ammonium hydrogencarbonate; organic foaming agents, such as N, N' -dinitropentamethylenetetramine, N,N'-dimethyl-N,N'-dinitroso-terephthalamide, azodicarbonamide,
  • the blowing agent is preferably sodium hydrogencarbonate, ammonium carbonate, azodicarbonamide (foaming agent AC), N, N'-dinitropentamethyltetramine (foaming agent H), N, N' -Dimethyl-N,N'-dinitroso-terephthalamide (foaming agent NTA), physical microsphere foaming agent, and the amount of the foaming agent to be used are not particularly limited, and are generally 0.1 to 30% by weight. .
  • the nucleating agent in the auxiliary agent can shorten the crystallization rate, increase the crystal density and promote the grain size miniaturization by changing the crystallization behavior of the polymer, thereby shortening the material molding cycle, improving the transparency, surface gloss and resistance of the product.
  • nucleating agents benzoic acid, adipic acid, sodium benzoate , talc, sodium p-phenolate, silica, dibenzylidene sorbitol and its derivatives, ethylene propylene rubber, ethylene propylene diene rubber, etc.; wherein, the nucleating agent is preferably silica, dibenzylidene pear Sugar alcohol (DBS), EPDM rubber.
  • the amount of the nucleating agent to be used is not particularly limited and is usually from 0.1 to 1% by weight.
  • the rheological agent in the auxiliary agent can ensure good paintability and appropriate coating thickness of the polymer in the coating process, prevent sedimentation of solid particles during storage, and can improve redispersibility thereof, including However, it is not limited to any one or any of the following rheological agents: inorganic substances such as barium sulfate, zinc oxide, alkaline earth metal oxides, calcium carbonate, lithium chloride, sodium sulfate, magnesium silicate, fumed silica, water Glass, colloidal silica; organometallic compounds such as aluminum stearate, aluminum alkoxides, titanium chelate, aluminum chelate; organic, such as organic bentonite, hydrogenated castor oil / amide wax, isocyanate derivatives, An acrylic emulsion, an acrylic copolymer, a polyethylene wax, a cellulose ester or the like; wherein the rheological agent is preferably an organic bentonite, a polyethylene wax, a hydrophobically modified alkaline swellable
  • the dynamic modifier in the auxiliaries can enhance the dynamics of dynamic polymers, generally with free hydroxyl or free carboxyl groups, or compounds capable of giving or accepting electron pairs, including but not limited to water, hydroxide Sodium, alcohol (including silanol), carboxylic acid, Lewis acid, Lewis base, and the like.
  • Such auxiliaries can modulate the dynamics of the polymer in order to achieve optimum desired properties.
  • the amount of the dynamic regulator used is not particularly limited and is usually from 0.1 to 10% by weight.
  • the filler mainly plays the following roles in the polymer sample: 1 reducing the shrinkage rate of the molded article, improving the dimensional stability, surface smoothness, smoothness, and flatness or mattness of the product; 2 adjusting material Viscosity; 3 to meet different performance requirements, such as improving material impact strength and compressive strength, hardness, stiffness and modulus, improving wear resistance, increasing heat distortion temperature, improving electrical conductivity and thermal conductivity; 4 improving the coloring effect of pigments; 5 imparts light stability and chemical resistance; 6 acts as a compatibilizing agent, which can reduce costs and improve the competitiveness of products in the market.
  • the filler is selected from any one or any of the following fillers: an inorganic non-metallic filler, a metal filler, and an organic filler.
  • the inorganic non-metallic filler includes, but is not limited to, any one or more of the following: calcium carbonate, clay, barium sulfate, calcium sulfate and calcium sulfite, talc, white carbon, quartz, mica powder, clay, Asbestos, asbestos fiber, feldspar, chalk, limestone, barite powder, gypsum, graphite, carbon black, graphene, graphene oxide, carbon nanotubes, molybdenum disulfide, slag, flue ash, wood flour and shell powder , diatomaceous earth, red mud, wollastonite, silicon aluminum black, aluminum hydroxide, magnesium hydroxide, fly ash, oil shale powder, expanded perlite powder, aluminum nitride powder, boron nitride powder, niobium Stone, iron mud, white mud, alkali mud, (hollow) glass beads, foamed microspheres, foamable particles, glass powder, cement, glass fiber,
  • an inorganic non-metallic filler having conductivity including but not limited to graphite, carbon black, graphene, carbon nanotubes, carbon fiber, is preferably used to conveniently obtain a composite having electrical conductivity and/or electrothermal function. material.
  • a non-metallic filler having a heat generating function under the action of infrared and/or near-infrared light including but not limited to graphene, graphene oxide, carbon nanotubes, and convenient use of infrared rays.
  • an inorganic non-metallic filler having thermal conductivity including but not limited to graphite, graphene, carbon nanotubes, aluminum nitride, boron nitride, silicon carbide, and a composite for facilitating thermal conductivity is preferred. material.
  • the metal filler including metal compounds, including but not limited to any one or any of the following: metal powder, fiber, including but not limited to powders, fibers of copper, silver, nickel, iron, gold, etc. and alloys thereof Nano metal particles, including but not limited to nano gold particles, nano silver particles, nano palladium particles, nano iron particles, nano cobalt particles, nano nickel particles, nano Fe 3 O 4 particles, nano ⁇ -Fe 2 O 3 particles, Nano-MgFe 2 O 4 particles, nano-MnFe 2 O 4 particles, nano-CoFe 2 O 4 particles, nano-CoPt 3 particles, nano-FePt particles, nano-FePd particles, nickel-iron bimetallic magnetic nanoparticles and others in infrared, near-infrared, ultraviolet At least one kind of nano metal particles that can generate heat under electromagnetic action; liquid metal, including but not limited to mercury, gallium, gallium indium liquid alloy, gallium indium tin liquid alloy, other gallium-based liquid metal alloy; metal organic compound molecule, Crystals
  • the present invention can be preferably electromagnetic and / or near-infrared heating fillers, including but not limited to nano-gold, nano silver, nano Pd, nano Fe 3 O 4, for sensing heat.
  • a liquid metal filler is preferred to facilitate obtaining a composite material having good thermal conductivity, electrical conductivity, and ability to maintain flexibility and ductility of the substrate.
  • the organometallic compound molecules and crystals which can generate heat under at least one of infrared, near-infrared, ultraviolet, and electromagnetic are preferable, and on the one hand, the composite is facilitated, and the other side is improved in the efficiency of inducing heat generation and heating. effect.
  • the organic filler includes, but is not limited to, any one or more of the following: 1 natural organic fillers, such as fur, natural rubber, cotton, cotton linters, hemp, jute, linen, asbestos, cellulose, cellulose acetate, Shellac, chitin, chitosan, lignin, starch, protein, enzyme, hormone, lacquer, wood, wood flour, shell powder, glycogen, xylose, silk, etc.; 2 synthetic resin fillers, such as acrylonitrile-acrylic acid Ester-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, cellulose acetate, polychlorotrifluoroethylene, chlorinated polyethylene, chlorinated polyvinyl chloride, epoxy resin, ethylene-propylene copolymer, Ethylene-vinyl acetate copolymer, high density polyethylene, high impact polystyrene, low density polyethylene, medium density polyethylene, melamine
  • the type of filler is not limited, and is mainly determined according to the required material properties, and preferably calcium carbonate, barium sulfate, talc, carbon black, graphene, glass beads, glass fiber, carbon fiber, natural rubber, chitosan, starch , protein, polyethylene, polypropylene, polyvinyl chloride, ethylene-vinyl acetate copolymer, polyvinyl alcohol, polyvinyl acetate, polyamide fiber, polycarbonate fiber, polyvinyl alcohol fiber, polyester fiber, polypropylene Nitrile fiber; the amount of the filler to be used is not particularly limited and is usually from 1 to 30% by weight.
  • the amount of the raw materials of the dynamic polymer components is not particularly limited, and those skilled in the art can adjust according to the actual preparation conditions and the properties of the target polymer.
  • the method for producing the dynamic polymer of the present invention is not particularly limited.
  • the additive may be blended with the dynamic polymer by a roll, a kneader, an extruder, a universal mixer or the like as needed, and then subjected to, for example, foaming as needed. operating.
  • the dynamic polymer of the present invention can form a physical phase separation due to the inclusion of a dynamic polymer molecule having both a hard segment and a soft segment, the dynamic polymer molecule containing at least one boron-containing dynamic in the molecule Covalently bonded, and optionally containing at least one hydrogen bonding group capable of forming a dynamic supramolecular hydrogen bond, the resulting dynamic polymer may be physically crosslinked or non-crosslinked, and has a very wide range of uses. For example, based on the dynamics of boron-containing dynamic covalent bonds and optional hydrogen bonds, the obtained dynamic polymers have good self-healing properties and can be used as self-healing sheets, films, foams, elastomers, coatings, and adhesives.
  • knots, toys, etc. especially self-healing elastomers can be sealed in components and connectors of electronic products (such as mobile phones, tablets, etc.), such as sealing and waterproofing of chargers and earphone holes, once the charger connector is removed
  • the back gap can automatically heal the waterproof.
  • the stress can be sacrificed as a sacrificial bond, which can increase the toughness and tear resistance of the material.
  • the boron-containing dynamic covalent bond and the optional hydrogen bond having high dynamics can additionally impart excellent dilatancy to the dynamic polymer and its composition, have strong energy absorption and dispersion energy, and can provide excellent damping.
  • shock absorption, impact resistance and other properties as a stress-sensitive anti-shock protection polymer material
  • the dynamic polymers can exhibit excellent stress sensitivity and can be applied to the preparation of force sensors.
  • the dynamic copolymer may have a shape memory function when the dynamic or stability of the boron-containing dynamic covalent bond and/or the optional hydrogen bond is weaker than the phase-separated physical cross-linking.
  • the dynamic polymer of the invention adopts physical phase separation as a cross-linking to provide a balanced structure, and its physical cross-linking property imparts recyclability and reworkability to the material, plus self-repairing, energy saving, environmental protection and cost saving. Great advantage.
  • SBS styrene-butadiene-styrene triblock copolymer
  • BDK photoinitiator benzil dimethyl ketal
  • the obtained modified SBS and 2-aminomethylbenzeneboronic acid and 4-aminobenzeneboronic acid were treated with 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ) as a condensing agent.
  • EEDQ 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline
  • the molar ratio of carboxyl group to 2-aminomethylbenzeneboronic acid and 4-aminobenzeneboronic acid in the SBS is 2:1:1, in a dark solvent at room temperature in a mixed solvent of 2:1 dichloromethane/methanol.
  • the reaction was carried out for 16 hours to obtain a modified SBS containing a side aminomethylphenylboronic acid group and a side phenylboronic acid group in the polybutadiene segment.
  • the commercially available SBS, 3-mercapto-1,2-propanediol and photoinitiator BDK are reacted in tetrahydrofuran to maintain a molar ratio of alkenyl to 3-mercapto-1,2-propanediol and BDK in the polybutadiene segment. 50:5:1, a modified SBS having a hydroxyl group in the side group of the polybutadiene segment was obtained.
  • allyl boronic acid pinacol ester and an equimolar equivalent of mercapto succinic acid are blended in tetrahydrofuran, and reacted under ultraviolet light in the presence of a photoinitiator BDK to obtain a compound 2a.
  • Compound 2a is reacted with an excess of hydroxyl terminated polycaprolactone, and catalyzed by dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP), A polyester segment containing a pendant group of an organoboronic acid cyclic ester.
  • DCC dicyclohexylcarbodiimide
  • DMAP 4-dimethylaminopyridine
  • thioglycolic acid as chain transfer agent initiates polymerization of 4-vinylpyridine at 90-100 ° C, keeping the molar ratio of initiator, monomer and chain transfer agent 1:30:1 A single-ended carboxyl terminated poly(4-vinylpyridine) was obtained.
  • One molar equivalent of the obtained copolymer segment and 2 molar equivalents of the mono-terminally carboxylic acid-terminated poly(4-vinylpyridine) were mixed, and DCC and DMAP were used as a catalyst, and dichloromethane was used as a solvent to obtain a three-stage copolymer.
  • the resulting three-stage copolymer is hydrolyzed in aqueous acetic acid to convert the side borate groups to boronic hydroxyl groups.
  • the isocyanate ethyl acrylate was reacted with n-propylamine and tetrahydropyrrole in a solvent dichloromethane to maintain a molar ratio of isocyanate to amino group of 1:1 to obtain a urethane monomer containing a urea bond and a urea bond-containing derivative 3a, 3b. .
  • reaction of the monomer to be added was completed, the reaction was further carried out by adding a mixed solution containing 30 molar equivalents of n-butyl acrylate, 45 molar equivalents of 3a, 20 molar equivalents of 3b, and 5 molar equivalents of 4-hydroxybutyl acrylate.
  • a modified polyacrylate-sodium polystyrene sulfonate two-stage polymer having a polypropylene ester end as a dithiobenzoate and containing a side hydrogen bond group and a side hydroxyl group was obtained.
  • Performance tensile strength 7.3 MPa, elongation at break 1230%. This material can be used to prepare adhesives, plugging adhesives, and interlayer adhesives with cushioning and shock absorption.
  • polystyrene 4b was reacted under anhydrous conditions with 50 molar equivalents of lactone monomer 4a and 50 molar equivalents of ⁇ -caprolactone under the catalysis of stannous octoate at 110 ° C to obtain two-stage copolymerization. 4c.
  • 4-(Bromomethyl)benzeneboronic acid was dissolved in tetrahydrofuran, and an excess of sodium azide was added to obtain the compound 4-(azidomethyl)benzeneboronic acid.
  • the obtained multi-stage copolymer and 4-(azidomethyl)benzeneboronic acid, 2,5-anhydro-1-azido-1-deoxy-D-glucitol are dissolved in tetrahydrofuran, and the alkynyl group and the 4-(addition) are maintained.
  • the molar ratio of nitromethyl)benzeneboronic acid to 2,5-anhydro-1-azide-1-deoxy-D-glucitol is 5:3:2, catalyzed by cuprous iodide and pyridine at 35 ° C
  • the lower reaction yields a multistage copolymer having pendant hydroxyl groups and pendant phenylboronic acid groups in the pendant side of the polyester segment.
  • 100 parts by mass of the obtained multistage polymer was heat-dehydrated at 120 ° C and then molded in a mold to obtain a dynamic polymer thermoplastic elastomer article of the present invention.
  • this material can also be used as a material having a buffering energy absorbing function and a shape memory function because of its multiple transition temperatures.
  • the component A and the component B were mixed at a mass ratio of 1.2:1, rapidly stirred until a bubble was generated, and then quickly injected into a mold, cured at room temperature for 30 minutes, and then cured at 120 ° C for 2 hours to obtain a hard Polyurethane based foam.
  • Allyl hydroxyethyl ether and 5-chloromethyl-2-oxazolidinone were dissolved in toluene by molar ratio 1:1, potassium carbonate was used as a catalyst, and tetrabutylammonium bromide was used as a phase transfer agent.
  • One end is a compound 6a having an allyl end and an oxazolidinone.
  • the obtained 4 molar equivalent polyarylamine and 3 molar equivalents of hydroxyl terminated pendant hydrogen-containing group-containing polysiloxane are dissolved in DMF, and catalyzed by DCC and DMAP to obtain polyarylamine-polysiloxane multistage Copolymer.
  • the obtained multistage polymer containing 10 molar equivalents of silicohydrogen was reacted with 8 molar equivalents of 6a, 2 molar equivalents of 3-acrylamidophenylboronic acid in cyclohexanone at 90 ° C for 3 hours.
  • a multistage polymer having a polysiloxane segment containing a side hydrogen bond group and a pendant boron group is obtained.
  • the obtained polymer containing 1 molar equivalent of boronic hydroxyl group was blended with 1 molar equivalent of monohydroxyl-terminated dimethyl silicone oil (average molecular weight of about 3000 Da) and placed in a mold, dehydrated at 130 ° C for half an hour and thermoformed for 10 minutes.
  • the dynamic polymer thermoplastic elastomer article of the present invention is obtained.
  • the product has a wide operating temperature range and is especially suitable for products with a wide operating temperature range, such as cushioning shock absorbers in aerospace vehicles.
  • the reaction was carried out at 20 ° C under the initiation of L-lactic acid to obtain a modified polyester-poly-L-lactic acid-modified polyester three-stage copolymer in which the pendant side of the polyester contained a chlorine atom and was terminated with a hydroxyl group.
  • the obtained three-stage copolymer containing a chlorine atom in the side group of the polyester segment is dissolved in dimethylformamide (DMF), and an excess amount of sodium azide is added to obtain a copolymer having a side group containing an azide group.
  • DMF dimethylformamide
  • a side group containing an azide group copolymer, 2-propargyl-N-butyl carbamate, ethynyl boronic acid pinacol ester, 3-butyne-1-butanol and epichlorohydrin ether The compound is dissolved in tetrahydrofuran, maintaining an azide group, a 2-propargyl-N-butylcarbamate, an ethynyl boronic acid pinacol ester, an etherified product of 3-butyne-1-butanol and epichlorohydrin.
  • the molar ratio is 10:4:3:3, catalyzed by cuprous iodide and pyridine, and reacted at 35 ° C to obtain two polyester segments containing a side carbamate group, a side phenylboronic acid group, and a side hydroxyl group.
  • Segmented copolymer The obtained copolymer is dissolved in toluene and reacted in water under reflux to obtain a dynamic polymer of the present invention having a side hydrogen bond group and a boron-containing dynamic covalent bond.
  • Performance tensile strength of 15.5 MPa, elongation at break of 1520%.
  • the product has excellent impact protection, good toughness and good self-healing properties for body protection, such as the manufacture of knee pads and neck materials for athletes.
  • the product also has good biodegradability and potential application value in biomaterials.
  • One molar equivalent of the compound 8a and one molar equivalent of 2,6-diisopropylbenzene isocyanate were dissolved in tetrahydrofuran under anhydrous conditions, and reacted at room temperature for 16 hours to obtain a UPy derivative having an alkenyl group at one end.
  • One molar equivalent of the obtained UPy derivative having an alkenyl group at one end and 20 molar equivalents of 4-mercaptophenylboronic acid were dissolved in DMF, and a UPy derivative having a boronic hydroxyl group at one end was obtained under the catalysis of 0.5 molar equivalent of AIBN.
  • the blocked pendant group contains a urethane group, a UPy group, and a borate group-containing polymethacrylate.
  • the product has good toughness above room temperature and can be used to prepare product parts with working temperature higher than room temperature, such as military and police protective products, explosion-proof layers and the like.
  • cyclooctene was used as monomer
  • Grubbs second generation catalyst was used as catalyst
  • maleic acid was used as chain transfer agent to maintain the molar ratio of catalyst, chain transfer agent and monomer to 1:4000: 20000.
  • the reaction was carried out at 40 ° C for 2 hours using tetrahydrofuran as a solvent.
  • the polymerization was quenched with vinyl ether and the product was precipitated in methanol to give a polycyclooctene having a carboxyl group at both ends.
  • a polyisobutylene having an amino group at one end (having an average molecular weight of about 1500 Da) and 4-formylchlorobenzene boronic acid were dissolved in dichloromethane to obtain a polyisobutylene terminated with a phenylboronic acid group under the catalysis of pyridine.
  • a multistage polymer containing 2 molar equivalents of pendant hydroxyl groups and 1 molar equivalent of the obtained phenylboronic acid group-terminated polyisobutylene were blended and dehydrated at 140 ° C, and counted as 100 parts by mass.
  • a certain amount of the obtained graft polymer and tetrahydroxydiboron are dissolved in toluene, and the molar ratio of the diol to the tetrahydroxydiboron is 2:1, and the reaction is carried out under reflux conditions to obtain a cyclic group containing a urea group and an inorganic boronic acid.
  • Dynamic copolymer Dynamic copolymer.
  • the obtained copolymer was swollen in a 1,4-dioxane solvent, placed in a mold and completely frozen at -80 ° C, and the pump was turned on at -50 ° C to maintain a dry air pressure of less than 50 ⁇ atm for 24 hours to obtain a foam.
  • the material was dried in a vacuum oven at 20 ° C, and all the solvent was taken to obtain a corresponding foam.
  • the product has good strength, toughness and sound absorption and vibration-absorbing function. It can be used as a high-efficiency sound-insulating material and can also be used as a filter material or carrier.
  • a side group-containing alkenyl-containing polyether was prepared by mixing 190 molar equivalents of propylene oxide and 10 molar equivalents of 1-allyloxy-2,3-epoxypropane.
  • the obtained polyether, 3-mercapto-1-propanol and photoinitiator BDK are reacted in tetrahydrofuran to maintain a molar ratio of alkenyl group to 3-mercapto-1-propanol and BDK in the polyether segment of 5:5. :1, a polyether having a hydroxyl group in a pendant group is obtained.
  • the molar ratio of bromine to styrene monomer in the obtained polyether is maintained at 1:20, and catalyzed by cuprous bromide and pentamethyldiethylenetriamine (PMDETA) at 100 ° C
  • the bulk polymerization is carried out.
  • the crude product is dissolved in tetrahydrofuran, filtered through alumina and precipitated in methanol to obtain a polyether-grafted polystyrene.
  • the molar ratio of bromine to n-butyl acrylate and acrylate monomer 11a in the obtained polyether-grafted polystyrene is 1:10:30, and anisole is used as a solvent in cuprous bromide.
  • the polymerization was carried out at 60 ° C under the catalysis of PMDETA. After the reaction, acetone was added, and the mixture was filtered through alumina and precipitated in methanol to obtain a polyether graft (polystyrene-modified polyacrylate).
  • the molar ratio of terminal bromine to methyl methacrylate in the obtained graft copolymer was maintained at 1:20, and bulk polymerization was carried out at 70 ° C under the catalysis of cuprous bromide and PMDETA. After the reaction, the crude product was dissolved in diethyl ether and precipitated in methanol to give a polyether graft (polystyrene-modified polyacrylate-polymethyl methacrylate).
  • 6-Amino-1-hexanol and methyl chloroformate were reacted in dichloromethane to control the molar ratio of amino group to methyl chloroformate to 10:11 using anhydrous sodium hydrogencarbonate as a catalyst to obtain compound 12a.
  • nylon 6 Under high nitrogen molecular weight nylon 6 (average molecular weight about 50,000), equimolar equivalents of n-decylamine and nylon 6 and other masses of diphenyl sulfone were placed in a closed container and reacted at 235 ° C to obtain a single-ended amino group. Blocked low molecular weight nylon 6 (average molecular weight of about 3000).
  • ethylene was introduced into the reaction vessel, and solvent toluene, toluene solution containing methylaluminoxane, and toluene solution containing zirconium complex catalyst were sequentially added to maintain a molar ratio of aluminum to zirconium of 2000.
  • Ethylene was atmospheric pressure, and the reaction was stirred at room temperature for 15 minutes, and then quenched with a solution of 10% hydrogen chloride in ethanol. The reaction solution was precipitated in ethanol to give an end-end-terminated polyethylene having an average molecular weight of about 2,000.
  • An equimolar equivalent of the obtained polyethylene and 2-mercaptoethanol were reacted under ultraviolet light under the catalysis of BDK to obtain a hydroxyl terminated polyethylene.
  • the low density polyethylene (average molecular weight about 50,000) is dissolved in xylene, 100 molar equivalents of maleic anhydride are added, and when the temperature of the solution is raised to 130 ° C, dicumyl peroxide is added to the initiator soluble in xylene.
  • Low-density polyethylene grafted maleic anhydride was obtained after 1 to 3 hours of constant temperature reaction.
  • One molar equivalent of the obtained low density polyethylene grafted maleic anhydride was melt-blended with 10 molar equivalents of single-ended amino terminated low molecular weight nylon 6 at 200 ° C to obtain a side chain with maleic anhydride and a nylon 6 side chain.
  • Low density polyethylene Low density polyethylene.
  • the obtained modified low-density polyethylene is hydrolyzed under the catalysis of acetic acid to obtain a modified low-density polyethylene containing a side boronic hydroxyl group.
  • a polymer containing 1 molar equivalent of a boronic hydroxyl group and 1 molar equivalent of a hydroxyl terminated polyethylene are reflux-dehydrated in xylene to obtain a modified low density polyethylene partially branched and linked to the main chain through an organoborate monoester bond.
  • the product has good energy absorption and shock absorption function, can be used as a buffer coating, and can also be used to prepare films with thermal, electrical and stress sensing functions.
  • Ethyl isocyanate is reacted with an equimolar equivalent of 1,4-pentadien-3-amine under anhydrous and anaerobic conditions to give a diamide compound 14a having a urea group on its side.
  • the 1,4-pentadien-3-ol and 1H-benzimidazole-5-acid chloride are reacted under the catalysis of triethylamine to obtain a benzimidazolyl-containing diolefin compound 14b.
  • 1-ethyl-3-methylimidazolium tetrafluoroborate containing the same mass of the total weight of the above raw materials and carbon nanotubes having a total mass of 4% are added, and after uniformly mixing, the solvent is obtained, thereby obtaining a polyether-based Dynamic polymer / 1-ethyl-3-methylimidazolium tetrafluoroborate ion gel.
  • the ionic liquid gel prepared in this example has a modulus of 54 kPa, a strain of 8 times, and a breaking stress of 107 kPa.
  • the ionic liquid gel has good stability, strong mechanical properties, excellent impact resistance, can be used as an impact protection pad, and can also be used as a sensing material such as electricity and stress.
  • the obtained polyether is dissolved in a solvent containing a small amount of acetic acid and water, and hydrolyzed to obtain a polyether having a urethane group, an amide group, and a phenylboronic acid group at both sides.
  • component A 120 parts by mass of the obtained polyether, 2 parts by mass of 1,6-hexanediol, 2 parts by mass of DBTDL, 1 part by mass of silicone oil, 50 parts by mass of dichloromethane, and 30 parts by mass of water, and thoroughly blended at 35 ° C, Recorded as component A. 2 molar equivalents of urea were dropped into 3 molar equivalents of 4,4-diisocyanate dicyclohexylmethane, thoroughly blended and stirred at 70 ° C for 24 hours, and then cooled to 35 ° C, which was designated as component B.
  • the resulting four-arm multistage polymer and 4-(2-pyrrolidinyl)thiophenol are dissolved in cyclohexane and reacted at 60 ° C for 12 hours to maintain the pendant chlorine atom and 4-(2-pyrrolidinyl)benzene sulfur.
  • the molar ratio of phenol is about 10:1, giving a four-armed multistage polymer containing a secondary amino group in the pendant group.
  • the resulting four-arm multistage polymer is dissolved in tetrahydrofuran and reacted with an excess of propyl isocyanate to obtain a multiurea polymer containing a side urea group of the present invention.
  • a 10 molar equivalent of allyl boronic acid pinacol ester is hydrolyzed in the presence of acetic acid to convert the boronate group to a boronic hydroxyl group.
  • the obtained boron group-containing compound and an equimolar equivalent of diethanolamine are reflux-dehydrated in toluene to obtain a compound 17a.
  • One molar equivalent of 2,4-toluene diisocyanate was dissolved in dichloromethane, and an equimolar equivalent of 17a was added dropwise. After the reaction was completed, ethylamine was further added dropwise to obtain a compound 17b containing a boronic acid ester group and a urea group.
  • the monohydroxy-terminated hydrogen-containing polysiloxane is reacted with a single-ended carboxyl-terminated polystyrene under the catalysis of DCC and DMAP to give a polysiloxane-polystyrene diblock copolymer.
  • a chloroplatinic acid as a catalyst, the obtained two-stage polymer containing 1 molar equivalent of silicon hydrogen and a compound were reacted with 1 molar equivalent of 17ba in cyclohexanone at 90 ° C for 3 hours to obtain a dynamic polymer of the present invention.
  • Cyanuric acid and 6-chloro-1-hexene maintained a molar ratio of 4:1, dissolved in anhydrous dimethyl sulfoxide, and stirred at 80 ° C for 15 hours under the catalysis of potassium carbonate to obtain a hydrogen-containing bond group.
  • Olefin monomer 18a Olefin monomer 18a.
  • the obtained pentablock copolymer was dissolved in cyclohexane, and catalytic hydrogenation was carried out at 100 ° C with platinum as a catalyst to obtain a rubbery random copolymer in the middle portion of the crystalline-glassy diblock copolymer.
  • Performance tensile strength 11.5MPa, elongation at break 2190%.
  • the product has excellent toughness, good resilience, small permanent deformation, wide range of stretching, excellent impact resistance, and can be used as a tire component, conveyor belt component, and efficient shock absorbing package.
  • urea was added to the aminated dimethylsiloxane 19a (average molecular weight of about 10000 Da, x: y was about 3:2), and the molar ratio of urea to amino group was kept at 7:10, and the temperature was slowly raised under stirring. After heating at 160 ° C for about 1 hour, it was cooled to room temperature to obtain a modified polydimethylsiloxane in which a part of the amino group was converted into an imidazolinone group.
  • the resulting polydimethylsiloxane is acylated with gluconic acid in the presence of the condensing agent 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline to maintain the pendant amino group and glucose.
  • the molar ratio of the acid was 3:2, and the modified polydimethylsiloxane 19b was obtained.
  • the obtained polydimethylsiloxane 19b is in the presence of the condensing agent 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline with a single-end carboxyl terminated polymethyl methacrylate
  • the ester was subjected to an acylation reaction, and the molar ratio of the side amino group to the carboxyl group was maintained at 1:1 to obtain a modified polydimethylsiloxane grafted poly(n-butyl methacrylate).
  • 100 parts by mass of the obtained copolymer was sufficiently mixed with 3 parts by mass of boric acid, and dehydrated at 120 ° C to obtain a dynamic polymer thermoplastic elastomer of the present invention.
  • the product has excellent toughness and can be applied to the sealing protection of the components of electronic products. It can also be used as a substrate for electrical, thermal and stress sensors such as graphene and carbon nanotubes.
  • polymethyl methacrylate obtained in 1 molar equivalent is a macromolecular diinitiator, and stannous octoate is used as a catalyst to initiate 50 molar equivalents of ⁇ -chloro- ⁇ -caprolactone (see Example 2).
  • Ring-opening polymerization with 50 molar equivalents of ⁇ -caprolactone at 110 ° C gave a three-stage copolymer having hydroxyl groups at both ends.
  • the resulting three-stage copolymer was reacted with an excess of maleic anhydride to obtain a three-stage copolymer having a carboxyl group terminated at both ends.
  • the obtained three-stage copolymer and polystyrene 4b having hydroxyl group at one end are blended in a molar ratio of 1:1, and reacted under the catalysis of DCC and DMAP to obtain polystyrene-modified polyester-polymethyl methacrylate- Modified polyester-polystyrene five-stage copolymer.
  • the copolymer containing a chlorine atom in the side group of the polyester segment is dissolved in dimethylformamide, and 2 molar equivalents of sodium azide is added to the chlorine atom to obtain a copolymer having a side group containing an azide group.
  • the obtained pendant group contains an azide-based copolymer, tert-butyl 4-(2-propynylamino)benzoate and 3-ethynyl-benzeneboronic acid are dissolved in tetrahydrofuran, maintaining azide group, 4-(2-propyne)
  • the molar ratio of tert-butyl benzoate to 3-ethynyl-benzeneboronic acid is 5:4:1.
  • this material can also be used as a material having a buffering energy absorbing function and a shape memory function because of its multiple transition temperatures.
  • Solution A was obtained by dissolving 1 molar equivalent of 2-vinylterephthalic acid and 2.1 molar equivalents of triphenylphosphine in anhydrous pyridine.
  • Solution B was obtained by dissolving 2.1 molar equivalents of 4-methoxyphenol and 2.2 molar equivalents of hexachloroethane in anhydrous pyridine.
  • Solution B was slowly dropped into Solution A, and reacted at 60 ° C to obtain a liquid crystal monomer, di-p-methoxyphenyl vinyl terephthalate (MPCS).
  • MPCS di-p-methoxyphenyl vinyl terephthalate
  • the obtained multistage polymer molecule and excess glycerol are dissolved in toluene, and the mixture is reacted under reflux to obtain a four-armed polymer having a boronic anhydride bond in the polyacrylamide core.
  • the resulting polymer and an equal mass of 1-butyl-3-methylimidazolium hexafluorophosphate were dissolved in DMF and thoroughly blended to remove the solvent to give the corresponding ionic gel.
  • the ionic liquid gel prepared in this embodiment has a modulus of 27 kPa, a strain of 19 times, and a fracture stress of 62 kPa.
  • the product not only has good electrical conductivity and mechanical strength, but also can be used in a wide temperature range and electrochemical window. It is internally stable and can be made into an ideal electrolyte material. It can also be used as a damping damping gel with self-repairing function.
  • the anhydrous limonene and the catalyst 22b are dissolved in toluene at a temperature of no air at 90 ° C, the molar ratio of the oxidized limonene to the catalyst is 50:1, and 10 bar of carbon dioxide is introduced into the reaction vessel. After the reaction is completed, the crude product is used. Methanol precipitation gave a polylimonene carbonate segment. The obtained polylimonene carbonate segment and 1,3-propanediol were dissolved in toluene, and the catalyst 1,5,7-triazabicyclo[4.4.0]non-5-ene was added thereto, and the mixture was reacted at 80 ° C for 3 hours.
  • a poly-limonene carbonate segment 22c having an average molecular weight of about 2,000 terminated with a hydroxyl group was obtained. Under the protection of nitrogen, 1 molar equivalent of hydroxyl terminated poly limonene carbonate 22c and 1.1 molar equivalent of liquid crystal hard segment 22a were blended for transesterification reaction and methanol was distilled off, and liquid crystal-poly limonene carbonate multistage was obtained after the reaction was completed. polymer.
  • the obtained polymer was dissolved in a solution containing a small amount of acetic acid and water to hydrolyze the boronic acid ester group to obtain a phenylboronic acid group, and the obtained liquid crystal-poly limonene carbonate and the dynamic polymer obtained in Example 11 were 1:1 by mass. Melt blending, and then adding 5% by mass of cellulose nanocrystals at 120 ° C dehydration molding, to obtain a dynamic polymer alloy with interpenetrating network structure.
  • the main raw material of this product is renewable raw materials, which can be widely used as a cushioning and shock-absorbing disposable packaging material and daily-use products.
  • the resulting five-stage copolymer and an equimolar equivalent of compound 23b were dissolved in tetrahydrofuran, and reacted in the presence of BDK in the presence of ultraviolet light to obtain a nine-stage copolymer having a boronic acid ester group in the intermediate stage.
  • the product has excellent toughness and shape memory function, which is suitable for preparing various shock absorption and cushioning parts.
  • the polymerization reaction was quenched with vinyl ether, and the product was precipitated in methanol to give a polycyclooctene having a carboxyl group having a terminal group containing a cyclic boronic ester bond of an organic boronic acid group and an imidazolidinone group.
  • polyisobutylene having an amino group at both ends is dissolved in dichloromethane, and reacted with 2 molar equivalents of acetyl chloride under the catalysis of pyridine to obtain a hydrogen bond linkage of an amide group-containing polyisobutylene.
  • Agent 100 parts by mass of the above thermoplastic elastomer, 30 parts by mass of a polystyrene-polybutadiene-polystyrene thermoplastic elastomer and 20 parts by mass of a polyisobutylene hydrogen bond linking aid are blended to obtain a dynamic bond-containing auxiliary agent.
  • Polymer thermoplastic elastomer alloy is one molar equivalent of polyisobutylene having an amino group at both ends.
  • the product has good toughness and can be used as a cushioning packaging material, device housing, electrical components, automotive parts and seals.
  • Example 9 The polycyclooctene obtained in Example 9 was subjected to a hydrogenation reaction to obtain a polyethylene having a carboxyl group at both ends.
  • the obtained multi-stage copolymer was dissolved in tetrahydrofuran, and a methanol solution containing potassium hydroxide was added thereto, followed by reaction at room temperature to obtain a multistage copolymer in which polyvinyl acetate was partially hydrolyzed to a side hydroxyl group.
  • the obtained multi-stage copolymer was dissolved in toluene, 4-(3-cyclopropylurea)phenylboronic acid was added, and the molar ratio of the side hydroxyl group to the 4-(3-cyclopropylurea)phenylboronic acid was 2:1.
  • the water is reacted under reflux conditions to obtain a multi-stage copolymer containing a cyclic ester bond of an organic boronic acid and a urea group in a side group.
  • the product has excellent toughness and can be used as a sports protector such as knee pads, elbow pads, helmet linings, etc.
  • diphenylmethane diisocyanate and an equimolar equivalent of one end hydroxyl terminated low molecular weight poly- ⁇ -hydroxybutyrate are dissolved in DMF to obtain an isocyanate-terminated polyester.
  • diphenylmethane diisocyanate and an equimolar equivalent of one end hydroxyl terminated low molecular weight poly- ⁇ -hydroxybutyrate are dissolved in DMF to obtain an isocyanate-terminated polyester.
  • 1 molar equivalent of the compound 26c was added, and after the reaction was completed, a two-stage polymer based on the polyester was obtained.
  • the obtained polymer and maleic anhydride were dissolved in chlorobenzene to give an initial mass volume concentration of maleic anhydride of 3%.
  • Benzoyl peroxide was added at 130 ° C to give an initial concentration of benzoyl peroxide of 0.2%, and the temperature was maintained for 6 hours to obtain a modified poly- ⁇ -hydroxybutyrate-grafted maleic anhydride.
  • the resulting modified poly- ⁇ -hydroxybutyrate is grafted with maleic anhydride, 3-amino-1,2,4-triazole, 2-aminobenzeneboronic acid, 3-amino-1 under inert gas protection.
  • 2-propanediol is soluble in xylene, maintaining a molar ratio of maleic anhydride side groups, 3-amino-1,2,4-triazole, 2-aminobenzeneboronic acid, 3-amino-1,2-propanediol of 10:
  • the reaction was stirred at 80 ° C at 8:1:1 to obtain a multistage polyester having an amide-triazole group, a hydroxyl group, a phenylboronic acid group and a carboxyl group in the side group of the modified poly- ⁇ -hydroxybutyrate segment.
  • Biopolymer degradable polyester based dynamic polymer foam articles of microspheres 100 parts by mass of the multi-stage copolymer, 100 parts by mass of the biodegradable polyester PHB and 50 parts by mass of the biodegradable polyester hollow microspheres are mixed and injected into the mold, and after being dehydrated at 140 ° C for 30 minutes, and then molded for 10 minutes, the hollow is obtained.
  • the product has excellent toughness and good biodegradability and can be used to make energy-absorbing foam seats.
  • styrene Under the anhydrous and anaerobic conditions, a molar equivalent of styrene was initiated at 140 ° C with 1 molar equivalent of cumyldithiobenzoate as a chain transfer agent. After reacting for 6 hours, it was precipitated in ice-cold anhydrous methanol, and suction filtered with ethanol to obtain a polystyrene macromolecular chain transfer agent having an average degree of polymerization of about 20.
  • the five-stage copolymer, and the nitrile group equimolar equivalent of 2,5-anhydro-1-azido-1-deoxy-D-glucitol, and the nitrile group of 5 molar equivalents of zinc chloride are dissolved in DMF at room temperature. After ultrasonication for 5 minutes, the components were thoroughly mixed, and then the temperature was raised to 125 ° C to stir the reaction, and a part of the nitrile group was converted into a side hydroxyl group.
  • the obtained hydroxyl group-containing copolymer of the side group is reacted with ethyl isocyanate under the catalysis of DBTDL to maintain a molar ratio of the side hydroxyl group to the ethyl isocyanate of 2:1, and the pendant group contains a urethane group and A five-stage copolymer of hydroxyl groups.
  • the obtained five-stage copolymer and an excess of tetrahydroxydiboron are dissolved in toluene, and the mixture is reacted under reflux to obtain a dynamic polymer containing an inorganic boronic acid cyclic ester bond of the present invention.
  • Tensile strength is 18.3 MPa, and elongation at break is 1040%.
  • This elastomeric material has excellent toughness and self-healing properties and can be used to prepare cushioning damping profiles, sheets, films, sheets and the like with self-healing functions.
  • the gel can be used for impact protection of airborne, airborne products.
  • the obtained copolymer and the compound 29a were charged into a mold to maintain a molar ratio of the hydroxyl group in the copolymer to the boron hydroxyl group in the compound 29a to be 1:1.
  • the mold was placed in a high pressure reactor and passed through dry supersaturated carbon dioxide. The mixture was heated to 160 ° C, dehydrated for 30 minutes, and then pressurized for 12 minutes, and then depressurized to expand and foam molding, and the corresponding foamed product was obtained after demolding.
  • the product has excellent toughness and shape memory, and can be used to manufacture thermal insulation materials and insulation materials with shape memory.
  • 3-Aminomethylpiperidine and an equimolar equivalent of ethyl acrylate of isocyanate are dissolved in dichloromethane, and reacted at room temperature to obtain an acrylate monomer 30a.
  • the acryloyl chloride and the equimolar equivalent of 4-hydroxy-2-pyrrolidone are dissolved in dichloromethane, and catalyzed by triethylamine to obtain an acrylate monomer 30b.
  • the 2,3-dihydroxypropyl acrylate was refluxed with an equimolar equivalent of 4-(3-methylureido)phenylboronic acid in toluene to give an acrylate monomer 30c.
  • the molar ratio of the initiator 2-methyl bromopropionate to n-butyl acrylate, acrylate monomer 30a, acrylate monomer 30c is 1:10:30:5, in the bromide
  • the polymerization was carried out at 70 ° C under the catalysis of copper and PMDETA to obtain a modified polyacrylate.
  • the molar ratio of bromine to styrene monomer in the obtained modified polyacrylate was kept at 1:20, and polymerized at 100 ° C under the catalysis of cuprous bromide and PMDETA to obtain modified polycondensation. Acrylate-polystyrene.
  • the obtained copolymer was reacted with acrylic acid under the catalysis of DCC and DMAP to obtain an acrylate macromonomer.
  • the molar ratio of the initiator methyl 2-bromopropionate and n-butyl acrylate, the obtained acrylate macromonomer, the acrylate monomer 30b, and the acrylate monomer 30c is kept 1: 40:10:30:5, polymerized at 70 ° C under the catalysis of cuprous bromide and PMDETA to obtain a modified polyacrylate graft (polystyrene-modified polyacrylate).
  • This product has excellent toughness and can be used to make ripstop adhesives and sealants.
  • a polystyrene-polyacrylonitrile two-stage copolymer of 1 molar equivalent of polyacrylonitrile end to dithiobenzoate under anhydrous and anaerobic conditions see Example 27
  • 20 molar equivalents of tributylphosphine And 50 molar equivalents of hydroxyethyl acrylate are dissolved in tetrahydrofuran
  • 20 molar equivalents of sodium borohydride are added, and the reaction is carried out at room temperature for 20 hours, and the product is precipitated in methanol to obtain polystyrene-polyacrylonitrile having a polyacrylonitrile end and a hydroxyl group. Segmented copolymer.
  • the polymerization of isoprene was carried out at 125 ° C using di-tert-butyl peroxide as an initiator and trithiocarbonate as a chain transfer agent to obtain a polyisoprene macromolecular chain transfer agent.
  • AIBN as initiator
  • the obtained polyisoprene was used as a chain transfer agent, and styrene was polymerized at 60 ° C with 1,4-dioxane as a solvent to obtain a polyisoprene terminal with a carboxyl group.
  • Polyisoprene-polystyrene two-stage copolymer at the end.
  • One molar equivalent of sorbitol and three molar equivalents of 4-mercaptophenylboronic acid were reacted in water under reflux to obtain a boronic acid ester-containing crosslinking agent.
  • One molar equivalent of the obtained four-stage polymer and two molar equivalents of the obtained crosslinking agent and the photoinitiator BDK are blended in a mold and molded under irradiation of an ultraviolet lamp to obtain a corresponding dynamic polymer thermoplastic elastomer product. .
  • This elastomeric material has excellent toughness and self-healing properties and can be used to prepare cushioning damping profiles, sheets, films, sheets and the like with self-healing functions.
  • the poly(4-vinylpyridine)-modified polyether two-stage copolymer having a polyether end as an alkenyl group is reacted with an equimolar equivalent of 2-amino-4-mercaptobutyric acid under the action of BDK and ultraviolet light.
  • the alkenyl group is converted to an amino group and a carboxyl group.
  • the obtained copolymer was dissolved in dichloromethane, and reacted with an equimolar equivalent of compound 32a to obtain a copolymer terminated with a carboxyl group and a pinacol ester of aminomethylbenzeneboronic acid.
  • the obtained polyether end is a poly(4-vinylpyridine)-modified polyether copolymer terminated with a carboxyl group and a pinacol ester of aminomethylphenylboronic acid, and a polyester terminated with a hydroxyl group at an equimolar equivalent of a polyester terminal.
  • the polystyrene two-stage copolymer is reacted under the catalysis of DCC and DMAP to obtain a polystyrene-polyether-polyester-polystyrene four-stage copolymer.
  • the resulting four-stage copolymer was hydrolyzed in an acetic acid solution to obtain a four-stage copolymer containing a side boronic hydroxyl group at the junction of the polyether polyester.
  • a 1 molar equivalent of an alkenyl-terminated polyethylene glycol was subjected to a mercapto-ene click reaction with 2 molar equivalents of 1-thioglycerol to obtain a polyethylene glycol terminated with a diol group at both ends.
  • Two molar equivalents of the resulting four-stage copolymer containing a side boronic hydroxyl group were blended with one molar equivalent of the obtained glycol-terminated polyethylene glycol, and dehydrated and molded at 130 ° C to obtain a corresponding dynamic polymer product.
  • the polymerization of vinyl chloride monomer was carried out in water, keeping the molar ratio of monomer, catalyst and initiator to 200:16:1, and Methocel F50 and PVA88 as stabilizers.
  • the mass ratio of the two to the monomer was 420 ppm and 980 ppm, respectively, and sodium bicarbonate and sodium p-toluenesulfinate were used as auxiliary agents, and reacted at 35 ° C for 24 hours to obtain polyvinyl chloride terminated with iodine atoms at both ends. .
  • the obtained phenyl borate-terminated polyvinyl chloride was dissolved in a 20% aqueous acetic acid solution to obtain a polyvinyl chloride terminated with a phenylboronic acid group.
  • the segments were uniformly mixed and heated to 130 ° C for 10 minutes under stirring. The mixture was placed in a mold and molded at 180 ° C for 30 minutes, and after cooling, a dynamic polymer plasticizer swelling gel based on polyvinyl chloride was obtained.
  • the 5-cyclooctene-1,2-diol and cyclooctene were mixed at a molar ratio of 1:2 and copolymerized by a second-generation Grubbs catalyst to obtain a modified polycyclooctene containing a pendant hydroxyl group.
  • Performance and application tensile strength 3.9MPa, fracture elongation rate 760%; the product has good toughness, can be used for cushioning shock absorption.

Abstract

一种物理分相动态聚合物,包含同时具有硬段和软段的动态聚合物分子,动态聚合物分子各硬段之间相互混合和/或各自独立地可形成结晶相和/或与软段不相容的相,以形成基于硬段的分相物理交联或交联和聚合;动态聚合物分子的各软段为无定型态;动态聚合物分子在分子中含有至少一种含硼动态共价键以及可选的氢键基团提供动态可逆性。

Description

物理分相动态聚合物及其应用 技术领域
本发明涉及一种动态聚合物,具体涉及一种包含含硼动态共价键并具有硬段和软段的聚合物分子的物理分相动态聚合物。
背景技术
交联是聚合物形成三维网络结构以达到提高聚合物弹性、热稳定性和力学性能等效果的通用方法。交联可以是化学(共价)交联或者是物理(非共价/超分子)交联。物理交联由于特别有助于提升聚合物弹性体的加工性能等,因此成为聚合物弹性体发展的一个方向。但是,当仅仅采用物理交联时,如果交联密度较低(交联点之间的链较长/交联点官能度较低),则往往交联聚合物比较柔软,力学性能不佳;而如果交联密度较高(交联点之间的链较长/交联点官能度较高),则往往导致交联聚合物硬而脆,无法作为弹性体使用;而且为了保持材料的稳定性,物理交联的解交联温度需高于材料的工作温度,因此,物理交联在材料的工作温度下缺乏动态性。
因此,需要发展一种新型的动态聚合物,使得体系既能够具有尺寸稳定性,又有良好的力学性能和优异的动态性,以解决现有技术中存在的问题。
发明内容
针对上述背景,为了使聚合物获得足够的韧性、具备动态性和自修复性,本发明提供了一种物理分相动态聚合物。为此,我们在物理分相动态聚合物中包含具有硬段和软段的聚合物分子,并且在引入具有动态性的含硼动态共价键以及选择性存在地超分子氢键作用。聚合物分子硬段形成的分相物理交联可维持聚合物的热稳定性、力学性能、尺寸稳定性等,而引入的具有动态性的含硼动态共价键以及选择性存在地超分子氢键作用可以进一步提高交联密度,增强其稳定性和力学性能;同时含硼动态共价键以及选择性存在地超分子氢键的可断裂和再形成弥补了使用温度下基于结晶/相分离的物理交联缺乏的动态性,使得聚合物本身具有一定的自修复性和良好的韧性;动态键的存在,还可以消耗应力,增加材料的韧性并提供阻尼、减震、抗冲击性能。
本发明可通过如下技术方案予以实现:
一种物理分相动态聚合物,所述的物理分相动态聚合物包含同时具有硬段和软段的动态聚合物分子,所述动态聚合物分子各硬段之间相互混合或各自独立或既部分相互混合又部分各自独立地形成结晶相或与软段不相容的相或既有结晶相又有与软段不相容的相,并且形成基于硬段的分相物理交联或同时交联和聚合;所述动态聚合物分子的各软段为无定型态;所述的动态聚合物分子在分子中含有至少一种含硼动态共价键,所述的含硼动态共价键含有如下式所示的结构:
Figure PCTCN2018072460-appb-000001
其中,X选自硼原子、碳原子、硅原子;其中,
Figure PCTCN2018072460-appb-000002
表示为基团和连接中的至少一种;其中,a为与X相连的
Figure PCTCN2018072460-appb-000003
的数目,当X为硼原子时,a为2;当X为碳原子和硅原子时,a为3;所述的含硼动态共价键通过至少一个所述
Figure PCTCN2018072460-appb-000004
接入聚合物链中。
在本发明的一种实施方式中,所述物理分相动态聚合物所包含的同时具有硬段A和软段B的动态聚合物分子具有下各式中所述结构的一种或任几种的组合:
Figure PCTCN2018072460-appb-000005
其中,式(1A)为直链结构,n为硬段-软段交替单元的数量,其大于等于0;且当n=0时,软段B中含有同时具有供体和受体的氢键基团;
Figure PCTCN2018072460-appb-000006
其中,式(1B)为直链结构,且两端段为硬段,n为硬段-软段交替单元的数量,其大于等于0;
Figure PCTCN2018072460-appb-000007
其中,式(1C)为直链结构,且两端段为软段,n为硬段-软段交替单元的数量,其大于等于0;且当n=0时,至少一个软段B中含有同时具有供体和受体的氢键基团;
Figure PCTCN2018072460-appb-000008
其中,式(1D)为支化结构,x为连接在软段B上的硬段分支链单元的数量;n为硬段-软段交替单元的数量,其大于等于0;y为连接在软段B上硬段-软段分支链单元的数量;x、y大于等于0,且x、y之和大于等于3;
Figure PCTCN2018072460-appb-000009
其中,式(1E)为支化结构,x为连接在软段B上的硬段分支链单元的数量;n为硬段-软段交替单元的数量,其大于等于0;y为连接在软段B上硬段-软段交替并且以硬段为端段的分支链单元的数量;x、y大于等于0,且x、y之和大于等于3;
Figure PCTCN2018072460-appb-000010
其中,式(1F)为支化结构,x为连接在硬段A上的软段分支链单元的数量;n为软段-硬段交替单元的数量,其大于等于0;y为连接在硬段A上软段-硬段分支链单元的数量;x、y大于等于0,且x、y之和大于等于3;当y=0时,至少一个软段B中含有同时具有供体和受体的氢键基团;
Figure PCTCN2018072460-appb-000011
其中,式(1G)为支化结构,x为连接在硬段A上的软段分支链单元的数量;n为软段-硬段交替单元的数量,其大于等于0;y为连接在硬段A上软段-硬段交替并且以软段为端段的分支链单元的数量;x、y大于等于0,且x、y之和大于等于3;当n=0或y=0时,至少一个软段B中含有同时具有供体和受体的氢键基团;
Figure PCTCN2018072460-appb-000012
其中,式(1H)为环状结构,n为硬段-软段交替单元的数量,其大于等于1,且当n=1时,软段B中含有同时具有供体和受体的氢键基团。
在本发明的实施方式中,一种物理分相动态聚合物,所述的含硼动态共价键存在于所述动态聚合物分子的软段主链骨架中。
在本发明的一种实施方式中,所述的含硼动态共价键选自有机硼酸单酯键、无机硼酸单酯键、有机硼酸环酯键、无机硼酸环酯键、有机硼酸硅酯键、无机硼酸硅酯键、有机硼酐键、无机硼酐键、有机-无机硼酐键中的至少一种;
其中,所述的有机硼酸单酯键选自如下结构中的至少一种:
Figure PCTCN2018072460-appb-000013
其中,所述结构中至少有一个碳原子通过硼碳键与硼原子相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;L为除直接键(包括单键、双键、三键)、亚甲基或被取代的亚甲基以外的至少二价的连接基;
其中,所述的无机硼酸单酯键,其选自如下结构中的至少一种:
Figure PCTCN2018072460-appb-000014
其中,所述结构中的硼原子不与任何碳原子直接相连;L为除直接键(包括单键、双键、三键)、亚甲基或被取代的亚甲基以外的至少二价的连接基;
当同一式中含有一个以上的Z原子时,各个Z原子各自独立;每个Z原子各自独立地选自氢原子、氟原子、氯原子、溴原子、碘原子、硫原子、氮原子、硼原子、硅原子,并且同一式中至少一个Z原子选自硫原子、硼原子、氮原子、硅原子;
b为与Z相连的
Figure PCTCN2018072460-appb-000015
的数目,当Z为氢原子、氟原子、氯原子、溴原子、碘原子,b为0;当Z为硫原子时,b为1;当Z为氮原子、硼原子时,b为2;当Z为硅原子时,b为3;
其中,所述的有机硼酸环酯键,其选自如下结构中的至少一种:
Figure PCTCN2018072460-appb-000016
其中,一个硼原子同时与两个氧原子形成环状有机硼酸酯单元,所述结构中的硼原子与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
其中,所述的无机硼酸环酯键,其选自如下结构中的至少一种:
Figure PCTCN2018072460-appb-000017
其中,一个硼原子同时与两个氧原子形成环状无机硼酸酯单元,所述结构中的硼原子不与任何碳原子直接相连;Z原子选自硫原子、硼原子、氮原子、硅原子;b为与Z相连的
Figure PCTCN2018072460-appb-000018
的数目;当Z为硫原子时,b为1;当Z为氮原子、硼原子时,b为2;当Z为硅原子时,b为3;
连接基L 0各自独立地为如下结构中的任一种,其中*表示与氧原子相连的位置:
Figure PCTCN2018072460-appb-000019
其中,所述的有机硼酸硅酯键,其选自如下结构中的至少一种:
Figure PCTCN2018072460-appb-000020
其中,所述结构中至少有一个碳原子通过硼碳键与硼原子相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
其中,所述的无机硼酸硅酯键,其选自如下结构中的至少一种:
Figure PCTCN2018072460-appb-000021
其中,所述结构中的硼原子不与任何碳原子直接相连;
当同一式中含有一个以上的Z原子时,各个Z原子各自独立;每个Z原子各自独立地选自氢原子、氟原子、氯原子、溴原子、碘原子、硫原子、氮原子、硼原子、硅原子,并且同一式中至少一个Z原子选自硫原子、硼原子、氮原子、硅原子;
b为与Z相连的
Figure PCTCN2018072460-appb-000022
的数目,当Z为氢原子、氟原子、氯原子、溴原子、碘原子,b为0;当Z为硫原子时,b为1;当Z为氮原子、硼原子时,b为2;当Z为硅原子时,b为3;
其中,所述的有机硼酐键,其为如下结构:
Figure PCTCN2018072460-appb-000023
其中,所述结构中至少有一个碳原子通过硼碳键与硼原子相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
其中,所述的无机硼酐键,其选自如下结构中的至少一种:
Figure PCTCN2018072460-appb-000024
Figure PCTCN2018072460-appb-000025
其中,所述结构中的硼原子不与任何碳原子直接相连;
当同一式中含有一个以上的Z原子时,各个Z原子各自独立;每个Z原子各自独立地选自氢原子、氟原子、氯原子、溴原子、碘原子、硫原子、氮原子、硼原子、硅原子,并且同一式中至少一个Z原子选自硫原子、硼原子、氮原子、硅原子;
b为与Z相连的
Figure PCTCN2018072460-appb-000026
的数目,当Z为氢原子、氟原子、氯原子、溴原子、碘原子,b为0;当Z为硫原子时,b为1;当Z为氮原子、硼原子时,b为2;当Z为硅原子时,b为3;
其中,所述的有机-无机硼酐键,其选自如下结构中的至少一种:
Figure PCTCN2018072460-appb-000027
其中,所述结构中其中一个硼原子与至少一个碳原子通过硼碳键直接相连,且至少一个有机基团通过形成的硼碳键与硼原子相连;所述结构中另一个硼原子不与任何碳原子直接相连;
当同一式中含有一个以上的Z原子时,各个Z原子各自独立;每个Z原子各自独立地选自氢原子、氟原子、氯原子、溴原子、碘原子、硫原子、氮原子、硼原子、硅原子,并且同一式中至少一个Z原子选自硫原子、硼原子、氮原子、硅原子;
b为与Z相连的
Figure PCTCN2018072460-appb-000028
的数目,当Z为氢原子、氟原子、氯原子、溴原子、碘原子,b为0;当Z为硫原子时,b为1;当Z为氮原子、硼原子时,b为2;当Z为硅原子时,b为3。
本发明的一种实施方式中,所述的动态聚合物分子的硬段的主链选自碳链结构、碳杂链结构;所述的动态聚合物的软段的主链选自碳链结构、碳杂链结构、元素杂链结构、碳杂元素链结构。
本发明的一种实施方式中,所述的动态聚合物分子的硬段的选自具有高玻璃化转变温度的无定形聚合物链段、富含氢键基团的聚合物链段或基团、富含结晶相的聚合物链段或基团。
本发明的一种实施方式中,所述动态聚合物分子的软段中还含有同时含有氢键供体和氢键受体的氢键基团。
本发明的一种实施方式中,所述的物理分相动态聚合物或含有其的组成具有以下任一性状:普通固体、弹性体、凝胶、泡沫。
一种物理分相动态聚合物热塑性弹性体,其中包含同时具有硬段和软段的动态聚合物分子,所述动态聚合物分子各硬段之间相互混合或各自独立或相互混合又各自独立地可形成结晶相或与软段不相容的相或结晶相和与软段不相容的相;所述动态聚合物分子的各软段为无定型态;所述的动态聚合物分子在分子中含有至少一种含硼动态共价键,所述的含硼动态共价键含有如下式所示的结构:
Figure PCTCN2018072460-appb-000029
其中,X选自硼原子、碳原子、硅原子;其中,
Figure PCTCN2018072460-appb-000030
表示为基团和连接中的至少一种;其中, a为与X相连的
Figure PCTCN2018072460-appb-000031
的数目,当X为硼原子时,a为2;当X为碳原子和硅原子时,a为3;所述的含硼动态共价键通过至少一个所述
Figure PCTCN2018072460-appb-000032
接入聚合物链中。
在本发明的一种实施方式中,所述的物理分相动态聚合物热塑性弹性体中的含硼动态共价键存在于所述动态聚合物分子的软段主链骨架中。
在本发明的一种实施方式中,所述的物理分相动态聚合物热塑性弹性体中的含硼动态共价键选自有机硼酸单酯键、无机硼酸单酯键、有机硼酸环酯键、无机硼酸环酯键、有机硼酸硅酯键、无机硼酸硅酯键、有机硼酐键、无机硼酐键、有机-无机硼酐键中的至少一种。
在本发明的一种实施方式中,所述的物理分相动态聚合物热塑性弹性体中的动态共价聚合物分子的各个软段的玻璃化转变温度均不高于25℃。
在本发明的一种实施方式中,所述的物理分相动态聚合物热塑性弹性体中的动态聚合物分子的软段中含有同时含有氢键供体和氢键受体的氢键基团。
在本发明的一种实施方式中,构成所述物理分相动态聚合物或物理分相动态聚合物热塑性弹性体的配方组分还包括以下任一种或任几种可添加物或可使用物:其他聚合物、助剂、填料。其中,所述的其他聚合物选自以下任一种或任几种:天然高分子化合物、合成树脂、合成橡胶、合成纤维;所述的助剂选自以下任一种或任几种:催化剂、引发剂;稳定化助剂,包括抗氧化剂、光稳定剂、热稳定剂、分散剂、乳化剂、阻燃剂、扩链剂、增韧剂、偶联剂、溶剂、润滑剂、脱模剂、增塑剂、增稠剂、触变剂、流平剂、着色剂、荧光增白剂、消光剂、抗静电剂、杀菌防霉剂、发泡剂、成核剂、流变剂、动态调节剂;所述的填料选自以下任一种或任几种:无机非金属填料、金属填料、有机填料。
在本发明的一种实施方式中,所述的物理分相动态聚合物或物理分相动态聚合物热塑性弹性体应用于以下材料或制品:减震器、缓冲材料、抗冲击防护材料、运动防护制品、军警防护制品、自修复性涂层、自修复性板材、自修复性粘结剂、自修复性密封材料、韧性材料、韧性弹性体材料、夹层胶、自粘性玩具、储能器件材料、形状记忆材料、力传感器。
一种吸能的方法,提供一种物理分相动态聚合物热塑性弹性体并以其作为吸能材料进行吸能,所述的物理分相动态聚合物热塑性弹性体中包含同时具有硬段和软段的动态聚合物分子,所述动态聚合物分子各硬段之间相互混合或各自独立或相互混合又各自独立地可形成结晶相或与软段不相容的相或结晶相和与软段不相容的相;所述动态聚合物分子的各软段为无定型态;所述的动态聚合物分子在分子中含有至少一种含硼动态共价键,所述的含硼动态共价键含有如下式所示的结构:
Figure PCTCN2018072460-appb-000033
其中,X选自硼原子、碳原子、硅原子;其中,
Figure PCTCN2018072460-appb-000034
表示为基团和连接中的至少一种;其中,a为与X相连的
Figure PCTCN2018072460-appb-000035
的数目,当X为硼原子时,a为2;当X为碳原子和硅原子时,a为3;所述的含硼动态共价键通过至少一个所述
Figure PCTCN2018072460-appb-000036
接入聚合物链中。
与现有技术相比,本发明具有以下有益效果:
(1)本发明的物理分相动态聚合物包含具有硬段和软段的动态聚合物分子,其中同时含有物理分相和含硼动态共价键,物理分相具有非共价键的性能,而含硼动态共价键具有动态共价性能,这样就融合了非共价键和动态共价键的性能,两者的有机结合可以获得丰富的协 同和正交的材料性能。物理分相通常对温度、溶剂更为敏感,而含硼动态共价键通常动态性高,也就是能够在成键和断键之间快速转换。物理分相方便作为更稳定的聚合/交联连接点,而含硼动态共价键用于提供链的动态性。特别是当基于结晶/相分离的硬段形成分相物理交联并为为材料提供平衡结构而同时含硼动态共价键在软段中时,即可获得动态的弹性体/凝胶等,特别是热塑性弹性体。充分利用含硼动态共价键的动态性,可以赋予聚合物胀流性能,起到抗冲击防护、缓冲减震等吸能防护作用;在外力足够大时,还作为可牺牲键,其断裂可以对外力进行有效的耗散,提高材料的韧性和起到能量吸收的作用;在常温或其他使用温度下可以赋予材料材料在受到外力破坏后的自修复能力。由于物理分相可以通过加热和/或溶剂进行解离,即使形成基于物理分相的物理交联,材料也具有良好的加工性能,因此在较大程度内实现自修复、塑形、回收、再次加工利用,使得聚合物材料具有更宽广的应用范围和更长久的使用寿命,这在现有的聚合物体系中是无法实现的。此外,通过可选择性地控制其他条件(如加入助剂、调整反应温度等),能够在适当的环境下,加速或淬灭动态可逆平衡,使其处于所需的状态。
(2)本发明中,可选的具有动态性的超分子氢键作用,特别是软段中的氢键作用,一方面可用于对分相物理交联进行补充,另一方面用于提供额外的动态性。当氢键基团在软段的侧基和/或侧链上时,氢键基团是悬挂在骨架链侧边的基团,其基团和链的运动更加自由,因此动态性更强,既更有利于对外力进行有效的耗散,也特别有利于外力解除后的自修复。同时,在高温下氢键作用容易解离,材料又保持了良好的加工性能,这在现有的聚合物体系中是无法实现的。
(3)本发明的一种物理分相动态聚合物具有良好的可调控性。通过控制原料和制备方法等参数,可制备化学结构、拓扑结构、分子量等可控的聚合物,获得具有不同表观特征、性能可调、用途广泛的动态聚合物,特别是热塑性弹性体;通过控制含硼动态共价键和可选氢键基团的种类、数目、位置,可以在更大范围内对聚合物材料中动态可逆键的动态性进行组合搭配和调控,能够获得结构更为丰富、性能更为多样、动态可逆性强弱不同且动态可逆效果更具层次性的聚合物材料;通过调节所含多段聚合物分子各链段的数量、组成、长度以及硬段结晶/相分离和含硼动态共价键以及氢键作用成分的比例,可以制备出不同力学性能、不同吸能效果、不同韧性、不同自修复性等多样性的动态聚合物;通过控制所含聚合物分子各嵌段热转变温度,可以制备出适应不同温度的具有形状记忆功能的动态聚合物。这在传统的聚合物体系里面更是难以做到的。
参考下述实施方式说明、实施例和所附权利要求书,本发明的这些和其他特征以及优点将变得显而易见。
具体实施方式
本发明涉及一种物理分相动态聚合物(以下将“物理分相动态聚合物”简称为“动态聚合物”),其中包含同时具有硬段和软段的动态聚合物分子,所述动态聚合物分子各硬段之间相互混合和/或各自独立地可形成结晶相和/或与软段不相容的相,以形成基于硬段的分相物理交联或同时交联和聚合;所述动态聚合物分子的各软段为无定型态;所述的动态聚合物分子在分子中含有至少一种含硼动态共价键,并选择性地含有至少一种可形成动态超分子氢键的氢键基团。
本发明中所述的“聚合”为链的增长过程/作用,也即通过分子间反应/作用(包括共价化学反应和非共价/超分子作用)形成直链、支化、环、二维/三维团簇、三维无限网络结构的聚合物。本发明中所用术语“交联”,指的是分子间和/或分子内通过共价键和/或非共价/超分子作用形成具有三维无限网状型产物的过程。在交联过程中,聚合物链一般先在二维/三维方向不断增长,逐步形成团簇(可以是二维或者三维),再发展为三维无限网络。因此, 交联可以视为聚合的一种特殊形式。在交联过程中,刚好达到一个三维无限网络时的交联度,称为凝胶点,也称为渗滤阈值。处于凝胶点以上(含,下同)的交联产物,其具有三维无限网络结构,交联网络构成一个整体并横跨整个聚合物结构;处于凝胶点以下的交联产物,其仅为稀松的链间链接结构,并未形成三维无限网络结构,仅在局部存在少量的二维/三维网络结构,并不属于横跨整个聚合物结构的能够构成一个整体的交联网络。除非特别说明,本发明中的交联结构仅包含凝胶点以上三维无限网络结构,非交联结构则包含凝胶点以下的二维/三维团簇结构和交联度为零的线型和非线型结构。
在本发明的实施方式中,所述的同时具有硬段和软段的动态聚合物分子,其含有硬段和软段的总数大于等于2,即其中含有至少一个硬段和至少一个软段。各硬段之间相互混合和/或各自独立地可形成结晶相和/或与软段不相容的相,以形成基于硬段的分相物理交联或同时交联和聚合。所述的物理聚合使聚合物链增长(包括交联);所述的物理交联使聚合物具有类似共价交联后的交联物理性质,包括但不限于表观分子量增大、弹性、尺寸稳定性、力学强度,硬段分相物理交联特别是适合用于提供本发明的动态聚合物的平衡结构,也即尺寸稳定性。需要指出的是,在本发明中基于硬段的结晶/相分离形成的分相物理交联,指的是在所述含硼动态共价键和选择性存在的氢键完全解离的情况下仅仅依靠分相本身即可形成的交联结构,或分相与所述含硼动态共价键和选择性存在的氢键共同作用可以形成交联结构。当硬段数量大于等于2且相互之间通过软段相连接时,硬段的结晶/相分离将更加有效地形成链间分相物理交联,可以有效提供分相物理交联的强度、聚合物的平衡结构以及所述物理分相聚合物的力学性能,因此优选含有至少两个硬段和至少一个软段形成硬段-软段交替结构。所述聚合物分子的链拓扑结构没有特别的限定,可以是直链结构、支化结构(包括但不限于星状、H型、树枝状、梳状、超支化)、环状结构(包括但不限于单环、多环、桥环、嵌套环)、二维/三维团簇结构、凝胶点以上交联的颗粒及其两种或任几种的组合,优选为直链和支化结构。当存在支化结构时,部分硬段/软段可以在主链上,部分硬段/软段可以在侧链/支链/分叉链上。
在本发明的实施方式中,所述的同时具有硬段和软段的动态聚合物分子中,各个硬段可以相同或者不同,各个软段可以相同或不同;其中,硬段和软段又可以各自独立地包含两个或者两个以上相同或者不同的子链段;所述子链段可以是同在主链上的更小的链段,也可以是在侧链、支链、分叉链上的更小的链段;所述不同包括但不仅限于化学组成不同、分子量不同、拓扑结构不同、空间构型不同。在本发明的实施方式中,各硬段、软段及其子链段可以是均聚物链段也可以是共聚物链段,可以是均聚的团簇或共聚的团簇,可以是均聚或共聚的凝胶点以上的交联颗粒,还可以是功能基团以及以上各种的任意组合形式。
在本发明的实施方式中,硬段中任意链段的拓扑结构没有特别的限定,可以是直链结构、支化结构(包括但不限于星状、H型、树枝状、梳状、超支化)、环状结构(包括但不限于单环、多环、桥环、嵌套环)、二维/三维团簇结构、凝胶点以上交联的颗粒及其两种或任几种的组合,优选为直链和支化结构。软段中任意链段的拓扑结构没有特别的限定,可以是直链结构、支化结构(包括但不限于星状、H型、树枝状、梳状、超支化)、环状结构(包括但不限于单环、多环、桥环、嵌套环)、二维/三维团簇结构、凝胶点以上交联的颗粒及其两种或任几种的组合,优选为直链、支化结构和团簇结构。
作为例子,可以举出如下式(1A)-(1H)所示的本发明的一些优选结构,但本发明不仅限于此,其中,A为硬段,B为软段,同一动态聚合物分子中不同位置的硬段A可以相同也可以不同,同一分子中不同位置的软段B可以相同也可以不同:
Figure PCTCN2018072460-appb-000037
其中,式(1A)为直链结构,n为硬段-软段交替单元的数量,其大于等于0,且当n=0 时,软段B中含有同时具有供体和受体的氢键基团;优选n大于等于1;
Figure PCTCN2018072460-appb-000038
式(1B)为直链结构,且两端段为硬段,n为硬段-软段交替单元的数量,其大于等于0;
Figure PCTCN2018072460-appb-000039
式(1C)为直链结构,且两端段为软段,n为硬段-软段交替单元的数量,其大于等于0,且当n=0时,至少一个软段B中含有同时具有供体和受体的氢键基团;优选n大于等于1;
Figure PCTCN2018072460-appb-000040
式(1D)为支化结构,x为连接在软段B上的硬段分支链单元的数量;n为硬段-软段交替单元的数量,其大于等于0;y为连接在软段B上硬段-软段分支链单元的数量;x、y大于等于0,且x、y之和大于等于3;
Figure PCTCN2018072460-appb-000041
式(1E)为支化结构,x为连接在软段B上的硬段分支链单元的数量;n为硬段-软段交替单元的数量,其大于等于0;y为连接在软段B上硬段-软段交替并且以硬段为端段的分支链单元的数量;x、y大于等于0,且x、y之和大于等于3;
Figure PCTCN2018072460-appb-000042
式(1F)为支化结构,x为连接在硬段A上的软段分支链单元的数量;n为软段-硬段交替单元的数量,其大于等于0;y为连接在硬段A上软段-硬段分支链单元的数量;x、y大于等于0,且x、y之和大于等于3;当y=0时,至少一个软段B中含有同时具有供体和受体的氢键基团;优选y大于等于1,且x、y之和大于等于3;
Figure PCTCN2018072460-appb-000043
式(1G)为支化结构,x为连接在硬段A上的软段分支链单元的数量;n为软段-硬段交替单元的数量,其大于等于0;y为连接在硬段A上软段-硬段交替并且以软段为端段的分支链单元的数量;x、y大于等于0,且x、y之和大于等于3;当n=0或y=0时,至少一个软段B中含有同时具有供体和受体的氢键基团;优选y大于等于1,且x、y之和大于等于3;
Figure PCTCN2018072460-appb-000044
式(1H)为环状结构,n为硬段-软段交替单元的数量,其大于等于1,且当n=1时,软段B中含有同时具有供体和受体的氢键基团;优选n大于等于2。
此外,本发明的同时具有硬段和软段的动态聚合物分子的结构还可以是上述列举的优选结构的任意组合形式和其他的任意合适的结构,本领域技术人员可以根据本发明的逻辑和脉络给予合理地实现。
在本发明的实施方式中,所述的含硼动态共价键可以存在于所述动态聚合物分子中的位置包括但不仅限于:软段主链骨架、软段侧链/支链/分叉链骨架、软段主链侧基、软段主链端基、软段侧链/支链/分叉链侧基、软段侧链/支链/分叉链端基、硬段主链骨架、硬段侧链/ 支链/分叉链骨架、硬段主链侧基、硬段主链端基、硬段侧链/支链/分叉链侧基、硬段侧链/支链/分叉链端基、软段和硬段的连接基、主链与侧链/支链/分叉链的连接基。优选存在于软段主链骨架以及软段和硬段的连接基上,更优选存在于软段主链骨架上,以充分发挥动态共价键的动态性。
在本发明中,所述的“主链”为聚合物分子/链段的主体链,通常是链节最多的链;所述的“侧链/支链”,指的是同聚合物主链骨架相连接而分布在主链骨架旁侧的链结构;其中,所述的“分叉链”可以是侧链/支链也可以是其他从任意链分叉出来的链结构。其中,所述的“侧基”,指的是同聚合物链骨架相连接而分布在链骨架旁侧的化学基团。其中,所述的“端基”,指的是在任意聚合物链末端的化学基团。上述的“侧链/支链/分叉链”、“侧基”“端基”,其可具有多级结构,也即侧链可以继续带有侧链,侧链的侧链/可以继续有侧链,其他类似。如非特别说明,侧基和端基特指连接在聚合物链骨架旁侧的分子量不超过1000Da的基团及其中的亚基团;而侧链/支链/分叉链的特指分子量超过1000Da的链段。为简单起见,当侧链、支链、分叉链的分子量超过1000Da时,如非特别说明,则统一称为侧链。
在本发明中,除基于硬段的结晶相和/或形成与软段不相容的相构成的分相物理交联/聚合是物理交联/聚合外,软段和/或硬段中的氢键基团参与形成的超分子氢键交联/聚合也是一种物理交联/聚合。本发明涉及的物理交联/聚合具有可逆性,即所述的物理交联/聚合在加热条件下或者良溶剂中或者其他适当刺激下,物理交联/聚合可以发生解交联/解聚合;在冷却条件下或者不良溶剂中或者解除刺激后,物理交联/聚合可以重新形成。
在本发明中,硬段一般比软段具有更高的玻璃化转变温度和/或形成的结晶相和/或与软段不相容的相比软段形成的相具有更好的热稳定性和/或更高的力学强度和/或更低的溶解性。在本发明的实施方式中,所述动态聚合物中通常存在软段构成的软相和硬段构成的硬相两相结构;但由不同硬段形成的不同硬相也可以不相容,由不同软段形成的不同软相也可以不相容,也即,动态聚合物中可以存在两个甚至三个或三个以上不相容的相。在本发明的实施方式中,软段构成的软相和硬段构成的硬相所形成的相拓扑结构(相形态)没有限制,包括但不限于球状、圆柱形状、螺旋状、层状及其组合形式。任何一相,包括不同的软相之间和不同的硬相之间,可以分散在另外一相中,也可以与其他相形成互穿的双/多连续相,也可以是相互独立的连续相。在本发明的实施方式中,优选软相为连续相,硬相为不连续相分散在软相中,更优选硬相以球状分散在软相中,因此所述聚合物能够更方便地具有更好的柔软性和弹性并更加适合发挥动态共价键的动态性。所述不连续的硬相的尺寸通常不大于100微米,更优选不大于10微米,更优选不大于1微米,最优选不大于100纳米。动态聚合物的硬段的总含量没有特别限制,优选占总重的1%-50%之间,更优选为总重的5%-35%之间,以方便形成有效的分相物理交联。
在本发明的实施方式中,硬段形成的分相物理交联的交联度可以在其凝胶点上下,由含动态共价键形成的动态共价交联也可以在其凝胶点上下,选择性存在的氢键基团形成的超分子氢键交联也可以在其凝胶点上下;优选硬段形成的分相物理交联、含硼动态共价键形成的动态共价交联和选择性存在的氢键基团形成的超分子氢键交联之和在聚合物的总凝胶点以上;优选硬段形成的分相物理交联的交联度在其凝胶点上(含凝胶点,下同),以获得完全基于硬段分相物理交联的三维无限网络,在含硼动态共价键形成的动态共价交联和选择性存在的氢键超分子交联完全解离的情况下,动态聚合物也可以保持平衡结构,也即尺寸稳定性。
在本发明的实施方式中,所述的动态聚合物的软相可以没有玻璃化转变温度,或者有一个或多个玻璃化转变温度,优选其中至少有一个玻璃化转变温度不高于工作温度范围的下限;所述的硬相也可以没有玻璃化转变温度,或者有一个或多个玻璃化转变温度,同时也可以有一个或多个解分相物理交联温度,优选任意硬段的解分相物理交联温度高于工作温度范围的上限。当所述的动态聚合物含有增塑剂等助剂或填料使其软段至少有一个玻璃化转变温度不 高于工作温度范围的下限时,同时硬段的解交联温度高于工作温度范围的上限,该组合物也属于本发明所指的“动态聚合物”。其中,优选为整个软段的各个组分的玻璃化转变温度全部低于工作温度范围的下限,有利于获得柔软度高的聚合物,特别是具有阻尼等广泛用途的弹性体。由此获得的弹性体不但具有动态性,而且具有热塑性便于成型和再加工,这种热塑性动态弹性体在吸能、密封和力传感等方面具有非常重要的用途。所述热塑性动态弹性体各个软段的玻璃化转变温度更优选为均不高于25℃,在室温下即可作为弹性体使用。
在本发明的实施方式中,硬段可逆性的分相物理交联/聚合的动态性低于软段中含硼动态共价键和可选的氢键的动态性,更优选硬段分相物理交联的解交联温度和力学稳定性也分别高于软段中的含硼动态共价键和可选的氢键的热稳定温度和力学稳定性。因此,可以方便达到硬段分相物理交联维持平衡结构,软段的含硼动态共价键和可选的氢键提供动态性的效果。
在本发明的实施方式中,硬段的化学组成没有特别的限制,可以选自但不限于主链为碳链结构、碳杂链结构、碳元素链结构、元素链结构、元素杂链结构、碳杂元素链结构的聚合物链段。所述的碳链结构为主链骨架仅含有碳原子的结构;所述的碳杂链结构为主链骨架同时含有碳原子和任一种或任几种杂原子的结构,其中所述杂原子包括但不仅限于硫、氧、氮;所述的碳元素链结构为主链骨架同时含有碳原子和任一种或任几种元素原子的结构,其中元素原子包括但不仅限于硅、硼、铝;所述的元素链结构为主链骨架仅含有元素原子的结构;所述的元素杂链结构为主链骨架同时且仅含有至少一种杂原子和至少一种元素原子的结构;所述的碳杂元素链结构为主链骨架同时包含碳原子、杂原子和元素原子的结构。其中,优选碳链结构、碳杂链结构,因其原料易得、工业化制备技术成熟。作为举例,所述动态聚合物的硬段可以是基于下列聚合物链段、基团或其中任几种组合的链段,但不仅限于此:具有高玻璃化转变温度的无定形聚合物链段,如聚苯乙烯、聚乙烯吡啶、氢化聚冰片烯、聚醚醚酮、聚芳族碳酸酯、聚砜等;富含氢键基团的聚合物链段、基团,如聚酰胺、聚肽、富含脲键的链段、富含氨基甲酸酯键的链段、基于脲基嘧啶酮的链段等;富含结晶相的聚合物链段、基团,如结晶性聚乙烯、结晶性聚丙烯、结晶性聚酯、结晶性聚醚、液晶聚合物、液晶基团等;离子型聚合物链段,如聚丙烯酸盐、聚甲基丙烯酸盐、聚丙烯酰胺盐、聚苯乙烯磺酸盐等。其中,优选具有高玻璃化转变温度的无定形聚合物链段、富含氢键基团的聚合物链段/基团,富含结晶相的聚合物链段/基团,因其原料易得、工业化制备技术成熟;更优选为具有高玻璃化转变温度的无定形聚合物、富含结晶相的聚合物、可形成六齿以上氢键的聚合物链段/基团。
在本发明的实施方式中,软段聚合物骨架可以选自但不限于主链为碳链结构、碳杂链结构、碳元素链结构、元素链结构、元素杂链结构、碳杂元素链结构的聚合物链段,优选碳链结构、碳杂链结构、元素杂链结构和碳杂元素链结构,因其原料易得、制备技术成熟。软段聚合物链骨架(包括主链和侧链/支链/分叉链)和/或侧基/端基可以选择性地含有氢键基团。所含的氢键基团不结晶且不与软段形成相分离,齿数优选不高于四齿。软段可以由合成高分子和/或天然高分子前体继续反应(包括导入端基和/或侧基活性点、导入侧基和/或侧链、接枝、扩链等)得到,也可以由单体和/或预聚物/齐聚物聚合得到,或由以上两种方法相结合得到。作为举例,软段聚合物链骨架可以是基于下列聚合物的链段,但本发明不仅限于此:丙烯酸酯类聚合物、饱和烯烃类聚合物、不饱和烯烃类聚合物、含卤素的烯烃类聚合物、聚丙烯腈类聚合物、聚乙烯醇类聚合物、有机硅类聚合物、聚醚类聚合物、聚酯类聚合物、生物聚酯类聚合物等的均聚物或共聚物。
在本发明中,所述的动态聚合物分子中含有的含硼动态共价键含有如式(2A)所示的结构:
Figure PCTCN2018072460-appb-000045
其中,X选自硼原子、碳原子、硅原子;
Figure PCTCN2018072460-appb-000046
表示任意合适的基团和/或连接,包括但不限于任意合适的氢原子、杂原子基团、分子量不超过1000Da的小分子基团、分子量大于1000Da的聚合物链残基、分子量不超过1000Da的无机小分子链残基、分子量大于1000Da的无机大分子链残基相连的连接,连在同一个原子上的两个
Figure PCTCN2018072460-appb-000047
可以同时连在另一个原子上形成双键,连在同一个原子上的三个
Figure PCTCN2018072460-appb-000048
可以同时连在另一个原子上形成三键,其中任两个
Figure PCTCN2018072460-appb-000049
相连成环或不成环,所述的环可以选自但不仅限于脂肪族环、醚环、缩合环或其组合,还可以连接作为芳环的一部分等情况;a为与X相连的
Figure PCTCN2018072460-appb-000050
的数目,当X为硼原子时,a为2;当X为碳原子和硅原子时,a为3。其中,所述的含硼动态共价键通过至少一个所述
Figure PCTCN2018072460-appb-000051
接入聚合物链中。当下文中再次出现的此类
Figure PCTCN2018072460-appb-000052
都沿用上述定义与范围,如无特例,不再进行重复说明。
在本发明中,所述的含硼动态共价键更具体地可以包括但不限于如下结构:有机硼酸单酯键、无机硼酸单酯键、有机硼酸环酯键、无机硼酸环酯键、有机硼酸硅酯键、无机硼酸硅酯键、有机硼酐键、无机硼酐键、有机-无机硼酐键以及上述各类含硼动态共价键两种或两种以上的组合。
在本发明中所述的有机硼酸单酯键,其优选含有如下结构中的至少一种:
Figure PCTCN2018072460-appb-000053
其中,所述结构中至少有一个碳原子通过硼碳键与硼原子相连;L为除直接键(包括单键、双键、三键)、亚甲基或被取代的亚甲基以外的至少二价的连接基,L为直接键、亚甲基或被取代的亚甲基而形成五元环或六元环的情况在本发明中视为有机硼酸环酯键,不包括在此。所述有机硼酸单酯键可以通过
Figure PCTCN2018072460-appb-000054
接入聚合物链中,也可以通过L上的原子/基团接入聚合物链中,L上的原子/基团也可以与其两侧C上的
Figure PCTCN2018072460-appb-000055
连接成环。
其中,由于氨甲基苯硼酸酯键具有更强的动态反应性、动态反应条件更加温和,在提高了制备效率的同时,也进一步降低了使用环境的局限性,扩展了聚合物的应用范围,因此本发明的有机硼酸单酯键更优选氨甲基苯硼酸环酯键,其优选含有下式所示的结构中的至少一种:
Figure PCTCN2018072460-appb-000056
在本发明中所述的有机硼酸单酯键优选由有机硼酸基元与单烃羟基基元反应生成。其中,所 述的有机硼酸基基元,其结构中硼原子与至少一个碳原子通过硼碳键直接相连,且至少一个有机基团通过形成的硼碳键与硼原子相连,硼原子上同时连接至少一个硼羟基或可水解形成硼羟基的基团或原子;所述的有机硼酸基基元可选自但不限于有机硼酸基、有机硼酸酯基、有机硼酸盐基、有机硼卤烷基。
其中,所述的有机硼酸基,其优选含有如下结构中的至少一种:
Figure PCTCN2018072460-appb-000057
其中,所述的有机硼酸酯基,其优选含有如下结构中的至少一种:
Figure PCTCN2018072460-appb-000058
其中,R 1、R 2、R 3为与氧原子直接相连的一价有机基团或一价有机硅基团,其通过碳原子或硅原子与氧原子直接相连,其各自独立地选自以下任一种结构:分子量不超过1000Da的小分子烃基、分子量不超过1000Da的小分子硅烷基、分子量大于1000Da的聚合物链残基,优选为分子量不超过1000Da的小分子烃基、分子量不超过1000Da的小分子硅烷基,更优选为碳原子数不超过4的小分子烃基和分子量不超过200Da的小分子硅烷基;R 4为与两个氧原子直接相连的二价有机基团或二价有机硅基团,其通过碳原子或硅原子与氧原子直接相连,其选自以下任一种结构:分子量不超过1000Da的二价小分子亚烃基、分子量不超过1000Da的二价小分子亚硅烷基、分子量大于1000Da的二价聚合物链残基,优选为分子量不超过1000Da的小分子亚烃基、分子量不超过1000Da的小分子亚硅烷基,更优选为亚甲基、亚乙基、取代的亚甲基、取代的亚乙基和分子量不超过200Da的小分子硅烷基。
其中,所述的有机硼酸盐基,其优选含有如下结构中的至少一种:
Figure PCTCN2018072460-appb-000059
其中,M为元素周期表中任意合适的金属元素或任意合适的离子基团,n为M的价数,优选+1价、+2价、+3价,举例如锂离子、钾离子、钠离子、镁离子、钙离子、铁离子、铜离子和铵根离子等。
其中,所述的有机硼卤烷基,其优选含有如下结构中的至少一种:
Figure PCTCN2018072460-appb-000060
其中,R 5、R 6、R 7各自独立地选自氟原子、氯原子、溴原子、碘原子。
作为举例,合适的有机硼酸基基元举例如下,但本发明不限于此:
Figure PCTCN2018072460-appb-000061
Figure PCTCN2018072460-appb-000062
其中,x、y为一个固定值或平均值,x为0或大于等于1的整数,y为大于等于1的整数;
Figure PCTCN2018072460-appb-000063
优选与其他反应性基团相连接,便于通过普通共价键接入动态聚合物中,或与连接结构G相连,形成含有两个或两个以上所述的有机硼酸基基元的有机硼酸基类原料,其可以是小分子化合物、低聚物、聚合物中的至少一种。所述的连接结构G可选自以下任一种或任几种:单键、二价或多价杂原子连接基、分子量不超过1000Da的二价或多价小分子烃基、分子量大于1000Da的二价或多价聚合物链残基。需要特别指出的是,当G选自聚合物链残基时,所选聚合物链也作为动态聚合物的硬段或软段,或是硬段或软段中的一部分。
具体地,当G选自单键时,其可选自硼硼单键、碳碳单键、碳氮单键、氮氮单键、硼碳单键、硼氮单键;优选为硼硼单键、硼碳单键、碳碳单键。
当G选自杂原子连接基时,其可选自以下任一种或任几种的组合:醚基、硫基、硫醚基、二价叔胺基、三价叔胺基、二价硅基、三价硅基、四价硅基、二价磷基、三价磷基、二价硼基、三价硼基,优选为醚基、硫基、二价叔胺基、三价叔胺基;当G选自分子量不超过1000Da的二价或多价小分子烃基时,其一般含有1到71个碳原子,烃基的价态可为2-144价,其可含有杂原子基团,也可不含有杂原子基团。概括地讲,所述的二价或多价小分子烃基可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二到一百四十四价C 1-71烷基、二到一百四十四价环C 3-71烷基、二到六价苯基、二到八价苄基、二到一百四十四价芳烃基,优选二到四价甲基、二到六价乙基、二到八价丙基,二到六价环丙烷基、二到八价环丁基、二到十价环戊基、二到十二价环己基、二到六价苯基。
当G选自分子量大于1000Da的二价或多价聚合物链残基时,其可为任意合适的二价或多价聚合物链残基,包括但不仅限于二价或多价碳链聚合物残基、二价或多价杂链聚合物残基、二价或多价元素有机聚合物残基;其中,聚合物可为均聚物,也可为任几种单体、低聚 物或聚合物组成的共聚物,聚合物链可为柔性链,也可为刚性链。
当G选自二价或多价碳链聚合物残基时,其可以是任意合适的大分子主链主要由碳原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二价或多价聚烯烃类链残基,如二价或多价聚乙烯链残基、二价或多价聚丙烯链残基、二价或多价聚异丁烯链残基、二价或多价聚苯乙烯链残基、二价或多价聚氯乙烯链残基、二价或多价聚偏氯乙烯链残基、二价或多价聚氟乙烯链残基、二价或多价聚四氟乙烯链残基、二价或多价聚三氟氯乙烯链残基、二价或多价聚醋酸乙烯酯链残基、二价或多价聚乙烯醇链残基、二价或多价聚乙烯基烷基醚链残基、二价或多价聚丁二烯链残基、二价或多价聚异戊二烯链残基、二价或多价聚氯丁二烯链残基、二价或多价聚降冰片烯链残基等;二价或多价聚丙烯酸类链残基,如二价或多价聚丙烯酸链残基、二价或多价聚丙烯酰胺链残基、二价或多价聚丙烯酸甲酯链残基、二价或多价聚甲基丙烯酸甲酯链残基等;二价或多价聚丙烯腈类链残基,如二价或多价聚丙烯腈链残基等。G优选二价或多价聚乙烯链残基、二价或多价聚丙烯链残基、二价或多价聚苯乙烯链残基、二价或多价聚氯乙烯链残基、二价或多价聚丁二烯链残基、二价或多价聚异戊二烯链残基、二价或多价聚丙烯酸链残基、二价或多价聚丙烯酰胺链残基、二价或多价聚丙烯腈链残基。
当G选自二价或多价杂链聚合物残基时,其可以是任意合适的大分子主链主要由碳原子和氮、氧、硫等杂原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二价或多价聚醚类链残基,如二价或多价聚环氧乙烷链残基、二价或多价聚环氧丙烷链残基、二价或多价聚四氢呋喃链残基、二价或多价环氧树脂链残基、二价或多价酚醛树脂链残基、二价或多价聚苯醚链残基等;二价或多价聚酯类链残基,如二价或多价聚己内酯链残基、二价或多价聚戊内酯链残基、二价或多价聚丙交酯链残基、二价或多价聚对苯二甲酸乙二醇酯链残基、二价或多价不饱和聚酯链残基、二价或多价醇酸树脂链残基、二价或多价聚碳酸酯链残基等;二价或多价聚胺类链残基,如二价或多价聚酰胺链残基、二价或多价聚酰亚胺链残基、二价或多价聚氨酯链残基、二价或多价聚脲链残基、二价或多价脲醛树脂链残基、二价或多价蜜胺树脂链残基等。G优选二价或多价聚环氧乙烷链残基、二价或多价聚四氢呋喃链残基、二价或多价环氧树脂链残基、二价或多价聚己内酯链残基、二价或多价聚丙交酯链残基、二价或多价聚酰胺链残基、二价或多价聚氨酯链残基。
当G选自二价或多价元素有机聚合物残基时,其可以是任意合适的大分子主链主要由硅、硼、铝等无机元素杂原子和氮、氧、硫、磷等杂原子构成的聚合物残基,其可选自以下组中任一种、任一种的不饱和形式、任一种的被取代形式或任一种的被杂化形式:二价或多价有机硅类聚合物链残基,如二价或多价聚有机硅烷链残基、二价或多价聚有机硅氧烷链残基、二价或多价聚有机硅硼烷链残基、二价或多价聚有机硅氮烷链残基、二价或多价聚有机硅硫烷链残基、二价或多价聚有机磷硅氧烷链残基、二价或多价聚有机金属硅氧烷链残基;二价或多价有机硼类聚合物链残基,如二价或多价聚有机硼烷链残基、二价或多价聚有机硼氮烷链残基、二价或多价聚有机硼硫烷链残基、二价或多价聚有机硼磷烷链残基等;二价或多价有机磷类聚合物链残基;二价或多价有机铅类聚合物链残基;二价或多价有机锡类聚合物链残基;二价或多价有机砷类聚合物链残基;二价或多价有机锑类聚合物链残基。G优选二价或多价聚有机硅烷链残基、二价或多价聚有机硼烷链残基。
其中,所述的其他反应性基团,指的是能够自发地或者能够在引发剂或光、热、辐照、催化等条件下进行化学反应生成普通共价键的基团,合适的基团包括但不仅限于:羟基、羧基、羰基、酰基、酰胺基、酰氧基、氨基、醛基、磺酸基、磺酰基、巯基、烯基、炔基、氰基、嗪基、肟基、肼基、胍基、卤素、异氰酸酯基团、酸酐基团、环氧基团、丙烯酸酯基团、丙烯酰胺基团、马来酰亚胺基团、琥珀酰亚胺酯基团、降冰片烯基团、偶氮基团、叠氮基团、 杂环基团、三唑啉二酮、碳自由基、氧自由基等;优选氨基、巯基、烯基、异氰酸酯基团、环氧基团、丙烯酸酯基团、丙烯酰胺基团。
作为举例,合适的有机硼基类原料举例如下,但本发明不限于此:
Figure PCTCN2018072460-appb-000064
Figure PCTCN2018072460-appb-000065
Figure PCTCN2018072460-appb-000066
其中,x、y、z各自独立地为一个固定值或平均值,各自独立地选自大于等于1的整数。
所述的单烃羟基基元,其可选自但不限于单烷醇羟基、单烯醇羟基、单酚羟基、处于间位的多酚羟基、处于对位的多酚羟基以及间隔至少四个原子多羟基化合物中的羟基。
其中,所述的单烷醇羟基,其指的是与羟基直接连接的碳原子是烷烃基碳原子,包括杂原子连接的烷烃;所述的单烯醇羟基,其指的是与羟基直接连接的碳原子是不饱和烯烃基碳原子,包括杂原子连接的烯烃;所述的单酚羟基,其指的是与羟基直接连接的碳原子是芳香烃碳原子,包括杂芳香烃;若化合物中存在两个或两个以上的单烃羟基,则至少可以是处于间位的多酚羟基、处于对位的多酚羟基以及间隔至少四个原子多羟基化合物中的羟基。
作为举例,合适的单烃羟基基元举例如下,但本发明不限于此:
Figure PCTCN2018072460-appb-000067
其中,x、y为一个固定值或平均值,x为0或大于等于1的整数,y为大于等于1的整数;
Figure PCTCN2018072460-appb-000068
优选与上述的其他反应性基团相连接,便于通过普通共价键接入动态聚合物中,或与连接结构G相连,形成含有两个或两个以上所述的羟基基元的单烃羟基基元类原料。其中,所述的连接结构G的定义、选择范围、优选范围同上。
作为举例,合适的单烃羟基基元类原料举例如下,但本发明不限于此:
Figure PCTCN2018072460-appb-000069
Figure PCTCN2018072460-appb-000070
Figure PCTCN2018072460-appb-000071
Figure PCTCN2018072460-appb-000072
其中,x、y、z、k各自独立地为一个固定值或平均值,各自独立地选自大于等于1的整数。
在本发明中所述的无机硼酸单酯键,其可选自但不限于如下结构:
Figure PCTCN2018072460-appb-000073
其中,所述结构中的硼原子不与任何碳原子直接相连;L同上述有机硼酸单酯键中L的定义、选择范围和优选范围,L为直接键、亚甲基或被取代的亚甲基而形成五元环或六元环的情况在本发明中视为无机硼酸环酯键,不包括在此。当同一式中含有一个以上的Z原子时,各个Z原子各自独立;每个Z原子各自独立地选自氢原子、氟原子、氯原子、溴原子、碘原子、硫原子、氮原子、硼原子、硅原子,并且同一式中至少一个Z原子选自硫原子、硼原子、氮原子、硅原子。b为与Z相连的
Figure PCTCN2018072460-appb-000074
的数目,当Z为氢原子、氟原子、氯原子、溴原子、碘原子,b为0;当Z为硫原子时,b为1;当Z为氮原子、硼原子时,b为2;当Z为硅原子时,b为3。所述无机硼酸单酯键通过
Figure PCTCN2018072460-appb-000075
接入聚合物链中,也可以通过L上的原子/基团接入聚合物链中,L上的原子/基团也可以与其两侧C上的
Figure PCTCN2018072460-appb-000076
连接成环。
在本发明中所述的无机硼酸单酯键优选由无机硼酸基基元与单烃羟基基元(同上)反应生成。其中,所述的无机硼酸基基元,其结构中硼原子不与碳原子直接相连,其可选自但不限于无机硼酸基、无机硼酸酯基、无机硼酸盐基、无机硼卤烷基、无机硼烷基。
其中,所述的无机硼酸基,其指的是化合物结构中至少包含一个由硼原子以及与该硼原子相连的一个羟基所组成的结构基元(B-OH),而且化合物中与硼原子直接连接的原子选自氢原子、氟原子、氯原子、溴原子、碘原子、硼原子、氮原子、氧原子、硅原子、硫原子,优选溴原子、氯原子、氧原子和硼原子。
其中,所述的无机硼酸酯基,其指的是化合物结构中至少包含一个由硼原子、与该硼原子相连的一个氧原子和与该氧原子相连的烃基或硅烷基所组成的结构基元(B-OR;其中R为以碳、氢原子为主的烃基或以硅、氢原子为主的硅烷基,其通过碳原子或硅原子与氧原子相连),而且化合物中与硼原子直接连接的原子选自氢原子、氟原子、氯原子、溴原子、碘原子、硼原子、氮原子、氧原子、硅原子、硫原子,优选溴原子、氯原子、氧原子和硼原子。
其中,所述的无机硼酸盐基,其指的是化合物结构中至少包含一个由硼原子以及与该硼原子相连的一个氧负离子所组成的结构基元(B-O -)和至少包含一个正离子(M n+),而且化合物中与硼原子直接连接的原子选自氢原子、氟原子、氯原子、溴原子、碘原子、硼原子、氮原子、氧原子、硅原子、硫原子,优选溴原子、氯原子、氧原子和硼原子。
其中,所述的无机硼卤烷基,其指的是化合物结构中至少包含一个由硼原子以及与该硼原子相连的一个卤素原子(F、Cl、Br、I)所组成的结构基元(B-F、B-Cl、B-Br、B-I),而且化合物中与硼原子直接连接的原子选自氟原子、氯原子、溴原子、碘原子、硼原子、氮原子、氧原子、硅原子、硫原子,优选溴原子、氯原子、氧原子和硼原子。
其中,所述的无机硼烷基,其指的是化合物结构中至少包含一个由硼原子以及与该硼原子相连的一个氢原子所组成的结构基元(B-H)。
作为举例,合适的无机硼基类原料包括但不限于:原硼酸、偏硼酸、焦硼酸、四羟基二硼、硼酸三甲酯、硼酸三乙酯、硼酸三环己酯、硼酸三甲苯酯、硼酸三苄酯、硼酸三苯酯、硼酸三烯丙酯、硼酸三(十二烷基)酯、硼酸三(十八烷基)酯、硼酸三叔丁酯、苯基亚乙基硼酸酯、双联频哪醇硼酸酯、双联邻苯二酚碳酸酯、双联(2-甲基-2,4-戊二醇)硼酸酯、双联(2-甲基-2,4-戊二醇)硼酸酯、双联(D-酒石酸二乙酯)硼酸酯、双联(L-酒石酸二乙酯)硼酸酯、四苯基五氧化二硼、三氟化硼、三氯化硼、三溴化硼、三碘化硼、四氯化二硼、乙硼烷、戊硼烷、氧化硼(B 2O 3)、十水合四硼酸钠(硼砂)、五硼酸钾、二硼酸镁、单硼酸钙、三硼酸钡、偏硼酸锌、四硼酸二铵、五硼酸铵、八硼酸二铵等。
在本发明中所述的有机硼酸环酯键,其优选含有如下结构中的至少一种:
Figure PCTCN2018072460-appb-000077
其中,一个硼原子同时与两个氧原子形成环状有机硼酸酯单元,所述结构中的硼原子与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。
其中,由于氨甲基苯硼酸酯键具有更强的动态反应性、动态反应条件更加温和,在提高了制备效率的同时,也进一步降低了使用环境的局限性,扩展了聚合物的应用范围,因此本发明的有机硼酸环酯键更优选氨甲基苯硼酸环酯键,其优选含有下式所示的结构中的至少一种:
Figure PCTCN2018072460-appb-000078
在本发明中所述的有机硼酸环酯键优选由式3E、3G、3H、3J、3L所示的有机硼酸基元与二羟基基元反应生成。所述的二羟基基元可选自但不仅限于1,2-二醇基、1,3-二醇基、邻二酚羟基以及2-羟甲基酚羟基中的至少一种。
其中,所述的1,2-二醇基可选自乙二醇分子失去至少一个非羟氢原子后形成的残基;所述的1,3-二醇基可选自1,3-丙二醇分子失去至少一个非羟氢原子后形成的残基;所述的邻二酚基元可选自邻二酚失去至少一个芳环上的非羟氢原子后形成的残基;所述的2-羟甲基酚基,其可选自2-羟甲基酚失去至少一个非羟氢原子后形成的残基。
作为举例,合适的二羟基基元包括但不限于:
Figure PCTCN2018072460-appb-000079
其中,x为一个固定值或平均值,x≥1;
Figure PCTCN2018072460-appb-000080
优选与上述的其他反应性基团相连接,便于通过普通共价键接入动态聚合物中,或与连接结构G相连,形成含有两个或两个以上所述的二羟基基元的二羟基基元类原料。其中,所述的连接结构G的定义、选择范围、优选范围同上。
作为举例,合适的二羟基基元类原料包括但不限于:
Figure PCTCN2018072460-appb-000081
Figure PCTCN2018072460-appb-000082
Figure PCTCN2018072460-appb-000083
其中,y为一个固定值或平均值,为大于等于1的整数。
在本发明中所述的无机硼酸环酯键,其优选含有如下结构中的至少一种:
Figure PCTCN2018072460-appb-000084
其中,一个硼原子同时与两个氧原子形成环状无机硼酸酯单元,所述结构中的硼原子不与任何碳原子直接相连;Z、b的定义、选择范围和优选范围同上述无机硼酸单酯键中相应的Z、b的定义、选择范围和优选范围;连接基L 0各自独立地为如下结构中的任一种,其中*表示与氧原子相连的位置:
Figure PCTCN2018072460-appb-000085
在本发明中所述的无机硼酸环酯键优选由无机硼酸基元(同上)与二羟基基元(同上)反应生成。
在本发明中所述的有机硼酸硅酯键,其优选含有如下结构:
Figure PCTCN2018072460-appb-000086
其中,所述结构中至少有一个碳原子通过硼碳键与硼原子相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上。
其中,由于氨甲基苯硼酸酯键的动态反应性强、动态反应条件温和,可在无需催化剂、 无需高温、光照或特定pH的条件下实现动态聚合物的合成,在提高了制备效率的同时,也降低了使用环境的局限性,扩展了聚合物的应用范围,因此本发明的有机硼酸硅酯键优选为氨甲基苯硼酸硅酯键,其选自下式所示的结构中的至少一种:
Figure PCTCN2018072460-appb-000087
在本发明中所述的有机硼酸硅酯键优选由有机硼酸基元(同上)与硅羟基基元反应生成。其中,所述的硅羟基基元,其指的是硅羟基或硅羟基前驱体中的至少一种。
其中,所述的硅羟基,其是由硅原子以及与该硅原子相连的一个羟基所组成的结构基元。其中,硅羟基可为有机硅羟基(即硅羟基中的硅原子至少与一个碳原子通过硅碳键相连,且至少有一个有机基团通过所述硅碳键连接到硅原子上),也可为无机硅羟基(即硅羟基中的硅原子不与有机基团相连接),优选为有机硅羟基。
其中,所述的硅羟基前驱体,其指的是由硅原子以及与该硅原子相连的一个可水解得到羟基的基团所组成的结构基元,其中,可水解得到羟基的基团,其可选自卤素、氰基、氧氰基、硫氰基、烷氧基、氨基、硫酸酯基、硼酸酯基、酰基、酰氧基、酰氨基、酮肟基、醇盐基。
作为举例,合适的硅羟基基元包括但不限于:
Figure PCTCN2018072460-appb-000088
其中,x为一个固定值或平均值,x为大于等于1的整数;
Figure PCTCN2018072460-appb-000089
优选与上述的其他反应性基团相连接,便于通过普通共价键接入动态聚合物中,或与连接结构G相连,形成含有两个或两个以上所述的硅羟基基元的硅羟基基元类原料。其中,所述的连接结构G的定义、选择范围、 优选范围同上。
作为举例,合适的硅羟基基元类原料包括但不限于:
Figure PCTCN2018072460-appb-000090
Figure PCTCN2018072460-appb-000091
其中x、y、z为重复单元的数量,可以是固定值或平均值,为大于等于1的整数。
在本发明中所述的无机硼酸硅酯键,其可选自但不限于如下结构:
Figure PCTCN2018072460-appb-000092
其中,所述结构中的硼原子不与任何碳原子直接相连;Z、b的定义、选择范围和优选范围同上述无机硼酸单酯键中相应的Z、b的定义、选择范围和优选范围。
在本发明中所述的无机硼酸硅酯键优选由无机硼酸基元(同上)与硅羟基基元(同上)反应生成。
在本发明中所述的有机硼酐键,其优选具有如下结构:
Figure PCTCN2018072460-appb-000093
其中,所述结构中每个硼原子均至少与一个碳原子直接相连形成硼碳键。所述结构中每个硼原子可以形成一个或两个有机硼酐键,不同的有机硼酐键可以连接成环。
作为举例,成环的情况可以包括如下结构,但不仅限于此:
Figure PCTCN2018072460-appb-000094
在本发明中所述的有机硼酐键优选由有机硼酸基元(同上)之间反应生成。
在本发明中所述的无机硼酐键,其具有如下结构:
Figure PCTCN2018072460-appb-000095
其中,所述结构中每个硼原子均不与任何碳原子直接相连,四个Z各自独立,其定义、选择范围以及优选范围同上。所述结构中每个硼原子可以形成一个、两个或三个无机硼酐键,不同的无机硼酐键可以连接成环。
在本发明中所述的无机硼酐键优选由无机硼酸基元(同上)之间反应生成。
在本发明中,所述的有机-无机硼酐键,其具有如下结构:
Figure PCTCN2018072460-appb-000096
其中,所述结构中其中一个硼原子与至少一个碳原子通过硼碳键直接相连,且至少一个有机基团通过形成的硼碳键与硼原子相连;所述结构中另一个硼原子不与任何碳原子直接相连。
在本发明中所述的有机-无机硼酐键优选由有机硼酸基元(同上)和无机硼酸基元(同上)反应生成。
在本发明中所述的含硼动态共价键还可以是上述各种含硼动态共价键的组合,作为举例,包括但不限于:
Figure PCTCN2018072460-appb-000097
本领域的技术人员也可以根据本发明的指导,合理地利用各类原料依据实际情况进行组合调整,得到本发明所述的动态聚合物。
在本发明的一种优选实施方式中,所述含硼动态共价键选自有机硼酸硅酯键和氨甲基苯硼酸环酯键,因为两者具有强的动态性,便于形成良好动态性的热塑性弹性体。
在本发明的另一种优选实施方式中,所述动态聚合物分子含有至少两种含硼动态共价键,其中至少一种选自有机硼酸硅酯键和氨甲基苯硼酸环酯键,这样既能够赋予材料良好的动态性,又可以利用不同的动态共价键组合调控动态性。
在本发明的实施方式中,所述含硼动态共价键在聚合物分子中的位置没有任何限定,优 选为当含硼动态共价键断裂以后的聚合物分子仍具有本发明的硬段-软段结构。当所述的含硼动态共价键位于软段构成的软相中时,可以更好的体现其动态性,因此更优选位于软段的主链骨架中。
在本发明中,所述动态聚合物分子还在其软段和/或硬段的任意合适位置含有可选的氢键基团。位于相同或不同聚合物分子中相同或不同位置的选择性存在的氢键基团之间均可以相互之间形成氢键,还可以与可选的其他聚合物分子、填料、小分子等之间形成氢键。其中,氢键作用可以形成或不形成交联,当形成氢键交联时可以是任意的交联程度,优选达到氢键交联的凝胶点以上,即仅采用氢键交联即可形成三维无限网络。作为举例,本发明的可选的氢键作用包括但不限于如:所述软段侧链和/或侧基中的氢键基团之间在不同分子的软段间形成链间超分子氢键动态交联;所述软段侧链和/或侧基中的氢键基团与所述可选的软段主链骨架中氢键基团之间形成软段链间氢键交联;所述软段侧链和/或侧基中的氢键基团与不同分子的硬段侧链和/或侧基中的氢键基团和/或硬段主链骨架中氢键基团之间形成链间交联;软段侧链和/或侧基中的氢键基团和软段主链骨架中的氢键基团与硬段侧链和/或侧基中的氢键基团和硬段主链骨架中的氢键基团之间形成氢键交联;部分所述侧链和/或侧基中的氢键基团之间独立以氢键形成链内环;部分所述主链骨架中的氢键基团之间独立地以氢键形成链内环;部分所述侧链和/或侧基中的氢键基团共同作用以氢键形成链内环等。其中,选择性存在的氢键基团优选位于软段的主链骨架、侧基和/或侧链中,更优选位于软段的侧基、侧链中;相应地,选择性存在的氢键基团所形成的氢键作用优选软段侧链和/或侧基中的氢键基团参与形成的链间氢键交联。
在本发明的实施方式中,所述的氢键基团可以是仅含有氢键供体的氢键基团,也可以是仅含有氢键受体的氢键基团,也可以是同时含有氢键供体和氢键受体的氢键基团。当部分氢键基团均仅含有氢键供体或氢键受体时,聚合物中必须含有对应的氢键受体或氢键给体或者体系中必须有其他添加物含有对应的氢键受体或氢键给体,以满足形成氢键作用。所述氢键供体就是氢原子(H),所述氢键受体就是接受氢原子的电负性原子,包括但不限于氧原子(O)、氮原子(N)、硫原子(S)、氟原子(F)等。此类原子可以在基团内以合适的价态存在。为了有效地形成基于氢键基团的氢键作用,优选同时含有氢键供体和氢键受体的氢键基团,如酰胺基、氨基甲酸酯基、脲基、硫代氨基甲酸酯基、咪唑、氮唑以及以上基团的衍生物等,更优选含有以下结构成分中的至少一种:
Figure PCTCN2018072460-appb-000098
作为例子,可以举出如下侧基和/或端基中的氢键基团,但本发明不仅限于此。
Figure PCTCN2018072460-appb-000099
Figure PCTCN2018072460-appb-000100
其中,m、n、x为重复基团的数量,可以是固定值,也可以是平均值。m、n取值范围为0和大于等于1的整数;x取值范围为大于等于1的整数。
在本发明的实施方式中,软段和硬段中含有的可选的主链骨架和侧链骨架链上氢键基团同样可以是同时有氢键受体和氢键供体的基团,也可以是仅含有氢键受体或氢键供体的基团,还可以是一部分氢键基团含有氢键供体另一部分氢键基团含有氢键受体。硬段中含有的氢键基团可以是任意合适的氢键基团,但软段所含的氢键基团参与形成的氢键单元不结晶且不与软段形成相分离,齿数优选不高于四齿。
作为例子,可以举出如下所述软段主链/侧链(包括支链和分叉链)骨架上的氢键基团,但本发明不仅限于此。
Figure PCTCN2018072460-appb-000101
作为例子,可以举出如下所述硬段主链/侧链(包括支链和分叉链)骨架上的氢键基团,但本发明不仅限于此。
Figure PCTCN2018072460-appb-000102
在本发明的实施方式中,除了通过所述动态聚合物分子中选择性地存在的氢键基团之间形成氢键作用外,还可以通过所述氢键基团与作为添加物引入的其他组分上的氢键基团形成氢键作用。此类可以参与形成氢键作用的其他组分包括但不限于小分子、聚合物、无机材料,其中所含的氢键基团可以是任意可以与所述氢键基团形成氢键的基团。此类其他组分之间也可以形成氢键。此类材料可以选自线型、环状、支化、团簇聚合物以及共价交联的聚合物颗粒、表面改性的有机、无机颗粒、纤维。
在本发明的实施方式中,除含有具有硬段-软段多段结构的聚合物成分外,动态聚合物中还可以含有其他不含含硼动态共价键的多段式聚合物成分。其中,本发明中所述的具有多段结构的聚合物分子占所述动态聚合物组成体总重的5-100%,优选占所述动态聚合物组成总重的50-100%。
本发明还提供一种物理分相动态聚合物热塑性弹性体,其包含同时具有硬段和软段的动态聚合物分子,所述动态聚合物分子各硬段之间相互混合或各自独立或相互混合又各自独立地可形成结晶相或与软段不相容的相或结晶相和与软段不相容的相;所述动态聚合物分子的各软段为无定型态;所述的动态聚合物分子在分子中含有至少一种含硼动态共价键,所述的含硼动态共价键含有如下式所示的结构:
Figure PCTCN2018072460-appb-000103
其中,X选自硼原子、碳原子、硅原子,a为与X相连的
Figure PCTCN2018072460-appb-000104
的数目;当X为硼原子时,a为2;当X为碳原子和硅原子时,a为3。所述的含硼动态共价键通过至少一个所述
Figure PCTCN2018072460-appb-000105
接入聚合物链中。
本发明还提供一种基于物理分相动态聚合物热塑性弹性体吸能的方法,提供一种物理分相动态聚合物热塑性弹性体并以其作为吸能材料进行吸能,所述的物理分相动态聚合物热塑性弹性体中包含同时具有硬段和软段的动态聚合物分子,所述动态聚合物分子各硬段之间相互混合或各自独立或相互混合又各自独立地可形成结晶相或与软段不相容的相或结晶相和与软段不相容的相;所述动态聚合物分子的各软段为无定型态;所述的动态聚合物分子在分子中含有至少一种含硼动态共价键,所述的含硼动态共价键含有如下式所示的结构:
Figure PCTCN2018072460-appb-000106
其中,X选自硼原子、碳原子、硅原子,a为与X相连的
Figure PCTCN2018072460-appb-000107
的数目;当X为硼原子时,a为2;当X为碳原子和硅原子时,a为3;所述的含硼动态共价键通过至少一个所述
Figure PCTCN2018072460-appb-000108
接入聚合物链中。
本发明实施方式中,所述的动态聚合物中所含有的硬段-软段的聚合物分子的制备,其工艺原则上可以是任意合适的手段。一般有两种方式,从单体出发,由内而外或由外而内依次进行软段或硬软链段的聚合;或者先分别合成端基和/或侧基功能化的硬段、软段或多段式共聚物,然后直接进行链段间的反应,或通过其他小分子实现偶合或共聚。硬段-软段结构的聚合物分子的制备还可以是基于上述两种方式的组合,例如,先将硬段或软段制备成大分子引发剂,引发相邻的软段和硬段的聚合,再根据需要进行链段间的端基反应;又如,先生成软段-硬段两嵌段共聚物,再将两个或多个两嵌段分子偶合从而得到本发明的具有硬段-软段结 构的动态聚合物分子。其中,含硼动态共价键以及可选的氢键基团的生成或引入,可以在软硬段相连之前、之后或者过程中进行。当先生成含有硬段和软段的聚合物再引入或生成所述含硼动态共价键和超分子动态氢键基团时,聚合物链段上必须含有相应的活性点,作为实例包括但不限于氨基、仲氨基、羟基、羧基、醛基、巯基、异氰酸酯基、环氧基、酯基、卤素原子、酰卤基、酸酐、碳碳双键、马来酰亚胺、碳碳三键、叠氮基、腈基、肼、四嗪、琥珀酰亚胺酯。
所述的聚合方法根据所选预聚物的类型包括但不限于缩聚、加聚、配位聚合和开环聚合,加聚包括但不限于自由基聚合、活性自由基聚合、阴离子聚合、阳离子聚合等。其中,聚合过程可以在溶剂中进行,也可以是无溶剂的本体聚合。
上述部分聚合过程的引发需要使用能够在聚合反应过程中引起单体分子活化的引发剂。本发明实施方案中可根据需要选用不同类型的引发剂。例如,选用单官能引发剂便于制备单端功能化的链段或双端异功能化的链段;又如,选用双/多官能引发剂便于制备双/多端同功能化或双/多端异功能化的链段;再如,使用单端功能化的链段或遥爪聚合物链段制备而成的大分子引发剂可以继续引发其他单体的聚合,得到嵌段共聚物。其中,制备单、双、多末端功能化的聚合物链段通过合理选用自身带有活性基团的引发剂、合理选用链转移剂、合理使用可与引发剂残基反应的功能性试剂实现。
在本发明的实施方式中,部分聚合反应还需要使用催化剂,在聚合反应过程中改变反应途径,降低反应活化能来加速反应物在反应过程中的反应速率。部分聚合过程中还需要使用分散剂、乳化剂等助剂。例如,在悬浮聚合过程中需要使用分散剂,在乳液聚合过程中需要使用乳化剂。所述的分散剂,能够使得聚合物混合液中固体絮凝团分散为细小的粒子而悬浮于液体中,均一分散那些难于溶解于液体的固体及液体颗粒,同时也能防止颗粒的沉降和凝聚,形成安定悬浮液。所述的乳化剂,能够改善包含助剂的聚合物混合液中各种构成相之间的表面张力,使之形成均匀稳定的分散体系或乳浊液,优选用于进行乳液聚合。
具体地,作为举例,本发明可选用的聚合方法包括但不限于:苯乙烯类、(甲基)丙烯酸酯类单体的热引发普通自由基聚合,苯乙烯类、(甲基)丙烯酸酯类单体的光引发自由基聚合,氯乙烯单体的引发转移终止剂法自由基聚合,苯乙烯类、(甲基)丙烯酸酯类单体的原子转移自由基聚合(ATRP),苯乙烯类、(甲基)丙烯酸酯类、丙烯腈类单体可逆加成-断裂转移自由基聚合(RAFT),氮氧稳定自由基聚合(NMP),乙烯、丙烯配位聚合,苯乙烯类单体的阴离子聚合,内酯开环聚合,内酰胺开环聚合,环氧开环聚合,环烯烃开环易位聚合,二元酸和二元醇之间的缩聚,二元酸和二元胺之间的缩聚,二元硫醇和二元烯/炔之间的点击反应聚合,二元叠氮和二元炔之间的点击反应聚合、聚氨酯/聚脲反应等。
上述的聚合方法和聚合过程所需的引发剂、催化剂、其他助剂以及反应条件等都是公开已知的常规技术(如潘祖仁主编,《高分子化学(增强版)》),本领域内技术人员可以根据需要进行合理选择和组合。
本发明的实施方式中,含硼动态共价键的生成或引入可以采用任意合适的反应,包括但不仅限于以下类型:卤代硼、硼酸、硼砂、硼酐、硼酸盐等与醇、酚、硅醇、卤代硅烷的反应,酯交换反应,烯基的硼氢化反应,烷基硼的氧化、还原反应,二硼化物与烷基、烯基、卤代烷、胺、醚之间的活化反应,不饱和羰基化合物的硼化反应,烷基锂、烷基镁与硼酸酯的反应,以及其他的非硼反应性基团的反应。
本发明的实施方式中,氢键基团的生成或引入可以采用任意合适的反应,包括但不仅限于以下类型:异氰酸酯与氨基、羟基、巯基、羧基的反应,丙烯酸酯自由基反应,双键自由基反应,双键环化反应,环氧与氨基、羟基、巯基的反应,叠氮-炔点击反应,巯基-双键/炔点击反应,尿素-胺的反应,酰胺化反应,四嗪-降冰片烯反应,活性酯与氨基、羟基、巯基的反应,硅羟基缩合反应;优选异氰酸酯与氨基、羟基、巯基的反应,尿素-胺的反应,活 性酯与氨基、羟基、巯基的反应;更优选异氰酸酯与氨基、羟基、巯基的反应。氢键基团的生成或引入可以有一个或以上的反应类型、反应手段,氢键基团间的氢键作用可以有一种或以上的类型、结构。
在本发明的实施方式中,可以利用链段末端反应性基团间诸如如下形式的反应连接软段硬段或得到链段内的普通共价键:异氰酸酯与氨基、羟基、巯基、羧基的反应,环氧与氨基、羟基、巯基、酚醛的反应,叠氮-炔点击反应,巯基-双键/炔点击反应,尿素-胺的反应,酰胺化反应,酯化反应,四嗪-降冰片烯反应,活性酯与氨基、羟基、巯基的反应,硅羟基缩合反应。
本领域技术人员还可以根据对本发明的理解,选择合适的制备手段,达到理想的目的。
在本发明的实施方式中,动态聚合物组成中还可以含有其他聚合物,包括但不限于与所述的动态聚合物分子相容或不相容的其他任意合适的含有硬段和软段结构的聚合物成分以及其他聚合物成分。所述其他含有硬段和软段结构的聚合物成分不含所述的含硼动态共价键,但可以含有或不含有氢键基团形成额外的氢键作用。所述的其他聚合物成分可以含有或不含有含硼动态共价键,也可以含有或不含有氢键基团形成额外的氢键作用。所述其他含有硬段和软段结构的聚合物成分和/或其他聚合物成分可以与所述的动态聚合物分子形成相容的交联网络,也可以形成相容或不相容的相互共混/互穿/半互穿等结构的交联网络。
在本发明中,所述的动态聚合物及含有其的组成的形态可以是普通固体、弹性体、凝胶、泡沫等。普通固体因为具有更好的力学性能、制备方法也最简便,因此较为优选。热塑性弹性体及其泡沫具有阻尼/吸能等功能,更为优选。
在本发明的实施方式中,在动态聚合物中可以引入与软相相容但与硬相不相容的溶剂制备动态聚合物凝胶。所述溶剂可以包括但不限于水、有机溶剂、离子液体、齐聚物、增塑剂。其中,齐聚物也可以视为增塑剂。采用水溶胀的体系成为水凝胶;有机溶剂溶胀的体系称为有机凝胶,离子液体、齐聚物和增塑剂溶胀的凝胶亦可称为有机凝胶。
本发明所提供的一种动态聚合物凝胶,优选离子液体凝胶、齐聚物溶胀凝胶和增塑剂溶胀凝胶,更优选增塑剂溶胀凝胶。凝胶具有柔软的优点,而增塑剂因为沸点高、稳定性好而具有优势。
本发明的一种动态聚合物离子液体凝胶的优选制备方法,包括但不限于如下步骤:将制备动态聚合物的原料和离子液体共混,使制备动态聚合物的原料的质量分数为0.5~70%,通过所述合适手段进行聚合、偶合或其他类型的化学反应,反应结束后,即制成一种动态聚合物离子液体凝胶。本发明的另一种动态聚合物离子液体凝胶的优选制备方法,包括但不限于如下步骤:将动态聚合物溶胀于含离子液体的溶剂中,使动态聚合物的质量分数为0.5~70%,充分溶胀后除溶剂,即制成一种动态聚合物离子液体凝胶。上所述离子液体一般由有机阳离子和无机阴离子组成,作为举例,阳离子选自包括但不限于烷基季铵离子、烷基季瞵离子、1,3-二烷基取代的咪唑离子、N-烷基取代的吡啶离子等;阴离子选自包括但不限于为卤素离子、四氟硼酸根离子、六氟磷酸根离子、也有CF 3SO 3 -、(CF3SO 2) 2N -、C 3F 7COO -、C 4F 9SO 3 -、CF 3COO -、(CF 3SO 2) 3C -、(C 2F 5SO 2) 3C -、(C 2F 5SO 2) 2N -、SbF 6 -、AsF 6 -等。本发明所使用的离子液体中,阳离子优选咪唑阳离子,阴离子优选六氟磷酸根离子和四氟硼酸根离子。制备离子液体凝胶的动态聚合物分子优选为聚合物软段骨架是基于含丙烯酸酯类单体的聚合物、氟取代聚饱和烯烃、含丙烯腈的聚合物的聚合物链段。
本发明的一种动态聚合物齐聚物溶胀凝胶的优选制备方法,包括但不限于如下步骤:将制备动态聚合物的原料和齐聚物共混,使制备动态聚合物的原料的质量分数为0.5~70%,通过所述合适手段进行聚合、偶合或其他类型的化学反应,反应结束后,即制成一种动态聚合物齐聚物溶胀的凝胶。本发明的另一种动态聚合物齐聚物溶胀凝胶的优选制备方法,包括但不限于如下步骤:将动态聚合物溶胀于含有齐聚物的溶剂中,使动态聚合物的质量分数为 0.5~70%,充分溶胀后除溶剂,即制成一种动态聚合物齐聚物溶胀的凝胶。上所述齐聚物包括但不仅限于聚乙二醇齐聚物、聚乙烯醇齐聚物、聚醋酸乙烯酯齐聚物、聚丙烯酸正丁酯齐聚物、液体石蜡等。
本发明的一种动态聚合物增塑剂溶胀凝胶的优选制备方法,包括但不限于如下步骤:将制备动态聚合物的原料和增塑剂共混,使制备动态聚合物的原料的质量分数为0.5~70%,通过所述合适手段进行聚合、偶合或其他类型的化学反应,反应结束后,即制成一种动态聚合物增塑剂溶胀的凝胶。本发明的另一种动态聚合物增塑剂溶胀凝胶的优选制备方法,包括但不限于如下步骤:将动态聚合物溶胀于含有增塑剂的溶剂中,使动态聚合物的质量分数为0.5~70%,充分溶胀后除溶剂,即制成一种动态聚合物增塑剂溶胀的凝胶。上所述增塑剂选自包括但不限于以下任一种或任几种:苯二甲酸酯类:邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、邻苯二甲酸二异辛酯、邻苯二甲酸二庚酯、邻苯二甲酸二异癸酯、邻苯二甲酸二异壬酯、邻苯二甲酸丁苄酯、邻苯二甲酸丁酯乙醇酸丁酯、邻苯二甲酸二环己酯、邻苯二甲酸双(十三)酯、对苯二甲酸二(2-乙基)己酯;磷酸酯类,如磷酸三甲苯酯、磷酸(二苯-2-乙基)己酯;脂肪酸酯类,如己二酸二(2-乙基)己酯、癸二酸二(2-乙基)己酯;环氧化合物类,如环氧甘油酯类、环氧脂肪酸单酯类、环氧四氢邻苯二甲酸酯类、环氧大豆油、环氧硬脂酸(2-乙基)己酯、环氧大豆油酸2-乙基己酯、4,5-环氧四氢邻苯二甲酸二(2-乙基)己酯、黄杨乙酰蓖麻油酸甲酯,二元醇脂类,如C 5~9酸乙二醇酯、C 5~9酸二缩三乙二醇酯;含氯类,如绿化石蜡类、氯代脂肪酸酯;聚酯类,如乙二酸1,2-丙二醇系聚酯、癸二酸1,2-丙二醇聚酯;石油磺酸苯酯、偏苯三酸酯、柠檬酸酯、季戊四醇和双季戊四醇酯等。其中,环氧化大豆油是一种性能优良的环保型塑料增塑剂,经精炼大豆油与过氧化物发生环氧化反应制备,在聚合物制品中耐挥发、不易迁移、不易散失。这对保持制品光、热稳定性和延长使用寿命是十分有益的。环氧化大豆油毒性极小,已被许多国家允许用于食品及医药的包装材料,是美国食品药品管理局批准的唯一可用于食品包装材料的环氧类增塑剂。在本发明的一种动态聚合物增塑剂溶胀的凝胶制备中,增塑剂优选环氧大豆油。制备增塑剂溶胀凝胶的动态聚合物优选为聚合物软段是基于含氯乙烯单体的聚合物、含降冰片烯单体的聚合物、含饱和烯烃单体的聚合物的聚合物链段。
本发明的实施方式中,动态聚合物及其组成的另一种优选形态是泡沫材料。泡沫材料特别有利于降低材料的密度,也适合作为吸能材料。
在本发明的实施方式中,动态聚合物泡沫材料的结构涉及开孔结构、闭孔结构、半开半闭结构等三种。开孔结构中,泡孔与泡孔之间互相连通,或完全连通,单维或三维都能通过气体或液体,泡孔径为0.01至3mm不等。闭孔结构,具有独立泡孔结构,内部泡孔与泡孔之间有壁膜隔开,绝大多数都不相互连通,泡孔径为0.01至3mm不等。所含有的泡孔既有相互连通又有互不连通的结构则为半开孔结构。
在本发明的实施方式中,发泡方法根据所用发泡剂的不同可以分为物理发泡法和化学发泡法两大类。
物理发泡法,是利用物理的方法来使动态聚合物发泡,一般有三种方法:(1)先将惰性气体在压力下溶于动态聚合物中,再经过减压释放出气体,从而在材料中形成气孔而发泡;(2)通过对溶入聚合物或其原料成分中的低沸点液体进行加热使之汽化而发泡;(3)在原料成分中添加空心球和/或可发泡的聚合物微球,在形成动态聚合物的过程中或者之后,形成发泡体而发泡等。物理发泡法所用的物理发泡剂成本相对较低,尤其是二氧化碳和氮气的成本低,又能阻燃、无污染,因此应用价值较高;而且物理发泡剂发泡后无残余物,对材料性能的影响不大。采用可发泡的聚合物微球在工艺上则最简单。
化学发泡法是利用化学方法产生气体来使动态聚合物发泡,一般有两种方法:(1)对加入动态聚合物(原料)中的化学发泡剂进行加热使之分解释放出气体而发泡;(2)也可以利 用原料组分之间相互发生化学反应释放出的气体而发泡,例如碳酸盐与酸的反应释放出二氧化碳。
物理发泡剂可选自但不限于惰性气体和低沸点溶剂,作为举例,包括但不限于二氧化碳、氮气、氩气、甲烷、乙烷、丁烷、异丁烷、氢氯氟烃-22、氢氯氟烃-142b、氢氟碳化合物-134a、氢氟碳化合物-152a、氯氟烃-11、氯氟烃-12、氯氟烃-114,其中,优选为环保无害的二氧化碳、氮气、氩气,更优选为效率更高的二氧化碳,最优选为超饱和二氧化碳。化学发泡剂分为无机发泡剂和有机发泡剂,前者作为举例包括但不限于碳酸氢钠、碳酸铵、碳酸氨钠、叠氮化合物、硼氢化合物等,后者作为举例包括但不限于偶氮二甲酰胺、偶氮二异丁腈、N,N-二亚硝基五次甲基四胺、N,N’-二甲基-N,N’-二亚硝基对苯、苯磺酰肼、4,4’-氧代双苯磺酰肼、3,3’-二磺酰肼二苯砜、1,3-苯二黄酰肼、对甲苯磺酰氨基脲、苯磺酰氨基脲、三肼基三嗪、重氮氨基苯等。本发明中部分聚合物在聚合或发生其他化学反应过程中会产生气体,此时不需要额外使用发泡剂。由于物理发泡法所用的物理发泡剂成本相对较低,又能阻燃、无污染,而且物理发泡剂发泡后无残余物,对发泡聚合物性能的影响不大,因此在本发明的实施方式中,优选物理发泡。凝胶类材料特别适合采用空心球和/或可发泡的聚合物微球进行发泡。
在制备本发明实施方式中基于动态聚合物的泡沫材料时,除了发泡剂,还经常需要泡沫稳定剂。作为举例,泡沫稳定剂选自但不限于硅油、磺化脂肪醇、磺化脂肪酸、月桂基硫酸钠、十二烷基二甲基氧化胺、烷基醇酰胺、聚氧化乙烯、烷基芳基聚氧化乙烯醇、十三烷基醚、聚氧化乙烯山梨糖醇酐甘油月桂酸酯、硅氧烷-乙烯氧化物的嵌段共聚物等。
除了使用上述的制备泡沫的通常的方法,还可以使用冷冻干燥法制备泡沫材料。使用冷冻干燥法制备泡沫材料的方法,包括如下步骤:将溶胀于与软相相容、与硬相不相容、且易挥发的溶剂的动态聚合物冻结,然后在接近真空条件下以升华的方式逸出溶剂。在溶剂逸出的过程中以及逸出后,动态聚合物可以维持冷冻前的外形,由此得到多孔海绵状的泡沫材料。
制备动态聚合物泡沫材料的一种实施方式为将动态聚合物、发泡剂和其他助剂充分混合,注入模具中完成发泡。其中,制备泡沫材料的动态聚合物优选为基于聚氨酯、聚脲的聚合物,即以氨基甲酸酯键和脲键作为连接基团的聚合物,优选为其中软段是基于饱和烯烃、不饱和烯烃、卤代烯烃、聚醚、聚酯、硅橡胶、聚丙烯酸酯基聚合物、聚乙烯醇基聚合物、聚醋酸乙烯酯基聚合物、聚丙烯腈基聚合物的聚合物。
本发明所提供的动态聚合物泡沫材料还涉及:通过熔接、胶粘、切割、刳刨、穿孔、压印、层压和热成形,将所述动态聚合物泡沫材料转变成为任何的需要形状,例如管、棒、鞘、容器、球、片、卷和带;所述动态聚合物泡沫材料在浮动装置中的用途;所述动态聚合物泡沫材料在绝热或绝热隔音的任何需要形状中的用途;通过层压、粘合、熔合以及其它的连接技术,将所述动态聚合物泡沫材料与片材、薄膜、泡沫、织物、加强物以及本领域中技术人员已知的其它材料一起结合成为复杂的夹心结构;所述动态聚合物泡沫材料在垫圈或密封中的用途;所述动态聚合物泡沫材料在包装材料或在容器中的用途。关于本发明的动态聚合物,可发泡的动态聚合物是这样一种类型,使得可以通过挤出、注塑、压塑或本领域中的技术人员已知的其它成形技术使它们变形。
在本发明的实施方式中,除了可添加或使用前述的引发剂、催化剂、分散剂、乳化剂、发泡剂、泡沫稳定剂、其他聚合物,在不妨碍本发明目的的范围内,还可以根据情况选择添加或使用其他助剂、填料等共同作为动态聚合物的配方组分,或者在动态聚合物的制备过程中起到改善加工性能的作用。
具体地,其中,所述的其他聚合物,其能够作为添加物在体系中起到改进材料性能、赋予材料新性能、提高材料使用与经济效益、达到材料综合利用的作用。可添加的其他聚合物,其可选自天然高分子化合物、合成树脂、合成橡胶、合成纤维。本发明对所添加的聚合物的 性状以及所具有的分子量不做限定,根据分子量的不同,可以为低聚物,或者高聚物,根据聚合形态的不同,可以为均聚物,或者共聚物,在具体使用过程中应根据目标材料的性能以及实际制备过程的需要而进行选择。
当所述的其他聚合物选自天然高分子化合物时,其可选自以下任一种或任几种天然高分子化合物:天然橡胶、壳聚糖、甲壳素、天然蛋白质等。
当所述的其他聚合物选自合成树脂时,其可选自以下任一种或任几种合成树脂:聚三氟氯乙烯、氯化聚乙烯、氯化聚氯乙烯、聚氯乙烯、聚偏氯乙烯、低密度聚乙烯、中密度聚乙烯、高密度聚乙烯、超高分子量聚乙烯、三聚氰胺-甲醛树脂、聚酰胺、聚丙烯酸、聚丙烯酰胺、聚丙烯腈、聚苯并咪唑、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚碳酸酯、聚二甲基硅氧烷、聚乙二醇、聚酯、聚醚砜、聚芳砜、聚醚醚酮、四氟乙烯-全氟丙烷共聚物、聚酰亚胺、聚丙烯酸酯、聚丙烯腈、聚苯醚、聚丙烯、聚苯硫醚、聚苯砜、聚苯乙烯、高抗冲聚苯乙烯、聚砜、聚四氟乙烯、聚氨酯、聚脲、聚乙酸乙烯酯、乙烯-丙烯共聚物、乙烯-乙酸乙烯酯共聚物、丙烯腈-丙烯酸酯-苯乙烯共聚物、丙烯腈-丁二烯-苯乙烯共聚物、氯乙烯-乙酸乙烯酯共聚物、聚乙烯吡咯烷酮、环氧树脂、酚醛树脂、脲醛树脂、不饱和聚酯等。
当所述的其他聚合物选自合成橡胶时,其可选自以下任一种或任几种合成橡胶:异戊橡胶、顺丁橡胶、丁苯橡胶、丁腈橡胶、氯丁橡胶、丁基橡胶、乙丙橡胶、硅橡胶、氟橡胶、聚丙烯酸酯橡胶、聚氨酯橡胶、氯醚橡胶、热塑性弹性体等。
当所述的其他聚合物选自合成纤维时,其可选自以下任一种或任几种合成纤维:黏胶纤维、铜氨纤维、二乙酯纤维、三乙酯纤维、聚酰胺纤维、聚酯纤维、聚氨酯纤维、聚丙烯腈纤维、聚氯乙烯纤维、聚烯烃纤维、含氟纤维等。
在聚合物材料的制备过程中,所述的其他聚合物优选天然橡胶、聚乙烯、聚丙烯、乙烯-乙酸乙烯酯共聚物、聚氨酯、聚氯乙烯、聚丙烯酸、聚丙烯酰胺、聚丙烯酸酯、环氧树脂、酚醛树脂、异戊橡胶、顺丁橡胶、丁苯橡胶、丁腈橡胶、氯丁橡胶、丁基橡胶、乙丙橡胶、硅橡胶、聚氨酯橡胶、热塑性弹性体。
其中,所述的助剂可包括但不限于下列一种或几种的组合,如合成助剂,包括催化剂、引发剂;稳定化助剂,包括抗氧化剂、光稳定剂、热稳定剂、分散剂、乳化剂、阻燃剂;改善力学性能的助剂,包括扩链剂、增韧剂、偶联剂;提高加工性能的助剂,包括溶剂、润滑剂、脱模剂、增塑剂、增稠剂、触变剂、流平剂;改变色光的助剂,包括着色剂、荧光增白剂、消光剂;其他助剂,包括抗静电剂、杀菌防霉剂、发泡剂、成核剂、流变剂、动态调节剂等。
所述的助剂中的催化剂,其能够通过改变反应途径,降低反应活化能来加速反应物在反应过程中的反应速率。其包括但不仅限于以下任一种或任几种催化剂:①聚氨酯合成用催化剂:胺类催化剂,如三乙胺、三亚乙基二胺、双(二甲氨基乙基)醚、2-(2-二甲氨基-乙氧基)乙醇、三甲基羟乙基丙二胺、N,N-双(二甲胺丙基)异丙醇胺、N-(二甲氨基丙基)二异丙醇胺、N,N,N’-三甲基-N’-羟乙基双胺乙基醚、四甲基二亚丙基三胺、N,N-二甲基环己胺、N,N,N’,N’-四甲基亚烷基二胺、N,N,N’,N’,N’-五甲基二亚乙基三胺、N,N-二甲基乙醇胺、N-乙基吗啉、2,4,6-(二甲氨基甲基)苯酚、三甲基-N-2-羟丙基己酸、N,N-二甲基苄胺、N,N-二甲基十六胺等;有机金属类催化剂,如辛酸亚锡、二丁基锡二月桂酸酯、二辛基锡二月桂酸酯、异辛酸锌、异辛酸铅、油酸钾、环烷酸锌、环烷酸钴、乙酰丙酮铁、乙酸苯汞、丙酸苯汞、环烷酸铋、甲醇钠、辛酸钾、油酸钾、碳酸钙等;②聚烯烃合成用催化剂:如Ziegler-Natta催化剂、π-烯丙基镍、烷基锂催化剂、茂金属催化剂、一氯二乙基铝、四氯化钛、三氯化钛、三氟化硼乙醚络合物、氧化镁、二甲胺、氯化亚铜、三乙胺、四苯硼钠、三氧化二锑、倍半乙基氯化铝、三氯氧钒、三异丁基铝、环烷酸镍、环烷酸稀土等;③CuAAC反应催化剂:由一价铜化合物和胺配体共用协同催化;一价铜化合物可选自Cu(I)盐,如CuCl、 CuBr、CuI、CuCN、CuOAc等;也可选自Cu(I)络合物,如[Cu(CH 3CN) 4]PF 6、[Cu(CH 3CN) 4]OTf、CuBr(PPh 3) 3等;胺配体可选自三[(1-苄基-1H-1,2,3-三唑-4-基)甲基]胺(TBTA)、三[(1-叔丁基-1H-1,2,3-三唑-4-基)甲基]胺(TTTA)、三(2-苯并咪唑甲基)胺(TBIA)、水合红菲绕啉二磺酸钠等;④thiol-ene反应催化剂:光催化剂,如安息香二甲醚、2-羟基-2-甲基苯基丙酮、2,2-二甲氧基-2-苯基苯乙酮等;亲核试剂催化剂,如乙二胺、三乙醇胺、三乙胺、吡啶、4-二甲基氨基吡啶、咪唑、二异丙基乙基胺等。所用的催化剂用量没有特别限定,一般为0.01-0.5wt%。
所述的助剂中的引发剂,其能够在聚合反应过程中引起单体分子活化而产生游离基,提高反应速率,促进反应进行,包括但不仅限于以下任一种或任几种引发剂:①自由基聚合用引发剂:有机过氧化物,如过氧化月桂酰、过氧化苯甲酰(BPO)、过氧化二碳酸二异丙酯、过氧化二碳酸二环己酯、过氧化二碳酸双(4-叔丁基环己基)酯、叔丁基过氧化苯甲酸酯、叔丁基过氧化特戊酸酯、二叔丁基过氧化物、过氧化氢二异丙苯;偶氮化合物,如偶氮二异丁腈(AIBN)、偶氮二异庚腈;无机过氧化物,如过硫酸铵、过硫酸钾等;②活性聚合用引发剂:如2,2,6,6-四甲基-1-氧基哌啶、1-氯-1-苯基乙烷/氯化亚铜/双吡啶三元体系等;③离子聚合用引发剂:如丁基锂、钠/萘体系、三氟化硼/水体系、四氯化锡/卤代烷体系等;④配位聚合用引发剂:如四氯化钛/三乙基铝体系、二氯二锆茂/甲基铝氧烷体系等;⑤开环聚合用引发剂:如甲醇钠、甲醇钾、乙二胺、1,6-己二异氰酸酯、辛酸亚锡等。其中,引发剂优选过氧化月桂酰、过氧化苯甲酰、偶氮二异丁腈、过硫酸钾。所用的引发剂用量没有特别限定,一般为0.1-1wt%。
所述的助剂中的抗氧化剂,其能够延缓聚合物样品的氧化过程,保证材料能够顺利地进行加工并延长其使用寿命,包括但不仅限于以下任一种或任几种抗氧剂:受阻酚类,如2,6-二叔丁基-4-甲基苯酚、1,1,3-三(2-甲基-4羟基-5-叔丁基苯基)丁烷、四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、2,2’-亚甲基双(4-甲基-6-叔丁基苯酚);含硫受阻酚类,如4,4’-硫代双-[3-甲基-6-叔丁基苯酚]、2,2’-硫代双-[4-甲基-6-叔丁基苯酚];三嗪系受阻酚,如1,3,5-二[β-(3,5-二叔丁基-4-羟基苯基)丙酰]-六氢均三嗪;三聚异氰酸酯受阻酚类,如三(3,5-二叔丁基-4-羟基苄基)-三异氰酸酯;胺类,如N,N’-二(β-萘基)对苯二胺、N,N’-二苯基对苯二胺、N-苯基-N’-环己基对苯二胺;含硫类,如硫代二丙酸二月桂酯、2-巯基苯并咪唑、2-巯基苯并噻唑;亚磷酸酯类,如亚磷酸三苯酯、亚磷酸三壬基苯酯、三[2.4-二叔丁基苯基]亚磷酸酯等;其中,抗氧剂优选茶多酚(TP)、丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)、叔丁基对苯二酚(TBHQ)、三[2.4-二叔丁基苯基]亚磷酸酯(抗氧剂168)、四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯(抗氧剂1010)。所用的抗氧剂用量没有特别限定,一般为0.01-1wt%。
所述的助剂中的光稳定剂,能够防止聚合物样品发生光老化,延长其使用寿命,其包括但不仅限于以下任一种或任几种光稳定剂:光屏蔽剂,如炭黑、二氧化钛、氧化锌、亚硫酸钙;紫外线吸收剂,如2-羟基-4-甲氧基二苯甲酮、2-羟基-4-正辛氧基二苯甲酮、2-(2-羟基-3,5-二叔丁基苯基)-5-氯苯并三唑、2-(2-羟基-5-甲基苯基)苯并三唑、2,4,6-三(2-羟基-4-正丁氧基苯基)-1,3,5-均三嗪、2-氰基-3,3-二苯基丙烯酸2-乙基己酯;先驱型紫外线吸收剂,如水杨酸对-叔丁基苯酯、双水杨酸双酚A酯;紫外线猝灭剂,如双(3,5-二叔丁基-4-羟基苄基膦酸单乙酯)、2,2’-硫代双(4-特辛基酚氧基)镍;受阻胺光稳定剂,如癸二酸双(2,2,6,6-四甲基哌啶)酯、苯甲酸(2,2,6,6-四甲基哌啶)酯、三(1,2,2,6,6-五甲基哌啶基)亚磷酸酯;其他光稳定剂,如3,5-二叔丁基-4-羟基苯甲酸(2,4-二叔丁基苯)酯、烷基磷酸酰胺、N,N’-二正丁基二硫代氨基甲酸锌、N,N’-二正丁正基二硫代氨基甲酸镍等;其中,光稳定剂优选炭黑、癸二酸双(2,2,6,6-四甲基哌啶)酯(光稳定剂770)。所用的光稳定剂用量没有特别限定,一般为0.01-0.5wt%。
所述的助剂中的热稳定剂,能够使得聚合物样品在加工或使用过程中不因受热而发生化学变化,或者延缓这些变化来达到延长使用寿命的目的,其包括但不仅限于以下任一种或任几种热稳定剂:铅盐类,如三盐基硫酸铅、二盐基亚磷酸铅、二盐基硬脂酸铅、二盐基苯二甲酸铅、三盐基马来酸铅、盐基性硅酸铅、硬脂酸铅、水杨酸铅、二盐基邻苯二甲酸铅、碱式碳酸铅、硅胶共沉淀硅酸铅;金属皂类:如硬脂酸镉、硬脂酸钡、硬脂酸钙、硬脂酸铅、硬脂酸锌;有机锡化合物类,如二月桂酸二正丁基锡、二月桂酸二正辛基锡、马来酸二(正)丁基锡、双马来酸单辛酯二正辛基锡,二巯基乙酸异辛酯二正辛基锡、京锡C-102、二巯基乙酸异辛脂二甲基锡、二硫醇二甲基锡及其复配物;锑稳定剂,如硫醇锑盐、巯基乙酸酯硫醇锑、巯基羧酸酯锑、羧酸酯锑;环氧化合物类,如环氧化油、环氧脂肪酸酯、环氧树脂;亚磷酸酯类,如亚磷酸三芳酯、亚磷酸三烷酯、亚磷酸三芳烷酯、烷芳混合酯、聚合型亚磷酸酯;多元醇类,如季戊四醇、木糖醇、甘露醇、山梨糖醇、三羟甲基丙烷;复合热稳定剂,如共沉淀金属皂、液体金属皂复合稳定剂、有机锡复合稳定剂等;其中,热稳定剂优选硬脂酸钡,硬脂酸钙、二月桂酸二正丁基锡、马来酸二(正)丁基锡。所用的热稳定剂用量没有特别限定,一般为0.1-0.5wt%。
所述的助剂中的分散剂,能够使得聚合物混合液中固体絮凝团分散为细小的粒子而悬浮于液体中,均一分散那些难于溶解于液体的固体及液体颗粒,同时也能防止颗粒的沉降和凝聚,形成安定悬浮液,其包括但不仅限于以下任一种或任几种分散剂:阴离子型,如烷基硫酸酯钠盐、烷基苯磺酸钠、石油磺酸钠;阳离子型;非离子型,如脂肪醇聚氧乙烯醚、山梨糖醇酐脂肪酸聚氧乙烯醚;无机型,如硅酸盐、缩合磷酸盐;高分子型,如淀粉、明胶、水溶性胶、卵磷脂、羧甲基纤维素、羟乙基纤维素、海藻酸钠、木质素磺酸盐、聚乙烯醇等。其中,分散剂优选十二烷基苯磺酸钠、萘系亚甲基磺酸盐(分散剂N)、脂肪醇聚氧乙烯醚,所用的分散剂用量没有特别限定,一般为0.3-0.8wt%。
所述的助剂中的乳化剂,能够改善包含助剂的聚合物混合液中各种构成相之间的表面张力,使之形成均匀稳定的分散体系或乳浊液,其包括但不仅限于以下任一种或任几种乳化剂:阴离子型,如高级脂肪酸盐、烷基磺酸盐、烷基苯磺酸盐、烷基萘磺酸钠、琥珀酸酯磺酸盐、石油磺酸盐、脂肪醇硫酸盐、蓖麻油硫酸酯盐、硫酸化蓖麻酸丁酯盐、磷酸酯盐、脂肪酰-肽缩合物;阳离子型,如烷基铵盐、烷基季铵盐、烷基吡啶盐;两性离子型,如羧酸酯型、磺酸酯型、硫酸酯型、磷酸酯型;非离子型,如脂肪醇聚氧乙烯醚、烷基酚聚氧乙烯醚、脂肪酸聚氧乙烯酯、聚环氧丙烷-环氧乙烷加成物、甘油脂肪酸酯、季戊四醇脂肪酸酯、山梨醇及失水山梨醇脂肪酸酯、蔗糖脂肪酸酯、醇胺脂肪酰胺等。其中,优选十二烷基苯磺酸钠、失水山梨醇脂肪酸酯、三乙醇胺硬脂酸酯(乳化剂FM),所用的乳化剂用量没有特别限定,一般为1-5wt%。
所述的助剂中的阻燃剂,能够增加材料的耐燃性,其包括但不仅限于以下任一种或任几种阻燃剂:磷系,如红磷、磷酸三甲酚酯、磷酸三苯酯、磷酸三甲苯酯、磷酸甲苯二苯酯;含卤磷酸酯类,如三(2,3-二溴丙基)磷酸酯、磷酸三(2,3-二氯丙)酯;有机卤化物,如高含氯量氯化石蜡、1,1,2,2-四溴乙烷、十溴二苯醚、全氯环戊癸烷;无机阻燃剂,如三氧化二锑、氢氧化铝、氢氧化镁、硼酸锌;反应型阻燃剂,如氯桥酸酐、双(2,3-二溴丙基)反丁烯二酸酯、四溴双酚A、四溴邻苯二甲酸酐等;其中,阻燃剂优选十溴二苯醚、磷酸三苯酯、磷酸三甲苯酯、磷酸甲苯二苯酯、三氧化二锑。所用的阻燃剂用量没有特别限定,一般为1-20wt%。
所述的助剂中的扩链剂,能与反应物分子链上的反应性基团反应而使分子链扩展、分子量增大,其包括但不仅限于以下任一种或任几种扩链剂:多元醇类扩链剂,如乙二醇、丙二醇、一缩二乙二醇、甘油、三羟甲基丙烷、季戊四醇、1,4-丁二醇、1,6-己二醇、对苯二酚二羟乙基醚(HQEE)、间苯二酚双羟乙基醚(HER)、对双羟乙基双酚A;多元胺类扩链剂,如 二氨基甲苯、二氨基二甲苯、四甲基亚二甲苯基二胺、四乙基二苯亚甲基二胺、四异丙基二苯亚基二胺、间苯二胺、三(二甲基氨基甲基)苯酚、二氨基二苯基甲烷、3,3’-二氯-4,4’-二苯基甲烷二胺(MOCA)、3,5-二甲硫基甲苯二胺(DMTDA)、3,5-二乙基甲苯二胺(DETDA)、1,3,5-三乙基-2,6-二氨基苯(TEMPDA);醇胺类扩链剂,如三乙醇胺、三异丙醇胺、N,N’-双(2-羟丙基)苯胺。所用的扩链剂用量没有特别限定,一般为1-20wt%。
所述的助剂中的增韧剂,能够降低聚合物样品脆性,增大韧性,提高材料承载强度,其包括但不仅限于以下任一种或任几种增韧剂:甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物树脂、氯化聚乙烯树脂、乙烯-醋酸乙烯酯共聚物树脂及其改性物、丙烯腈-丁二烯-苯乙烯共聚物、丙烯腈-丁二烯共聚物、乙丙胶、三元乙丙胶、顺丁胶、丁苯胶、苯乙烯-丁二烯-苯乙烯嵌段共聚物等;其中,增韧剂优选乙丙胶、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物树脂(MBS)、氯化聚乙烯树脂(CPE)。所用的增韧剂用量没有特别限定,一般为5-10wt%。
所述的助剂中的偶联剂,能够改善聚合物样品与无机填充剂或增强材料的界面性能,在塑料加工过程中降低材料熔体的粘度,改善填料的分散度以提高加工性能,进而使制品获得良好的表面质量及机械、热和电性能,其包括但不仅限于以下任一种或任几种偶联剂:有机酸铬络合物、硅烷偶联剂、钛酸酯偶联剂、磺酰叠氮偶联剂、铝酸酯偶联剂等;其中,偶联剂优选γ-氨丙基三乙氧基硅烷(硅烷偶联剂KH550)、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷(硅烷偶联剂KH560)。所用的偶联剂用量没有特别限定,一般为0.5-2wt%。
所述的助剂中的溶剂,可以调节黏度,便于工艺操作,在产品制备过程或配制中使用。其包括但不仅限于以下任一种或任几种:烃类(如环己烷、庚烷)、卤化烃(如二氯甲烷、氯仿、四氯甲烷)、芳烃(如甲苯、二甲苯)、酮类(如丙酮、甲基乙基酮)、醚类(如乙醚、四氢呋喃、二氧六环)、酯类(如乙酸乙酯、乙酸丁酯)、二醇醚酯(如乙二醇乙醚醋酸酯、丙二醇单甲醚醋酸酯)、二甲基甲酰胺(DMF)、N-甲基吡咯烷酮(NMP)等。所用的溶剂用量没有特别限定,一般为1-200wt%。
所述的助剂中的润滑剂,能够提高聚合物样品的润滑性、减少摩擦、降低界面粘附性能,其包括但不仅限于以下任一种或任几种润滑剂:饱和烃和卤代烃类,如固体石蜡、微晶石蜡、液体石蜡、低分子量聚乙烯、氧化聚乙烯蜡;脂肪酸类,如硬脂酸、羟基硬脂酸;脂肪酸酯类,如脂肪酸低级醇酯、脂肪酸多元醇酯、天然蜡、酯蜡和皂化蜡;脂肪族酰胺类,如硬脂酰胺或硬脂酸酰胺、油酰胺或油酸酰胺、芥酸酰胺、N,N’-乙撑双硬脂酰胺;脂肪醇和多元醇类,如硬脂醇、鲸蜡醇、季戊四醇;金属皂类,如硬脂酸铅、硬脂酸钙、硬脂酸钡、硬脂酸镁、硬脂酸锌等;其中,润滑剂优选固体石蜡、液体石蜡、硬脂酸、低分子量聚乙烯。所用的润滑剂用量没有特别限定,一般为0.5-1wt%。
所述的助剂中的脱模剂,它可使聚合物样品易于脱模,表面光滑、洁净,其包括但不仅限于以下任一种或任几种脱模剂:石蜡烃、皂类、二甲基硅油、乙基硅油、甲基苯基硅油、蓖麻油、废机油、矿物油、二硫化钼、聚乙二醇、氯乙烯树脂、聚苯乙烯、硅橡胶、聚乙烯醇等;其中,脱模剂优选二甲基硅油,聚乙二醇。所用的脱模剂用量没有特别限定,一般为0.5-2wt%。
所述的助剂中的增塑剂,其能够增加聚合物样品的塑性,使得聚合物的硬度、模量、软化温度和脆化温度下降,伸长率、曲挠性和柔韧性提高,其包括但不仅限于以下任一种或任几种增塑剂:苯二甲酸酯类:邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、邻苯二甲酸二异辛酯、邻苯二甲酸二庚酯、邻苯二甲酸二异癸酯、邻苯二甲酸二异壬酯、邻苯二甲酸丁苄酯、邻苯二甲酸丁酯乙醇酸丁酯、邻苯二甲酸二环己酯、邻苯二甲酸双(十三)酯、对苯二甲酸二(2-乙基)己酯;磷酸酯类,如磷酸三甲苯酯、磷酸(二苯-2-乙基)己酯;脂肪酸酯类,如己二酸二(2-乙基)己酯、癸二酸二(2-乙基)己酯;环氧化合物类,如环氧甘油酯类、环氧脂 肪酸单酯类、环氧四氢邻苯二甲酸酯类、环氧大豆油、环氧硬脂酸(2-乙基)己酯、环氧大豆油酸2-乙基己酯、4,5-环氧四氢邻苯二甲酸二(2-乙基)己酯、黄杨乙酰蓖麻油酸甲酯,二元醇脂类,如C5~9酸乙二醇酯、C5~9酸二缩三乙二醇酯;含氯类,如绿化石蜡类、氯代脂肪酸酯;聚酯类,如乙二酸1,2-丙二醇系聚酯、癸二酸1,2-丙二醇聚酯;石油磺酸苯酯、偏苯三酸酯、柠檬酸酯、季戊四醇和双季戊四醇酯等;其中,增塑剂优选邻苯二甲酸二辛酯(DOP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二异辛酯(DIOP)、邻苯二甲酸二异壬酯(DINP)、邻苯二甲酸二异癸酯(DIDP)、磷酸三甲苯酯(TCP)。所用的增塑剂用量没有特别限定,一般为5-20wt%。
所述的助剂中的增稠剂,能够赋予聚合物混合液良好的触变性和适当的稠度,一般在本发明的生产和半成品储存过程中使用,其包括但不仅限于以下任一种或任几种增稠剂:低分子物质,如脂肪酸盐、脂肪醇聚氧乙烯醚硫酸盐、烷基二甲胺氧化物、脂肪酸单乙醇酰胺、脂肪酸二乙醇酰胺、脂肪酸异丙酰胺、脱水山梨醇三羧酸酯、甘油三油酸酯、椰子酰胺丙基甜菜碱、2-烷基-N-羧甲基-N-羟乙基咪唑啉、钛酸酯偶联剂;高分子物质,如皂土、人工水辉石、微粉二氧化硅、胶体铝、植物多糖类、微生物多糖类、动物蛋白、纤维素类、淀粉类、海藻酸类、聚甲基丙烯酸盐、甲基丙烯酸共聚物、顺酐共聚物、巴豆酸共聚物、聚丙烯酰胺、聚乙烯吡咯酮、聚乙烯醇、聚醚、聚乙烯甲醚脲烷聚合物等;其中,增稠剂优选羟乙基纤维素、椰子油二乙醇酰胺、丙烯酸-甲基丙烯酸共聚物。所用的增稠剂用量没有特别限定,一般为0.1-1.5wt%。
所述的助剂中的触变剂,加入杂化动态聚合物体系中,增加聚合物体系的触变性。包括但不仅限于以下任一种或任几种:气相白炭黑、氢化蓖麻油、膨润土、硅酸酐、硅酸衍生物、尿素衍生物等。所用的触变剂用量没有特别限定,一般为0.5-2wt%。
所述的助剂中的流平剂,能够保证聚合物涂膜的平整光滑均匀,改善涂膜表面质量、提高装饰性,其包括但不仅限于以下任一种或任几种流平剂:聚二甲基硅氧烷、聚甲基苯基硅氧烷、醋酸-丁酸纤维素、聚丙烯酸酯类、有机硅树脂等;其中,流平剂优选聚二甲基硅氧烷、聚丙烯酸酯。所用的流平剂用量没有特别限定,一般为0.5-1.5wt%。
所述的助剂中的着色剂,可以使聚合物产品呈现出所需要的颜色,增加表面色彩,其包括但不仅限于以下任一种或任几种着色剂:无机颜料,如钛白、铬黄、镉红、铁红、钼铬红、群青、铬绿、炭黑;有机颜料,如立索尔宝红BK、色淀红C、苝红、嘉基R红、酞菁红、永固洋红HF3C、塑料大红R和克洛莫红BR、永固橙HL、耐晒黄G、汽巴塑料黄R、永固黄3G、永固黄H2G、酞青蓝B、酞青绿、塑料紫RL、苯胺黑;有机染料,如硫靛红、还原黄4GF、士林蓝RSN、盐基性玫瑰精、油溶黄等;其中,着色剂的选用根据样品颜色需求而定,不需要特别限定。所用的着色剂用量没有特别限定,一般为0.3-0.8wt%。
所述的助剂中的荧光增白剂,能使所染物质获得类似荧石的闪闪发光的效应,其包括但不仅限于以下任一种或任几种荧光增白剂:二苯乙烯型、香豆素型、吡唑啉型、苯并氧氮型、苯二甲酰亚胺型等;其中,荧光增白剂优选二苯乙烯联苯二磺酸钠(荧光增白剂CBS)、4,4-双(5甲基-2-苯并噁唑基)二苯乙烯(荧光增白剂KSN)、2,2-(4,4’-二苯乙烯基)双苯并噁唑(荧光增白剂OB-1)。所用的荧光增白剂用量没有特别限定,一般为0.002-0.03wt%。
所述的助剂中的消光剂,能够使得入射光到达聚合物表面时,发生漫反射,产生低光泽的亚光和消光外观,其包括但不仅限于以下任一种或任几种消光剂:沉降硫酸钡、二氧化硅、含水石膏粉、滑石粉、钛白粉、聚甲基脲树脂等;其中,消光剂优选二氧化硅。所用的消光剂用量没有特别限定,一般为2-5wt%。
所述的助剂中的抗静电剂,可将聚合物样品中聚集的有害电荷引导或消除,使其不对生产和生活造成不便或危害,其包括但不仅限于以下任一种或任几种抗静电剂:阴离子型抗静电剂,如烷基磺酸盐、对壬基苯氧基丙烷磺酸钠、烷基磷酸酯二乙醇胺盐、烷基酚聚氧乙烯 基醚磺酸三乙醇胺、对壬基二苯醚磺酸钾、烷基聚氧乙烯基醚磺酸三乙醇胺、磷酸酯衍生物、磷酸盐、磷酸聚环氧乙烷烷基醚醇酯、烷基双[二(2-羟乙基胺)]磷酸酯、磷酸酯衍生物、脂肪胺磺酸盐、丁酸酯磺酸钠;阳离子型抗静电剂,如脂肪铵盐酸盐、月桂基三甲基氯化铵、十二烷基三甲胺溴化物、N,N-鲸蜡基-乙基吗啉硫酸乙酯盐、硬脂酰胺丙基(2-羟乙基)二甲铵硝酸盐、烷基羟乙基二甲铵高氯酸盐、2-烷基-3,3-二羟乙基咪唑啉高氯酸盐、2-十七烷基-3-羟乙基-4-羧甲基咪唑啉、N,N-双(α-羟乙基)-N-3(十二烷氧基-2-羟丙基)甲铵硫酸甲酯盐;两性离子型抗静电剂,如烷基二羧甲基铵乙内盐、月桂基甜菜碱、N,N,N-三烷基铵乙酰(N’-烷基)胺乙内盐、N-月桂基-N,N-二聚氧化乙烯基-N-乙基膦酸钠、烷基二(聚氧乙烯)铵乙内盐氢氧化物、2-烷基-3羟乙基-3-乙酸盐基咪唑啉季胺碱、N-烷基氨基酸盐;非离子型抗静电剂,如脂肪醇环氧乙烷加成物、脂肪酸环氧乙烷加成物、烷基酚环氧乙烷加成物、磷酸三聚氧乙烯基醚酯、甘油单脂肪酸酯、失水山梨醇单月桂酸酯的聚环氧乙烷加成物;高分子型抗静电剂,如乙二胺的环氧乙烷环氧丙烷加成物、聚乙二醇-对苯二甲酸酯-3,5-二苯甲酸酯磺酸钠共聚物、聚烯丙酰胺N-季铵盐取代物、聚4-乙烯基-1-丙酮基吡啶磷酸-对丁基苯酯盐等;其中,抗静电剂优选月桂基三甲基氯化铵、十八烷基二甲基羟乙基季铵硝酸盐(抗静电剂SN)、烷基磷酸酯二乙醇胺盐(抗静电剂P)。所用的抗静电剂用量没有特别限定,一般为0.3-3wt%。
所述的助剂中的脱水剂,能除去体系中的水分,其包括但不仅限于以下任一种或任几种:恶唑烷化合物(如3-乙基-2-甲基-2-(3-甲基丁基)-1,3-恶唑烷)、对甲基苯磺酰异氰酸酯、原甲酸三乙酯、乙烯基硅烷、氧化钙等。所用的脱水剂用量没有特别限定,一般为0.1-2wt%。
所述的助剂中的杀菌防霉剂,可抑制细菌的生长,保持制品整洁的外观,延长使用寿命;或者保护使用者、提升使用者的健康,如减少脚气等。其包括有机物和无机物,包括但不仅限于以下任一种或任几种:异噻唑啉酮衍生物,如5-氯-2-甲基-4-异噻唑啉-3-酮、2-甲基-4-异噻唑啉-3-酮、N-正丁基-1,2-苯并异噻唑啉-3-酮、辛基异噻唑啉酮、2,4,4-三氯-2-羟基-二苯基醚、2-(4-噻唑基)苯并咪唑、8-羟基喹啉铜或双(8-羟基喹啉基)铜;有机锡化合物,如富马酸三丁基锡、乙酸三丁基锡、双(三丁基锡)硫化物、双(三丁基锡)氧化锡;N,N-二甲基-N’-苯基(氟二氯甲基硫代)磺酰胺;无机化合物或复合物,如纳米银、纳米二氧化钛、纳米二氧化硅、纳米氧化锌、超细铜粉、无机抗菌剂YY-Z50、XT无机抗菌剂、复合抗菌剂KHFS-ZN。所用的杀菌防霉剂用量没有特别限定,一般为0.5-2wt%。
所述的助剂中的发泡剂,能使得聚合物样品发泡成孔,从而得到质轻、隔热、隔音、富有弹性的聚合物材料,其包括但不仅限于以下任一种或任几种发泡剂:物理发泡剂,如丙烷、甲醚、戊烷、新戊烷、己烷、异戊烷、庚烷、异庚烷、石油醚、丙酮、苯、甲苯、丁烷、乙醚、氯甲烷、二氯甲烷、二氯乙烯、二氯二氟甲烷、三氟氯甲烷;无机发泡剂,如碳酸氢钠、碳酸铵、碳酸氢铵;有机发泡剂,如N,N’-二硝基五次甲基四胺、N,N’-二甲基-N,N’-二亚硝基对苯二甲酰胺、偶氮二甲酰胺、偶氮二碳酸钡、偶氮二碳酸二异丙酯、偶氮甲酰胺甲酸钾、偶氮二异丁腈、4,4’-氧代双苯磺酰肼、苯磺酰肼、三肼基三嗪、对甲苯磺酰氨基脲、联苯-4,4’-二磺酰叠氮;发泡促进剂,如尿素、硬脂酸、月桂酸、水杨酸、三盐基性硫酸铅、二盐基亚磷酸铅、硬脂酸铅、硬脂酸镉、硬脂酸锌、氧化锌;发泡抑制剂,如马来酸、富马酸、硬脂酰氯、苯二甲酰氯、马来酸酐、苯二甲酸酐、对苯二酚、萘二酚、脂肪族胺、酰胺、肟、异氰酸酯、硫醇、硫酚、硫脲、硫化物、砜、环己酮、乙酰丙酮、六氯环戊二烯、二丁基马来酸锡等。其中,发泡剂优选碳酸氢钠、碳酸铵、偶氮二甲酰胺(发泡剂AC)、N,N’-二硝基五次甲基四胺(发泡剂H)、N,N’-二甲基-N,N’-二亚硝基对苯二甲酰胺(发泡剂NTA),物理型微球发泡剂、所用的发泡剂用量没有特别限定,一般为0.1-30wt%。
所述的助剂中的成核剂,能够通过改变聚合物的结晶行为,加快结晶速率、增加结晶密度和促使晶粒尺寸微细化,达到缩短材料成型周期,提高制品透明性、表面光泽、抗拉强度、 刚性、热变形温度、抗冲击性、抗蠕变性等物理机械性能的目的,其包括但不仅限于以下任一种或任几种成核剂:苯甲酸、己二酸、苯甲酸钠、滑石粉、对苯酚磺酸钠、二氧化硅、二苄叉山梨糖醇及其衍生物、乙丙橡胶、三元乙丙橡胶等;其中,成核剂优选二氧化硅、二苄叉山梨糖醇(DBS)、三元乙丙橡胶。所用的成核剂用量没有特别限定,一般为0.1-1wt%。
所述的助剂中的流变剂,能够保证聚合物在涂膜过程中具有良好的涂刷性和适当的涂膜厚度,防止贮存时固体颗粒的沉降,能够提高其再分散性,其包括但不仅限于以下任一种或任几种流变剂:无机类,如硫酸钡、氧化锌、碱土金属氧化物、碳酸钙、氯化锂、硫酸钠、硅酸镁、气相二氧化硅、水玻璃、胶态二氧化硅;有机金属化合物,如硬脂酸铝、烷醇铝、钛螯合物、铝螯合物;有机类,如有机膨润土、氢化蓖麻油/酰胺蜡、异氰酸酯衍生物、丙烯酸乳液、丙烯酸共聚物、聚乙烯蜡、纤维素酯等;其中,流变剂优选有机膨润土、聚乙烯蜡、疏水改性碱性可膨胀乳液(HASE)、碱性可膨胀乳液(ASE)。所用的流变剂用量没有特别限定,一般为0.1-1wt%。
所述的助剂中的动态调节剂,能够提升动态聚合物的动态性,其一般是带有自由羟基或者自由羧基,或者能够给出或接受电子对的化合物,包括但不仅限于水、氢氧化钠、醇(包括硅醇)、羧酸、路易斯酸、路易斯碱等。此类助剂可以调节聚合物的动态性,以便获得最优化的期望性能。所用的动态调节剂用量没有特别限定,一般为0.1-10wt%。
所述的填料,其在聚合物样品中主要起到以下作用:①降低成型制件的收缩率,提高制品的尺寸稳定性、表面光洁度、平滑性以及平光性或无光性等;②调节材料的粘度;③满足不同性能要求,如提高材料冲击强度及压缩强度、硬度、刚度和模量、提高耐磨性、提高热变形温度、改善导电性及导热性等;④提高颜料的着色效果;⑤赋予光稳定性和耐化学腐蚀性;⑥起到增容作用,可降低成本,提高产品在市场上的竞争能力。
所述的填料,选自以下任一种或任几种填料:无机非金属填料、金属填料、有机填料。
所述的无机非金属填料,包括但不限于以下任一种或任几种:碳酸钙、陶土、硫酸钡、硫酸钙和亚硫酸钙、滑石粉、白炭黑、石英、云母粉、粘土、石棉、石棉纤维、正长石、白垩、石灰石、重晶石粉、石膏、石墨、炭黑、石墨烯、氧化石墨烯、碳纳米管、二硫化钼、矿渣、烟道灰、木粉及壳粉、硅藻土、赤泥、硅灰石、硅铝炭黑、氢氧化铝、氢氧化镁、粉煤灰、油页岩粉、膨胀珍珠岩粉、氮化铝粉、氮化硼粉、蛭石、铁泥、白泥、碱泥、(中空)玻璃微珠、发泡微球、可发泡颗粒、玻璃粉、水泥、玻璃纤维、碳纤维、石英纤维、炭芯硼纤维、二硼化钛纤维、钛酸钙纤维、碳化硅纤维、陶瓷纤维、晶须等。在本发明的一个实施方式中,优选具有导电性的无机非金属填料,包括但不仅限于石墨、炭黑、石墨烯、碳纳米管、碳纤维,方便获得具有导电性和/或具有电热功能的复合材料。在本发明的另一个实施方式中,优选具有在红外和/或近红外光作用下具有发热功能的非金属填料,包括但不仅限于石墨烯、氧化石墨烯、碳纳米管,方便获得可利用红外和/或近红外光进行加热的复合材料。良好的发热性能,特别是遥控性的发热性能,有利于使得聚合物获得可控的形状记忆、自修复等性能。在本发明的另一个实施方式中,优选具有导热性的无机非金属填料,包括但不仅限于石墨、石墨烯、碳纳米管、氮化铝、氮化硼、碳化硅,方便获得导热功能的复合材料。
所述的金属填料,包括金属化合物,包括但不仅限于以下任一种或任几种:金属粉末、纤维,其包括但不仅限于铜、银、镍、铁、金等及其合金的粉末、纤维;纳米金属颗粒,其包括但不仅限于纳米金颗粒、纳米银颗粒、纳米钯颗粒、纳米铁颗粒、纳米钴颗粒、纳米镍颗粒、纳米Fe 3O 4颗粒、纳米γ-Fe 2O 3颗粒、纳米MgFe 2O 4颗粒、纳米MnFe 2O 4颗粒、纳米CoFe 2O 4颗粒、纳米CoPt 3颗粒、纳米FePt颗粒、纳米FePd颗粒、镍铁双金属磁性纳米颗粒以及其他在红外、近红外、紫外、电磁至少一种作用下可以发热的纳米金属颗粒等;液态金属,其包括但不仅限于汞、镓、镓铟液态合金、镓铟锡液态合金、其它镓基液态金属合金;金属有机化合物分子、晶体以及其他在红外、近红外、紫外、电磁至少一种作用下可以发热的物质等。 在本发明的一个实施方式中,优选可以进行电磁和/或近红外加热的填料,包括但不仅限于纳米金、纳米银、纳米钯、纳米Fe 3O 4,以便进行遥感加热。在本发明的另一个实施方式中,优选液态金属填料,方便获得具有良好导热性能、导电性能以及能够保持基材柔性和延展性的复合材料。在本发明的另一个实施方式中,优选在红外、近红外、紫外、电磁至少一种作用下可以发热的有机金属化合物分子、晶体,一方面方便复合,另一面提高诱导发热的效率和提升发热效果。
所述的有机填料,包括但不仅限于以下任一种或任几种:①天然有机填料,如皮毛、天然橡胶、棉花、棉绒、麻、黄麻、亚麻、石棉、纤维素、醋酸纤维素、虫胶、甲壳素、壳聚糖、木质素、淀粉、蛋白质、酶、激素、生漆、木材、木粉、壳粉、糖原、木糖、蚕丝等;②合成树脂填料,如丙烯腈-丙烯酸酯-苯乙烯共聚物、丙烯腈-丁二烯-苯乙烯共聚物、乙酸纤维素、聚三氟氯乙烯、氯化聚乙烯、氯化聚氯乙烯、环氧树脂、乙烯-丙烯共聚物、乙烯-乙酸乙烯酯共聚物、高密度聚乙烯、高抗冲聚苯乙烯、低密度聚乙烯、中密度聚乙烯、三聚氰胺-甲醛树脂、聚酰胺、聚丙烯酸、聚丙烯酰胺、聚丙烯腈、聚芳砜、聚苯并咪唑、聚对苯二甲酸丁二醇酯、聚碳酸酯、聚二甲基硅氧烷、聚乙二醇、聚酯、聚砜、聚醚砜、聚对苯二甲酸乙二醇酯、酚醛树脂、四氟乙烯-全氟丙烷共聚物、聚酰亚胺、聚丙烯酸甲酯、聚甲基丙烯腈、聚甲基丙烯酸甲酯、聚苯醚、聚丙烯、聚苯硫醚、聚苯砜、聚苯乙烯、聚四氟乙烯、聚氨酯、聚乙烯醇、聚乙酸乙烯酯、聚乙烯醇缩丁醛、聚氯乙烯、氯乙烯-乙酸乙烯酯共聚物、聚偏氯乙烯、聚乙烯醇缩甲醛、聚乙烯吡咯烷酮、脲醛树脂、超高分子量聚乙烯、不饱和聚酯、聚醚醚酮等;③合成橡胶填料,如异戊橡胶、顺丁橡胶、丁苯橡胶、丁腈橡胶、氯丁橡胶、丁基橡胶、乙丙橡胶、硅橡胶、氟橡胶、聚丙烯酸酯橡胶、聚氨酯橡胶、氯醚橡胶、热塑性弹性体等;④合成纤维填料,如黏胶纤维、铜氨纤维、二乙酯纤维、三乙酯纤维、聚酰胺纤维、聚碳酸酯纤维、聚乙烯醇纤维、聚酯纤维、聚氨酯纤维、聚丙烯腈纤维、聚乙烯醇缩醛纤维、聚氯乙烯纤维、聚烯烃纤维、含氟纤维、聚四氟乙烯纤维、芳香族聚酰胺纤维、芳酰胺纤维或芳纶纤维等。
其中,填料类型不限定,主要根据所需求的材料性能而定,优选碳酸钙、硫酸钡、滑石粉、炭黑、石墨烯、玻璃微珠、玻璃纤维、碳纤维、天然橡胶、壳聚糖、淀粉、蛋白质、聚乙烯、聚丙烯、聚氯乙烯、乙烯-乙酸乙烯酯共聚物、聚乙烯醇、聚醋酸乙烯酯、聚酰胺纤维、聚碳酸酯纤维、聚乙烯醇纤维、聚酯纤维、聚丙烯腈纤维;所用的填料用量没有特别限定,一般为1-30wt%。
在动态聚合物的制备过程中,对动态聚合物各组分原料的用量并未做特别的限定,本领域的技术人员可根据实际制备情况以及目标聚合物性能进行调整。本发明对动态聚合物的制造方法并无特别限定,例如,可通过辊、捏合机、挤出机、万能搅拌机等根据需要将添加剂与动态聚合物共混,再根据需要进行如发泡等后续操作。
本发明的动态聚合物由于其包含同时具有硬段和软段的动态聚合物分子,硬段和软段可以形成物理分相,所述的动态聚合物分子在分子中含有至少一种含硼动态共价键,并选择性地含有至少一种可形成动态超分子氢键的氢键基团,所获得的动态聚合物可以是物理交联的或非交联的,具有非常广泛的用途。例如,基于含硼动态共价键和可选氢键的动态性,所获得的动态聚合物均具有良好的自修复性能,可以作为自修复性板材、薄膜、泡沫、弹性体、涂层、粘结剂、玩具等使用,特别是自修复性弹性体可以在电子产品(如手机、平板电脑等)的组件和连接件的密封,例如充电器和耳机孔的密封防水等,一旦充电器接头拔除后缺口可以自动愈合防水。同时由于动态共价键和可选氢键可以作为可牺牲键消耗应力,可以增加材料的韧性和抗撕裂性。又例如,具有高动态性的含硼动态共价键和可选的氢键另外可以赋予所述动态聚合物及其组成优异胀流性,具有强大的能量吸收和分散能量,可以提供优异的阻尼、减震、抗冲击等性能,作为对应力敏感的抗冲击防护聚合物材料,可以被广泛应用于运 动和日常生活与工作的身体防护、军警身体防护、防爆(帐篷、毯、墙等)、空降和空投防护、汽车防撞、电子材料抗冲击防护等。有例如,基于含硼动态共价键和可选氢键的动态性,所述动态聚合物可以显现出色的应力敏感性,又可以被应用于制备力传感器。此外,当含硼动态共价键和/或可选氢键的动态性或稳定性弱于分相物理交联时,所述动态共聚物可以具有形状记忆功能。本发明的动态聚合物由于采用物理分相作为提供平衡结构的交联,其物理交联特性赋予了材料的可回收和再加工性,加上具有自修复性,应酬节能环保和节约成本方面具有巨大的优势。
下面,结合一些具体实施例对本发明所述动态聚合物进行进一步描述。具体实施例为进一步详细说明本发明,非限定本发明的保护范围。
实施例1
将市售苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SBS)、3-巯基丙酸和光引发剂苯偶酰二甲基缩酮(BDK)在四氢呋喃中反应,保持聚丁二烯链段中烯基与3-巯基丙酸以及BDK的摩尔比约为50:5:1,得到聚丁二烯链段中含有侧羧基的改性SBS。将所得改性SBS和2-氨甲基苯硼酸、4-氨基苯硼酸以2-乙氧基-1-乙氧碳酰基-1,2-二氢喹啉(EEDQ)作为缩合剂,保持改性SBS中羧基与2-氨甲基苯硼酸、4-氨基苯硼酸的摩尔比为2:1:1,在室温下黑暗中,在二氯甲烷/甲醇体积比为2:1的混合溶剂中反应16小时,得到聚丁二烯链段中含有侧氨甲基苯硼酸基和侧苯硼酸基的改性SBS。
将市售SBS、3-巯基-1,2-丙二醇和光引发剂BDK在四氢呋喃中反应,保持聚丁二烯链段中烯基与3-巯基-1,2-丙二醇以及BDK的摩尔比约为50:5:1,得到聚丁二烯链段侧基中含有羟基的改性SBS。
称取等摩尔当量所得的两种改性SBS,共计为100质量份,与环烷油25质量份,轻质碳酸钙17质量份,聚苯乙烯25质量份,聚醋酸乙烯酯8质量份,抗氧剂2640.8质量份,AC发泡剂2质量份混合均匀,用螺杆挤出机挤出,然后在开炼机上混炼出片,在170℃20MPa下发泡8分钟成型,再保温脱水2小时,得到动态聚合物泡沫制品。
性能:拉伸强度10.2MPa,断裂延长率710%;密度:87kg/m 3。这种泡沫材料具有很好的缓冲性且耐磨性好,可用于制鞋底。
实施例2
将烯丙基硼酸频哪醇酯和等摩尔当量的巯基丁二酸共混于四氢呋喃,在光引发剂BDK的存在下在紫外光下反应,得到化合物2a。
将化合物2a与过量的两端羟基封端的聚己内酯反应,在二环乙基碳二亚胺(DCC)和4-二甲氨基吡啶(DMAP)的催化下,得到两端羟基封端并含有一个有机硼酸环酯侧基的聚酯链段。
Figure PCTCN2018072460-appb-000109
以过氧化苯甲酰(BPO)为引发剂,巯基乙酸为链转移剂在90-100℃引发4-乙烯吡啶聚合,保持引发剂、单体、链转移剂的摩尔比为1:30:1,得到单端羧基封端的聚(4-乙烯吡啶)。
将1摩尔当量所得的共聚物链段和2摩尔当量单端羧酸封端的聚(4-乙烯吡啶)混合,以DCC和DMAP为催化剂,以二氯甲烷为溶剂,得到三段式共聚物。将所得三段式共聚物在乙酸水溶液中水解,将侧硼酸酯基转化为硼羟基。再将2摩尔当量所得的三段式共聚物溶于甲苯,加入1摩尔当量的苏糖醇,在回流条件下分水反应,得到以硼酸酯基为中心以聚己内酯-聚(4-乙烯吡啶)为臂的四臂共聚物。
性能:拉伸强度20.6MPa,断裂延长率650%。这种材料可以用于要求减震、耐冲击、耐曲挠并要求足够强度的领域,如汽车保险杠、汽车阻尼片、消音齿轮、隔音板、伸缩性电话软线、液压管、传动皮带、旋转成型轮胎、挠性连轴节、电梯滑道、化工设备管道阀件中的防腐耐磨件等。
实施例3
将异氰酸酯丙烯酸乙酯分别和正丙胺、四氢吡咯在溶剂二氯甲烷中反应,保持异氰酸酯和氨基的摩尔比为1:1,得到含脲键和含脲键衍生物的丙烯酸酯单体3a、3b。
Figure PCTCN2018072460-appb-000110
先将1摩尔当量AIBN、1摩尔当量枯基二硫代苯甲酸酯(二硫代苯甲酸2-苯基丙-2-基酯)和30摩尔当量对苯乙烯磺酸钠溶于四氢呋喃,密封后保持无水无氧低压,在紫外灯的照射下于室温进行光引发聚合。待所加入的单体反应完全后,再加入含有30摩尔当量丙烯酸正丁酯、45摩尔当量3a、20摩尔当量3b和5摩尔当量丙烯酸-4-羟基丁酯的混合溶液继续反应。聚合结束后,得到聚丙烯酯端为二硫代苯甲酸酯且含有侧氢键基团和侧羟基的改性聚丙烯酸酯-聚苯乙烯磺酸钠两段式聚合物。
无水无氧条件下,将1摩尔当量所得的二硫代苯甲酸酯封端的两段式共聚物,20摩尔当量三丁基膦和50摩尔当量丙烯酸酸溶于四氢呋喃,加入20摩尔当量的硼氢化钠,在室温下反应20小时,将产物沉淀于甲醇,得到聚丙烯酯端为羧基的聚苯乙烯磺酸钠-聚丙烯酸酯两段式共聚物。
在氮气保护下,将13摩尔当量2-溴异丁酰溴和3摩尔当量季戊四醇溶于二氯甲烷,在15摩尔当量三乙胺的催化下于0℃反应得到四官能引发剂。以1摩尔当量所得的四官能引发剂为引发剂,以4-戊烯-1-醇为链转移剂,引发50摩尔当量苯乙烯聚合,得到以羟基封端的四臂聚苯乙烯。
将1摩尔当量所得的四臂聚苯乙烯和4摩尔当量所得的聚丙烯酸酯端为羧基的聚苯乙烯磺酸钠-聚丙烯酯两段式共聚物溶于二氯甲烷,在DCC与DMAP的催化下,反应得到以聚苯乙烯-改性聚丙烯酸酯-聚苯乙烯磺酸钠为臂的四臂多段聚合物。将100质量份所得聚合物和3质量份硼酐共混并于120℃保温2小时,得到本发明的动态聚合物。
性能:拉伸强度7.3MPa,断裂延长率1230%。这种材料可用于制备具有缓冲减震功能的胶黏剂、封堵胶、夹层胶。
实施例4
在-78℃,将1摩尔当量δ-戊内酯滴入含有1摩尔当量二异丙基氨基锂的四氢呋喃溶液,充分搅拌均匀后,加入含有1.1摩尔当量的3-溴丙炔的甲苯溶液,在-40℃进行反应。反应后,将粗产物在140℃下短程蒸馏,得到内酯单体4a。
无水无氧条件下,向反应容器依次加入联二吡啶、溴化亚铜、α-溴代丙酸乙酯和苯乙烯,保持四者摩尔比为1:1:1:20,在110℃下进行反应。反应后将所得的聚苯乙烯加入四氢呋喃溶解,以四氢铝锂为还原剂,室温下反应6小时候在甲醇中沉淀得到羟基封端的聚苯乙烯4b。无水条件下,将所得的聚苯乙烯4b与50摩尔当量的内酯单体4a和50摩尔当量的ε-己内酯在辛酸亚锡的催化下在110℃下反应,得到两段式共聚物4c。
Figure PCTCN2018072460-appb-000111
Figure PCTCN2018072460-appb-000112
在惰性气体保护下,将1摩尔当量苯乙烯-马来酸酐共聚物和6摩尔当量所得两段式共聚物4c溶于二甲苯,搅拌下加入催化剂对甲苯磺酸钠,于105℃搅拌反应,得到苯乙烯-马来酸酐共聚物接枝(改性聚酯-聚苯乙烯)多段式共聚物。
将4-(溴甲基)苯硼酸溶于四氢呋喃,加入过量的叠氮化钠,反应得到化合物4-(叠氮甲基)苯硼酸。将所得的多段式共聚物和4-(叠氮甲基)苯硼酸、2,5-脱水-1-叠氮-1-脱氧-D-葡萄糖醇溶于四氢呋喃,保持炔基和4-(叠氮甲基)苯硼酸、2,5-脱水-1-叠氮-1-脱氧-D-葡萄糖醇的摩尔比为5:3:2,在碘化亚铜和吡啶的催化下,在35℃下反应得到聚酯段侧基含有侧羟基和侧苯硼酸基的多段式共聚物。将100质量份所得的多段式聚合物于120℃加热脱水后置于模具中模压成型,得到本发明的动态聚合物热塑性弹性体制品。
性能:拉伸强度19.5MPa,断裂延长率530%。这种材料除用于制备具有缓冲吸能作用的制品,由于其具有多重转变温度,还可作为具有缓冲吸能作用和形状记忆功能的材料。
实施例5
在氮气保护下,将10摩尔当量乙二醇单烯丙基醚(平均分子量约500Da)和1摩尔当量甲醇钾共混,在95℃缓慢滴加70摩尔当量的环氧丙醇,得到端基为羟基具有枝化结构的烯烃单体5a。在氮气保护下,将端基为羟基具有枝化结构的烯烃单体5a与和羟基摩尔当量的异氰酸乙酯在DBTDL的催化下于二氯甲烷中反应,得到烯烃单体5b。
将5b与4-巯基苯硼酸等摩尔共混,加入1wt%光引发剂2,2-二甲氧基-2-苯基苯乙酮,在300W紫外灯下光照30分钟,将烯基转化为苯硼酸基。再将所得化合物与过量的季戊四醇反应,得到侧基中含有含硼动态共价键和氨基甲酸酯基的二醇化合物5c。
将5摩尔当量所得二醇5c、5摩尔当量1,6-己二醇、8摩尔当量己二酰氯混合,在三乙胺的催化下,得到两端为羟基具有枝化侧基且枝化侧基末端含氨基甲酸酯基的改性聚酯。
将2摩尔当量α-乙酰基-γ-丁內酯和3摩尔当量碳酸胍溶于乙醇,以三乙胺为催化剂,回流反应16小时。过滤反应溶液,将不溶物分散在水中,用盐酸将pH值调节至6-7,并搅拌30分钟后,过滤并清洗,得到化合物5d。
Figure PCTCN2018072460-appb-000113
Figure PCTCN2018072460-appb-000114
X=直接键、
Figure PCTCN2018072460-appb-000115
将200质量份所得的聚酯、2质量份1,4-丁二醇、2质量份二月桂酸二丁基锡(DBTDL)、1质量份有机硅油、50质量份蒙脱土、60质量份二氯甲烷、35质量份水在35℃充分共混,记为组分A。将200质量份甲苯二异氰酸酯,50质量份化合物5d,于90℃充分共混搅拌40小时后,降温至35℃,记为组分B。将组分A与组分B按照1.2:1质量比混合,经快速搅拌至产生气泡,然后迅速注入到模具中,在室温下固化30分钟,然后在120℃下固化2小时,得到一种硬质聚氨酯基泡沫材料。
性能:拉伸强度23MPa,断裂延长率1490%;密度:105kg/m 3。该产品可以用于制造具有防爆减震功能的防护绝缘品。
实施例6
将烯丙基羟乙基醚和5-氯甲基-2-恶唑烷酮按摩尔比1:1溶于甲苯,以碳酸钾为催化剂,以四丁基溴化铵为相转移剂,得到一端为烯丙基一端为恶唑烷酮的化合物6a。
Figure PCTCN2018072460-appb-000116
将1摩尔当量的八甲基环四硅氧烷和1摩尔当量四甲基环四硅氧烷在乙酸中共混,在0.02摩尔当量的浓硫酸催化下于130℃反应。充分反应后,将反应溶液静置冷却,用氯化钠水溶液和碳酸钙水溶液洗至中性,脱去溶剂和低沸物后得到两端以羟基封端的含氢聚硅氧烷。
将4-(4-羟基苯基)-2,3-二氮杂萘-1-酮和4-硝基氯苯溶于DMF,在碳酸钾的催化下得到1,2-二氢-2-(4-硝基苯基)-4-[4-(4-硝基苯氧基)-苯基]-二氮杂萘-1-酮。将所得化合物在铂-碳的催化下,与一水合肼反应,得到合成聚芳胺的单体之一,1,2-二氢-2-(4-氨基苯基)-4-[4-(4-氨基苯氧基)-苯基]-二氮杂萘-1-酮。
无水无氧条件下,将5摩尔当量所得的聚芳胺与6摩尔当量对苯二甲酸充分混合,以亚磷酸三苯酯和吡啶为脱水剂,以N-甲基吡咯烷酮和氯化钙为介质,在100℃反应3小时。反应液经沉降、洗涤、精制得到羧基封端的聚芳胺。
将所得4摩尔当量聚芳胺和3摩尔当量羟基封端侧基含氢键基团的聚硅氧烷溶于DMF,在DCC和DMAP的催化下,反应得到聚芳胺-聚硅氧烷多段式共聚物。以氯铂酸为催化剂,将含有10摩尔当量硅氢的所得多段式聚合物与化合物与8摩尔当量6a、2摩尔当量3-丙烯酰胺基苯硼酸在环己酮中于90℃下反应3小时,得到聚硅氧烷链段含有侧氢键基团和侧硼羟基的多段式聚合物。将含有1摩尔当量硼羟基的所得聚合物与1摩尔当量单羟基封端的二甲基硅油(平均分子量约为3000Da)共混并置于模具中,在130℃下脱水半小时并保温模压10分钟,得到本发明的动态聚合物热塑性弹性体制品。
性能:拉伸强度3.9MPa,断裂延长率1410%。该产品工作温度范围广,尤其适合工作温度范围大的制品,如航空航天器中的缓冲减震吸能部件。
实施例7
以1摩尔当量引发剂2,2-二丁基-2-锡-1,3-二氧环庚烷为引发剂,和30摩尔当量左旋丙交酯溶于甲苯,于100℃反应得到两端羟基封端的聚左旋乳酸。
将2-氯环己酮溶于二氯甲烷,加入间氯过氧苯甲酸(mCPBA),保持2-氯环己酮与mCPBA的摩尔比为10:12,反应得到α-氯-ε-己内酯。无水条件下,将α-氯-ε-己内酯60摩尔当量与ε-己内酯60摩尔当量溶于甲苯,以辛酸亚锡为催化剂,在1摩尔当量引发剂两端羟基封端的聚左旋乳酸引发下于20℃反应,得到聚酯侧基含有氯原子并以羟基封端的改性聚酯-聚左旋乳酸-改性聚酯三段式共聚物。
将所得的聚酯链段侧基含有氯原子的三段式共聚物溶于二甲基甲酰胺(DMF),加入过量的叠氮化钠,反应得到侧基含有叠氮基的共聚物。将侧基含有叠氮基的共聚物、2-炔丙基-N-丁基氨基甲酸酯、乙炔基硼酸频那醇酯、3-丁炔-1-丁醇与环氧氯丙烷的醚化物溶于四氢呋喃,保持叠氮基、2-炔丙基-N-丁基氨基甲酸酯、乙炔基硼酸频那醇酯、3-丁炔-1-丁醇与环氧氯丙烷的醚化物的摩尔比为10:4:3:3,在碘化亚铜和吡啶的催化下,在35℃下反应得到聚酯链段含有侧氨基甲酸酯基、侧苯硼酸基、侧羟基的两段式共聚物。将所得共聚物溶于甲苯在回流条件下分水反应,得到本发明具有侧氢键基团和含硼动态共价键的动态聚合物。
性能:拉伸强度15.5MPa,断裂延长率1520%。该产品具有很好的抗冲击防护性能,同 时具有上佳的韧性和良好的自修复性可用于身体保护,如制造给运动员用的护膝、护颈材料。该产品还具有良好的生物降解性,在生物材料方面也有潜在的应用价值。
实施例8
在氮气保护下,将5摩尔当量双酚A,6摩尔当量二氯二苯砜溶于N-甲基吡咯烷酮,以甲苯为脱水剂,无水碳酸钙为成盐剂,升温至140℃反应1小时,期间反应生成的水被甲苯带出并分离,然后升温至160℃反应4小时,再至180℃反应4小时。待反应完成后,冷却至室温,加入2摩尔当量对氨基苯酚,甲苯和碳酸钾,重复上述过程。粗产物经乙醇沉淀得到两端为氨基的聚砜。
在无水条件下,将1摩尔当量化合物8a与1摩尔当量2,6-二异丙基苯异氰酸酯溶于四氢呋喃,在室温下反应16小时,得到一端为烯基的UPy衍生物。将1摩尔当量所得的一端为烯基的UPy衍生物和20摩尔当量的4-巯基苯硼酸溶于DMF,在0.5摩尔当量AIBN的催化下,得到一端为硼羟基的UPy衍生物。在无水条件下,将1摩尔当量2-甲基-2-丙烯酸-2,3-二羟基丙酯和1摩尔当量所得的UPy衍生物溶于甲苯,在回流温度下分水反应,得到含有UPy和硼酸酯基的甲基丙烯酸酯类单体。
Figure PCTCN2018072460-appb-000117
在氮气保护下,将11摩尔当量2-溴异丁酰溴和5摩尔当量乙二醇溶于二氯甲烷,在12摩尔当量三乙胺的催化下于0℃反应得到双引发剂1,2-双(溴异丁酰氧)。无水无氧条件下,将90摩尔当量甲基丙烯酸正丁酯和10摩尔当量单体所得的含有UPy和硼酸酯基的甲基丙烯酸酯类单体溶于甲苯,以溴化亚铜和PMDETA为催化剂,以1摩尔当量1,2-双(溴异丁酰氧)为引发剂,在90℃下反应6小时,得到两端溴原子封端的聚甲基丙烯酸酯链段。将1摩尔当量所得的聚甲基丙烯酸酯链段和4摩尔当量2-巯基乙醇溶于二甲基亚砜(DMSO),在三亚乙基二胺的催化下于40℃反应,得到两端羟基封端侧基含有氨基甲酸酯基、UPy和硼酸酯基的聚甲基丙烯酸酯。
无水无氧条件下,将3摩尔当量所得的聚甲基丙烯酸酯,6摩尔当量异佛尔酮二异氰酸酯在DBTDL的催化下于60℃反应。待反应完全后,再加入4摩尔当量所得的聚砜,继续反应,得到改性聚甲基丙烯酸-聚砜多段式共聚物热塑性弹性体。
性能:25℃:拉伸强度20.5MPa,断裂延长率0.9%;75℃:拉伸强度15.2MPa,断裂延长率750%。该产品在高于室温条件下具有良好的韧性,可用于制备工作温度高于室温的产品部件,如军警防护制品、防爆层等。
实施例9
将1摩尔当量乙胺、2.5摩尔当量二硫苏糖醇(DTT)、6摩尔当量γ-硫代丁内酯加入乙醇和0.5M碳酸氢钠的混合溶液(两者体积比为1:1)。反应在氮气保护下于50℃进行,得到化合物9a。
Figure PCTCN2018072460-appb-000118
在氮气保护下将8摩尔当量4,4’-二氟二苯酮与二苯砜(两者质量比约为1:4)在180℃充分共混,加入12摩尔当量的对苯二酚,1摩尔当量的无水碳酸钾和10摩尔当量的无水碳酸钠,缓慢升温至250℃,恒温反应30分钟后再升温至290℃反应1小时,得到酚羟基封端 的聚醚醚酮链段。将2摩尔当量所得聚醚醚酮链段和1摩尔当量环丙硼酸充分共混,在150℃下脱水反应,得到酚羟基封端且含有有机硼酸单酯键的聚醚醚酮链段。
在无水无氧条件下,以环辛烯为单体,以Grubbs二代催化剂为催化剂,以马来酸为链转移剂,保持催化剂、链转移剂和单体的摩尔比为1:4000:20000。以四氢呋喃为溶剂,在40℃下反应2小时。用乙烯基乙醚淬灭聚合反应,并在甲醇中沉淀产物,得到两端基为羧基的聚环辛烯。将3摩尔当量所得的聚醚醚酮和4摩尔当量所得的聚环辛烯溶于二氯甲烷,以DCC和DMAP为催化剂,得到聚醚醚酮-聚环辛烯多段式共聚物。将1摩尔当量所得的多段式共聚物和30摩尔当量的化合物9a、3摩尔当量3-巯基-1,2丙二醇、2摩尔当量2-巯基乙醇溶于甲苯,加入0.1摩尔当量的偶氮二异丁氰(AIBN),在60℃下反应,得到聚烯烃侧基含酰胺基和羟基的多段式共聚物。
将一端为氨基的聚异丁烯(平均分子量约1500Da)和4-甲酰氯苯硼酸溶于二氯甲烷,在吡啶的催化下得到以苯硼酸基封端的聚异丁烯。将含2摩尔当量侧羟基的多段式聚合物和1摩尔当量所得的以苯硼酸基封端的聚异丁烯在140℃下共混并脱水,并计为100质量份。再加入防老剂D1质量份,促进剂CZ1质量份,石蜡油6质量份,发泡剂H8质量份充分混合后置于模具中,在125℃发泡20分钟,冷却脱模后继续在150℃保温15分钟,得到相应的泡沫制品。
性能:拉伸强度2.7MPa,断裂延长率1190%;密度:103kg/m 3。该产品具有很好的抗冲击防护性能,可用于减震器、缓冲材料、韧性材料。
实施例10
将1摩尔当量(4-乙烯基苯基)甲醇和1.1摩尔当量吡啶溶于无水二氯甲烷,在0℃滴入1摩尔当量2-溴-2-甲基丙酰溴,反应3小时后浓缩溶液,过滤,用硅胶柱除杂,得到苯乙烯类单体10a。
以1摩尔当量AIBN为引发剂,将90摩尔当量苯乙烯、10摩尔当量所得的苯乙烯类大分子单体10a共聚,得到聚苯乙烯大分子引发剂。
无水无氧条件下,保持所得聚苯乙烯大分子引发剂中侧基溴原子和2-甲基-2-丙烯酸-2,3-二羟基丙酯和含有侧脲基的丙烯酸酯类单体3a的摩尔比为1:10:20,在溴化亚铜和五甲基二乙烯三胺的催化下,在甲苯中80℃条件下反应,得到接枝聚丙烯酸酯侧基中含有脲基和二醇基的聚苯乙烯接枝丙烯酸酯。将一定量所得接枝聚合物和四羟基二硼溶于甲苯,保持二醇和四羟基二硼的摩尔比为2:1,在回流条件下分水反应,得到含有脲基和无机硼酸环酯键的动态共聚物。
Figure PCTCN2018072460-appb-000119
将所得共聚物溶胀于1,4-二氧六环溶剂中,置于模具中在-80℃下冷冻完全,在-50℃下开启抽气泵,维持干燥空气压小于50μatm24小时,将得到的泡沫材料置于20℃真空干燥箱内干燥,抽取全部溶剂,得到相应的泡沫材料。
性能:拉伸强度25.2MPa,断裂延长率1080%,密度:87kg/m 3。该产品具有良好的强度、韧性和吸声消震功能,可用作高效隔音消声材料,还可以作为过滤材料或载体使用。
实施例11
将190摩尔当量环氧丙烷、10摩尔当量1-烯丙氧基-2,3-环氧丙烷混合反应制备侧基含有烯基的聚醚。将所得的聚醚、3-巯基-1-丙醇、光引发剂BDK在四氢呋喃中反应,保持聚醚链段中烯基与3-巯基-1-丙醇以及BDK的摩尔比为5:5:1,得到侧基含有羟基的聚醚。无水无氧条件下,将一定量所得的聚醚溶于吡啶,在0℃搅拌下缓慢滴加2-溴异丁酰溴,保持聚醚 中侧羟基与2-溴异丁酰溴的摩尔比为3:2,再升温至室温反应24小时,得到侧基含溴的聚醚。
无水无氧条件下,保持所得聚醚中溴和苯乙烯单体的摩尔比为1:20,在溴化亚铜和五甲基二乙烯三胺(PMDETA)的催化下,于100℃进行本体聚合,反应后将粗产物溶于四氢呋喃,经氧化铝过滤后沉淀于甲醇,得到聚醚接枝聚苯乙烯。
将4-羟基丁基丙烯酸酯和等摩尔当量丙烯酸乙酯溶于二氯甲烷,在DBTDL的催化下反应,得到含氨基甲酸酯基的丙烯酸酯类单体11a。
Figure PCTCN2018072460-appb-000120
无水无氧条件下,保持所得聚醚接枝聚苯乙烯中溴和丙烯酸正丁酯、丙烯酸酯单体11a的摩尔比为1:10:30,以茴香醚为溶剂,在溴化亚铜和PMDETA的催化下,于60℃进行聚合,反应后加入丙酮,经氧化铝过滤后沉淀于甲醇,得到聚醚接枝(聚苯乙烯-改性聚丙烯酸酯)。
无水无氧条件下,保持所得接枝共聚物中端基溴和甲基丙烯酸甲酯的摩尔比为1:20,在溴化亚铜和PMDETA的催化下,于70℃进行本体聚合聚合,反应后将粗产物溶于乙醚,沉淀于甲醇,得到聚醚接枝(聚苯乙烯-改性聚丙烯酸酯-聚甲基丙烯酸甲酯)。
取上述共聚物100质量份,和100质量份烷基封端的聚乙二醇齐聚物共混,将共混物置于模具,于三氯化硼/氮气的混合气氛中于120℃固化2小时,再升温至180℃保温30分钟。降温冷却后即得多段式聚合物聚乙二醇齐聚物溶胀凝胶。
性能:拉伸强度6.3MPa,断裂延长率890%。该产品可以作为阻尼减震凝胶使用。
实施例12
将6-氨基-1-己醇和氯甲酸甲酯在二氯甲烷中反应,以无水碳酸氢钠为催化剂,控制氨基与氯甲酸甲酯的摩尔数比值为10:11,得到化合物12a。
在氮气保护下,将高分子量尼龙6(平均分子量约50000),等摩尔当量的正癸胺以及和尼龙6等质量的二苯砜置于密闭容器中,于235℃下反应,得到单端氨基封端的低分子量尼龙6(平均分子量约3000)。
Figure PCTCN2018072460-appb-000121
无水无氧常压下,将乙烯通入反应容器,依次加入溶剂甲苯、含有甲基铝氧烷的甲苯溶液、含有锆配合物催化剂的甲苯溶液,保持铝和锆的摩尔比为2000,保持乙烯为1大气压,在室温下搅拌反应15分钟后,用含10%氯化氢的乙醇溶液淬灭反应。将反应溶液在乙醇中沉淀,得到平均分子量约为2000的一端烯基封端的聚乙烯。将等摩尔当量的所得聚乙烯和2-巯基乙醇在BDK的催化下在紫外光的照射下反应,得到以羟基封端的聚乙烯。
将低密度聚乙烯(平均分子量约为50000)溶于二甲苯,加入100摩尔当量的马来酸酐,当溶液温度升至130℃后,加入溶于二甲苯的引发剂过氧化二异丙苯,恒温反应1至3小时后得到低密度聚乙烯接枝马来酸酐。将1摩尔当量所得的低密度聚乙烯接枝马来酸酐与10摩尔当量的单端氨基封端的低分子量尼龙6在200℃下熔融共混,得到带有马来酸酐侧基和尼龙6侧链的低密度聚乙烯。
将1摩尔当量所得的低密度聚乙烯加热溶解于二甲苯,加入50摩尔当量(过量)的化合物12a、50摩尔当量的4-羟基苯硼酸频哪醇酯和适量对甲苯磺酸钠,于105℃搅拌反应,得到含侧氨基甲酸酯基、侧硼酸酯基且软段带有尼龙6侧链的低密度聚乙烯。
将所得的改性低密度聚乙烯在乙酸的催化下水解,得到含侧硼羟基的改性低密度聚乙烯。 将含有1摩尔当量硼羟基的聚合物和1摩尔当量以羟基封端的聚乙烯在二甲苯中回流脱水反应,得到部分支链通过有机硼酸单酯键与主链相连的改性低密度聚乙烯。
将100质量份所得的改性低密度聚乙烯,20质量份的硬脂酸钠,5质量份的碳酸氢钠和0.1质量份凡士林油充分共混,挤出成型得到相应的泡沫制品。
性能:拉伸强度1.9MPa,断裂延长率1020%;密度:57kg/m 3。该产品抗冲击性能优良,可以作为减震包装和其他日用品。
实施例13
氮气保护下,将1摩尔当量两端为氨基的线性聚乙烯亚胺和8摩尔当量L-丙氨酸-N-羧基-环内酸酐溶于二甲基甲酰胺,并在室温下反应。待反应完全后,用甲醇沉淀产物,得到多肽-聚乙烯亚胺-多肽三段式聚合物。
将等摩尔当量的异佛尔酮二异氰酸酯和正丙胺溶于氯仿,反应完全后保留反应液,记为组分A。将等摩尔当量的异佛尔酮二异氰酸酯和2-氨甲基苯硼酸溶于氯仿,待反应完全后保留反应液,记为组分B。将多肽-聚乙烯亚胺-多肽三段式聚合物溶于氯仿,加入一定量的组分A和组分B,保持聚乙烯亚胺链段中仲胺基与组分A、B中的异氰酸酯基的摩尔比为50:10:1,得到聚乙烯亚胺链段含侧脲基和侧苯硼酸基的聚合物。
将100质量份所得聚合物和一定量十四甲基-1,11-二氯六硅氧烷以及3质量份石墨烯共混,保持聚合物中侧苯硼酸基和十四甲基-1,11-二氯六硅氧烷的摩尔比为2:1。将共混物置于模具中于150℃模压成型,得到同时含有有机硼酸硅酯键和有机硼酐键的动态聚合物制品。
性能:拉伸强度3.2MPa,断裂延长率870%。该产品具有良好的吸能减震功能,可用作具有缓冲功能的涂层,还可用于制备具有热、电、应力传感功能的薄膜。
实施例14
在无水无氧条件下,将异氰酸乙酯与等摩尔当量的1,4-戊二烯-3-胺反应,得到侧基带有脲基的双烯烃化合物14a。将1,4-戊二烯-3-醇和1H-苯并咪唑-5-酰氯在三乙胺的催化下反应,得到侧基含有苯并咪唑基的双烯烃化合物14b。将4-乙烯基苯硼酸与3-烯丙氧基-1,2-丙二醇溶于甲苯,在带有分水器的反应容器中回流反应,得到双烯烃化合物14c。
Figure PCTCN2018072460-appb-000122
在无水无氧条件下,将1摩尔当量1,3-二氨基脲和2摩尔当量2,4-TDI溶于乙醇,在室温下反应16小时,得到两端为异氰酸酯基的三脲中间体。将1摩尔当量所得中间体溶于DMSO,2摩尔当量的丙烯酸羟乙酯,于60℃反应得到两端为烯丙基的富含氢键基团的链段14d。
Figure PCTCN2018072460-appb-000123
将3摩尔当量双烯丙基封端的聚乙二醇、2摩尔当量化合物14a、1摩尔当量化合物14b、1摩尔当量化合物14c、4摩尔当量链段14d、12摩尔当量1,2-乙二硫醇在DMF中混合,以安息香双甲醚为光引发剂,在紫外灯下光照反应。反应完全后,加入2摩尔当量丙烯酸甲酯封端,得到基于聚醚的多段式共聚物。除溶剂前,加入含有前述原料总重相同质量的1-乙基-3-甲基咪唑四氟硼酸盐和总质量4%的碳纳米管,混合均匀后除溶剂,即得基于聚醚的动态聚合物/1-乙基-3-甲基咪唑四氟硼酸盐离子凝胶。
该实施例制备的离子液体凝胶的模量在54kPa,应变可以达到8倍,断裂应力在107kPa。 这种离子液体凝胶稳定性好、力学性能强,抗冲击性能优异,可以作为抗冲击防护垫使用,还可用作电、应力等传感材料。
实施例15
将1摩尔当量乙二醇、100摩尔当量环氧乙烷、45摩尔当量(S)-(环氧乙烷甲基)氨基甲酸叔丁酯、40摩尔当量3-[(对乙酰氨基)苯氧基]-1,2-环氧丙烷、15摩尔当量4-(环氧乙烷-2-基甲氧基)苯基硼酸频哪醇酯混合反应制备两端为羟基侧基含有氨基甲酸酯基、酰胺基和硼酸酯基的聚醚。将所得聚醚溶于含有少量乙酸和水的溶剂中,水解得到两端为羟基侧基含有氨基甲酸酯基、酰胺基和苯硼酸基的聚醚。
将120质量份所得的聚醚、2质量份1,6-己二醇、2质量份DBTDL、1质量份有机硅油、50质量份二氯甲烷、30质量份水,在35℃充分共混,记为组分A。将2摩尔当量尿素滴入3摩尔当量4,4-二异氰酸酯二环己基甲烷,于70℃充分共混搅拌24小时后,降温至35℃,记为组分B。将组分A与组分B按照1:1质量比混合,经快速搅拌至产生气泡,然后自由发泡,再将所得泡沫在120℃下保温脱水,得到硬段为缩三脲软段基于聚醚且软段通过有机硼酐键形成动态共价交联的动态聚合物开孔软质泡沫。
性能:拉伸强度2.3MPa,断裂延长率1270%;密度:58kg/m 3。该产品具有良好的吸声消震功能,可用作高效隔音消声材料。
实施例16
在0℃,将1摩尔当量季戊四醇和4摩尔当量吡啶溶于无水四氢呋喃,将4摩尔当量2-溴丙酰溴在氮气保护下缓慢滴入溶液。将溶液温度升至室温,反应16小时后,过滤除沉淀。将滤液浓缩除溶剂后,于乙醇中重结晶,得到中间产物16a。将1摩尔当量16a和6摩尔当量碘化钠分别溶于丙酮,并将两溶液迅速混合并搅拌,待反应完全后,滤掉沉淀,除溶剂,将粗产物以二氯甲烷为洗液经短硅胶柱除杂后在甲醇中重结晶,得到四官能引发剂16b。
将3摩尔当量3-丁炔-1-醇和1摩尔当量硼酸在甲苯中回流分水反应,得到化合物16c。
Figure PCTCN2018072460-appb-000124
X=Br,16a;X=I,16b
无氧条件下,以次亚硫酸钠为催化剂,碳酸氢钠为助剂,所得的16b为引发剂,在水中进行氯乙烯单体的聚合,保持单体、催化剂、助剂、引发剂的摩尔比为200:2:2.2:1,以Celvol540(0.293g/mL)和MethocelK100(0.11g/mL)为稳定剂,于25℃下反应,得到以碘原子封端的四臂聚氯乙烯。
重复前述步骤,以2-溴丙酸甲酯代替16a,反应得到单端为碘原子封端的聚氯乙烯。
无水无氧条件下,将1摩尔当量所得的以碘原子封端的四臂聚氯乙烯,4摩尔当量铜,12摩尔当量三(2-二甲氨基乙基)胺,60摩尔当量甲基丙烯酸甲酯溶于DMSO,于25℃搅拌反应,待反应完全后,加入四氢呋喃,沉淀与水/甲醇混合溶液,得到四臂聚氯乙烯-聚甲基丙烯酸甲酯。
无水无氧条件下,将所得1摩尔当量四臂聚合物,4摩尔当量二亚硫酸钠,4.4摩尔当量碳酸氢钠和20摩尔当量烯丙基羟乙基醚溶于DMSO,在70℃反应4小时,将浓缩反应溶液在甲醇中沉淀,得到以羟基封端的四臂聚合物。重复该步骤,以单端为碘原子封端的聚氯乙烯代替四臂聚氯乙烯-聚甲基丙烯酸甲酯,反应得到单端羟基封端的聚氯乙烯。
将所得单端羟基封端的聚氯乙烯和等摩尔当量的2,4-TDI溶于二氯甲烷,在TDBDL的催化下,反应得到一端以异氰酸酯基封端的聚氯乙烯。将3摩尔当量所得一端以异氰酸酯基封端的聚氯乙烯和1摩尔当量四臂聚合物溶于二氯甲烷,在TDBDL的催化下,反应得到以聚氯乙烯或聚甲基丙烯酸甲酯封端的四臂多段式聚合物。
将所得四臂多段式聚合物和4-(2-吡咯烷基)苯硫酚溶于环己烷在60℃反应12小时,保 持侧基氯原子和4-(2-吡咯烷基)苯硫酚的摩尔比约为10:1,得到侧基中含有仲氨基的四臂多段式聚合物。将所得四臂多段式聚合物溶于四氢呋喃,与过量的异氰酸丙酯反应,得到本发明的含侧脲基的多段式聚合物。
将100质量份所得的四臂聚合物溶于四氢呋喃,加入10质量份的叠氮化钠,使聚氯乙烯链段含有部分侧叠氮基。再加入化合物16c,保持聚氯乙烯链段中叠氮基和16c中炔基的摩尔比为1:1,在碘化亚铜和吡啶的催化下,在35℃下反应得到含有无机硼酸单酯键的动态聚合物。
将所得的动态聚合物100质量份,环氧大豆油70质量份,磷酸三甲苯酯50质量份,聚乙烯吡咯烷酮微球20质量份混合均匀,置于模具中于180℃保温30分钟,冷却后得到相应的动态聚合物增塑剂溶胀凝胶。
性能:拉伸强度29MPa,断裂延长率850%。该产品除良好的强度、韧性外,还具有一定的吸湿性,可以作为保护材料使用。
实施例17
将10摩尔当量烯丙基硼酸频哪醇酯在乙酸的存在下水解,将硼酸酯基转化为硼羟基。将所得含硼羟基的化合物和等摩尔当量的二乙醇胺在甲苯中回流脱水反应,得到化合物17a。将1摩尔当量2,4-甲苯二异氰酸酯溶于二氯甲烷,滴入等摩尔当量的17a。反应完全后再滴入乙氨,得到含有硼酸酯基和脲基的化合物17b。
Figure PCTCN2018072460-appb-000125
将单羟基封端的含氢聚硅氧烷与单端羧基封端的聚苯乙烯在DCC和DMAP的催化下反应得到聚硅氧烷-聚苯乙烯两嵌段共聚物。以氯铂酸为催化剂,将含有1摩尔当量硅氢的所得两段式聚合物与化合物与1摩尔当量17ba在环己酮中于90℃下反应3小时,得到本发明的动态聚合物。
将所得聚合物100质量份、空心玻璃微球50质量份共混后注入模具,模压成型后即得相应的含空心微球的泡沫制品。
性能:拉伸强度1.3MPa,断裂延长率1880%;密度:160kg/m 3。该产品可以用于制备抗冲击防护材料,如用于空降和空投物品的保护。同时还具有一定的吸湿性。
实施例18
三聚氰酸和6-氯-1-己烯保持摩尔比4:1,溶于无水二甲基亚砜,在碳酸钾催化下在80℃下搅拌反应15小时,得到含氢键基团的烯烃单体18a。
将10摩尔当量化合物18a加入甲苯,将反应容器冷却至5℃,低温下搅拌滴加13摩尔当量环戊二烯。滴加完毕后升温到回流温度继续搅拌反应,得到化合物18b。以硼酸三烯丙酯代替化合物18a作为原料重复此步骤,得到化合物18c。
Figure PCTCN2018072460-appb-000126
无水无氧条件下,将1摩尔当量引发剂2,6-二异丙基亚胺双叔丁氧基钼溶于甲苯,加入5摩尔当量调节剂三甲基磷和30摩尔当量结晶聚合物单体降冰片烯,反应1小时后,加入20 摩尔当量的玻璃态聚合物单体甲基四环十二烯。继续反应1小时后,加入450摩尔当量橡胶态聚合物单体5-正己基-2-降冰片烯、430摩尔当量单体18b和20摩尔当量单体18c。最后,加入0.5摩尔当量偶联剂间苯二甲醛,反应完全后,将产物在甲醇中沉淀得到五嵌段共聚物。
将所得的五嵌段共聚物溶于环己烷,以铂为催化剂,在100℃下进行催化加氢,得到端段为结晶态-玻璃态两嵌段共聚物中间段为橡胶态无规共聚物的基于氢化聚降冰片烯的多端段-单中间段的多段式聚合物。将所得聚合物置于模具中,于130℃脱水模压,可得相应的动态聚合物热塑性弹性体制品。
性能:拉伸强度11.5MPa,断裂延长率2190%。该产品有极佳的韧性,且回弹性好,永久变形性小,可进行较大范围的拉伸,抗冲击性能优良,可以作为可用于制备轮胎部件、传送带部件、高效的减震包装等。
实施例19
以1摩尔当量过氧化苯甲酰(BPO)为引发剂,1摩尔当量巯基乙酸为链转移剂在90℃引发30摩尔当量甲基丙烯酸正丁酯聚合,得到单端羧基封端的聚甲基丙烯酸正丁酯。
在氮气保护下,将尿素加入氨基化二甲基硅氧烷19a(平均分子量约10000Da,x:y约为3:2),保持尿素和氨基的摩尔比为7:10,搅拌下缓慢升温至160℃,保温约1小时后,降至室温,得到部分氨基转化为咪唑啉酮基的改性聚二甲基硅氧烷。将所得的聚二甲基硅氧烷在缩合剂2-乙氧基-1-乙氧碳酰基-1,2-二氢喹啉的存在下与葡萄糖酸进行酰化反应,保持侧氨基与葡萄糖酸的摩尔比为3:2,得到改性聚二甲基硅氧烷19b。
Figure PCTCN2018072460-appb-000127
将所得的聚二甲基硅氧烷19b在缩合剂2-乙氧基-1-乙氧碳酰基-1,2-二氢喹啉的存在下与单端羧基封端的聚甲基丙烯酸正丁酯进行酰化反应,保持侧氨基与羧基的摩尔比为1:1,得到改性聚二甲基硅氧烷接枝聚甲基丙烯酸正丁酯。将100质量份所得共聚物与3质量份硼酸充分混合,与120℃下保温脱水,得到本发明的动态聚合物热塑性弹性体。
性能:拉伸强度0.9MPa,断裂延长率1240%。该产品有极佳的韧性,可以应用于电子产品的组件的密封保护防冲击防水,还可用作石墨烯、碳纳米管等电、热、应力传感器的基材。
实施例20
以1摩尔当量4,4'-偶氮双(4-氰基戊醇)为引发剂,以4-戊烯-1-醇为链转移剂,引发20摩尔当量甲基丙烯酸甲酯聚合,得到两端羟基封端的聚甲基丙烯酸甲酯。
无水条件下,以1摩尔当量所得的聚甲基丙烯酸甲酯为大分子双引发剂,以辛酸亚锡为催化剂,引发50摩尔当量α-氯-ε-己内酯(见实施例2)和50摩尔当量的ε-己内酯在110℃下的开环聚合,得到两端为羟基的三段式共聚物。将所得三段式共聚物和过量的马来酸酐反应,得到两端羧基封端的三段式共聚物。将所得三段式共聚物和一端为羟基的聚苯乙烯4b按摩尔比1:1共混,在DCC和DMAP的催化下反应得到聚苯乙烯-改性聚酯-聚甲基丙烯酸甲酯-改性聚酯-聚苯乙烯五段式共聚物。
将聚酯链段侧基含有氯原子的共聚物溶于二甲基甲酰胺,加入氯原子2摩尔当量的叠氮化钠,反应得到侧基含有叠氮基的共聚物。将所得侧基含有叠氮基的共聚物,4-(2-丙炔氨基)苯甲酸叔丁酯和3-乙炔基-苯硼酸溶于四氢呋喃,保持叠氮基、4-(2-丙炔氨基)苯甲酸叔丁酯和3-乙炔基-苯硼酸的摩尔比为5:4:1,在碘化亚铜和吡啶的催化下,在35℃下反应得到 聚酯链段含有侧氢键基团和侧苯硼酸基的五段式聚合物。将100质量份所得聚合物和20质量份单端羟基封端的聚己内酯(平均分子量约1000Da)置于模具中,于130℃下脱水模压成型,得到本发明的动态聚合物热塑性弹性体。
性能:拉伸强度28.7MPa,断裂延长率1230%。这种材料除用于制备具有缓冲吸能作用的制品,由于其具有多重转变温度,还可作为具有缓冲吸能作用和形状记忆功能的材料。
实施例21
将1摩尔当量2-乙烯基对苯二甲酸和2.1摩尔当量三苯基膦溶于无水吡啶得到溶液A。将2.1摩尔当量4-甲氧基苯酚和2.2摩尔当量六氯乙烷溶于无水吡啶得到溶液B。将溶液B缓慢滴入溶液A,在60℃反应得到液晶单体乙烯基对苯二甲酸二对甲氧基苯酯(MPCS)。将等摩尔当量的异氰酸乙酯和N-(2-羟乙基)丙烯酰胺溶于氯仿,在TDBDL的催化下反应制得含有氨基甲酸酯基的丙烯酰胺类单体21a。
Figure PCTCN2018072460-appb-000128
在氮气保护下,将13摩尔当量2-溴异丁酰溴和3摩尔当量季戊四醇溶于二氯甲烷,在15摩尔当量三乙胺的催化下于0℃反应得到四官能引发剂。无水无氧条件下,1摩尔当量所得的四官能引发剂,2摩尔当量溴化亚铜,2摩尔当量PMDETA,400摩尔当量丙烯酰胺,380摩尔当量单体21a,20摩尔当量单体3-丙烯酰胺基苯硼酸依次加入反应容器,在80℃下反应得到基于聚丙烯酰胺的四臂聚合物。
无水无氧条件下,将4摩尔当量氯化亚铜,4摩尔当量PMDETA和200摩尔当量单体MPCS置于反应容器,加入含1摩尔当量所得改性聚丙烯酰胺的氯苯溶液,在110℃下反应得到以侧链型液晶高分子为端段的具有四臂星型结构的聚合物。
将所得多段式聚合物分子与过量的甘油溶于甲苯,在回流条件下分水反应得到聚丙烯酰胺内核含有有硼酸酐键的四臂聚合物。将所得的聚合物和等质量的1-丁基-3-甲基咪唑六氟磷酸盐溶于DMF并充分共混,除溶剂后得到相应的离子凝胶。
该实施例制备的离子液体凝胶的模量在27kPa,应变可以达到19倍,断裂应力在62kPa,该产品不但具有良好的电导率和机械强度,而且能在很宽的温度范围和电化学窗口内稳定,可以制造成一种理想的电解质材料,还可以作为具有自修复功能的阻尼减震凝胶使用。
实施例22
在氮气保护下,将2摩尔当量对羟基苯甲酸甲酯溶于四氢呋喃,加入催化剂三乙胺后混合均匀。在0至5℃滴入含有1摩尔当量对苯二甲酰氯的四氢呋喃溶液,保持并反应10小时后,得到液晶硬段22a。
Figure PCTCN2018072460-appb-000129
在无水无空气90℃条件下,将氧化柠檬烯和催化剂22b溶于甲苯,保持氧化柠檬烯和催化剂的摩尔比为50:1,向反应容器中通入10bar二氧化碳,反应完全后,将粗产物用甲醇沉淀得到聚柠檬烯碳酸酯链段。将所得聚柠檬烯碳酸酯链段和1,3-丙二醇溶于甲苯,加入催化剂1,5,7-三氮杂二环[4.4.0]癸-5-烯,在80℃下反应3小时,得到平均分子量约为2000两端以羟基封端的聚柠檬烯碳酸酯链段22c。在氮气保护下,将1摩尔当量羟基封端的聚柠檬烯碳酸酯22c和1.1摩尔当量的液晶硬段22a共混进行酯交换反应并蒸馏出甲醇,待反应 完全后得到液晶-聚柠檬烯碳酸酯多段式聚合物。
Figure PCTCN2018072460-appb-000130
将含有100摩尔当量侧烯基的液晶-聚柠檬烯碳酸酯多段式聚合物与5摩尔当量[4-(巯基甲基)苯基]硼酸新戊二醇酯、15摩尔当量3-巯基-1,2-丙二醇、20摩尔当量3-巯基-1,2,4-三氮唑、60摩尔当量3-巯基丙酸正丁酯溶于四氢呋喃充分共混,在光引发剂BDK的存在下和紫外灯的照射下反应,得到聚柠檬烯碳酸酯侧基含有硼酸酯基、羟基、氢键基团的聚合物。
将所得聚合物溶于含有少量乙酸和水的溶液中将硼酸酯基水解得到苯硼酸基,再将所得的液晶-聚柠檬烯碳酸酯和实施例11中得到的动态聚合物按质量1:1熔融共混,再加入质量分数5%的纤维素纳米晶在120℃下脱水成型,得到具有互穿网络结构的动态聚合物合金。
性能:拉伸强度12.4MPa,断裂延长率1670%。该产品主要原料为可再生原料,可广泛用作缓冲减震的一次性包装材料、日用制品等。
实施例23
无水无氧条件下,将乙硫醇和等摩尔当量的异氰酸酯丙烯酸乙酯在三乙胺催化下于二氯甲烷中反应,得到含硫代氨基甲酸酯基团的丙烯酸酯单体23a。将4-巯基苯硼酸和等摩尔当量的3-巯基-1,2-丙二醇溶于甲苯,在回流温度下分水反应得到化合物23b。
Figure PCTCN2018072460-appb-000131
在氮气保护下,将0.5g4,4’-偶氮-(4-氰戊酸)、0.3g十二烷基硫酸钠和130mL去离子水共混,搅拌30分钟后升温至70℃,将7.5mg双[(二氟硼基)二甲基乙二肟基]钴(II)溶于20mL甲基丙烯酸甲酯共混并加入水溶液中搅拌30分钟后,将反应液温度调整至80℃继续反应1小时,得到聚甲基丙烯酸甲酯乳液。取含1摩尔当量所得的聚甲基丙烯酸甲酯乳液,加入适量水使固含量达到10%,将反应液温度调整至85℃,滴入50摩尔当量甲基丙烯酸叔丁酯和与加入单体等体积的过硫酸钾水溶液(浓度为4g/L),并保温反应1小时。之后,重复上述步骤,依次加入50摩尔当量丙烯酸正丁酯和100摩尔当量单体23a的混合物、15摩尔当量苯乙烯、50摩尔当量丙烯酸正丁酯以及相应的水和过硫酸钾水溶液各反应1小时,得到聚丙烯酸正丁酯链段端为烯基的聚甲基丙烯酸甲酯-聚甲基丙烯酸叔丁酯-聚改性丙烯酸酯无规共聚物-聚苯乙烯-聚丙烯酸正丁酯五段式共聚物。
将1摩尔当量所得的五段式共聚物溶于1,2-二氯乙烷,加入30摩尔当量三氟乙酸,在60℃下搅拌反应。待聚甲基丙烯酸叔丁酯链段水解完全,得到聚甲基丙烯酸甲酯-聚甲基丙烯酸-聚改性丙烯酸酯无规共聚物-聚苯乙烯-聚丙烯酸正丁酯五段式共聚物。将所得的五段式共聚物和等摩尔当量的化合物23b溶于四氢呋喃,在BDK与紫外光的存在下反应,得到中间段含硼酸酯基的九段式共聚物。
性能:拉伸强度6.8MPa,断裂延长率1380%。该产品具有极佳的韧性,同时具有形状记忆功能,适用于制备各类减震、缓冲零部件。
实施例24
将1摩尔当量5-环辛烯-1,2-二醇和2摩尔当量2-咪唑烷酮-4-羧酸混合,以DCC和DMAP为催化剂,二氯甲烷为溶剂,反应得到单体24a。将一定量的5-环辛烯-1,2-二醇和等摩尔当 量的3-乙酰胺基苯硼酸溶于甲苯,在回流条件下分水反应得到单体24b。
Figure PCTCN2018072460-appb-000132
在无水无氧条件下,将一定量的单体24a、24b和环辛烯混合,控制三者摩尔数的比值约为9:1:15,以Grubbs二代催化剂为催化剂,以马来酸为链转移剂,保持催化剂、链转移剂和单体的摩尔比为1:4000:20000。以四氢呋喃为溶剂,在40℃下反应2小时。用乙烯基乙醚淬灭聚合反应,并在甲醇中沉淀产物,得到两端基为羧基侧基含有串联的有机硼酸环酯键和咪唑烷酮基的聚环辛烯。
以1摩尔当量4,4'-偶氮双(4-氰基戊醇)为引发剂,以4-戊烯-1-醇为链转移剂,引发20摩尔当量苯乙烯聚合,得到两端羟基封端的聚苯乙烯。将2摩尔当量所得的改性聚环辛烯和3摩尔当量所得的聚苯乙烯溶于二氯甲烷,以DCC和DMAP为催化剂,得到多段式共聚物热塑性弹性体。
将1摩尔当量两端为氨基的聚异丁烯(平均分子量约2000)溶于二氯甲烷,与2摩尔当量的乙酰氯在吡啶的催化下反应,得到两端含酰胺基的聚异丁烯氢键连接助剂。将上述热塑性弹性体100质量份,聚苯乙烯-聚丁二烯-聚苯乙烯热塑性弹性体30质量份和聚异丁烯氢键连接助剂20质量份共混,得到含氢键连接助剂的动态聚合物热塑性弹性体合金。
性能:拉伸强度3.7MPa,断裂延长率930%。该产品具有良好的韧性,可用于制备可作为缓冲包装材料、器件外壳、电气元件、汽车零部件以及密封件。
实施例25
将实施例9中所得的聚环辛烯进行加氢反应,得到两端为羧基的聚乙烯。
无水无氧条件下,将1摩尔当量偶氮二甲基N-2-羟丁基丙酰胺溶于甲苯,加入105摩尔当量的醋酸乙烯酯。在回流温度下反应16小时,得到两端为羟基的聚醋酸乙烯酯。将3摩尔当量等规聚丙烯、4摩尔当量聚醋酸乙烯酯溶于甲苯,在钛酸四丁酯的催化下,于110℃反应5小时,得到聚乙烯-聚醋酸乙烯酯多段式共聚物。
将所得多段式共聚物溶于四氢呋喃,加入含有氢氧化钾的甲醇溶液,在室温下反应,得到聚醋酸乙烯酯部分水解成侧羟基的多段式共聚物。将4-(3-环丙基脲)苯基硼酸频哪醇酯溶于乙酸溶液水解,得到4-(3-环丙基脲)苯基硼酸。将所得多段式共聚物溶于甲苯,加入4-(3-环丙基脲)苯基硼酸,并保持侧羟基与4-(3-环丙基脲)苯基硼酸的摩尔比为2:1,在回流条件下分水反应,得到侧基中含有有机硼酸环酯键和脲基的多段式共聚物。
将上述聚合物100质量份,偶氮二甲酰胺5.5质量份,三盐基硫酸铅1质量份充分混合后,置于模具中,170℃3.5MPa压力下塑化发泡,之后在100℃下热处理8分钟,冷却脱模,得到相应的泡沫制品。
性能:拉伸强度6.4MPa,断裂延长率670%;密度:102kg/m 3。该产品韧性极佳,可用作可以作为运动护具,如护膝、护肘、头盔内衬等使用。
实施例26
将4,4’-亚甲基双(异氰酸苯酯)和等摩尔当量的2-乙基丁酰氯溶于二甲苯,缓慢滴入含有1.5摩尔当量三乙胺的二甲苯溶液。在回流温度下反应4小时后,降温至-15℃,滤去不溶物,除溶剂后得到含化合物26a的粗产物。无水无氧条件下,将1摩尔当量苯胺和含1摩尔当量化合物26a的粗产物溶于甲苯,在4℃下反应2小时,过滤得到不溶于甲苯的中间体。 将1摩尔当量的N-氨乙基哌嗪溶于DMF,在20℃反应1小时,用水沉淀,得到不溶于水的产物26b。将化合物26b溶于丙酮,和含等摩尔当量的中间体26a的粗产物反应,20分钟后,用环己烷沉淀得到中间体。在氮气保护下,将中间体和等摩尔当量的N-氨乙基哌嗪溶于无水DMF,在20℃反应1小时,用水沉淀,得到不溶于水的产物26c。
Figure PCTCN2018072460-appb-000133
在DBTDL的催化下,将二苯基甲烷二异氰酸酯和等摩尔当量一端羟基封端的低分子量聚β-羟基丁酸酯溶于DMF反应得到以异氰酸酯基封端的聚酯。向含有1摩尔当量的异氰酸酯基封端的聚酯溶液中加入1摩尔当量化合物26c,待反应完全后,得到基于聚酯的两段式聚合物。
将所得聚合物和马来酸酐溶于氯苯,使马来酸酐的初始质量体积浓度为3%。在130℃加入过氧化苯甲酰,使过氧化苯甲酰的初始浓度为0.2%,保持温度反应6小时,得到改性聚β-羟基丁酸酯接枝马来酸酐。
在惰性气体保护下,将所得的改性聚β-羟基丁酸酯接枝马来酸酐、3-氨基-1,2,4-三氮唑、2-氨基苯硼酸、3-氨基-1,2-丙二醇溶于二甲苯,保持马来酸酐侧基、3-氨基-1,2,4-三氮唑、2-氨基苯硼酸、3-氨基-1,2-丙二醇的摩尔比为10:8:1:1,于80℃搅拌反应,得到改性聚β-羟基丁酸酯链段侧基中含有酰胺-三氮唑基、羟基、苯硼酸基和羧基的多段式聚酯。
将多段式共聚物100质量份、生物可降解聚酯PHB100质量份与生物可降解聚酯空心微球50质量份共混后注入模具,在140℃脱水30分钟后模压10分钟,即得含空心微球的基于生物可降解聚酯的动态聚合物泡沫制品。
性能:拉伸强度25MPa,断裂延长率1350%;密度:162kg/m 3。该产品具有极佳的韧性和良好的生物可降解性,可用于制造吸能泡沫座椅。
实施例27
无水无氧条件下,以1摩尔当量枯基二硫代苯甲酸酯为链转移剂,在140℃下引发30摩尔当量苯乙烯聚合。反应6小时后,在冰冻无水甲醇中沉淀,并用乙醇洗涤抽滤,得到平均聚合度约为20的聚苯乙烯大分子链转移剂。将1摩尔当量所得的聚苯乙烯大分子链转移剂,150摩尔当量丙烯腈,1摩尔当量AIBN溶于DMF,在65℃下反应48小时,得到聚丙烯腈端为二硫代苯甲酸酯的聚苯乙烯-聚丙烯腈两段式共聚物。
无水无氧条件下,将1摩尔当量所得的二硫代苯甲酸酯封端的两段式共聚物,20摩尔当量三丁基膦和50摩尔当量丙烯酸溶于四氢呋喃,加入20摩尔当量的硼氢化钠,在室温下反应20小时,将产物沉淀于甲醇,得到聚丙烯腈端为羧基的聚苯乙烯-聚丙烯腈-两段式共聚物。将2摩尔当量所得两段式共聚物和1摩尔当量两端为羟基的聚苯乙烯溶于二氯甲烷,以DCC和DMAP为催化剂,得到聚苯乙烯-聚丙烯腈-聚苯乙烯-聚丙烯腈-聚苯乙烯五段式共聚物。
将五段式共聚物、和腈基等摩尔当量的2,5-脱水-1-叠氮-1-脱氧-D-葡萄糖醇、和腈基5摩尔当量的氯化锌溶于DMF,室温下超声5分钟令各组分充分混合后升温至125℃搅拌反应,将部分腈基转化为侧羟基。将所得的侧基含有羟基的共聚物在DBTDL的催化下和异氰酸乙酯反应,保持侧羟基和异氰酸乙酯的摩尔比为2:1,得到侧基含有氨基甲酸酯基和羟基的五段式共聚物。将所得的五段式共聚物和过量的四羟基二硼溶于甲苯,在回流条件下分水反应,得到本发明含有无机硼酸环酯键的动态聚合物。
将所得五段式共聚物100质量份与实施例1中所得的改性SBS热塑性弹性体60质量份充分共混,得到聚苯乙烯、改性聚丙烯腈、改性聚丁二烯三组分聚合物合金。
性能:拉伸强度18.3MPa,断裂延长率1040%。这种弹性体材料具有极佳的韧性和自修复性,可用于制备具有自修复功能的缓冲减震型材、板材、薄膜、料片等。
实施例28
将4摩尔当量1,6-己二醇二缩水甘油醚、3摩尔当量聚乙二醇齐聚物(分子量约为500)和聚乙二醇质量1%的催化剂三氟化硼乙醚充分混合,在80℃下反应,得到侧基为羟基两端以环氧基封端的环氧聚合物。将所得的环氧聚合物和单端羟基封端的聚甲基丙烯酸甲酯充分混合,保持摩尔比约为1:2,在催化剂三氟化硼乙醚的催化下于160℃下反应2小时,得到聚甲基丙烯酸甲酯-聚醚共聚物。
取上述所得共聚物共混物100质量份,烷基封端的聚乙二醇齐聚物100质量份与甲基硼酸1质量份共混并置于模具中,缓慢升温至180℃并保温2小时。降温冷却后即得动态聚合物聚乙二醇齐聚物溶胀凝胶。
性能:拉伸强度230kPa,断裂延长率750%。该凝胶可用于空降、空投品的抗冲击防护。
实施例29
将2摩尔当量化合物2-氨甲基苯硼酸和1摩尔当量1,6-己二异氰酸酯在二氯甲烷中充分反应,得到化合物29a。
Figure PCTCN2018072460-appb-000134
以1摩尔当量甲基丙烯酸羟乙酯为引发剂,以氟化硼为催化剂,引发100摩尔当量环氧乙烷、50摩尔当量(S)-(环氧乙烷甲基)氨基甲酸叔丁酯阳离子开环聚合,制备一端为烯基一端为羟基的侧基含有氨基甲酸酯基的改性聚醚。将1摩尔当量所得的改性聚醚和1摩尔当量单端羧基封端的聚(4-乙烯吡啶)(见实施例2)溶于二氯甲烷,以DCC和DMAP为催化剂,得到聚醚端为烯基的聚(4-乙烯吡啶)-改性聚醚两段式共聚物。
在氮气保护下,将1摩尔当量改性聚酯-聚苯乙烯两段式共聚物4c和10摩尔当量硫脲溶于DMF并加热至100℃保持24小时。加入含有10摩尔当量的氢氧化钠水溶液,并在110℃下保持24小时。再滴入硫酸,继续反应5小时,得到聚苯乙烯端为巯基封端的两段式共聚物。
将1摩尔当量所得聚(4-乙烯吡啶)-改性聚醚两段式共聚物和1摩尔当量所得的聚苯乙烯-改性聚酯两段式共聚物以及2%的光引发剂BDK溶于四氢呋喃,反应得到聚(4-乙烯吡啶)-改性聚醚-聚苯乙烯-改性聚酯四段式共聚物。
将含3摩尔当量侧炔基的所得的四段式共聚物和3摩尔当量2,5-脱水-1-叠氮-1-脱氧-D-葡萄糖醇、溶于四氢呋喃,在碘化亚铜和吡啶的催化下,在35℃下反应得到聚酯链段含有侧羟基和侧硼羟基的四段式共聚物。
将所得共聚物和化合物29a装入模具,保持共聚物中羟基与化合物29a中的硼羟基的摩尔比为1:1。将模具置于高压反应釜中,通入干燥的过饱和二氧化碳。加热至160℃,脱水30分钟,再加压12分钟后降压使其膨胀发泡成型,脱模后得到相应的泡沫制品。
性能:拉伸强度11.3MPa,断裂延长率1290%;密度:95kg/m 3。该产品具有极佳的韧性和形状记忆功能,可以用于制造具有形状记忆功能的保温隔热材料、绝缘材料。
实施例30
将3-氨甲基哌啶和等摩尔当量异氰酸酯丙烯酸乙酯溶于二氯甲烷,室温下反应得到丙烯酸酯类单体30a。将丙烯酰氯和等摩尔当量4-羟基-2-吡咯烷酮溶于二氯甲烷,在三乙胺的催化下反应得到丙烯酸酯类单体30b。将丙烯酸-2,3-二羟基丙酯与等摩尔当量的4-(3-甲基脲 基)苯基硼酸在甲苯中回流分水反应,得到丙烯酸酯类单体30c。
Figure PCTCN2018072460-appb-000135
无水无氧条件下,保持引发剂2-溴丙酸甲酯和丙烯酸正丁酯、丙烯酸酯单体30a、丙烯酸酯单体30c的摩尔比为1:10:30:5,在溴化亚铜和PMDETA的催化下,于70℃聚合,反应得到改性聚丙烯酸酯。
无水无氧条件下,保持所得改性聚丙烯酸酯中溴和苯乙烯单体的摩尔比为1:20,在溴化亚铜和PMDETA的催化下,于100℃聚合,反应得到改性聚丙烯酸酯-聚苯乙烯。
将1摩尔当量所得共聚物和25摩尔当量5-氨基-1-戊醇溶于DMSO,于40℃反应30分钟。将反应液滴入二氯甲烷,用盐酸、碳酸氢钠溶液和水洗涤,经无水硫酸镁干燥后得到聚苯乙烯端为羟基的共聚物。
将所得共聚物与丙烯酸在DCC与DMAP的催化下反应,得到丙烯酸酯类大分子单体。
无水无氧条件下,保持引发剂2-溴丙酸甲酯和丙烯酸正丁酯、所得的丙烯酸酯类大分子单体、丙烯酸酯单体30b、丙烯酸酯单体30c的摩尔比为1:40:10:30:5,在溴化亚铜和PMDETA的催化下,于70℃聚合,反应得到改性聚丙烯酸酯接枝(聚苯乙烯-改性聚丙烯酸酯)。
性能:拉伸强度5.7MPa,断裂延长率1450%。
该产品具有极佳的韧性,可以用于制造防撕裂的胶黏剂、封堵胶。
实施例31
无水无氧条件下,将1摩尔当量聚丙烯腈端为二硫代苯甲酸酯的聚苯乙烯-聚丙烯腈两段式共聚物(见实施例27),20摩尔当量三丁基膦和50摩尔当量丙烯酸羟乙酯溶于四氢呋喃,加入20摩尔当量的硼氢化钠,在室温下反应20小时,将产物沉淀于甲醇,得到聚丙烯腈端为羟基的聚苯乙烯-聚丙烯腈两段式共聚物。
以二叔丁基过氧化物为引发剂,以三硫代碳酸酯为链转移剂,在125℃下进行异戊二烯的聚合,得到聚异戊二烯大分子链转移剂。以AIBN为引发剂,以所得的聚异戊二烯为链转移剂,以1,4-二氧六环为溶剂,在60℃下进行苯乙烯聚合,得到聚异戊二烯端以羧基封端的聚异戊二烯-聚苯乙烯两段式共聚物。
将丙烯腈端为羟基的聚苯乙烯-聚丙烯腈两段式共聚物和等摩尔当量聚异戊二烯端以羧基封端的聚异戊二烯-聚苯乙烯两段式共聚物溶于二氯甲烷,以DCC和DMAP为催化剂,得到聚苯乙烯-聚异戊二烯-聚丙烯腈-聚苯乙烯四段式聚合物。
将1摩尔当量山梨醇和3摩尔当量4-巯基苯硼酸在回流条件下分水反应,得到含有硼酸酯的交联剂。将1摩尔当量所得的四段式聚合物和2摩尔当量所得的交联剂以及光引发剂BDK共混置于模具中,在紫外灯的照射下成型,得到相应的动态聚合物热塑性弹性体制品。
性能:拉伸强度22.7MPa,断裂延长率540%。这种弹性体材料具有极佳的韧性和自修复性,可用于制备具有自修复功能的缓冲减震型材、板材、薄膜、料片等。
实施例32
将1摩尔当量2-氨甲基苯硼酸频那醇酯与等摩尔当量的甲苯-2,4-二异氰酸酯溶于二氯甲烷,在常温下反应,得到端基为异氰酸酯基的化合物32a。
无水条件下,将一端羟基封端的聚苯乙烯与50摩尔当量的ε-己内酯在辛酸亚锡的催化下在110℃下反应,得到聚酯端以羟基封端的聚酯-聚苯乙烯两段式共聚物。
将聚醚端为烯基的聚(4-乙烯吡啶)-改性聚醚两段式共聚物与等摩尔当量的2-氨基-4-巯基丁酸在BDK与紫外光的共同作用下反应,将烯基转化为氨基和羧基。将所得共聚物溶于 二氯甲烷,和等摩尔当量的化合物32a反应,得到以羧基和氨甲基苯硼酸频那醇酯基封端的共聚物。
将所得的聚醚端以羧基和氨甲基苯硼酸频那醇酯基封端的聚(4-乙烯吡啶)-改性聚醚共聚物与等摩尔当量的聚酯端以羟基封端的聚酯-聚苯乙烯两段式共聚物在DCC与DMAP的催化下反应,得到聚苯乙烯-聚醚-聚酯-聚苯乙烯四段式共聚物。将所得的四段式共聚物在乙酸溶液中水解,得到聚醚聚酯连接处含有侧硼羟基的四段式共聚物。
将1摩尔当量两端烯基封端的聚乙二醇与2摩尔当量1-硫代甘油进行巯基-烯点击反应,得到两端以二醇基封端的聚乙二醇。将2摩尔当量所得的含有侧硼羟基的四段式共聚物与1摩尔当量所得的以二醇基封端的聚乙二醇共混,于130℃脱水模压成型,得到相应的动态聚合物制品。
性能:拉伸强度15.7MPa,断裂延长率830%。这种弹性体材料除具有良好的韧性和自修复性,还具有形状记忆功能,可用于制备具有多功能的零部件。
实施例33
以三碘甲烷为引发剂,次亚硫酸钠为催化剂,在水中进行氯乙烯单体的聚合,保持单体、催化剂、引发剂的摩尔比为200:16:1,以Methocel F50和PVA88为稳定剂,保持两者与单体的质量比分别为420ppm和980ppm,并以碳酸氢钠和对甲苯亚磺酸钠为助剂,于35℃下反应24小时,得到两端以碘原子封端的聚氯乙烯。无水无氧条件下,将所得1摩尔当量聚氯乙烯,2摩尔当量二亚硫酸钠,2.2摩尔当量碳酸氢钠和10摩尔当量烯丙基羟乙基醚溶于DMSO,在70℃反应4小时,将浓缩反应溶液在甲醇中沉淀,得到两端以羟基封端的聚氯乙烯。
将1摩尔当量以羟基封端的聚氯乙烯和2摩尔当量4-羧基苯硼酸频那醇酯在DCC和DMAP的催化下反应,得到以苯硼酸酯基封端的聚氯乙烯。
将1摩尔当量33c和1摩尔当量异佛尔酮二异氰酸酯溶于四氢呋喃,待反应完全后加入1摩尔当量3-氨基-1,2-丙二醇继续反应,得到以二醇封端的富含氢键基团的链段。
将所得的以苯硼酸酯基封端的聚氯乙烯溶于20%的乙酸水溶液反应,得到以苯硼酸基封端的聚氯乙烯。将所得的以苯硼酸基封端的聚氯乙烯100质量份,环氧大豆油70质量份,磷酸三甲苯酯50质量份以及聚氯乙烯2摩尔当量的以二醇封端的富含氢键基团的链段混合均匀,搅拌下加热至130℃脱水10分钟后,将混合物置于模具中于180℃模压保温30分钟,冷却后得到基于聚氯乙烯的动态聚合物增塑剂溶胀凝胶。
性能与应用:拉伸强度31MPa,断裂延长率630%;该产品具有良好的韧性,可用于制备薄膜、型材等。
实施例34
将2摩尔当量对二碘苯溶于四氢呋喃,在-78℃下滴入含有1.02摩尔当量正丁基锂的正己烷溶液中,低温下搅拌1小时后滴入含有1摩尔当量三异丙基苯硼酸甲酯的四氢呋喃溶液。之后,将反应溶液恢复至室温,并反应16小时。反应由去离子水淬灭后,先用二氯甲烷萃取,再由正己烷重结晶,得到化合物34a。将1摩尔当量化合物19a和2摩尔当量4-三甲基锡苯溶于四氢呋喃,加入0.03摩尔当量乙烯摩尔当量三(二亚苄基茚丙酮)二钯和0.3摩尔当量三异丁基磷。将混合物在55℃下搅拌反应4小时,在二氯甲烷/水中萃取后,以正己烷/二氯甲烷为溶剂用硅胶柱提纯,并在正己烷中沉淀,得到化合物34b。
Figure PCTCN2018072460-appb-000136
将5-环辛烯-1,2-二醇和环辛烯以摩尔比1:2混合,在第二代Grubbs催化剂作用下共聚 合,得到含有侧羟基的改性聚环辛烯。以1摩尔当量AIBN为引发剂,以1摩尔当量三硫代碳酸酯为链转移剂,将40摩尔当量苯乙烯、10摩尔当量4-乙烯基苯硼酸和10摩尔当量单体34b共聚,得到含有侧硼羟基的改性聚苯乙烯。
将100质量份所得的含有侧羟基的改性聚环辛烯、40质量份所得的含有侧硼羟基的改性聚苯乙烯、5质量份硼酸充分共混并置于模具中于120℃脱水成型,得到本发明的动态聚合物。
性能与应用:拉伸强度3.9MPa,断裂延长率760%;该产品具有良好的韧性,可用于缓冲减震等。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (27)

  1. 物理分相动态聚合物,其特征在于,所述的物理分相动态聚合物包含同时具有硬段和软段的动态聚合物分子,所述动态聚合物分子各硬段之间相互混合或各自独立或既部分相互混合又部分各自独立地形成结晶相或与软段不相容的相或既有结晶相又有与软段不相容的相,并且形成基于硬段的分相物理交联或交联和聚合;所述动态聚合物分子的各软段为无定型态;所述的动态聚合物分子在分子中含有至少一种含硼动态共价键,所述的含硼动态共价键含有如下式所示的结构:
    Figure PCTCN2018072460-appb-100001
    其中,X选自硼原子、碳原子、硅原子;
    其中,
    Figure PCTCN2018072460-appb-100002
    表示为基团和连接中的至少一种;
    其中,a为与X相连的
    Figure PCTCN2018072460-appb-100003
    的数目,当X为硼原子时,a为2;当X为碳原子和硅原子时,a为3;
    所述的含硼动态共价键通过至少一个所述
    Figure PCTCN2018072460-appb-100004
    接入聚合物链中。
  2. 根据权利要求1所述的物理分相动态聚合物,其特征在于,其中所述物理分相动态聚合物所包含的同时具有硬段A和软段B的动态聚合物分子具有下各式中所述结构的一种或任几种的组合:
    Figure PCTCN2018072460-appb-100005
    其中,式(1A)为直链结构,n为硬段-软段交替单元的数量,其大于等于0;且当n=0时,软段B中含有同时具有供体和受体的氢键基团;
    Figure PCTCN2018072460-appb-100006
    其中,式(1B)为直链结构,且两端段为硬段,n为硬段-软段交替单元的数量,其大于等于0;
    Figure PCTCN2018072460-appb-100007
    其中,式(1C)为直链结构,且两端段为软段,n为硬段-软段交替单元的数量,其大于等于0;且当n=0时,至少一个软段B中含有同时具有供体和受体的氢键基团;
    Figure PCTCN2018072460-appb-100008
    其中,式(1D)为支化结构,x为连接在软段B上的硬段分支链单元的数量;n为硬段-软段交替单元的数量,其大于等于0;y为连接在软段B上硬段-软段分支链单元的数量;x、 y大于等于0,且x、y之和大于等于3;
    Figure PCTCN2018072460-appb-100009
    其中,式(1E)为支化结构,x为连接在软段B上的硬段分支链单元的数量;n为硬段-软段交替单元的数量,其大于等于0;y为连接在软段B上硬段-软段交替并且以硬段为端段的分支链单元的数量;x、y大于等于0,且x、y之和大于等于3;
    Figure PCTCN2018072460-appb-100010
    其中,式(1F)为支化结构,x为连接在硬段A上的软段分支链单元的数量;n为软段-硬段交替单元的数量,其大于等于0;y为连接在硬段A上软段-硬段分支链单元的数量;x、y大于等于0,且x、y之和大于等于3;当y=0时,至少一个软段B中含有同时具有供体和受体的氢键基团;
    Figure PCTCN2018072460-appb-100011
    其中,式(1G)为支化结构,x为连接在硬段A上的软段分支链单元的数量;n为软段-硬段交替单元的数量,其大于等于0;y为连接在硬段A上软段-硬段交替并且以软段为端段的分支链单元的数量;x、y大于等于0,且x、y之和大于等于3;当n=0或y=0时,至少一个软段B中含有同时具有供体和受体的氢键基团;
    Figure PCTCN2018072460-appb-100012
    其中,式(1H)为环状结构,n为硬段-软段交替单元的数量,其大于等于1,且当n=1时,软段B中含有同时具有供体和受体的氢键基团。
  3. 根据权利要求1所述的物理分相动态聚合物,其特征在于,其中所述动态聚合物所包含的同时具有硬段A和软段B的动态聚合物分子具有下各式中所述结构的一种或任几种的组合:
    Figure PCTCN2018072460-appb-100013
    其中,式(1A)为直链结构,n为硬段-软段交替单元的数量,其大于等于1;
    Figure PCTCN2018072460-appb-100014
    其中,式(1B)为直链结构,且两端段为硬段,n为硬段-软段交替单元的数量,其大于等于0;
    Figure PCTCN2018072460-appb-100015
    其中,式(1C)为直链结构,且两端段为软段,n为硬段-软段交替单元的数量,其大于等于1;
    Figure PCTCN2018072460-appb-100016
    其中,式(1D)为支化结构,x为连接在软段B上的硬段分支链单元的数量;n为硬段-软段交替单元的数量,其大于等于0;y为连接在软段B上硬段-软段分支链单元的数量;x、y大于等于0,且x、y之和大于等于3;
    Figure PCTCN2018072460-appb-100017
    其中,式(1E)为支化结构,x为连接在软段B上的硬段分支链单元的数量;n为硬段-软段交替单元的数量,其大于等于0;y为连接在软段B上硬段-软段交替并且以硬段为端段的分支链单元的数量;x、y大于等于0,且x、y之和大于等于3;
    Figure PCTCN2018072460-appb-100018
    其中,式(1F)为支化结构,x为连接在硬段A上的软段分支链单元的数量;n为软段-硬段交替单元的数量,其大于等于0;y为连接在硬段A上软段-硬段分支链单元的数量;x大于等于0,y大于等于1,且x、y之和大于等于3;
    Figure PCTCN2018072460-appb-100019
    其中,式(1G)为支化结构,x为连接在硬段A上的软段分支链单元的数量;n为软段-硬段交替单元的数量,其大于等于0;y为连接在硬段A上软段-硬段交替并且以软段为端段的分支链单元的数量;x大于等于0,y大于等于1,且x、y之和大于等于3;
    Figure PCTCN2018072460-appb-100020
    其中,式(1H)为环状结构,n为硬段-软段交替单元的数量,其大于等于2。
  4. 根据权利要求1所述的物理分相动态聚合物,其特征在于,所述的含硼动态共价键存在于所述动态聚合物分子的软段主链骨架中。
  5. 根据权利要求1所述的物理分相动态聚合物,其特征在于,所述的含硼动态共价键选自有机硼酸单酯键、无机硼酸单酯键、有机硼酸环酯键、无机硼酸环酯键、有机硼酸硅酯键、 无机硼酸硅酯键、有机硼酐键、无机硼酐键、有机-无机硼酐键中的至少一种;
    其中,所述的有机硼酸单酯键选自如下结构中的至少一种:
    Figure PCTCN2018072460-appb-100021
    其中,所述结构中至少有一个碳原子通过硼碳键与硼原子相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
    L为除直接键(包括单键、双键、三键)、亚甲基或被取代的亚甲基以外的至少二价的连接基;
    其中,所述的无机硼酸单酯键,其选自如下结构中的至少一种:
    Figure PCTCN2018072460-appb-100022
    其中,所述结构中的硼原子与一个碳原子通过硼碳键相连;L为除直接键(包括单键、双键、三键)、亚甲基或被取代的亚甲基以外的至少二价的连接基;
    当同一式中含有一个以上的Z原子时,各个Z原子各自独立;每个Z原子各自独立地选自氢原子、氟原子、氯原子、溴原子、碘原子、硫原子、氮原子、硼原子、硅原子,并且同一式中至少一个Z原子选自硫原子、硼原子、氮原子、硅原子;
    b为与Z相连的
    Figure PCTCN2018072460-appb-100023
    的数目,当Z为氢原子、氟原子、氯原子、溴原子、碘原子时,b为0;当Z为硫原子时,b为1;当Z为氮原子、硼原子时,b为2;当Z为硅原子时,b为3;
    其中,所述的有机硼酸环酯键,其选自如下结构中的至少一种:
    Figure PCTCN2018072460-appb-100024
    其中,一个硼原子同时与两个氧原子形成环状有机硼酸酯单元,所述结构中的硼原子与一个碳原子通过硼碳键相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
    其中,所述的无机硼酸环酯键,其选自如下结构中的至少一种:
    Figure PCTCN2018072460-appb-100025
    其中,一个硼原子同时与两个氧原子形成环状无机硼酸酯单元,所述结构中的硼原子不与任何碳原子直接相连;
    其中,Z原子选自硫原子、硼原子、氮原子、硅原子;
    b为与Z相连的
    Figure PCTCN2018072460-appb-100026
    的数目,当Z为硫原子时,b为1;当Z为氮原子、硼原子时,b为2;当Z为硅原子时,b为3;
    连接基L 0各自独立地为如下结构中的任一种,其中*表示与氧原子相连的位置:
    Figure PCTCN2018072460-appb-100027
    其中,所述的有机硼酸硅酯键,其选自如下结构中的至少一种:
    Figure PCTCN2018072460-appb-100028
    其中,所述结构中至少有一个碳原子通过硼碳键与硼原子相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
    其中,所述的无机硼酸硅酯键,其选自如下结构中的至少一种:
    Figure PCTCN2018072460-appb-100029
    其中,所述结构中的硼原子不与任何碳原子直接相连;
    当同一式中含有一个以上的Z原子时,各个Z原子各自独立;每个Z原子各自独立地选自氢原子、氟原子、氯原子、溴原子、碘原子、硫原子、氮原子、硼原子、硅原子,并且同一式中至少一个Z原子选自硫原子、硼原子、氮原子、硅原子;
    b为与Z相连的
    Figure PCTCN2018072460-appb-100030
    的数目,当Z为氢原子、氟原子、氯原子、溴原子、碘原子时,b为0;当Z为硫原子时,b为1;当Z为氮原子、硼原子时,b为2;当Z为硅原子时,b为3;
    其中,所述的有机硼酐键,其为如下结构:
    Figure PCTCN2018072460-appb-100031
    其中,所述结构中至少有一个碳原子通过硼碳键与硼原子相连,且至少有一个有机基团通过所述硼碳键连接到硼原子上;
    其中,所述的无机硼酐键,其选自如下结构中的至少一种:
    Figure PCTCN2018072460-appb-100032
    其中,所述结构中的硼原子不与任何碳原子直接相连;
    当同一式中含有一个以上的Z原子时,各个Z原子各自独立;每个Z原子各自独立地选自氢原子、氟原子、氯原子、溴原子、碘原子、硫原子、氮原子、硼原子、硅原子,并且同一式中至少一个Z原子选自硫原子、硼原子、氮原子、硅原子;
    b为与Z相连的
    Figure PCTCN2018072460-appb-100033
    的数目,当Z为氢原子、氟原子、氯原子、溴原子、碘原子时,b为0;当Z为硫原子时,b为1;当Z为氮原子、硼原子时,b为2;当Z为硅原子时,b为3;
    其中,所述的有机-无机硼酐键,其选自如下结构中的至少一种:
    Figure PCTCN2018072460-appb-100034
    其中,所述结构中其中一个硼原子与至少一个碳原子通过硼碳键直接相连,且至少一个有机基团通过形成的硼碳键与硼原子相连;所述结构中另一个硼原子不与任何碳原子直接相连;
    当同一式中含有一个以上的Z原子时,各个Z原子各自独立;每个Z原子各自独立地选自氢原子、氟原子、氯原子、溴原子、碘原子、硫原子、氮原子、硼原子、硅原子,并且同一式中至少一个Z原子选自硫原子、硼原子、氮原子、硅原子;
    b为与Z相连的
    Figure PCTCN2018072460-appb-100035
    的数目,当Z为氢原子、氟原子、氯原子、溴原子、碘原子时,b为0;当Z为硫原子时,b为1;当Z为氮原子、硼原子时,b为2;当Z为硅原子时,b为3。
  6. 根据权利要求1所述的物理分相动态聚合物,其特征在于,所述的含硼动态共价键选自有机硼酸硅酯键或氨甲基苯硼酸环酯键。
  7. 根据权利要求1所述的物理分相动态聚合物,其特征在于,所述的动态聚合物分子含有至少两种含硼动态共价键,其中至少一种选自有机硼酸硅酯键或氨甲基苯硼酸环酯键。
  8. 根据权利要求1所述的物理分相动态聚合物,其特征在于,所述的动态聚合物分子的硬段的主链选自碳链结构、碳杂链结构;所述的动态聚合物的软段的主链选自碳链结构、碳杂链结构、元素杂链结构、碳杂元素链结构。
  9. 根据权利要求1所述的物理分相动态聚合物,其特征在于,所述的动态聚合物分子的硬段选自具有高玻璃化转变温度的无定形聚合物链段、富含氢键基团的聚合物链段或基团、富含结晶相的聚合物链段或基团。
  10. 根据权利要求1所述的物理分相动态聚合物,其特征在于,所述动态聚合物分子的软段中还含有同时含有氢键供体和氢键受体的氢键基团。
  11. 根据权利要求10所述的物理分相动态聚合物,其特征在于,所述动态聚合物分子的软段中含有的氢键基团含有以下结构成分中的至少一种:
    Figure PCTCN2018072460-appb-100036
  12. 根据权利要求1-11中任一项所述的物理分相动态聚合物,其特征在于,构成所述物理分相动态聚合物的配方组分还包括以下任一种或任几种可添加物或可使用物:其他聚合物、助剂、填料。
  13. 根据权利要求12所述的物理分相动态聚合物,其特征在于,所述的其他聚合物选自以下任一种或任几种:天然高分子化合物、合成树脂、合成橡胶、合成纤维;所述的助剂选自以下任一种或任几种:催化剂、引发剂;稳定化助剂,包括抗氧化剂、光稳定剂、热稳定剂、分散剂、乳化剂、阻燃剂、扩链剂、增韧剂、偶联剂、溶剂、润滑剂、脱模剂、增塑剂、增稠剂、触变剂、流平剂、着色剂、荧光增白剂、消光剂、抗静电剂、杀菌防霉剂、发泡剂、成核剂、流变剂、动态调节剂;所述的填料选自以下任一种或任几种:无机非金属填料、金属填料、有机填料。
  14. 根据权利要求1-11中任一项所述的物理分相动态聚合物,其特征在于,所述聚合物分子的链拓扑结构选自直链结构、支化结构、环状结构、二维/三维团簇结构、凝胶点以上交联的颗粒及其两种或任几种的组合。
  15. 根据权利要求1-11中任一项所述的物理分相动态聚合物,其特征在于,所述的物理分相动态聚合物应用于以下材料或制品:减震器、缓冲材料、抗冲击防护材料、运动防护制品、军警防护制品、自修复性涂层、自修复性板材、自修复性粘结剂、自修复性密封材料、储能器件材料、韧性材料、韧性弹性体材料、夹层胶、自粘性玩具、形状记忆材料、力传感 器。
  16. 根据权利要求1-11中任一项所述的物理分相动态聚合物,其特征在于,所述的物理分相动态聚合物或含有其的组成具有以下任一性状:普通固体、弹性体、凝胶、泡沫。
  17. 物理分相动态聚合物热塑性弹性体,其特征在于,其中包含同时具有硬段和软段的动态聚合物分子,所述动态聚合物分子各硬段之间相互混合或各自独立或相互混合又各自独立地可形成结晶相或与软段不相容的相或结晶相和与软段不相容的相;所述动态聚合物分子的各软段为无定型态;所述的动态聚合物分子在分子中含有至少一种含硼动态共价键,所述的含硼动态共价键含有如下式所示的结构:
    Figure PCTCN2018072460-appb-100037
    其中,X选自硼原子、碳原子、硅原子;
    其中,
    Figure PCTCN2018072460-appb-100038
    表示为基团和连接中的至少一种;
    其中,a为与X相连的
    Figure PCTCN2018072460-appb-100039
    的数目,当X为硼原子时,a为2;当X为碳原子和硅原子时,a为3;
    所述的含硼动态共价键通过至少一个所述
    Figure PCTCN2018072460-appb-100040
    接入聚合物链中。
  18. 根据权利要求17所述的物理分相动态聚合物热塑性弹性体,其特征在于,所述的含硼动态共价键存在于所述动态聚合物分子的软段主链骨架中。
  19. 根据权利要求17所述的物理分相动态聚合物热塑性弹性体,其特征在于,所述的含硼动态共价键选自有机硼酸单酯键、无机硼酸单酯键、有机硼酸环酯键、无机硼酸环酯键、有机硼酸硅酯键、无机硼酸硅酯键、有机硼酐键、无机硼酐键、有机-无机硼酐键中的至少一种。
  20. 根据权利要求17所述的物理分相动态聚合物热塑性弹性体,其特征在于,所述动态共价聚合物分子中的各个软段的玻璃化转变温度均不高于25℃。
  21. 根据权利要求17所述的物理分相动态聚合物热塑性弹性体,其特征在于,所述动态聚合物分子的软段中含有同时含有氢键供体和氢键受体的氢键基团。
  22. 根据权利要求17所述的物理分相动态聚合物热塑性弹性体,其特征在于,所述氢键基团含有以下结构成分中的至少一种:
    Figure PCTCN2018072460-appb-100041
  23. 根据权利要求17-22中任一项所述的物理分相动态聚合物热塑性弹性体,其特征在 于,构成所述物理分相动态聚合物热塑性弹性体的配方组分还包括以下任一种或任几种可添加物或可使用物:其他聚合物、助剂、填料。
  24. 根据权利要求23所述的物理分相动态聚合物热塑性弹性体,其特征在于,所述的其他聚合物选自以下任一种或任几种:天然高分子化合物、合成树脂、合成橡胶、合成纤维;所述的助剂选自以下任一种或任几种:催化剂、引发剂;稳定化助剂,包括抗氧化剂、光稳定剂、热稳定剂、分散剂、乳化剂、阻燃剂、扩链剂、增韧剂、偶联剂、溶剂、润滑剂、脱模剂、增塑剂、增稠剂、触变剂、流平剂、着色剂、荧光增白剂、消光剂、抗静电剂、杀菌防霉剂、发泡剂、成核剂、流变剂、动态调节剂;所述的填料选自以下任一种或任几种:无机非金属填料、金属填料、有机填料。
  25. 根据权利要求17-22中任一项所述的物理分相动态聚合物热塑性弹性体,其特征在于,所述聚合物分子的链拓扑结构选自直链结构、支化结构、环状结构、二维/三维团簇结构、凝胶点以上交联的颗粒及其两种或任几种的组合。
  26. 根据权利要求17-22中任一项所述的物理分相动态聚合物热塑性弹性体,其特征在于,所述的物理分相动态聚合物热塑性弹性体应用于以下材料或制品:减震器、缓冲材料、抗冲击防护材料、运动防护制品、军警防护制品、自修复性涂层、自修复性板材、自修复性粘结剂、自修复性密封材料、储能器件材料、韧性材料、韧性弹性体材料、夹层胶、自粘性玩具、形状记忆材料、力传感器。
  27. 一种吸能的方法,其特征在于,提供一种物理分相动态聚合物热塑性弹性体并以其作为吸能材料进行吸能,所述的物理分相动态聚合物热塑性弹性体中包含同时具有硬段和软段的动态聚合物分子,所述动态聚合物分子各硬段之间相互混合或各自独立或相互混合又各自独立地可形成结晶相或与软段不相容的相或结晶相和与软段不相容的相;所述动态聚合物分子的各软段为无定型态;所述的动态聚合物分子在分子中含有至少一种含硼动态共价键,所述的含硼动态共价键含有如下式所示的结构:
    Figure PCTCN2018072460-appb-100042
    其中,X选自硼原子、碳原子、硅原子;
    其中,
    Figure PCTCN2018072460-appb-100043
    表示为基团和连接中的至少一种;
    其中,a为与X相连的
    Figure PCTCN2018072460-appb-100044
    的数目,当X为硼原子时,a为2;当X为碳原子和硅原子时,a为3;
    所述的含硼动态共价键通过至少一个所述
    Figure PCTCN2018072460-appb-100045
    接入聚合物链中。
PCT/CN2018/072460 2017-01-25 2018-01-12 物理分相动态聚合物及其应用 WO2018137507A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710055920.7A CN108342049B (zh) 2017-01-25 2017-01-25 一种物理分相动态聚合物及其应用
CN201710055920.7 2017-01-25

Publications (1)

Publication Number Publication Date
WO2018137507A1 true WO2018137507A1 (zh) 2018-08-02

Family

ID=62963185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072460 WO2018137507A1 (zh) 2017-01-25 2018-01-12 物理分相动态聚合物及其应用

Country Status (2)

Country Link
CN (1) CN108342049B (zh)
WO (1) WO2018137507A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109821572A (zh) * 2019-02-14 2019-05-31 上海释颉化工技术合伙企业(有限合伙) 多孔微球聚合物负载金属型催化剂及其制备方法和应用
US20210122883A1 (en) * 2018-07-04 2021-04-29 Soochow University High-grafting density cyclic comb shaped polymer and preparation method therefor
CN116023672A (zh) * 2022-12-15 2023-04-28 江阴市星宇化工有限公司 一种聚合专用磷酸三钙的复合填料及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7202136B2 (ja) * 2018-10-16 2023-01-11 旭化成株式会社 N-アルキル置換アミノピリジン・フタル酸塩及びそれを含むエポキシ樹脂組成物
CN109498255B (zh) * 2018-12-18 2020-10-09 温州医科大学附属第二医院、温州医科大学附属育英儿童医院 一种高效传热型退热贴
JP7229028B2 (ja) * 2019-01-30 2023-02-27 日産化学株式会社 N-モノ(炭化水素)イソシアヌル酸の製造方法
CN110562954B (zh) * 2019-08-02 2022-09-30 安徽师范大学 一种荧光碳点探针的制备方法及在检测Fe2+的应用
CN110819115B (zh) * 2019-11-25 2021-10-22 中国工程物理研究院总体工程研究所 一种具有高效自修复特性的聚硅氧烷及其制备方法
CN111804279A (zh) * 2020-08-19 2020-10-23 湖南三五二环保科技有限公司 一种染料废水用的碳材料的制备方法及其产品和应用
CN114989506B (zh) * 2022-05-17 2023-08-08 久耀电子科技(江苏)有限公司 阻燃低介电cof/碳氢树脂复合材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104650333A (zh) * 2015-02-05 2015-05-27 浙江大学 聚乳酸/氢化聚丁二烯热塑性超分子弹性体及其制备方法
CN105646872A (zh) * 2016-02-26 2016-06-08 翁秋梅 一种动态聚合物材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7863379B2 (en) * 2004-03-17 2011-01-04 Dow Global Technologies Inc. Impact modification of thermoplastics with ethylene/alpha-olefin interpolymers
CN1312197C (zh) * 2004-07-15 2007-04-25 复旦大学 改性软硬多嵌段共轭聚合物及其制备方法
CN102775740B (zh) * 2012-07-24 2014-02-19 金发科技股份有限公司 一种无卤阻燃弹性体组合物
EP2727597A1 (en) * 2012-11-06 2014-05-07 Centre National de la Recherche Scientifique (CNRS) Glucose responsive hydrogel comprising pba-grafted hyaluronic acid (ha)
WO2016089968A2 (en) * 2014-12-02 2016-06-09 Massachusetts Institute Of Technology Thermoreversible hydrogels from the arrested phase separation of elastin-like polypeptides
CN104758939A (zh) * 2015-02-26 2015-07-08 宁波大学 一种pH葡萄糖双敏感水凝胶的制备及应用
CN105924685B (zh) * 2016-05-03 2018-04-20 南京邮电大学 一种双组份高强度水凝胶及其制备方法
CN106146729B (zh) * 2016-07-04 2018-03-20 江南大学 一种自修复柔性印刷电路板及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104650333A (zh) * 2015-02-05 2015-05-27 浙江大学 聚乳酸/氢化聚丁二烯热塑性超分子弹性体及其制备方法
CN105646872A (zh) * 2016-02-26 2016-06-08 翁秋梅 一种动态聚合物材料

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210122883A1 (en) * 2018-07-04 2021-04-29 Soochow University High-grafting density cyclic comb shaped polymer and preparation method therefor
US11905378B2 (en) * 2018-07-04 2024-02-20 Soochow University High-grafting density cyclic comb shaped polymer and preparation method therefor
CN109821572A (zh) * 2019-02-14 2019-05-31 上海释颉化工技术合伙企业(有限合伙) 多孔微球聚合物负载金属型催化剂及其制备方法和应用
CN109821572B (zh) * 2019-02-14 2022-08-19 上海释颉化工技术合伙企业(有限合伙) 多孔微球聚合物负载金属型催化剂及其制备方法和应用
CN116023672A (zh) * 2022-12-15 2023-04-28 江阴市星宇化工有限公司 一种聚合专用磷酸三钙的复合填料及其制备方法
CN116023672B (zh) * 2022-12-15 2024-02-06 江阴市星宇化工有限公司 一种聚合专用磷酸三钙的复合填料及其制备方法

Also Published As

Publication number Publication date
CN108342049A (zh) 2018-07-31
CN108342049B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2018137507A1 (zh) 物理分相动态聚合物及其应用
CN107805308B (zh) 一种具有杂化交联网络的动态聚合物及其应用
CN107805311B (zh) 一种具有杂化交联网络的动态聚合物及其应用
CN107556433B (zh) 一种具有杂化交联网络的动态聚合物弹性体及其应用
CN108341951B (zh) 一种具有杂化交联结构的动态聚合物及其应用
CN107805309B (zh) 一种非共价交联结构的动态聚合物及其应用
CN107556450B (zh) 一种具有杂化交联网络的动态聚合物及应用
CN107815055B (zh) 一种动态聚合物热塑性弹性体及其应用
WO2017206671A1 (zh) 具有动态交联结构的动态聚合物
CN107698748B (zh) 一种杂化交联网络的动态聚合物及其应用
CN108341960B (zh) 一种含有组合动态共价键的动态聚合物及其应用
WO2018137508A1 (zh) 具有杂化交联结构的动态聚合物及其应用
CN109666167B (zh) 一种杂化动态聚合物组合物
CN108341961B (zh) 一种含有组合动态共价键的动态聚合物制备及其应用
CN109666160B (zh) 一种具有杂化交联网络的动态聚合物
CN109666121B (zh) 一种杂化动态交联聚合物及其应用
CN108341958A (zh) 一种基于杂化动态聚合物的吸能方法
CN107815056A (zh) 一种动态聚合物热塑性弹性体及其应用
WO2018137505A1 (zh) 具有杂化键合结构的动态聚合物或组成及其应用
CN111378165A (zh) 一种组合杂化交联动态聚合物及其应用
CN109206625A (zh) 一种物理分相超分子动态聚合物及其应用
CN111253583B (zh) 一种胀流性杂化动态聚合物及其实现胀流性的方法
CN109206825A (zh) 一种基于物理分相超分子动态聚合物的组合吸能方法
CN109666178A (zh) 一种杂化动态聚合物组合物及其应用
CN109666093A (zh) 一种具有杂化交联网络结构的动态聚合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18745035

Country of ref document: EP

Kind code of ref document: A1