WO2018135600A1 - 静電荷像現像用トナー - Google Patents

静電荷像現像用トナー Download PDF

Info

Publication number
WO2018135600A1
WO2018135600A1 PCT/JP2018/001466 JP2018001466W WO2018135600A1 WO 2018135600 A1 WO2018135600 A1 WO 2018135600A1 JP 2018001466 W JP2018001466 W JP 2018001466W WO 2018135600 A1 WO2018135600 A1 WO 2018135600A1
Authority
WO
WIPO (PCT)
Prior art keywords
toner
parts
temperature
measurement
aqueous solution
Prior art date
Application number
PCT/JP2018/001466
Other languages
English (en)
French (fr)
Inventor
久美子 亀屋
智子 中川
勇樹 生川
太田 匡哉
哲治 弓削
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN201880007123.4A priority Critical patent/CN110178089B/zh
Publication of WO2018135600A1 publication Critical patent/WO2018135600A1/ja
Priority to US16/516,923 priority patent/US10725392B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0819Developers with toner particles characterised by the dimensions of the particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0821Developers with toner particles characterised by physical parameters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0827Developers with toner particles characterised by their shape, e.g. degree of sphericity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08795Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/09Colouring agents for toner particles
    • G03G9/0906Organic dyes
    • G03G9/0918Phthalocyanine dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/09307Encapsulated toner particles specified by the shell material
    • G03G9/09314Macromolecular compounds
    • G03G9/09321Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/0935Encapsulated toner particles specified by the core material
    • G03G9/09357Macromolecular compounds
    • G03G9/09364Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a toner for developing an electrostatic charge image that can achieve both excellent fixing property at low temperature and hot offset resistance while maintaining blocking resistance, and can obtain a high-quality image even at low temperature fixing.
  • the electrostatic charge image developing toner is used for image formation for visualizing an electrostatic charge image in a printer, a copying machine, a facsimile, or the like.
  • an electrostatic latent image is first formed on a photosensitive drum, then developed with toner, transferred to transfer paper, and fixed by heat or the like. Image formation is performed.
  • a binder resin and a colorant are mixed with a charge control agent, a release agent, a magnetic material, etc., if necessary, and then melt-kneaded with an extruder or the like.
  • a charge control agent for pulverization and classification
  • a release agent for pulverization and classification
  • solid fine particles such as silica are attached to the surface as external additives. Things are used.
  • the actual fixing temperature when an image is output by an electrophotographic apparatus, the actual fixing temperature is not a constant value and has some degree of unevenness. For example, when the image is output immediately after the power is turned on, the fixing temperature becomes low, but when continuous printing is performed from there, the fixing temperature becomes high. In addition, when the toner layer thickness is thick (for example, a plurality of color toners are printed dark), the actual temperature applied to the toner layer is low, and the toner layer thickness is thin (for example, a single color toner is printed thinly). In this case, the actual temperature applied to the toner layer becomes high.
  • Patent Document 1 there is a toner containing a crystalline polyester resin and a release agent, and there is a structure in which the crystalline polyester resin is in contact with the release agent on the cross section of the ruthenium-dyed toner.
  • A is a cross-sectional area
  • B is a cross-sectional area of the release agent alone
  • C is a cross-sectional area of the crystalline polyester resin alone
  • 40 ⁇ 100 ⁇ A / (A + B + C) ⁇ 70, 10 ⁇ 100 ⁇ B /
  • An electrostatic charge developing toner satisfying (A + B + C) ⁇ 30, 20 ⁇ 100 ⁇ C / (A + B + C) ⁇ 30 is disclosed, and the fixing performance is less dependent on fixing temperature and has excellent heat storage characteristics. .
  • Patent Document 2 contains a crystalline organic compound having a melting point of 50 to 150 ° C. as a fixing aid for the purpose of heat-resistant storage stability and low-temperature fixing. Since the resin and the fixing aid are compatibilized during heating, In DSC measurement, the endothermic amount of the melting maximum value derived from the fixing assistant at the second temperature increase is smaller than that at the first temperature increase, and the glass transition temperature of the toner is lower than the glass transition temperature of the resin. An electrostatic charge image developing toner has been proposed in which the glass transition temperature of the toner is smaller than that at the first temperature increase.
  • Patent Document 3 has a core-shell structure having toner mother particles and a shell layer, and the toner mother particles have a resin coating layer made of a water-soluble resin on the surface of the toner mother particles, and the resin coating layer.
  • An electrostatic charge image developing toner having the shell layer thereon is disclosed.
  • Patent Document 4 discloses a core-shell structure having toner base particles and a shell layer, and is intended to satisfy the anti-blocking property, the excellent fixing property at low temperature, and the anti-offset performance. There has been proposed a toner for developing an electrostatic charge image having an adjusted storage elastic modulus (G ′).
  • the problem to be solved by the present invention is to provide a toner for developing an electrostatic charge image that can improve excellent fixing property and hot offset resistance at a low temperature while maintaining blocking resistance.
  • TP2 (140 ° C.) / TP1 (140 ° C.) and TP1 (described below) as forms capable of achieving both excellent fixing properties at low temperatures and hot offset resistance while maintaining blocking resistance. 130 ° C.); temperature at which TP2 (140 ° C.) / TP1 (140 ° C.) and TP2A / TP1A described below show minimum values; TP2 (140 ° C.) / TP1 (140 ° C.) or TP2 (120 ° C.) described below ) / TP1 (120 ° C.) was found to be effective to adjust to a specific range, and the present invention was achieved.
  • This invention is based on the knowledge mentioned above, and the aspect of this invention is as follows.
  • tan ⁇ measurement with a rheometer is performed twice, and in the first measurement, the value of tan ⁇ observed at 130 ° C. is TP1 (130 ° C.), and the value of tan ⁇ observed at 140 ° C. is TP1 (140 ° C.). In the second measurement, if the value of tan ⁇ observed at 140 ° C. is TP2 (140 ° C.), TP2 (140 ° C.) / TP1 (140 ° C.) is 0.95 or less, and TP1 (130 ° C.) is 2 A toner for developing electrostatic images, which is 5 or more.
  • ⁇ 2> The toner for developing an electrostatic charge image according to ⁇ 1>, wherein TP2 (140 ° C.) / TP1 (140 ° C.) is 0.50 or more.
  • TP3> The toner for developing an electrostatic charge image according to ⁇ 1> or ⁇ 2>, wherein TP1 (130 ° C.) is 4.0 or less.
  • ⁇ 4> The electrostatic image developing toner according to any one of ⁇ 1> to ⁇ 3>, comprising toner base particles containing at least a binder resin and a colorant, and an external additive.
  • ⁇ 5> Any one of ⁇ 1> to ⁇ 4>, wherein the storage elastic modulus G ′ observed at 120 ° C.
  • the toner for developing an electrostatic charge image according to 1.
  • the electrostatic image developing toner has a core / shell structure containing a core component containing at least a binder resin and a colorant, and a shell component containing at least the binder resin present around the core component.
  • ⁇ 7> The toner for developing an electrostatic charge image according to ⁇ 6>, wherein a glass transition temperature of the binder resin contained in the core component is 5 ° C. or more lower than a glass transition temperature of the binder resin contained in the shell component.
  • ⁇ 8> The toner for developing an electrostatic charge image according to any one of ⁇ 1> to ⁇ 7>, wherein the volume average particle diameter is 4 to 8 ⁇ m.
  • ⁇ 9> The toner for developing an electrostatic charge image according to any one of ⁇ 1> to ⁇ 8>, wherein the average circularity is 0.95 to 0.99.
  • tan ⁇ measurement with a rheometer is performed twice, and in the first measurement, the value of tan ⁇ observed at 140 ° C. is TP1 (140 ° C.), and the value of tan ⁇ observed at 80 ° C. to 150 ° C. is TP1A. In the second measurement, assuming that the value of tan ⁇ observed at 140 ° C. is TP2 (140 ° C.) and the value of tan ⁇ observed at 80 ° C.
  • TP2A TP2 (140 ° C.) / TP1 (140 ° C. ) Is 0.95 or less
  • the toner for developing an electrostatic charge image has a temperature at which TP2A / TP1A has a minimum value of 130 ° C. or more.
  • Tan ⁇ measurement with a rheometer is performed twice, and the value of tan ⁇ observed at 140 ° C. in the first measurement is TP1 (140 ° C.), and the value of tan ⁇ observed at 140 ° C. is measured in the second measurement.
  • TP2 (140 ° C) TP2 (140 ° C) / TP1 (140 ° C) is 0.90 or more and 0.95 or less, or tan ⁇ measurement with a rheometer is performed twice and observed at 120 ° C in the first measurement.
  • TP1 (120 ° C.) the value of tan ⁇ observed at 120 ° C.
  • TP 2 (120 ° C.) the value of tan ⁇ observed at 120 ° C.
  • TP 2 (120 ° C.) / TP 1 (120 ° C.) is 0.
  • An electrostatic charge image developing toner having a value of 60 or more and 0.70 or less.
  • An electrostatic charge image developing toner having a storage elastic modulus G ′ observed at 120 ° C. by a rheometer of 2000 Pa or less and a softening point measured by a flow tester of 105 ° C. or more.
  • the electrostatic image developing toner has a core / shell structure containing a core component containing at least a binder resin and a colorant, and a shell component containing at least the binder resin present around the core component,
  • the electrostatic charge according to any one of ⁇ 11> to ⁇ 13>, wherein the crosslinking degree of the core component is higher than the crosslinking degree of the shell component, and the polarity of the shell component is higher than the polarity of the core component Toner for image development.
  • ⁇ 15> The toner for developing an electrostatic charge image according to ⁇ 14>, wherein a glass transition temperature of the binder resin contained in the core component is 5 ° C. or more lower than a glass transition temperature of the binder resin contained in the shell component.
  • ⁇ 16> The electrostatic image developing toner according to any one of ⁇ 11> to ⁇ 15>, wherein the volume average particle diameter is 4 to 8 ⁇ m.
  • ⁇ 17> The electrostatic image developing toner according to any one of ⁇ 11> to ⁇ 16>, wherein the average circularity is 0.95 to 0.99.
  • the present invention it is possible to provide a toner for developing an electrostatic charge image that has both excellent fixing property at low temperature and hot offset resistance while maintaining blocking resistance.
  • FIG. 1 is a conceptual diagram of a cross section of a molded product when the electrostatic image developing toner of the present invention is measured for the first time with a rheometer.
  • FIG. 2 is a conceptual diagram when TP1 (140 ° C.) and TP2 (140 ° C.) of the toner for developing an electrostatic charge image of the present invention are measured.
  • toner mother particle giving an external additive to the surface of the toner base particles may be simply referred to as “external addition” or “external addition”.
  • toner or “electrostatic image developing toner”.
  • first temperature rise” and “second temperature rise” in the present invention are also defined as those raised during the measurement in the measurement methods described in the examples.
  • the electrostatic image developing toner of the present invention is a toner having (showing) the numerical values (parameters) defined in the claims of the present application when measured by the measuring method (apparatus, setting, etc.) described in the examples and the like. It is. That is, even when the numerical value (parameter) is measured by another apparatus or other setting, the toner itself is measured by the measuring method described in the examples and the like of the present specification. Anything having (as shown) is included in the present invention.
  • volume average particle diameter in the present invention is “volume median diameter (Dv 50 )” measured by the method described in Examples unless otherwise specified. In the present specification, all percentages and parts expressed by mass are the same as percentages and parts expressed by weight.
  • the toner for developing an electrostatic charge image of the present invention includes “a central part (core) containing at least a binder resin and a colorant”, and a shell component and an external additive present therearound.
  • the toner for developing an electrostatic charge image of the present invention has a core / shell structure containing a core component containing at least a binder resin and a colorant and a shell component containing at least the binder resin present therearound.
  • a toner composed of toner base particles and an external additive is preferable.
  • the “core / shell structure” refers to a structure in which the surface of the core component is covered with the shell component, but is not limited to a structure in which the core component is completely covered with the shell component.
  • the surface of the core component may be partially exposed, or a part of it may be dispersed in the shell component.
  • the shell component means one that is unevenly distributed on the surface of the toner base particles.
  • the shape of the shell component when it becomes a toner may be fine particles or a thin film, and may further cover the core component continuously or discontinuously.
  • toner base particles are prepared in a wet medium containing an aqueous system and / or an organic solvent as a continuous phase
  • shell fine particles are added simultaneously with the core component, and the shell fine particles are thermodynamically formed at the interface between the core component and the wet medium.
  • a method of arranging the core a method of controlling the polarity
  • a method of adding the shell fine particles after the core component and physically arranging it on the surface of the core component a method of controlling the polarity
  • thermodynamic method of arranging the shell fine particles at the interface between the core component and the wet medium (method of controlling the polarity) and the shell fine particles are added after the core component and physically arranged on the surface of the core component.
  • a combination of methods can also be used.
  • the shape, physical properties, compatibility, etc. of the core component are changed after the composition and / or shape of the core component is determined (subsequent heating, aging, stirring, etc. And a method of additional addition.
  • the shell component surrounding the core component may be abbreviated as “shell”.
  • the “structure consisting of a shell component and an external additive” is an object / concept of the “core component” in the measurement with a rheometer. It is important in the present invention.
  • the “structure comprising a shell component and an external additive” may be simply abbreviated as “structure”.
  • toner for developing electrostatic image 2.1. TP2 and TP1
  • tan ⁇ measurement with a rheometer is performed twice, and the value of tan ⁇ observed at 130 ° C. in the first measurement is TP1 (130 ° C.), 140 ° C. Tan ⁇ observed at TP1 (140 ° C.) and tan ⁇ observed at 140 ° C.
  • TP 2 (140 ° C.) is a toner for developing an electrostatic charge image having a TP1 (130 ° C.) of 2.5 or more and 0.95 or less.
  • TP2 (140 ° C.) / TP1 (140 ° C.) means a value obtained by dividing TP2 (140 ° C.) by TP1 (140 ° C.).
  • TP2 (140 ° C.) / TP1 (140 ° C.) is 0.95 or less, but it is preferable that TP2 and TP1 observed at 140 ° C. with a rheometer do not take the same value.
  • the reason why the value at 140 ° C. is used is an index of anti-offset property and gloss property when the temperature of the fixing roller is assumed to be a relatively low temperature of about 150 ° C.
  • TP2 (140 ° C.) / TP1 (140 ° C.) is 0.95 or less, it can be said that the structure of the toner has changed due to heating during the first measurement. The reason is as follows. It is estimated that.
  • the toner was molded into pellets so that the toner was not heated as much as possible and there was no gap between the toners as much as possible. Therefore, the toner was unevenly distributed on the surface of the toner base particles as shown in FIG. It is presumed that a sample having “a structure composed of a shell component and an external additive” is measured. Since the shell component having a lower elasticity than the core component of the toner base particles forms a structure, the toner exhibits a storage elastic modulus as compared with the loss elastic modulus G ′′ in the first measurement because it behaves more plastically. Since G ′ is in the decreasing direction, tan ⁇ (TP1) is estimated to be in the increasing direction.
  • the core component, shell component, and external additive are melt-mixed by heating and shearing during the first measurement to form a mixture, and the composition is averaged compared to the first measurement. It is considered that the measured state is measured. Therefore, the property of the core component having higher elasticity than that of the shell component is emphasized, and since it behaves more elastically, G ′′ is smaller than G ′. Therefore, tan ⁇ (TP2) is obtained from the first measurement. It is estimated that the rheological behavior is relatively small in the first measurement of the rheology of the structure and in the second measurement of the rheology of the mixture. Since the mixture behaves elastically locally at around 140 ° C., the toner can efficiently move from the fixing roller to the medium.
  • heating and shearing at the first measurement with a rheometer is performed under static conditions, and a change occurs in a small portion (for example, see FIG. 1) of toner particle units.
  • TP2 140 ° C.
  • TP1 140 ° C.
  • the shell fine particle component is a component having an extremely high glass transition temperature (hereinafter sometimes simply referred to as “Tg”) such as a salt.
  • Tg extremely high glass transition temperature
  • TP2 (140 ° C.) / TP1 (140 ° C.) approaches 1 because the structural change does not occur, for example, the core component and the shell component are not compatible before and after the first measurement with the rheometer. Since the above structure is formed of the shell component and the external additive, the toner is measured rather than the toner base particles.
  • TP2 (140 ° C.) / TP1 (140 ° C.) measured at 140 ° C. with a rheometer is 0.95 or less, and preferably 0.93 or less from the viewpoint of offset resistance. Further, TP2 (140 ° C.) / TP1 (140 ° C.) is preferably 0.50 or more, more preferably 0.60 or more, and still more preferably 0.70 or more, from the viewpoint of high gloss.
  • TP2 140 degreeC
  • TP1 140 degreeC
  • the toner has a core / shell structure, and the polarity difference between the core component and the shell fine particle component is increased (the shell fine particle and the core in water).
  • the polarity of the shell fine particle component is designed to be more hydrophilic than the core component, making it more hydrophilic), increasing the molecular weight of the core adult, increasing the crosslinking density of the core component,
  • Add a third component that causes a cross-linking reaction such as metal cross-linking introduce a monomer component that strengthens intermolecular force into the core component resin, reduce the amount of shell fine particles added, core of shell fine particles A core component and a shell that reduce the coating ratio to the component, even if the addition amount of the shell fine particles is the same, so that the shell fine particles are made into a thin film or the shell component is not embedded in the core component. And the like to the polarity difference of the particle component.
  • the reverse design may be performed.
  • the degree of crosslinking of the core component is higher than the degree of crosslinking of the shell component, and the polarity of the shell fine particle component is preferably higher than the polarity of the core component.
  • the toner satisfies the ranges of TP2 (140 ° C.) / TP1 (140 ° C.) and TP1 (130 ° C.).
  • TP1 (130 ° C.) indicating the formation state of the structure is 2.5 or more, preferably 2.8 or more, from the viewpoint of excellent fixability at a low temperature.
  • TP1 (130 degreeC) has 4.0 or less preferable from a viewpoint of blocking resistance, More preferably, it is 3.5 or less.
  • the value at 130 ° C. is the excellent fixability and anti-blocking property at low temperature when the fixing roller temperature is assumed to be a relatively low temperature of about 150 ° C. and the toner is close to the fixing roller in the fixing process. This is because it becomes an index of sex.
  • TP1 (130 ° C.) is 2.5 or more, excellent fixability at a low temperature can be maintained.
  • the tan ⁇ measurement with a rheometer is performed twice, and the value of tan ⁇ observed at 140 ° C. in the first measurement is TP1 (140 ° C.), 80 ° C.
  • the value of tan ⁇ observed at 150 ° C. or lower is TP1A
  • the value of tan ⁇ observed at 140 ° C. is TP2 (140 ° C.) in the second measurement, and the value of tan ⁇ observed at 80 ° C. or higher and 150 ° C. or lower is used.
  • TP2A is an electrostatic charge image developing toner in which TP2 (140 ° C.) / TP1 (140 ° C.) is 0.95 or lower and TP2A / TP1A has a minimum temperature of 130 ° C. or higher.
  • the temperature at which the TP2A / TP1A shows the minimum value indicates a temperature at which the core component and the shell component are melt-mixed to form a mixture, and the elastic behavior of the core component is emphasized, and blocking resistance and From the viewpoint of hot offset resistance, it is 130 ° C. or higher, preferably 135 ° C. or higher.
  • the temperature is preferably 145 ° C. or lower from the viewpoint of excellent fixability at low temperatures.
  • TP1A and TP2A are continuous values at 80 ° C. or higher and 150 ° C. or lower.
  • TP2A / TP1A means a value obtained by dividing TP2A by TP1A, and is a ratio of values observed at the same temperature between 80 ° C. and 150 ° C.
  • tan ⁇ measurement with a rheometer is performed twice, and the value of tan ⁇ observed at 140 ° C. is TP1 (140 ° C.) in the first measurement.
  • TP1 140 ° C.
  • TP2 140 ° C.
  • TP1 140 ° C.
  • tan ⁇ measurement using a rheometer 0.90 or more and 0.95 or less
  • TP1 120 ° C.
  • TP 2 120 ° C.
  • a toner for developing electrostatic images having TP2 (120 ° C.) / TP1 (120 ° C.) of 0.60 or more and 0.70 or less.
  • TP2 (120 ° C.) / TP1 (120 ° C.) means a value obtained by dividing TP2 (120 ° C.) by TP1 (120 ° C.).
  • the TP2 (140 ° C.) / TP1 (140 ° C.) is preferably 0.90 or more and 0.95 or less.
  • TP1 (140 ° C.) is preferably 2.3 or more, more preferably 3.0 or more, from the viewpoint of excellent fixability at low temperatures.
  • TP1 (140 ° C.) is preferably 5.0 or less, more preferably 3.5 or less, from the viewpoint of blocking resistance.
  • the index of TP2 (120 ° C.) / TP1 (120 ° C.) is important. From the viewpoints of offset resistance and blocking resistance, TP2 (120 ° C.) / TP1 (120 ° C.) is preferably 0.68 or less. Further, TP2 (120 ° C.) / TP1 (120 ° C.) is 0.60 or more from the viewpoint of high gloss.
  • TP1 (120 ° C.) indicating the formation state of the structure is preferably 2.1 or more, more preferably 2.4 or more, from the viewpoint of excellent fixability at low temperatures.
  • TP1 (120 ° C.) is preferably 4.0 or less, more preferably 3.0 or less, from the viewpoint of blocking resistance.
  • TP2 (120 ° C.) indicating the formation state of the structure after the structural change by heating and shearing is preferably 0.8 or more, more preferably 1.0 or more, from the viewpoint of excellent fixability at a low temperature. is there.
  • TP2 (120 degreeC) has 1.5 or less preferable from a viewpoint of blocking resistance, More preferably, it is 1.3 or less.
  • the storage elastic modulus G ′ at 120 ° C. measured with a rheometer at a shear rate of 1 Hz is preferably 2000 Pa or less, more preferably 1900 Pa or less, and further preferably 1500 Pa or less.
  • the low viscosity under the conditions of low temperature and low shear rate indicates that the toner can be sufficiently deformed even when the fixing device is not sufficiently heated, such as during low-temperature fixing or high-speed printing. Therefore, the fixing property to paper is good even at low temperature fixing or high speed printing.
  • the storage elastic modulus G ′ at 120 ° C. is mainly determined by the composition of the binder resin.
  • the molecular weight of the binder resin is decreased, and the glass transition temperature (Tg) of the binder resin is decreased.
  • the storage elastic modulus G ′ at 120 ° C. is preferably 600 Pa or more, and more preferably 800 Pa or more, from the viewpoint of hot offset resistance.
  • the sample Since it is necessary to pay attention to the region where the storage elastic modulus G ′ at 120 ° C. is low, as a condition suitable for measuring a sample having a low storage elastic modulus G ′, the sample is molded into a pellet having a large diameter and measured. Is preferred.
  • the toner for developing an electrostatic charge image of the present invention preferably has a softening point measured by a flow tester of 105 ° C or higher, more preferably 106 ° C or higher, and further preferably 107 ° C or higher. . Further, the softening point is preferably 115 ° C. or less, more preferably 110 ° C. or less from the viewpoint of fixability.
  • the softening point is a value obtained by a fast measurement method with a shear rate of about 10 to 100 s ⁇ 1 .
  • a high softening temperature under high shear conditions indicates that there is sufficient entanglement of the polymer chains of the binder resin in the toner. Therefore, at the time of fixing, the cohesive force inside the toner layer due to the entanglement of the polymer chain is superior to the adhesive force between the toner and the heat roller, and the inside of the toner layer is less likely to break down, so the hot offset resistance is improved. . Since it is necessary to pay attention to the region where the softening point is high, it is preferable to use a die having a diameter of 1 mm that is heavy in the flow tester.
  • the toner layer is hardly broken inside the toner layer due to the entanglement of the polymer chains, and the fixing strength measured by a peeling test using a tape is good.
  • Softening point is mainly determined by the composition of the binder resin.
  • a third component that causes a crosslinking reaction such as ionic crosslinking or metal crosslinking, to increase the intermolecular force Introducing body components and the like.
  • the toner for developing an electrostatic charge image of the present invention has both a storage elastic modulus G ′ at 120 ° C. measured by a rheometer and a softening point measured by a flow tester within a predetermined range. It is adjusted by reducing the molecular weight peak and increasing the crosslinking density, or by combining a plurality of binder resins having different molecular weights.
  • a toner having a high softening point tends to have a low gloss, but a good gloss can be obtained because the storage elastic modulus G ′ at 120 ° C. measured by a rheometer is low.
  • the toner When the toner has the core / shell structure, it is effective to lower the glass transition temperature of the binder resin when the storage elastic modulus G ′ at 120 ° C. measured by a rheometer is controlled within a predetermined range. However, blocking resistance may be insufficient at that time. At this time, the storage elastic modulus G at 120 ° C. measured by a rheometer is obtained by adjusting the glass transition temperature of the resin used for the shell to be higher than the glass transition temperature of the resin used for the core with a toner / core structure. Sufficient blocking resistance can be obtained while controlling 'within a predetermined range.
  • Tg Glass transition temperature
  • DSC differential scanning calorimeter
  • the amount of the crosslinking agent may be increased), and a plasticizer (for example, wax or crystalline resin) having a melting point of 100 ° C. or lower for plasticizing the binder resin may be increased.
  • a plasticizer for example, wax or crystalline resin
  • the reverse design may be performed.
  • the “monomer component having a high Tg” is a monomer component constituting a homopolymer having a high Tg.
  • the toner for developing an electrostatic charge image of the present invention preferably contains toner mother particles.
  • the toner base particles are formed by coating shell fine particles with “a core component containing at least a binder resin (for example, polymer primary particles) and a colorant”.
  • the shell fine particles may contain a charge control agent or the like as required, and it is preferable that wax is contained from the viewpoint of preventing offset on the high temperature side. Furthermore, it is more preferable that the wax is contained in a state of being substantially encapsulated in the binder resin since problems caused by wax release such as filming can be solved.
  • the binder resin is not particularly limited as long as it is generally used as a binder resin in the production of toner.
  • polystyrene resin poly (meth) acrylic resin, polyolefin resin, epoxy resin
  • thermoplastic resins such as resins and polyester resins, and mixtures of these resins.
  • a monomer generally used in producing a toner binder resin can be appropriately used.
  • a polymerizable monomer having an acidic group hereinafter sometimes simply referred to as an acidic monomer
  • a polymerizable monomer having a basic group hereinafter simply referred to as a basic monomer
  • Any polymerizable monomer of a polymerizable monomer having neither an acidic group nor a basic group hereinafter sometimes referred to as other monomer can be used.
  • the acidic monomer examples include a polymerizable monomer having a carboxyl group such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and cinnamic acid; a polymerizable monomer having a sulfonic acid group such as sulfonated styrene; Polymerizable monomers having a sulfonamide group such as vinylbenzenesulfonamide; and the like.
  • basic monomers include aromatic vinyl compounds having an amino group such as aminostyrene; nitrogen-containing heterocyclic-containing polymerizable monomers such as vinylpyridine and vinylpyrrolidone; amino acids such as dimethylaminoethyl acrylate and diethylaminoethyl methacrylate. (Meth) acrylic acid ester having a group;
  • These acidic monomers and basic monomers contribute to the dispersion stabilization of the toner base particles. It may be used singly or as a mixture of plural kinds, and may exist as a salt with a counter ion.
  • these acidic monomer and basic monomer may be contained in one or both of the core component and the shell fine particle of the toner base particle.
  • the “resin component comprising an acidic or basic monomer” and the “resin component comprising a binder resin and an acidic or basic monomer” constituting the shell fine particles are not the same composition. This is because the shell component and the core component need to be configured with an extraordinar balance that the second measurement is more compatible than the first measurement of tan ⁇ . It is particularly important in the present invention in the sense that it is adjusted.
  • the toner base particles are produced by attaching shell fine particles to the core component in water with respect to the acid value (base number) depending on the addition amount of the acidic (or basic) monomer
  • the acid value (base value) of the shell fine particle component is preferably higher than the core component of the core component.
  • the acid value (base value) of the shell fine particle component is set to 1. It is preferable to adjust from 1 to 2.6 times. If this magnification is too small, the shell fine particles may be buried in the core component, and satisfactory blocking resistance may not be obtained. If this magnification is too large, the shell fine particles are more stable in water than the core component. It is because it may pass and it may not adhere.
  • styrenes such as styrene, methyl styrene, chlorostyrene, dichlorostyrene, pt-butyl styrene, pn-butyl styrene, pn-nonyl styrene; methyl acrylate, acrylic acid Acrylic esters such as ethyl, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hydroxyethyl acrylate, 2-ethylhexyl acrylate; methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate , Methacrylates such as isobutyl methacrylate, hydroxyethyl methacrylate, 2-ethylhexyl methacrylate; acrylamide, N-propylacrylamide, N, N-dimethylacrylamide, N, N, N-
  • a polyfunctional monomer is used together with the above-mentioned polymerizable monomer.
  • divinylbenzene, hexanediol diacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol examples include dimethacrylate, tetraethylene glycol dimethacrylate, hexaethylene glycol dimethacrylate, nonaethylene glycol dimethacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, neopentyl glycol dimethacrylate, neopentyl glycol diacrylate, diallyl phthalate, and the like.
  • a bifunctional polymerizable monomer is preferable, and divinylbenzene, hexanediol diacrylate and the like are particularly preferable. These polyfunctional polymerizable monomers may be used alone or as a mixture of plural kinds.
  • a polymerizable monomer having a reactive group in a pendant group for example, glycidyl methacrylate, methylol acrylamide, acrolein, or the like can be used.
  • a known chain transfer agent can be used as necessary.
  • the chain transfer agent include t-dodecyl mercaptan, dodecanethiol, diisopropyl xanthogen, carbon tetrachloride, trichlorobromomethane and the like.
  • the chain transfer agent may be used alone or in combination of two or more, and is preferably used in an amount of 0 to 5% by mass based on the polymerizable monomer.
  • the number average molecular weight in gel permeation chromatography is preferably 5000 or more, more preferably 8000 or more, More preferably, it is 10,000 or more, preferably 30,000 or less, more preferably 20,000 or less, and still more preferably 15,000 or less.
  • the weight average molecular weight in GPC is preferably 70,000 or more, more preferably 90,000 or more, preferably 300,000 or less, more preferably 250,000 or less.
  • examples of the divalent alcohol that is a component of the polyester resin include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, and 1,3-propylene.
  • Diols such as glycol, 1,4-butanediol, neopentyl glycol, 1,4-butenediol, 1,5-pentanediol, 1,6-hexanediol; bisphenol A, hydrogenated bisphenol A, polyoxyethylenated Bisphenol A alkylene oxide adducts such as bisphenol A and polyoxypropylenated bisphenol A;
  • divalent acid that is a component of the polyester resin
  • examples of the divalent acid that is a component of the polyester resin include maleic acid, fumaric acid, citraconic acid, itaconic acid, glutaconic acid, phthalic acid, isophthalic acid, terephthalic acid, cyclohexanedicarboxylic acid, and succinic acid.
  • alkenyl succinic acids such as n-dodecenyl succinic acid, n-dodecyl succinic acid, or alkyl succinic acids
  • other divalent organics examples include acids.
  • a polyfunctional monomer such as a trihydric or higher polyhydric alcohol or trihydric or higher acid is used together with the above dihydric alcohol or acid.
  • the trihydric or higher polyhydric alcohol include sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, sucrose, 1,2, 4-butanetriol, 1,2,5-pentanetriol, glycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, 1,3,5-tri Examples include hydroxymethylbenzene and others.
  • Examples of the trivalent or higher acid include 1,2,4-benzenetricarboxylic acid, 1,2,5-benzenetricarboxylic acid, 1,2,4-cyclohexanetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid, 1,2,4-naphthalenetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxyl-2-methyl-2-methylenecarboxypropane, tetra (methylenecarboxyl) methane, 1,2,7, Examples include 8-octanetetracarboxylic acid, anhydrides thereof, and the like.
  • the acid value of the polyester resin when the toner base particles are produced by attaching the shell fine particles to the core component in water, the acid value of the shell fine particle component is higher than the core component of the toner base particles. More specifically, it is preferable to adjust the acid value of the shell fine particle component to 1.1 to 2.6 times the acid value of the core component.
  • polyester resins can be synthesized by a usual method. Specifically, conditions such as reaction temperature (170 to 250 ° C.), reaction pressure (5 mmHg to normal pressure) and the like are determined according to the reactivity of the monomer, and the reaction is terminated when predetermined physical properties are obtained. .
  • the number average molecular weight in GPC is preferably 2000 to 20000, and more preferably 3000 to 12000.
  • the wax used in the toner for developing an electrostatic charge image of the present invention includes olefin waxes such as low molecular weight polyethylene, low molecular weight polypropylene and copolymer polyethylene; paraffin wax; behenyl behenate, montanic acid ester, stearic acid Ester waxes having long chain aliphatic groups such as stearyl; Plant waxes such as hydrogenated castor oil and carnauba wax; Ketones having long chain alkyl groups such as distearyl ketone; Silicones having alkyl groups; Higher grades such as stearic acid Examples include fatty acid; long chain fatty acid (pentaerythritol, trimethylolpropane, glycerin and the like) polyhydric alcohol ester or partial ester thereof; higher fatty acid; long chain fatty acid (pentaerythritol, trimethylolpropane, glycerin and the like) polyhydric alcohol ester or partial ester thereof
  • the wax used in the toner for developing an electrostatic image of the present invention is preferably a hydrocarbon wax such as paraffin wax or Fischer-Tropsch wax; an ester wax; a silicone wax; Among them, ester waxes are more preferable, monoester waxes mainly containing C18 and / or C22 hydrocarbons are more preferable, and behenyl behenate, stearyl behenate, behenyl stearate, and those mainly containing them are particularly preferable. preferable. Waxes may be used alone or in combination.
  • the melting point peak temperature of the wax (the endothermic peak top at the time of the second temperature increase of Tg measured by DSC of the toner) is preferably 90 ° C. or less, more preferably 85 ° C. or less, still more preferably 80 ° C. or less, and preferably 50 ° C. or more. 60 ° C. or higher is more preferable, and 65 ° C. or higher is more preferable.
  • the melting point peak temperature of the wax is too low, blocking resistance tends to deteriorate, and when the melting point peak temperature of the wax is too high, excellent fixability and high gloss property at low temperatures tend to be impaired.
  • the difference between the melting point peak temperature of the wax and the onset temperature of the wax (the baseline temperature before the endothermic peak in the second Tg measurement by toner DSC and the intersection temperature of the tangent at the first inflection point appearing before the endothermic peak). Is preferably 15 ° C. or lower, more preferably 10 ° C. or lower.
  • the onset temperature of the wax is preferably 86 ° C. or lower, more preferably 81 ° C. or lower, still more preferably 76 ° C. or lower, 46 ° C. or higher, more preferably 56 ° C. or higher, and still more preferably 61 ° C. or higher.
  • the onset temperature is low, excellent fixability and high gloss at low temperatures tend to improve, and when the onset temperature is high, blocking resistance tends to improve.
  • the amount of wax used is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and still more preferably 5 parts by mass or more with respect to 100 parts by mass of the toner. Moreover, it is preferable that it is 35 mass parts or less, More preferably, it is 30 mass parts or less, More preferably, it is 25 mass parts or less.
  • a known colorant can be arbitrarily used as the colorant.
  • Specific examples of the colorant include carbon black, aniline blue, phthalocyanine blue, phthalocyanine green, Hansa yellow, rhodamine dyes, chrome yellow, quinacridone, benzidine yellow, rose bengal, triallylmethane dye, monoazo Any known dyes and pigments such as disazo dyes and condensed azo dyes can be used alone or in combination.
  • yellow is a monoazo, disazo, polyazo, or condensed azo dye
  • magenta is a quinacridone and / or monoazo dye
  • cyan is a phthalocyanine dye
  • black It is preferable to use carbon black or the like.
  • the magenta toner contains a quinacridone dye / pigment and / or a monoazo dye / pigment
  • the black toner contains carbon black.
  • the cyan toner preferably contains a copper phthalocyanine dye / pigment
  • the yellow toner preferably contains at least one dye / pigment selected from a monoazo, disazo, and condensed azo dye.
  • C.I. I. Pigment blue 15: 3, C.I. I. Pigment Blue 15: 4 yellow includes C.I. I. Pigment Yellow 74, C.I. I. Pigment Yellow 83, a C.I. I. Pigment yellow 93, C.I. I. Pigment yellow 155, C.I. I. Pigment yellow 180, C.I. I. Pigment Yellow 185 and magenta include C.I. I. Pigment red 48: 1, C.I. I. Pigment red 53: 1, C.I. I. Pigment red 57: 1, C.I. I. Pigment Red 5 and C.I. I. Pigment red 122, C.I. I. Pigment Red 209, C.I. I. And CI Pigment Red 269 (238).
  • the colorant is preferably used in an amount of 3 to 20 parts by mass with respect to 100 parts by mass of the toner.
  • charge control agent Any known charge control agent can be used.
  • charge control agents include nigrosine dyes, amino group-containing vinyl copolymers, quaternary ammonium salt compounds, polyamine resins and the like for positive chargeability, and chromium, zinc, iron and cobalt for negative chargeability.
  • metal-containing azo dyes containing metals such as aluminum, salts of salicylic acid or alkylsalicylic acid with the aforementioned metals, metal complexes, and the like.
  • the amount of the charge control agent is preferably 0.1 to 25 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the toner.
  • the charge control agent may be mixed inside the toner base particles, or may be used in a form adhered to the surface of the toner base particles.
  • the toner base particles are composed of the core component and shell fine particles existing around the core component.
  • the core component and / or the shell fine particles may contain a wax, a charge control agent, or the like as necessary.
  • the core component and / or the shell fine particles preferably contain a wax.
  • Examples of the type of “shell fine particle component” that is a component of the shell fine particle include the above-described resins that are generally used as a binder resin when a toner is produced.
  • the kind of resin is not specifically limited, For example, thermoplastic resins, such as a polystyrene-type resin, a poly (meth) acrylic-type resin, a polyolefin-type resin, an epoxy-type resin, a polyester-type resin, the mixture of these resins, etc. are mentioned. Detailed resin selection will be described later.
  • the volume average particle size of the toner for developing an electrostatic charge image of the present invention is preferably 4 ⁇ m or more, and more preferably 5 ⁇ m or more.
  • the volume average particle size is preferably 8 ⁇ m or less, and more preferably 7 ⁇ m or less.
  • the average circularity measured using a flow type particle image analyzer FPIA-3000 is preferably 0.95 or more, more preferably 0.96 or more. Yes, preferably 0.99 or less.
  • the toner for developing an electrostatic image of the present invention may be produced by any known method and is not particularly limited.
  • Emulsion polymerization A method of preparing a binder resin as “polymer primary particles” smaller than the toner base particle size and obtaining a dispersion of the polymer primary particles is described below. The same method can be used for the production of shell fine particles.
  • Polymer primary particles having a styrene or (meth) acrylic monomer as a constituent element can be obtained by emulsion polymerization of the monomer composition and, if necessary, a chain transfer agent using an emulsifier.
  • emulsifiers can be used, but one or more emulsifiers selected from cationic surfactants, anionic surfactants, and nonionic surfactants can be used in combination.
  • Examples of the cationic surfactant include dodecyl ammonium chloride, dodecyl ammonium bromide, dodecyl trimethyl ammonium bromide, dodecyl pyridinium chloride, dodecyl pyridinium bromide, hexadecyl trimethyl ammonium bromide and the like.
  • anionic surfactant examples include fatty acid soaps such as sodium stearate and sodium dodecanoate, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium lauryl sulfate.
  • Nonionic surfactants include, for example, polyoxyethylene dodecyl ether, polyoxyethylene hexadecyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene lauryl ether, polyoxyethylene sorbitan monooleate ether, monodecanoyl sucrose, etc. Is mentioned.
  • the amount of the emulsifier used is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the polymerizable monomer.
  • the amount of the emulsifier used is increased, the particle size of the obtained polymer primary particles is reduced, and when the amount used is reduced, the particle size of the obtained polymer primary particles is increased.
  • 1 type, or 2 or more types such as partially or fully saponified polyvinyl alcohol, such as polyvinyl alcohol, cellulose derivatives, such as a hydroxyethyl cellulose, can be used together with these emulsifiers as a protective colloid.
  • a known polymerization initiator can be used alone or in combination of two or more as required.
  • persulfates such as potassium persulfate, sodium persulfate, ammonium persulfate, and the like
  • redox initiators combining these persulfates as a component with a reducing agent such as acidic sodium sulfite, hydrogen peroxide, 4,4
  • Water-soluble polymerization initiators such as' -azobiscyanovaleric acid, t-butyl hydroperoxide, cumene hydroperoxide, and the like, and redox in which these water-soluble polymerization initiators are combined with reducing agents such as ferrous salts as one component Initiators, benzoyl peroxide, 2,2′-azobis-isobutyronitrile, and the like are used.
  • These polymerization initiators may be added to the polymerization system before, simultaneously with, or after the addition of the polymerizable monomer, and these addition methods may be combined as necessary
  • wax In order to disperse the wax with a suitable dispersed particle diameter in the toner, it is preferable to use so-called seed polymerization in which wax is added as a seed during emulsion polymerization. By adding as a seed, the wax is finely and uniformly dispersed in the toner, so that deterioration of the chargeability and heat resistance of the toner can be suppressed.
  • a wax / long-chain polymerizable monomer dispersion prepared by previously dispersing a wax in a water-based dispersion medium with a long-chain polymerizable monomer such as stearyl acrylate is prepared. The polymerizable monomer can also be polymerized in the presence of.
  • Emulsion polymerization is possible using a colorant as a seed, but if a polymerizable monomer is polymerized in the presence of the colorant, the metal in the colorant affects radical polymerization, making it difficult to control the molecular weight and rheology of the resin. Therefore, it is preferable to add the colorant dispersion in the next step without adding the colorant during the emulsion polymerization.
  • 3.1.1.2 Method of emulsifying resin
  • the resin After obtaining the resin by a method such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, etc., the resin is mixed with an aqueous medium, and the temperature is higher than either the melting point of the resin or the glass transition temperature.
  • the polymer primary particles are obtained by heating to a low viscosity and emulsifying by applying shearing force.
  • Examples of the emulsifier for applying the shearing force include a homogenizer, a homomixer, a pressure kneader, an extruder, and a media disperser. If the viscosity of the resin during emulsification is high and does not decrease to the desired particle size, increase the temperature using an emulsifier capable of pressurization to atmospheric pressure or higher, and emulsify with the resin viscosity lowered to obtain the desired particle size. Polymer primary particles having a diameter can be obtained.
  • a method of reducing the viscosity of the resin by mixing an organic solvent in advance with the resin may be used.
  • the organic solvent to be used is not particularly limited as long as it dissolves the resin, but a ketone solvent such as tetrahydrofuran (THF), methyl acetate, ethyl acetate, and methyl ethyl ketone, and a benzene solvent such as benzene, toluene, and xylene. Etc. can be used.
  • an alcohol solvent such as ethanol or isopropyl alcohol may be added to water or resin for the purpose of improving the affinity with an aqueous medium and controlling the particle size distribution.
  • a salt such as sodium chloride or potassium chloride, ammonia or the like may be added.
  • an emulsifier or a dispersant may be added.
  • water-soluble polymers such as polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, and sodium polyacrylate; the above-mentioned emulsifiers; inorganic compounds such as tricalcium phosphate, aluminum hydroxide, calcium sulfate, calcium carbonate, and barium carbonate. It is done.
  • the amount used is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the resin. When a resin containing an acidic group or a basic group is used, the amount of emulsifier or dispersant added can be reduced, but the hygroscopicity of the resin increases and the chargeability may deteriorate.
  • phase inversion emulsification method may be used.
  • an organic solvent, a neutralizing agent, and a dispersion stabilizer are added to the resin as necessary, and an aqueous medium is added dropwise with stirring to obtain emulsified particles.
  • an organic solvent is removed to obtain an emulsion.
  • the organic solvent the same organic solvents as those described above can be used.
  • the neutralizing agent general acids such as nitric acid, hydrochloric acid, sodium hydroxide and ammonia, and alkalis can be used.
  • the volume average particle diameter of the obtained polymer primary particles is usually 0.02 ⁇ m or more, preferably 0.05 ⁇ m. More preferably, it is 0.10 ⁇ m or more, usually 3 ⁇ m or less, preferably 2 ⁇ m or less, particularly preferably 1 ⁇ m or less.
  • volume average particle diameter of the polymer primary particles is equal to or more than the lower limit value, it is easy to control the aggregation rate in the aggregation process.
  • the volume average particle size of the polymer primary particles is not more than the above upper limit value, the toner base particles obtained by agglomeration are unlikely to have a large particle size, and toner base particles having a target particle size can be obtained. It becomes easy.
  • the polymer primary particles, the colorant particles, the charge control agent to be blended as necessary, and the wax are mixed simultaneously or sequentially.
  • a dispersion of each component that is, a polymer primary particle dispersion, a colorant particle dispersion, a charge control agent dispersion and a wax fine particle dispersion, if necessary, are mixed and mixed to obtain a dispersion mixture. It is preferable from the viewpoint of the uniformity of the composition and the uniformity of the particle diameter.
  • the colorant is preferably used in the state of being dispersed in water in the presence of an emulsifier, and the volume average particle diameter of the colorant particles is preferably 0.01 ⁇ m or more, particularly preferably 0.05 ⁇ m or more, preferably 3 ⁇ m. Hereinafter, it is particularly preferably 1 ⁇ m or less.
  • agglomeration is usually carried out in a tank equipped with a stirrer.
  • the particle size of the particle aggregate is controlled from the balance between the cohesive force between the particles and the shearing force by stirring.
  • the cohesive force can be increased by heating or adding an electrolyte.
  • the electrolyte may be any of acid, alkali, and salt, and may be either organic or inorganic.
  • the acid may be hydrochloric acid, nitric acid, sulfuric acid, citric acid, or the like.
  • inorganic salts having a divalent or higher polyvalent metal cation are preferred.
  • the amount of electrolyte added varies depending on the type of electrolyte, the target particle size, etc., but is preferably 0.02 parts by mass or more, more preferably 0.05 parts by mass or more with respect to 100 parts by mass of the solid component of the mixed dispersion. preferable.
  • the amount of electrolyte added is preferably 25 parts by mass or less, more preferably 15 parts by mass or less, and particularly preferably 10 parts by mass or less. When the amount added is too small, the progress of aggregation is delayed, and fine particles of 1 ⁇ m or less remain after aggregation, or the average particle size of the obtained particle aggregate does not reach the target particle size.
  • the aggregation temperature in the case of performing aggregation by adding an electrolyte is preferably 20 ° C. or higher, particularly preferably 30 ° C. or higher, preferably 70 ° C. or lower, particularly preferably 60 ° C. or lower.
  • the time required for agglomeration is optimized depending on the shape of the apparatus and the processing scale.
  • the toner base particles In order to reach the target particle size, the toner base particles must be held at the predetermined temperature for at least 30 minutes. Is preferred.
  • the temperature rise until reaching the predetermined temperature may be raised at a constant rate, or may be raised stepwise.
  • the timing of adding the shell fine particles may be any timing, and may be charged simultaneously with the raw material of the core component (for example, polymer primary particles, pigment, wax, etc.), or a part or all of the raw material of the core component may be added. You may add after making it aggregate.
  • the raw material of the core component for example, polymer primary particles, pigment, wax, etc.
  • the shell component and shell fine particles When the core component and shell fine particles are charged simultaneously, if the polarity of the shell fine particles is designed to be thermodynamically intermediate between the core component and the medium (for example, water), the shell component will spontaneously surround the core component. Fine particles are attached. When the shell fine particles are adhered in a wet medium such as water and / or an organic solvent, the composition of the raw material of the core component is determined (when the toner base particles are produced by aggregating particles smaller than the toner base particles). It is preferable to add the shell fine particles after agglomeration of a part or all of the core component) from the viewpoint of arranging the shell fine particles on the surface of the core component.
  • a wet medium such as water and / or an organic solvent
  • composition and preparation method of the shell fine particles include those described above.
  • the addition may be performed once or a plurality of times.
  • the first shell fine particles and the shell fine particles after the next time may be different or any combination.
  • the temperature of the aging step is preferably at least Tg of the polymer primary particles, more preferably at least 5 ° C higher than the Tg of the polymer primary particles.
  • the time required for the ripening step varies depending on the shape of the intended toner base particles, but preferably reaches 0.1 to 10 hours, particularly preferably 0.5 to 5 after reaching the Tg or more of the polymer primary particles. It is desirable to keep the time.
  • a surfactant adjust pH, or use both in combination after the agglomeration step, preferably before the aging step or during the aging step.
  • a surfactant used here, one or more emulsifiers that can be used in producing the polymer primary particles can be selected and used, and particularly used when the polymer primary particles are produced. It is preferable to use the same emulsifier.
  • the addition amount in the case of adding the surfactant is not limited, but is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and preferably with respect to 100 parts by mass of the solid component of the mixed dispersion. Is 20 parts by mass or less, more preferably 15 parts by mass or less, and still more preferably 10 parts by mass or less.
  • toner By controlling the time of the aging process, various types of toner can be used depending on the purpose, such as a cocoon shape that maintains the shape of the aggregated polymer primary particles, a potato type that has advanced fusion, and a spherical shape that has undergone further fusion. Mother particles can be produced.
  • suspension stabilizer examples include calcium phosphate, magnesium phosphate, calcium hydroxide, magnesium hydroxide and the like. These may be used alone or in combination of two or more, and an amount of 1 part by mass or more and 10 parts by mass or less is preferable with respect to 100 parts by mass of the polymerizable monomer.
  • the suspension stabilizer may be added to the polymerization system before, simultaneously with, or after the addition of the polymerizable monomer, and these addition methods may be combined as necessary.
  • the monomer composition contains a polar resin such as polyester resin or carboxyl group-containing styrene resin
  • the monomer composition is dispersed in an aqueous medium to form droplets. Easy to move to the vicinity of the droplet surface.
  • toner mother particles having a difference in composition between the inside and the surface can be obtained.
  • a polar resin having a Tg higher than the Tg after polymerization of the monomer is selected, a structure in which the Tg inside the toner base particles is low and a high Tg resin exists on the surface is obtained.
  • the blocking resistance of the toner obtained by coating the core component with shell fine particles is enhanced. However, when this method is used in combination, it becomes easier to obtain good blocking resistance.
  • the timing for adding the shell fine particles may be any timing.
  • the shell fine particles are dissolved in the monomer composition and then dispersed in an aqueous medium so that the shell fine particles are thermodynamically core components.
  • the polarity of the shell fine particles can also be designed to come to the interface between water and water.
  • shell fine particles may be added, or the monomer composition of the core component may be dispersed and a part of the polymerizable monomer of the core component.
  • the shell fine particles may be added after almost all has been polymerized.
  • the shell fine particles are added.
  • composition and preparation method of the shell fine particles examples include those described above.
  • the addition may be performed once or a plurality of times.
  • the first shell fine particles and the next and subsequent shell fine particles may be different or any combination.
  • a pH adjuster, a polymerization degree adjuster, an antifoaming agent, and the like can be appropriately added to the reaction system.
  • toner mother particles by dissolution suspension
  • An oil-based dispersion in which at least a binder resin and a colorant and, if necessary, a wax and a charge control agent are dissolved or dispersed in an organic solvent is prepared, and this is used as an aqueous medium. Disperse in. Thereafter, the organic solvent is removed from the dispersion to obtain toner mother particles.
  • the shell fine particles may be added in advance to the oil-based dispersion, may be added after being dispersed in an aqueous medium, or may be added after removing the organic solvent.
  • composition and preparation method of the shell fine particles include those described above.
  • the addition of the shell fine particles may be performed once or a plurality of times.
  • the first shell fine particles and the shell fine particles after the next time may be different or any combination.
  • aqueous medium water alone may be used, but a solvent miscible with water may be used in combination.
  • a dispersant can be used.
  • the use of a dispersant is preferable because the particle size distribution becomes sharp and the dispersion is stable.
  • the dispersant the same emulsifiers as those used in the above emulsion polymerization can be used.
  • various hydrophilic polymer substances that form a polymeric protective colloid in an aqueous medium can be present.
  • inorganic fine particles and / or polymer fine particles can be used.
  • the inorganic fine particles various conventionally known inorganic compounds that are insoluble or hardly soluble in water are used. Examples of such materials include tricalcium phosphate, calcium carbonate, titanium oxide, colloidal silica, and hydroxyapatite.
  • the polymer fine particles may be regarded as the shell fine particles.
  • a known dispersing machine such as a low-speed shearing type, a high-speed shearing type, a friction type, a high-pressure jet type, or an ultrasonic wave can be applied as a dispersing device.
  • An oil-based dispersion liquid may be prepared using a prepolymer having a reactive group instead of the binder resin, and after dispersing in an aqueous medium, the reactive group may be reacted to extend the resin.
  • the prepolymer since the prepolymer has a relatively low molecular weight, it is difficult to increase the viscosity of the oil-based dispersion and the dispersion in the aqueous medium is facilitated.
  • the colorant may be prepared in advance as a master batch combined with a resin, and this may be dispersed in an organic solvent.
  • a method of removing the organic solvent there is a method of volatilizing the organic solvent while reducing the pressure at room temperature or under heating.
  • toner mother particles having a difference in composition between the inside and the surface can be obtained.
  • the polymer fine particles used for the dispersant may be regarded as the above-mentioned shell fine particles and adjusted to the physical properties of the shell fine particles, thereby creating a structure in which the shell fine particles (polymer fine particles) are present on the surface of the toner base particles.
  • toner mother particles As described above, “Method of aggregating particles smaller than toner mother particles to prepare toner mother particles”, “Method of preparing toner mother particles by suspension polymerization”, “Toner mother by dissolution suspension”
  • the toner base particles produced by the “method for producing particles” and the like are separated from the aqueous solvent, washed, dried, subjected to an external addition treatment, and supplied to an electrostatic charge image developing toner.
  • the liquid used for washing includes water, but it can also be washed with an aqueous solution of acid or alkali. Moreover, it can also wash
  • the toner base particles are made into a thick slurry or wet cake by filtration, decantation, etc., and a liquid for newly washing is added thereto to disperse the toner base particles. preferable.
  • the toner base particles after washing are preferably collected in the form of a wet cake in terms of handling in the subsequent drying process.
  • a fluidized drying method such as a vibration type fluidized drying method or a circulation type fluidized drying method, an air flow drying method, a vacuum drying method, a freeze drying method, a spray drying method, a flash jet method or the like is used.
  • Operating conditions such as temperature, air volume, and degree of reduced pressure in the drying process are optimized as appropriate based on the Tg of the toner particles, the shape, mechanism, size, etc. of the apparatus used.
  • melt-kneading pulverization method is a method in which a charge control agent, a release agent, a magnetic material and the like are dry-mixed with a binder resin and a colorant as necessary, and then an extruder.
  • the toner base particles are obtained by melt kneading and the like, and then pulverized and classified.
  • shell fine particles may be added and adhered to the surface of the core component.
  • toner base particles are prepared in a wet medium (in water and / or in an organic solvent), shell fine particles are added at the same time as the core component (dissolved / dispersed / suspended). Thermodynamically, the shell fine particles may be disposed on the surface of the core component and the wet medium, or after the composition and / or shape of the core component is determined, the shell fine particles are added and physically Alternatively, the surface of the core component may be continuously and / or discontinuously covered with shell fine particles.
  • shell fine particles may be added before and after washing of the core component, or before and after the drying step of the core component. Fine particles may be added. Further, shell fine particles may be added in the external addition step. When shell fine particles are adhered in the external addition step, it is preferable to add the external fine particles after the shell fine particles are added and fixed.
  • the melt-kneading pulverization method in which the toner base particles are produced by a dry method, it is preferable to add shell fine particles before and after the external addition step after the pulverization and classification to adhere the shell fine particles. From the viewpoint of firmly fixing the core component and the shell fine particles, it is particularly preferable to add the shell fine particles in water and / or an organic solvent.
  • the composition such as the molecular weight and the crosslinking density of the binder resin of the core component, the composition and amount of the shell fine particles, the type and amount of the wax are adjusted When adhering in water, the polarity balance between the core component and the shell fine particle component is adjusted, and the composition ratio of the entire toner base particles is adjusted.
  • the composition such as Tg, molecular weight and crosslinking density of the binder resin of the core component, the composition and amount of the shell fine particles, and the kind and amount of the wax are adjusted.
  • the volume median diameter (Dv 50 ) of the shell fine particles is preferably 50 nm or more, more preferably 100 nm or more, preferably 350 nm or less, and more preferably 300 nm or less.
  • the “volume median diameter (Dv 50 )” in the present invention is defined as the value measured by the method described in the examples depending on the size of the particles.
  • the addition amount of the shell fine particles is preferably 2% by mass or more and 60% by mass or less, preferably 5% by mass or more and 50% by mass or less, when the total amount of the solid content of the core component and the shell fine particles is 100% by mass. More preferably, the content is 7% by mass or more and 40% by mass or less.
  • the shell component is desirably disposed in the vicinity of the surface when in the form of toner. As long as it does not deviate from the present invention, the shape may be particulate or spherical or may be a thin film.
  • the composition is such that the binder resin of the core component and the shell component have appropriate compatibility. It is desirable to combine.
  • the measurement is started in a state where the binder resin of the core component and the shell component are in contact without melting.
  • the binder resin of the core component and the shell component are melted together by heating during the first measurement. Therefore, in the second measurement, the measurement is started in a melted state. This difference appears in the difference of TP2 (140 ° C.) / TP1 (140 ° C.). Therefore, the compatibility is adjusted by selecting the type of resin contained in the shell component according to the type of binder resin of the core component.
  • the adjustment method is illustrated, the numerical value quoted in the example is not limited.
  • the binder resin of the core component is a styrene acrylic resin which is a kind of poly (meth) acrylic resin
  • the resin contained in the shell fine particles is also a styrene acrylic resin, and the styrene monomer and the acrylic monomer.
  • the ratio is, for example, when the binder resin of the core component is 70:30, the resin contained in the shell fine particles is 80:20; or the number of parts of the hydrophilic monomer relative to 100 parts by mass of the other monomers, When the binder resin of the core component is 1 part, the resin contained in the shell is 1.5 parts; a hybrid resin of styrene acrylic resin and polyester is used as the binder resin of the core component; Making a difference.
  • the difference between the SP value of the binder resin of the core component and the SP value of the shell fine particle component is 0.1 to 1.1 cal 1/2 / cm 3/2. It is preferably 0.5 to 1.0 cal 1/2 / cm 3/2 .
  • the core component and the shell component when measured with a transmission electron microscope from the viewpoint of increasing the adhesive strength with a recording medium such as paper and reducing member contamination.
  • the measurement conditions of the transmission electron microscope are measured as described in the examples, and the “shadow difference” is the “shadow difference” when a photograph of such measurement is viewed with the naked eye.
  • “there is no shadow difference” means that there is no difference in the dyeing degree (black and white degree) between the core component and the shell component, and the edge of the shell component (that is, the boundary between the core component and the shell component) cannot be seen. .
  • “there is no shadow difference” does not exclude an aspect in which the shadow difference is not clear and the shadow difference is hardly visible.
  • the monomer component of the binder resin constituting the core component and the monomer component constituting the shell fine particles At least one is preferably the same.
  • the interface between the core component and the shell fine particles becomes seamless, and the adhesive strength is increased.
  • the shell is attached to the surface of the core component by a wet process and then the shell is stretched in the external addition process. A part of the shell can be anchored to the core component, the portion protruding from the core component can be stretched to increase the coverage, and a preferable coating form of the shell component can be obtained.
  • the binder resin of the core component is a polyester resin
  • the resin contained in the shell fine particles is also a polyester resin
  • the binder resin is 3 mgKOH / g or less
  • the resin contained in the shell fine particles is 4 mgKOH / g or more and 20 mgKOH / g or less
  • the binder resin does not have a hydroxyl group
  • the resin contained in the shell fine particles has a hydroxyl group
  • the binder resin and the shell fine particles are melted when the toner base particles are produced. ° C) and TP1 (140 ° C) take almost the same value. If the compatibility between the binder resin and the shell fine particles is extremely low, the toner structure is not melted by the heat of the first measurement, and the structure of the toner is maintained, so that TP2 (140 ° C.) and TP1 (140 ° C.) have almost the same value. Take.
  • the shell fine particles contain a resin, but may contain other components such as wax, a charge control agent and the like.
  • the number average molecular weight by GPC of the resin contained in the shell fine particles is preferably 5000 or more, more preferably 8000 or more, still more preferably 10,000 or more, preferably 50,000 or less, more preferably 40,000 or less, still more preferably Is desirably 35,000 or less.
  • the weight average molecular weight by GPC of the resin contained in the shell fine particles is preferably 20,000 or more, more preferably 30,000 or more, preferably 300,000 or less, more preferably 200,000 or less.
  • the Tg of the shell fine particles is preferably 40 ° C or higher, more preferably 45 ° C or higher, preferably 90 ° C or lower, and more preferably 70 ° C or lower.
  • the Tg of the shell fine particles is preferably higher than the Tg of the binder resin contained in the core component, more preferably 5 ° C. or higher, and even more preferably 7 ° C. or higher.
  • the toner can satisfy the ranges of TP2 (140 ° C.) / TP1 (140 ° C.) and TP1 (130 ° C.).
  • the difference between the Tg of the binder resin contained in the core component and the Tg of the shell fine particles is preferably 25 ° C. or less, more preferably 20 ° C. or less, from the viewpoint of excellent fixability at low temperatures.
  • the shell fine particles are arranged in the vicinity of the surface of the toner base particles. is required. Therefore, as an effective composition of the shell fine particles, when toner base particles are prepared in a wet medium (water and / or an organic solvent), a composition that is more compatible with the medium than the binder resin can be mentioned.
  • a composition that is more compatible with the medium than the binder resin can be mentioned.
  • the medium is water
  • the ratio of the acidic monomer or basic monomer is higher than that of the binder resin of the core component, and the acidic monomer or basic is 100 parts by mass of the other monomers.
  • the monomer content is set to 1.0 part by mass or more; an ionic polymerization initiator is used; and the like.
  • the mass ratio of the binder resin contained in the core component and the resin contained in the shell fine particles is preferably 8/92 or more, more preferably 15/85 or more, and preferably 50 / 50 or less, more preferably 40/60 or less.
  • the shell layer can be thinly and uniformly formed, and blocking resistance and excellent fixability at low temperatures can be realized.
  • External attachment it is preferable to add an external additive in order to obtain the physical properties of the toner for developing an electrostatic charge image of the present invention and to improve the fluidity and charge control property of the toner. Since the external additive adheres to the entire surface of the toner base particles, it is preferable that the portion where the shell component does not exist is also coated with the external additive.
  • the external additive can be appropriately selected from various inorganic or organic fine particles. Two or more kinds of external additives may be used in combination.
  • Inorganic fine particles include silicon carbide, boron carbide, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, tantalum carbide, niobium carbide, tungsten carbide, chromium carbide, molybdenum carbide, calcium carbide, and other carbides, boron nitride, titanium nitride.
  • nitrides such as zirconium nitride, various borides such as zirconium boride, various oxides such as titanium oxide, calcium oxide, magnesium oxide, zinc oxide, copper oxide, aluminum oxide, cerium oxide, silica, colloidal silica, titanium
  • titanate compounds such as calcium oxide, magnesium titanate, strontium titanate, phosphate compounds such as calcium phosphate, sulfides such as molybdenum disulfide, fluorides such as magnesium fluoride and fluorocarbon, aluminum stearate, stearyl Calcium, zinc stearate, various metal soaps such as magnesium stearate, talc, bentonite, various carbon black, magnetite, can be used ferrite.
  • organic fine particles fine particles such as styrene resin, acrylic resin, epoxy resin, and melamine resin can be used.
  • charging stability can be improved by using fine particles containing fluorine atoms.
  • silica, titanium oxide, alumina, zinc oxide, various carbon blacks, conductive carbon blacks, and the like are particularly preferably used.
  • the external additive is prepared by applying the surface of the inorganic or organic fine particles to a silane coupling agent such as hexamethyldisilazane (HMDS) or dimethyldichlorosilane (DMDS), a titanate coupling agent, silicone oil, or dimethyl silicone oil.
  • a silane coupling agent such as hexamethyldisilazane (HMDS) or dimethyldichlorosilane (DMDS)
  • HMDS hexamethyldisilazane
  • DMDS dimethyldichlorosilane
  • a titanate coupling agent silicone oil
  • silicone oil treating agents such as modified silicone oil and amino-modified silicone oil, silicone varnish, fluorine-based silane coupling agent, fluorine-based silicone oil, coupling agent having amino group or quaternary ammonium base
  • Those subjected to surface treatment such as chemical conversion can also be used. Two or more kinds of the treatment agents can be used in combination.
  • the amount of the external additive added is preferably 1.0 part by mass or more, particularly preferably 1.5 parts by mass or more, and preferably 6.5 parts by mass or less with respect to 100 parts by mass of the toner base particles. Part or less is particularly preferable.
  • conductive fine particles may be used as an external additive from the viewpoint of charge control.
  • the conductive fine particles include metal oxides such as conductive titanium oxide, silica and magnetite, or those doped with a conductive substance, conjugated double bonds such as polyacetylene, polyphenylacetylene, and poly-p-phenylene.
  • Examples include organic fine particles obtained by doping a conductive material such as metal to a polymer having carbon, carbon typified by carbon black and graphite, etc., but from the viewpoint that conductivity can be imparted without impairing the fluidity of the toner, conductive oxidation Metal oxide or organic fine particles doped with titanium or its conductive material are more preferable.
  • the lower limit of the content of the conductive fine particles is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, with respect to 100 parts by mass of the toner base particles. It is particularly preferred.
  • the upper limit of the content of the conductive fine particles is preferably 3 parts by mass or less, more preferably 2 parts by mass or less, and particularly preferably 1 part by mass or less.
  • External Addition Method of External Additive examples include a method using a high-speed stirrer such as a Henschel mixer and a method using an apparatus capable of applying a compressive shear stress.
  • the toner can be prepared by a one-stage external addition method in which all external additives are added to the toner base particles simultaneously and externally added, but can also be prepared by a separate external addition method in which each external additive is externally added.
  • a cooling device is installed in the container, and a stepwise external addition is exemplified.
  • the electrostatic image developing toner of the present invention may be used in any form of a two-component developer using the toner together with a carrier, or a magnetic or non-magnetic one-component developer using no carrier.
  • the carrier may be a magnetic substance such as iron powder, magnetite powder or ferrite powder, or a known material such as a resin coating on the surface thereof or a magnetic carrier.
  • the coating resin of the resin coating carrier generally known styrene resin, acrylic resin, styrene acrylic copolymer resin, silicone resin, modified silicone resin, fluororesin, or a mixture thereof can be used.
  • volume median diameter, number median diameter, particle size distribution (Dv 50 / Dn 50 ), average circularity, number average molecular weight (Mn), weight average molecular weight (Mw), emulsion solids were measured as follows. In the present invention, each numerical value is defined as measured as follows.
  • ⁇ Volume median diameter measurement 1> The volume median diameter (Dv 50 ) of particles having a volume median diameter of less than 1 ⁇ m is Nikkiso Co., Ltd. model Microtrac Nanotrac 150 (hereinafter abbreviated as “Nanotrack”) and analysis software Microtrac Particle Analyzer Ver10. Using 1.2-019EE, using ion-exchanged water with an electric conductivity of 0.5 ⁇ S / cm as the solvent, solvent refractive index: 1.333, measurement time: 120 seconds, number of measurements: 5 times Measurement was carried out by the method described in the instructions, and the average value was obtained. Other setting conditions were particle refractive index: 1.59, transparency: transmission, shape: true sphere, density: 1.04.
  • volume median diameter (Dv 50 ) and the number median diameter (Dn 50 ) of particles having a volume median diameter of 1 ⁇ m or more are multisizer III (aperture diameter 100 ⁇ m) (hereinafter referred to as “multisizer”) manufactured by Beckman Coulter, Inc. ”), And the dispersion was made to have a dispersoid concentration of 0.03% by mass using Isoton II manufactured by the same company as a dispersion medium.
  • the particle size distribution was a value obtained by dividing Dv 50 by Dn 50 .
  • a dispersion medium Cell Sheath: Sysmex
  • FPIA 3000 Sysmex
  • THF-soluble component of the polymer primary particle dispersion was measured by gel permeation chromatography (GPC) under the following conditions.
  • GPC gel permeation chromatography
  • Apparatus GPC apparatus HLC-8320 manufactured by Tosoh Corporation, column: TOSOH TSKgel Super HM-H (diameter 6 mm x length 150 mm x 2), solvent: THF, column temperature 40 ° C, flow rate 0.5 mL / min, sample concentration: 0.1 mass %, Calibration curve: standard polystyrene
  • emulsion solid content concentration was obtained by evaporating water by heating a 2 g sample at 195 ° C. for 90 minutes using an infrared moisture meter FD-610 manufactured by Kett Science Laboratory.
  • Tg measurement by a differential scanning calorimeter was performed as follows using Q20 manufactured by TA Instruments. Sample 3 ⁇ 1mg is put in an aluminum pan and weighed precisely to the nearest 0.1 mg. The aluminum pan filled with 3mg of aluminum oxide was used as a reference, and the temperature was increased from 0 ° C to 120 ° C at 10 ° C / min. Warm up. After holding at 120 ° C. for 10 minutes, the temperature was lowered to 0 ° C. at 10 ° C./minute, held for 5 minutes, and then heated again to 120 ° C. at 10 ° C./minute.
  • Tg The temperature at the intersection of the baseline before the endothermic peak at the time of the second temperature rise and the tangent at the first inflection point appearing at 30 to 60 ° C. after the endothermic peak was started was defined as Tg.
  • Tg The temperature at the intersection of the baseline before the endothermic peak at the time of the second temperature rise and the tangent at the first inflection point appearing at 30 to 60 ° C. after the endothermic peak was started was defined as Tg.
  • ⁇ Storage elastic modulus G ′ (120 ° C.)> G ′ at 120 ° C. measured with a rheometer was determined by the following procedure. The measurement was performed as follows using a rheometer ARES (measurement control software TA Orchestrator V7.2.0.2) manufactured by TA Instruments. About 1.3 g of the sample was put in a jig for 20 mm diameter, and pressed at a pressure of 30 kg / cm 2 for 10 minutes by a press machine (5 ton press PE-5Y manufactured by Kodaira Seisakusho), and molded into a pellet.
  • ARES measurement control software TA Orchestrator V7.2.0.2
  • the pellets were set in a measuring apparatus equipped with a circular parallel plate with a diameter of 25 mm and the temperature set at 40 ° C., and then the temperature was raised to 120 ° C. The upper plate was lowered and fused to the jig. Thereafter, it was immediately cooled to 40 ° C. Then, it measured on the following conditions and calculated
  • Measurement frequency 'Frequency' 6.28 rad / sec Initial temperature 'Initial Temp. '40 .0 °C Final temperature 'Final Temp. '165.0 °C Temperature rising rate 'Ramp Rate' 4.0 ° C / min Holding time after temperature rise 'Soak Time After Ramp' 20s (seconds) Measurement cycle time 'Time Per Measurement' 1s (seconds) Distortion 'Strain' 0.1%
  • the softening point measured with a flow tester was determined by the following procedure. The measurement was performed by the following method using a flow tester CFT-500D manufactured by Shimadzu Corporation. About 1.0 g of a sample was pressed into a pellet by a press. The temperature was increased from 60 ° C. to 6 ° C./min under conditions of a die diameter of 1 mm, a die length of 1 mm, and a load of 20 kg. The midpoint temperature from the start of the sample flow to the end of the flow was defined as the softening point.
  • ⁇ Preparation of Wax Dispersion A4 Emulsification Process> 22.50 parts of the ester wax 1 as a raw material, ester wax 3 (manufactured by NOF Corporation, product name: WEP-5, catalog melting point 82 ° C., catalog acid value 0.1 mgKOH / g, catalog hydroxyl value 3 mgKOH / g or less)
  • ester wax 3 manufactured by NOF Corporation, product name: WEP-5, catalog melting point 82 ° C., catalog acid value 0.1 mgKOH / g, catalog hydroxyl value 3 mgKOH / g or less
  • ⁇ Preparation of Wax Dispersion A5 Emulsification Process> Alkyl-modified silicone wax having the following structure (1) as a wax (surface tension 27 mN / m, melting point 63 ° C., heat of fusion 97 J / g, melting peak half-width 10.9 ° C., crystallization peak half-width 17.0 ° C.) 27 0.0 part, 0.3 part of anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd., Neogen SC) and 73.0 parts of demineralized water were heated to 90 ° C and equipped with a 45 ° C inclined three-stage paddle blade. The mixture was mixed for 10 minutes in the CSTR type stirring layer.
  • anionic surfactant Dispersion A5
  • ⁇ Preparation of Polymer Primary Particle B1 Polymerization Step> 10.8 parts of wax dispersion A1 (as a wax component), 256 parts of demineralized water, 0.5% in a reactor equipped with a stirrer, heating / cooling device, concentrating device, and each raw material / auxiliary charging device 0.02 part of iron (II) sulfate heptahydrate aqueous solution was charged, and the temperature was raised to 90 ° C. under a nitrogen stream while stirring.
  • wax dispersion A1 as a wax component
  • demineralized water 0.5% in a reactor equipped with a stirrer, heating / cooling device, concentrating device, and each raw material / auxiliary charging device 0.02 part of iron (II) sulfate heptahydrate aqueous solution was charged, and the temperature was raised to 90 ° C. under a nitrogen stream while stirring.
  • the mixture was cooled to 30 ° C. to obtain milky white primary polymer particles B1.
  • the volume median diameter measured using the nanotrack was 243 nm.
  • the number average molecular weight (Mn) was 13000, and the weight average molecular weight (Mw) was 102000.
  • Solid content concentration was 23.7 mass%, and Tg was 40 degreeC.
  • polymerization step > 10.5 parts of wax dispersion A2 (as a wax component), 282 parts of demineralized water, 0.5% in a reactor equipped with a stirrer, heating / cooling device, concentrating device, and each raw material / auxiliary charging device 0.02 part of iron (II) sulfate heptahydrate aqueous solution was charged, and the temperature was raised to 90 ° C. under a nitrogen stream while stirring.
  • wax dispersion A2 as a wax component
  • demineralized water 0.5% in a reactor equipped with a stirrer, heating / cooling device, concentrating device, and each raw material / auxiliary charging device 0.02 part of iron (II) sulfate heptahydrate aqueous solution was charged, and the temperature was raised to 90 ° C. under a nitrogen stream while stirring.
  • the mixture was cooled to 30 ° C. to obtain milky white polymer primary particles B2.
  • the volume median diameter measured using the nanotrack was 254 nm.
  • the number average molecular weight (Mn) was 16000, and the weight average molecular weight (Mw) was 88,000.
  • the solid content concentration was 20.6% by mass and Tg was 51 ° C.
  • ⁇ Preparation of polymer primary particles B3 polymerization step> 12.5 parts of wax dispersion A3 (as a wax component), 334 parts of demineralized water, 0.5% in a reactor equipped with a stirrer, heating / cooling device, concentrating device, and each raw material / auxiliary charging device 0.02 part of an iron (II) sulfate heptahydrate aqueous solution was charged, and the temperature was raised to 70 ° C. under a nitrogen stream while stirring. Thereafter, with the stirring continued, the following mixture of monomers, an emulsifier aqueous solution, and an iron sulfate aqueous solution that had been previously stirred for 30 minutes with a homogenizer was added over 300 minutes.
  • wax dispersion A3 as a wax component
  • demineralized water 0.5% in a reactor equipped with a stirrer, heating / cooling device, concentrating device, and each raw material / auxiliary charging device 0.02 part of an iron (II) sul
  • the time at which the mixture of the monomers, the emulsifier aqueous solution and the iron sulfate aqueous solution was added was set as the polymerization start, and the following initiator aqueous solution 1 was added all at once 5 minutes before the polymerization start. Thereafter, the following initiator aqueous solution 2 was added over 0 to 300 minutes from the start of polymerization. Then, the following initiator aqueous solution 3 was added over 300 minutes from the start of polymerization for 180 minutes. The temperature was raised to 90 ° C. 300 minutes after the start of polymerization. Heating and stirring were continued until 540 minutes from the start of polymerization.
  • the mixture was cooled to 30 ° C. to obtain milky white polymer primary particles B3.
  • the volume median diameter measured using nanotrack was 190 nm.
  • the number average molecular weight (Mn) was 30000, and the weight average molecular weight (Mw) was 141000.
  • the solid content concentration was 18.8% by mass.
  • ⁇ Preparation of polymer primary particles B4 polymerization step> 10.7 parts of wax dispersion A1 (as a wax component), 253 parts of demineralized water, 0.5% in a reactor equipped with a stirrer, heating / cooling device, concentrating device, and each raw material / auxiliary charging device 0.02 part of iron (II) sulfate heptahydrate aqueous solution was charged, and the temperature was raised to 90 ° C. under a nitrogen stream while stirring.
  • ⁇ Preparation of polymer primary particles B5 polymerization step> 10.8 parts of wax dispersion A1 (as a wax component), 255 parts of demineralized water, 0.5% in a reactor equipped with a stirrer, heating / cooling device, concentrating device, and each raw material / auxiliary charging device 0.02 part of iron (II) sulfate heptahydrate aqueous solution was charged, and the temperature was raised to 90 ° C. under a nitrogen stream while stirring.
  • the mixture was cooled to 30 ° C. to obtain milky white polymer primary particles B5.
  • the volume median diameter measured using the nanotrack was 251 nm.
  • the number average molecular weight (Mn) was 13000 and the weight average molecular weight (Mw) was 72300.
  • the solid content concentration was 23.7% by mass.
  • ⁇ Preparation of shell fine particles C1 polymerization step> 10.5 parts of wax dispersion A2 (as a wax component), 282 parts of demineralized water, 0.5% in a reactor equipped with a stirrer, heating / cooling device, concentrating device, and each raw material / auxiliary charging device 0.02 part of iron (II) sulfate heptahydrate aqueous solution was charged, and the temperature was raised to 90 ° C. under a nitrogen stream while stirring.
  • the mixture was cooled to 30 ° C. to obtain milky white shell fine particles C1.
  • the volume median diameter measured using the nanotrack was 254 nm.
  • the weight average molecular weight (Mw) was 88,000.
  • the solid content concentration was 20.6% by mass and Tg was 51 ° C.
  • ⁇ Preparation of shell fine particles C2 polymerization step>
  • a reactor equipped with a stirrer, heating / cooling device, concentrating device, and each raw material / auxiliary charging device 50.6 parts of wax dispersion A4, 20% DBS as an emulsifier for particle size adjustment (DBS SP) 2.96 parts of an aqueous solution and 350 parts of demineralized water were charged, and the temperature was raised to 75 ° C. under a nitrogen stream while stirring.
  • DBS SP emulsifier for particle size adjustment
  • the mixture was cooled to 30 ° C. to obtain milky white shell fine particles C2.
  • the volume median diameter measured using nanotrack was 158 nm.
  • the weight average molecular weight (Mw) was 59000.
  • the solid content concentration was 20.0% and Tg was 80 ° C.
  • ⁇ Preparation of shell fine particles C3 polymerization step>
  • a reactor equipped with a stirrer, heating / cooling device, concentrating device, and raw material / auxiliary charging device 1.72 parts of 20% DBS aqueous solution and 285 parts of demineralized water as an emulsifier for particle size adjustment (DBS SP)
  • DBS SP demineralized water
  • 0.01 part of 0.5% iron (II) sulfate heptahydrate aqueous solution was charged, and the temperature was raised to 90 ° C. under a nitrogen stream while stirring.
  • the following mixture of monomers and an emulsifier aqueous solution previously stirred for 30 minutes with a homogenizer was added over 300 minutes.
  • the time at which the mixture of the monomers and the aqueous emulsifier solution was started was set as the polymerization start, and the following initiator aqueous solution 1 was added all at once 5 minutes before the start of the polymerization.
  • the following initiator aqueous solution 2 was added over 0 to 300 minutes from the start of polymerization.
  • the following initiator aqueous solution 3 was added over 120 minutes from 300 minutes after the start of polymerization.
  • the temperature was raised to 95 ° C. 300 minutes after the start of polymerization.
  • the following iron sulfate aqueous solution was added 300 minutes after the start of polymerization of the iron sulfate aqueous solution. Heating and stirring were continued until 540 minutes from the start of polymerization.
  • the mixture was cooled to 30 ° C. to obtain milky white shell fine particles C3.
  • the volume median diameter measured using a nanotrack was 141 nm.
  • the weight average molecular weight (Mw) was 63000.
  • the solid content concentration was 19.9% by mass.
  • ⁇ Preparation of shell fine particles C4 polymerization step>
  • a reactor equipped with a stirrer, heating / cooling device, concentrating device, and each raw material / auxiliary charging device 1.72 parts of 20% DBS aqueous solution and 304 parts of demineralized water as an emulsifier for particle size adjustment (DBS SP)
  • DBS SP demineralized water
  • 0.004 part of 0.5% iron (II) sulfate heptahydrate aqueous solution was charged, and the temperature was raised to 90 ° C. under a nitrogen stream while stirring.
  • the mixture was cooled to 30 ° C. to obtain milky white shell fine particles C4.
  • the volume median diameter measured using the nanotrack was 118 nm.
  • the weight average molecular weight (Mw) was 102000.
  • the solid content concentration was 18.9% by mass.
  • ⁇ Preparation of shell fine particles C5 polymerization step> 5.9 parts of wax dispersion A5 (as a wax component) and 323 parts of demineralized water were added to a reactor equipped with a stirrer, heating / cooling device, concentrator, and raw material / auxiliary preparation device, and stirred. The temperature was raised to 90 ° C. under a nitrogen stream.
  • the following mixture of monomers and an emulsifier aqueous solution previously stirred for 30 minutes with a homogenizer was added over 300 minutes.
  • the time at which the mixture of the monomers and the aqueous emulsifier solution was started was set as the polymerization start, and the following initiator aqueous solution 1 was added all at once 5 minutes before the start of the polymerization.
  • the following initiator aqueous solution 2 was added over 0 to 360 minutes from the start of polymerization. Heating and stirring were continued until 420 minutes from the start of polymerization.
  • the mixture was cooled to 30 ° C. to obtain milky white shell fine particles C5.
  • the volume median diameter measured using Nanotrac was 283 nm.
  • the weight average molecular weight (Mw) was 74000.
  • the solid content concentration was 19.6% by mass.
  • Example 1 ⁇ Preparation of toner mother particle dispersion 1: aggregation step>
  • a mixer equipped with a stirrer, a heating / cooling device, and each raw material / auxiliary charging device 60.9 parts (solid content) of polymer primary particles B1 obtained above, 0.12 part of 20% DBS aqueous solution ( Solid content), 19 parts of deionized water, 0.53 part of 5% iron (II) sulfate heptahydrate aqueous solution (solid content), 24 parts of cyan colorant EP-700 (manufactured by Dainichi Seika Co., Ltd.) are stirred. Then, they were added in order and mixed uniformly.
  • cyan colorant EP-700 manufactured by Dainichi Seika Co., Ltd.
  • ⁇ Preparation of toner mother particle 1 washing and drying process>
  • the obtained toner mother particle dispersion 1 was extracted, and suction filtered with an aspirator using 5 types C (Toyo Filter Paper Co., Ltd., No. 5C) filter paper.
  • the cake remaining on the filter paper was transferred to a stainless steel container equipped with a stirrer (propeller blade), and ion-exchanged water having an electric conductivity of 1 ⁇ S / cm was added and stirred uniformly, and then stirred for 30 minutes. After repeating this step until the electric conductivity of the filtrate reached 2 ⁇ S / cm, the obtained cake was dried in a blow dryer set at 40 ° C. for 48 hours to obtain toner mother particles 1. .
  • a sample mill (manufactured by Kyoritsu Riko Co., Ltd.) was preheated to 30 ° C. Thereto, 0.45 parts of external additive W (silica particles) and 0.15 parts of external additive X (positively-charged silica particles) are added to 100 parts of the toner base particles 1 obtained above, and external additives. By adding 1.20 parts of Y (composite oxide particles) and 1.00 parts of external additive Z (large-sized silica particles), stirring and mixing at 4000 rpm for 11 minutes, and adding and sieving Toner 1 was obtained.
  • Example 2 ⁇ Preparation of toner mother particle dispersion 2: aggregation step>
  • a mixer equipped with a stirrer, a heating / cooling device, and each raw material / auxiliary charging device 72.5 parts (solid content) of polymer primary particles B1 obtained above, 0.12 part of 20% DBS aqueous solution ( Solid content), 19 parts of deionized water, 0.53 part of 5% iron (II) sulfate heptahydrate aqueous solution (solid content), 24 parts of cyan colorant EP-700 (manufactured by Dainichi Seika Co., Ltd.) are stirred. Then, they were added in order and mixed uniformly.
  • Toner base particles 2 were obtained in the same manner as toner base particles 1 except that toner base particle dispersion 2 was used instead of toner base particle dispersion 1.
  • Toner base particles 3 were obtained in the same manner as toner base particles 1 except that toner base particle dispersion 3 was used instead of toner base particle dispersion 1.
  • Toner base particles 4 were obtained in the same manner as toner base particles 1 except that toner base particle dispersion 4 was used instead of toner base particle dispersion 1.
  • Toner base particles 5 were obtained in the same manner as toner base particles 1 except that toner base particle dispersion 5 was used instead of toner base particle dispersion 1.
  • Toner base particles 6 were obtained in the same manner as toner base particles 1 except that toner base particle dispersion 6 was used instead of toner base particle dispersion 1.
  • Example 3 ⁇ Preparation of toner mother particle dispersion 7: aggregation step>
  • a mixer equipped with a stirrer, a heating / cooling device, and each raw material / auxiliary charging device, 72.5 parts (solid content) of polymer primary particles B5 obtained above, 0.02 part of 20% DBS aqueous solution ( Solid content), 49 parts of deionized water, 0.49 part of 5% iron (II) sulfate heptahydrate aqueous solution (solid content), 24 parts of cyan colorant EP-700 (manufactured by Dainichi Seika Co., Ltd.) Then, they were added in order and mixed uniformly. Subsequently, the internal temperature was raised to 45 ° C., and the temperature was raised stepwise until the volume median diameter became 4.9 ⁇ m. This temperature (primary aggregation temperature) was 48 ° C.
  • Toner base particles 7 were obtained in the same manner as toner base particles 1 except that toner base particle dispersion 7 was used instead of toner base particle dispersion 1.
  • Toner 7 was obtained in the same manner as toner 1 except that toner base particle 7 was used instead of toner base particle 1.
  • Example 1 the wax type of polymer primary particles, number average molecular weight, weight average molecular weight, volume median diameter and weight average molecular weight of shell fine particles, and primary aggregation temperature in the aggregation step -The final rounding temperature is shown in Table 1. Further, Table 1 also shows the volume median diameter (Dv 50 ), number median diameter (Dn 50 ), particle diameter distribution (Dv 50 / Dn 50 ), and average circularity of the toner to which toner base particles are externally added.
  • Dv 50 volume median diameter
  • Dn 50 number median diameter
  • Dv 50 / Dn 50 particle diameter distribution
  • St means styrene
  • BA means butyl acrylate
  • AA acrylic acid
  • molded body About 1.0 g of sample is put in a jig for 18 mm diameter and heated for 10 minutes with a pressing machine (Kodaira Seisakusho 5 ton press PE-5Y) at a clamping force of 1.5 ton (gauge 30 kg / cm 2 ). Pressurized and molded into pellets. In the present invention, this may be abbreviated as “molded body”.
  • Pellet molded body
  • gap is set to 5 mm
  • temperature is set to 20 ° C
  • temperature is set to 120 ° C
  • temperature is set to about 4 minutes
  • the temperature was raised to 120 ° C.
  • the gap was immediately set to 2 mm and fused to the jig, and trimming (removal of the portion protruding from the plate) was performed over about 2 minutes.
  • trimming removal of the portion protruding from the plate
  • the temperature was quickly set to 80 ° C. and cooled to 80 ° C. in about 2 minutes. Then, after holding for about 2 minutes until temperature stabilization, it measured on condition of the following.
  • Apparatus Anton Paar Rheometer MCR302 Temperature control: Upper and lower Peltier temperature control system (P-PTD200 + H-PTD200) Nitrogen flow (200 NL / h) Jig: 20 mm ⁇ disposable parallel plate Temperature: Measurement from 80 ° C to 150 ° C at 4 ° C / min (measurement point interval 15 seconds) Frequency: 1Hz Distortion: 0.1% Gap: 2mm
  • Second temperature rise measurement After the first temperature rise measurement, the mixture was immediately cooled from 150 ° C. to 80 ° C. in about 3 minutes. Then, it hold
  • tan ⁇ TP1 (130 ° C.) appearing at 130 ° C. in the first measurement was obtained.
  • TP2A / TP1A minimum temperature which is the temperature at which TP2A / TP1A shows the minimum value
  • Table 2 shows the results of the storage elastic modulus G ′ (120 ° C.) and the softening point measured in Examples 1 and 2 and Comparative Examples 1 and 3 by the above method.
  • TP1 (140 ° C.) and TP2 (140 ° C.) are measured in the same manner, and “TP2 (140 ° C.) / TP1 (140 ° C.) ) "And the results are shown in Table 3.
  • Tg measurement by a differential scanning calorimeter was performed as follows using Q20 manufactured by TA Instruments. 3 ⁇ 1 mg of toner is put in an aluminum pan and precisely weighed to the order of 0.1 mg. The aluminum pan filled with 3 mg of aluminum oxide is used as a reference, and the temperature is increased from 0 ° C. to 120 ° C. at 10 ° C./min. Warm up. After holding at 120 ° C. for 10 minutes, the temperature was lowered to 0 ° C. at 10 ° C./minute, held for 5 minutes, and then heated again to 120 ° C. at 10 ° C./minute.
  • Tg glass transition temperature
  • Tg when the sample of the polymer primary particles and the shell fine particles was an aqueous dispersion was measured by the above method after freeze-drying to remove moisture. Moreover, about Example 3, Tg was not measured.
  • the collapse load was determined according to the following criteria, and the results are shown in Table 2.
  • A Collapsed with a load of 100 g or less.
  • X It did not collapse unless a load exceeding 100 g was applied.
  • the surface temperature of the roller was increased from 140 ° C. in increments of 5 ° C., and a recording paper carrying an unfixed toner image having an adhesion amount of about 1.2 mg / cm 2 was conveyed to the fixing nip portion to obtain a fixed image.
  • a mending tape was applied to the fixed image, and a 2 kg weight was passed over the fixed image to bring the tape and the fixed image into close contact with each other.
  • the mending tape was peeled off, and the degree to which the fixed image transferred to the tape was visually determined.
  • the above test was performed three times, and the low temperature fixability was determined according to the following criteria based on the average value of three times of fixing temperatures. The results are shown in Table 2.
  • A Fixed at 145 ° C. or lower.
  • X It did not fix at 155 ° C.
  • Pigment Red 2308 that is, magenta pigment, that is, N- (5-chloro-2-methoxyphenyl) -3-hydroxy-4-[[2-methoxy-5, was added to a 300-L container equipped with a stirrer (propeller blade).
  • the pigment premix solution was supplied as a raw material slurry to a wet bead mill and circulated and dispersed.
  • the inner diameter of the stator was ⁇ 75 mm
  • the separator diameter was ⁇ 60 mm
  • the distance between the separator and the disk was 15 mm
  • zirconia beads having a diameter of 50 ⁇ m (true density 6.0 g / cm 3 ) were used as the dispersing medium.
  • the effective internal volume of the stator was 0.5 L
  • the media filling volume was 0.35 L, so the media filling rate was 70% by mass.
  • the pigment premix liquid is continuously supplied from the supply port at a supply speed of 50 L / hr by a non-pulsating metering pump, and the rotor rotation speed is constant (peripheral speed at the rotor tip is 11 m / sec), and continuously from the discharge port.
  • the magenta colorant dispersion was obtained when it reached a predetermined particle size by being repeatedly circulated.
  • the volume median diameter of the magenta colorant dispersion measured with Nanotrac was 151 nm, the pH was 5.8, and the solid content concentration was 25.5% by mass.
  • ⁇ Preparation of toner mother particle dispersion 3A aggregation step> 72.0 parts (solid content) of polymer primary particles B1 obtained above, 0.15 part of 20% DBS aqueous solution (in a mixer equipped with a stirrer, a heating / cooling device, and each raw material / auxiliary charging device ( Solid content), 22 parts of deionized water, 0.49 part (solid content) of 5% iron (II) sulfate heptahydrate aqueous solution, and 32.5 parts of magenta colorant dispersion are added in order and stirred uniformly. Mixed.
  • Toner base particle 3A was obtained in the same manner as toner base particle 1, except that toner base particle dispersion 3A was used instead of toner base particle dispersion 1.
  • Example 5 ⁇ Preparation of toner mother particle dispersion 4A: aggregation step>
  • a mixer equipped with a stirrer, heating / cooling device, and raw material / auxiliary charging device 82.8 parts (solid content) of the polymer primary particles B1 obtained above, 0.17 part of 20% DBS aqueous solution ( Solid content), 25 parts of deionized water, 0.49 part of 5% iron (II) sulfate heptahydrate aqueous solution (solid content), and 32.5 parts of magenta colorant dispersion were added in order and stirred uniformly.
  • solid content solid content
  • Toner base particles 4A were obtained in the same manner as toner base particles 1 except that toner base particle dispersion 4A was used instead of toner base particle dispersion 1.
  • Toner 4A was obtained in the same manner as toner 3A, except that toner base particles 4A were used instead of toner base particles 3A.
  • the toners of Examples 4 to 5 achieved both excellent fixability at low temperature and hot offset resistance while maintaining blocking resistance.
  • the toner for developing an electrostatic charge image of the present invention can achieve both excellent fixing property at low temperature and hot offset resistance while maintaining good blocking resistance, so that an electrostatic charge image can be visualized in a printer, copying machine, facsimile, etc.
  • high glossiness and high glossiness are required, and it is also widely used in professional fields that require beautiful output of images such as photographs and graphics.
  • the toner for developing an electrostatic image of the present invention can achieve both excellent fixing property at low temperature and hot offset resistance while maintaining good blocking resistance. It is widely used in the field of image formation for visualizing images.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

本発明は、レオメーターによるtanδ測定を2回行い、1回目測定において、130℃に観測されるtanδの値をTP1(130℃)、140℃に観測されるtanδの値をTP1(140℃)とし、2回目測定において、140℃に観測されるtanδの値をTP2(140℃)とすると、TP2(140℃)/TP1(140℃)が0.95以下であり、TP1(130℃)が2.5以上である、静電荷像現像用トナーに関する。

Description

静電荷像現像用トナー
 本発明は、耐ブロッキング性を維持したまま、低温での優れた定着性と耐ホットオフセット性を両立でき、低温定着時にも高画質画像を得られる静電荷像現像用トナーに関する。
 静電荷像現像用トナーは、プリンターや複写機、ファクシミリ等において、静電荷像を可視化する画像形成に用いられる。電子写真方式による画像の形成を例にとると、先ず感光体ドラム上に静電潜像を形成し、次いでこれをトナーにより現像した後、転写紙等に転写し、熱等により定着することによって画像形成が行われる。
 静電荷像現像用トナーとしては、通常、結着樹脂及び着色剤に、必要に応じて帯電制御剤、離型剤、磁性体等を乾式混合した後、押出機等で溶融混練し、次いで、粉砕、分級する、いわゆる溶融混練粉砕法により得られたトナー粒子に、流動性等の各種性能を付与することを目的として、例えばシリカ等の固体微粒子を外添剤として表面に付着させた形態のものが用いられている。
 更に昨今の高精細化の要求により、トナーの粒径や粒度分布を制御し易い懸濁重合法、乳化凝集法、溶解懸濁法等の製造法も提案されている。
 近年、複写機やプリンター等の電子写真方式で得られた画像をプロフェッショナル分野へ応用する取り組みが盛んに行われており、これまでの文字を印刷する用途から写真・グラフィック等の画像を美しく出力することが必要になってきた。その為、その出力画像にはこれまで以上に高画質画像、高グロス性を有することが強く望まれている。
 また、電子写真装置の低エネルギー化、高速印字化も同時に望まれている為、トナーとしては、低熱エネルギー(時間×温度)で融けて、媒体に定着することが強く望まれているが、低温での優れた定着性は耐ブロッキング性と二律背反の関係にあり、この両立を図ることが望まれている。低温での優れた定着性と耐ブロッキング性の両立という課題に対して、種々の検討がなされている。
 一方、電子写真装置で画像出力する際の定着温度について、実際の定着温度は一定値ではなく、ある程度のムラがある。例えば、電源を入れてすぐに画像出力した場合、定着温度は低くなるが、そこから連続印字を行うと、定着温度が高くなる。また、トナー層厚が厚い(例えば、複数色のトナーが濃く印字された)場合、トナー層にかかる実際の温度は低くなり、トナー層厚が薄い(例えば、単色のトナーが薄く印字された)場合、トナー層にかかる実際の温度は高くなる。
 また、近年は低エネルギー化のために、ヒートローラーの定着温度の制御の頻度を少なくしているため、定着温度のムラが生じやすい。定着温度が高いと、ホットオフセット(転写材上のトナーが定着部材に付着した後、該トナーが再度転写材に移行することによって転写材を汚す現象)が発生する問題が生じる。そのため、高温側でも定着性が良好なトナーが望まれる。
 特許文献1には、結晶性ポリエステル樹脂と離型剤とを含むトナーであって、ルテニウム染色したトナー断面に前記結晶性ポリエステル樹脂が前記離型剤と接触した構造体が存在し、該構造体の断面積をA、前記離型剤単独の断面積をB、前記結晶性ポリエステル樹脂単独の断面積をCとしたとき、40≦100×A/(A+B+C)≦70、10≦100×B/(A+B+C)≦30、20≦100×C/(A+B+C)≦30である静電荷現像用トナーが開示され、定着性能の定着温度依存性が少なく、熱保管性に優れた特性が得られている。
 特許文献2には、耐熱保存性、低温定着を目的として、定着助剤として融点50~150℃の結晶性有機化合物を含有し、加熱時に樹脂と定着助剤が相溶化するために、トナーのDSC測定において、昇温2回目の定着助剤由来の融解極大値の吸熱量は昇温1回目に比べ小さくなり、トナーのガラス転移温度が樹脂のガラス転移温度よりも低下し、昇温二回目のガラス転移温度が昇温1回目に比べ小さくなる静電荷像現像用トナーが提案されている。
 特許文献3には、トナー母粒子とシェル層を有するコアシェル構造であり、前記トナー母粒子は、前記トナー母粒子の表面上に水溶性樹脂からなる樹脂被覆層を有し、且つ前記樹脂被覆層上に前記シェル層を有する静電荷像現像用トナーが開示されている。
 特許文献4には、トナー母粒子とシェル層を有するコアシェル構造であり、耐ブロッキング性と低温での優れた定着性、耐オフセット性能を満足することを目的として、動的粘弾性試験によるトナーの貯蔵弾性率(G’)を調整した静電荷像現像用トナーが提案されている。
日本国特開2008-33057号公報 日本国特開2012-22331号公報 日本国特開2015-64573号公報 日本国特開2011-28150号公報
 しかしながら、何れの特許文献に記載されているトナーにおいても、耐ブロッキング性と低温での優れた定着性と耐ホットオフセット性のそれぞれの面において検討されているが、両立が不充分であった。
 本発明が解決しようとする課題は、耐ブロッキング性を維持したまま、低温での優れた定着性や耐ホットオフセット性を改善できる静電荷像現像用トナーを提供することである。
 本発明者等は、耐ブロッキング性を維持したまま、低温での優れた定着性と耐ホットオフセット性を両立できる形態として、後述のTP2(140℃)/TP1(140℃)及び後述のTP1(130℃);後述のTP2(140℃)/TP1(140℃)及び後述のTP2A/TP1Aが最小値を示す温度;後述のTP2(140℃)/TP1(140℃)又は後述のTP2(120℃)/TP1(120℃)を特定の範囲となるように調整することが有効であることを見出し、本発明に至った。本発明は、上述した知見に基づくものであり、本発明の態様は以下のとおりである。
 <1>レオメーターによるtanδ測定を2回行い、1回目測定において、130℃に観測されるtanδの値をTP1(130℃)、140℃に観測されるtanδの値をTP1(140℃)とし、2回目測定において、140℃に観測されるtanδの値をTP2(140℃)とすると、TP2(140℃)/TP1(140℃)が0.95以下であり、TP1(130℃)が2.5以上である、静電荷像現像用トナー。
 <2>TP2(140℃)/TP1(140℃)が0.50以上である、<1>に記載の静電荷像現像用トナー。
 <3>TP1(130℃)が4.0以下である、<1>又は<2>に記載の静電荷像現像用トナー。
 <4>少なくとも結着樹脂と着色剤を含有するトナー母粒子、及び、外添剤を含む、<1>~<3>のいずれか1つに記載の静電荷像現像用トナー。
 <5>レオメーターで120℃に観測される貯蔵弾性率G’が2000Pa以下で、かつフローテスターで測定される軟化点が105℃以上である、<1>~<4>のいずれか1つに記載の静電荷像現像用トナー。
 <6>前記静電荷像現像用トナーが、少なくとも結着樹脂と着色剤を含むコア成分と、その周囲に存在する少なくとも結着樹脂を含むシェル成分とを含有するコア/シェル構造を有し、前記コア成分の架橋度が前記シェル成分の架橋度よりも高く、かつ前記シェル成分の極性が前記コア成分の極性よりも高い、<1>~<5>のいずれか1つに記載の静電荷像現像用トナー。
 <7>前記コア成分に含まれる結着樹脂のガラス転移温度が、前記シェル成分に含まれる結着樹脂のガラス転移温度より5℃以上低い、<6>に記載の静電荷像現像用トナー。
 <8>体積平均粒径が4~8μmである、<1>~<7>のいずれか1つに記載の静電荷像現像用トナー。
 <9>平均円形度が0.95~0.99である、<1>~<8>のいずれか1つに記載の静電荷像現像用トナー。
 <10>前記静電荷像現像用トナーが、着色剤として銅フタロシアニン系の染顔料を含む、<1>~<9>のいずれか1つに記載の静電荷像現像用トナー。
 <11>レオメーターによるtanδ測定を2回行い、1回目測定において、140℃に観測されるtanδの値をTP1(140℃)、80℃以上150℃以下に観測されるtanδの値をTP1Aとし、2回目測定において、140℃に観測されるtanδの値をTP2(140℃)、80℃以上150℃以下に観測されるtanδの値をTP2Aとすると、TP2(140℃)/TP1(140℃)が0.95以下であり、かつ、TP2A/TP1Aが最小値を示す温度が130℃以上である、静電荷像現像用トナー。
 <12>レオメーターによるtanδ測定を2回行い、1回目測定において、140℃に観測されるtanδの値をTP1(140℃)とし、2回目測定において、140℃に観測されるtanδの値をTP2(140℃)とすると、TP2(140℃)/TP1(140℃)が0.90以上0.95以下、または、レオメーターによるtanδ測定を2回行い、1回目測定において、120℃に観測されるtanδの値をTP1(120℃)とし、2回目測定において、120℃に観測されるtanδの値をTP2(120℃)とすると、TP2(120℃)/TP1(120℃)が0.60以上0.70以下である、静電荷像現像用トナー。
 <13>レオメーターで120℃に観測される貯蔵弾性率G’が2000Pa以下で、かつフローテスターで測定される軟化点が105℃以上である、静電荷像現像用トナー。
 <14>前記静電荷像現像用トナーが、少なくとも結着樹脂と着色剤を含むコア成分と、その周囲に存在する少なくとも結着樹脂を含むシェル成分とを含有するコア/シェル構造を有し、前記コア成分の架橋度が前記シェル成分の架橋度よりも高く、かつ前記シェル成分の極性が前記コア成分の極性よりも高い、<11>~<13>のいずれか1つに記載の静電荷像現像用トナー。
 <15>前記コア成分に含まれる結着樹脂のガラス転移温度が、前記シェル成分に含まれる結着樹脂のガラス転移温度より5℃以上低い、<14>に記載の静電荷像現像用トナー。
 <16>体積平均粒径が4~8μmである、<11>~<15>のいずれか1つに記載の静電荷像現像用トナー。
 <17>平均円形度が0.95~0.99である、<11>~<16>のいずれか1つに記載の静電荷像現像用トナー。
 本発明によれば、耐ブロッキング性を維持したまま、低温での優れた定着性と耐ホットオフセット性とを両立する静電荷像現像用トナーを提供することができる。
図1は、本発明の静電荷像現像用トナーをレオメーターで1回目に測定する際の成型体の断面の概念図である。 図2は、本発明の静電荷像現像用トナーのTP1(140℃)とTP2(140℃)を測定した際の概念図である。
1.測定方法、定義
 本発明においては、外添剤を有する前のものを「トナー母粒子」と称する。該トナー母粒子の表面に外添剤を付与することを、単に「外添」又は「外添する」と称する場合がある。該トナー母粒子の表面に外添剤を有するものを「トナー」又は「静電荷像現像用トナー」と称する。
 静電荷像現像用トナーのレオメーター測定は、実施例に記載の方法で行い、温度、貯蔵弾性率G’、損失弾性率G”、tanδ(すなわち、損失正接=G”/G’)、「140℃に観測されるtanδの1回目測定値であるTP1(140℃)」、「140℃に観測されるtanδの2回目測定値であるTP2(140℃)」、「130℃に観測されるtanδの1回目測定値であるTP1(130℃)」等は、実施例に記載の測定方法で測定したものと定義される。また、本発明における「1回目の昇温」及び「2回目の昇温」も、実施例に記載の測定方法において、該測定に際して昇温したものと定義される。
 本発明の静電荷像現像用トナーとは、実施例等に記載の測定方法(装置、設定等)で測定したときに、本願請求項に定めた数値(パラメーター)を有する(示す)トナーのことである。すなわち、数値(パラメーター)を他の装置や他の設定で測定した場合であっても、トナー自体が、本願明細書の実施例等に記載の測定方法で測定したときに、該数値(パラメーター)を有するような(示すような)ものであれば、本発明に含まれる。
 本発明における「体積平均粒径」とは、特に断りがない限り、実施例に記載の方法で測定された「体積中位径(Dv50)」のことである。
 また、本明細書において、質量で表される全ての百分率や部は、重量で表される百分率や部と同様である。
 詳細は後述するが、本発明の静電荷像現像用トナーは、「少なくとも結着樹脂と着色剤を含有する中心部(コア)」と、その周囲に存在するシェル成分及び外添剤を含むことが好ましい。
 すなわち、本発明の静電荷像現像用トナーは、少なくとも結着樹脂と着色剤を含有するコア成分と、その周囲に存在する少なくとも結着樹脂を含むシェル成分とを含有するコア/シェル構造を有するトナー母粒子、及び、外添剤からなるトナーであることが好ましい。
 なお、本発明において「コア/シェル構造」とは、コア成分の表面をシェル成分が被覆する構造をいうが、シェル成分によりコア成分が完全に被覆された構造のものに限定されることはなく、コア成分の表面が一部露出しているものであってもよく、一部がシェル成分中に分散されていてもよい。
 後述するような何れのトナー母粒子の調製方法においても、該シェル成分とは、トナー母粒子の表面に偏在しているものを言う。トナーになったときのシェル成分の形状は、微粒子であっても薄膜であってもよく、更には、連続的にコア成分を覆っていても非連続的にコア成分を覆っていてもよい。
 水系及び/又は有機溶剤を連続相とする湿式媒体中で、トナー母粒子を作製する場合には、コア成分と同時にシェル微粒子を添加し、熱力学的にコア成分と湿式媒体の界面にシェル微粒子を配置する方法(極性を制御する方法)と、コア成分の後にシェル微粒子を添加し、物理的にコア成分の表面に配置させる方法がある。更に、この熱力学的にコア成分と湿式媒体の界面にシェル微粒子を配置させる方法(極性を制御する方法)と、コア成分の後にシェル微粒子を添加し、物理的にコア成分の表面に配置させる方法を組み合わせて用いることもできる。
 また、コア成分の後にシェル微粒子を添加する場合は、コア成分の組成及び/又は形状が決まってから(その後の、加熱、熟成、撹拌等によって、コア成分の形状、物性、相溶等は変化することがある)、追添加する方法も挙げられる。
 以下、シェル成分が上記コア成分を取り囲んでなるものを「シェル」と略記する場合がある。トナー母粒子に外添剤が外添されてなるトナーにおいて、「シェル成分と外添剤からなる構造体」は、レオメーターでの測定における、上記「コア成分」に対しての物・概念として本発明では重要である。以下、「シェル成分と外添剤からなる構造体」を単に「構造体」と略記する場合がある。
2.静電荷像現像用トナーの規定
2.1.TP2及びTP1
 本発明の静電荷像現像用トナーの態様の1つ目は、レオメーターによるtanδ測定を2回行い、1回目測定において、130℃に観測されるtanδの値をTP1(130℃)、140℃に観測されるtanδの値をTP1(140℃)とし、2回目測定において、140℃に観測されるtanδの値をTP2(140℃)とすると、TP2(140℃)/TP1(140℃)が0.95以下であり、TP1(130℃)が2.5以上である静電荷像現像用トナーである。
 なお、本明細書において、「TP2(140℃)/TP1(140℃)」とは、TP2(140℃)をTP1(140℃)で割った値を意味する。
 TP2(140℃)/TP1(140℃)が0.95以下であることから自明なことであるが、レオメーターで140℃に観測されるTP2とTP1は同じ値を取らないことが好ましい。また、140℃における値としたのは、定着ローラーの温度を150℃程度の比較的低温を想定した場合に、耐オフセット性やグロス性の指標となるためである。TP2(140℃)/TP1(140℃)が0.95以下であることは、1回目の測定時の加熱によってトナーの構造に変化が生じたことを示していると言え、その理由は以下のように推定している。
 1回目の測定では、実施例に記載のとおり、トナーを、極力加熱せず、かつ極力トナー間に空隙が無いようにペレットに成型するので、図1に示すようなトナー母粒子表面に偏在した「シェル成分及び外添剤からなる構造体」を有する試料を測定していると推定される。トナー母粒子のコア成分よりも弾性の低いシェル成分が構造体を形成している為、1回目の測定では、トナーは、より塑性的に振る舞うことにより損失弾性率G”に比し貯蔵弾性率G’が小さくなる方向であるために、tanδ(TP1)は大きくなる方向であると推定される。
 一方、2回目の測定では、1回目の測定時の加熱とシェアーによって、コア成分とシェル成分と外添剤が溶融混合して混合体を形成し、組成が1回目の測定に比し平均化された状態を測定しているものと考えられる。そのため、シェル成分よりも弾性の高いコア成分の性質が強調され、より弾性的に振る舞う為、G’に比しG”が小さくなる方向である為に、tanδ(TP2)は、1回目測定の値に比し小さな値をとると推定される。つまり、そのレオロジー挙動は、相対的に1回目は、構造体のレオロジーを測定しており、2回目は、上記混合体のレオロジーを測定している。混合体が140℃付近で局所的に弾性的に振る舞うことにより、トナーが定着ローラーから媒体に効率的に移動することができる。
 なお、レオメーターでの1回目の測定時の「加熱とシェアー」は、静的条件下で行われ、また、トナー粒子単位の小さな部分(例えば、図1参照)での変化が起こっている。
 耐ブロッキング性を維持したまま低温での優れた定着性と耐ホットオフセット性とを両立できるバランスをとるためには、TP2(140℃)/TP1(140℃)を0.95以下とすることが必要である。この範囲であるトナーは、トナー母粒子の表面を覆う状態でシェル成分が存在し、更にその外側に外添剤が外添されている状態であると推定され、更にはシェル成分とコア成分が、1回目の測定時より2回目の測定時の方がある程度相溶し、140℃付近でさらに相溶するという極性バランスで構成されている。
 例えば、コア成分とシェル微粒子成分が全く異なる化学成分であったり、シェル微粒子成分が塩等の極端にガラス転移温度(以下、単に「Tg」と称することがある。)が高い成分であったりすると、レオメーターでの1回目の測定前後で、コア成分とシェル成分が相溶しない等、構造変化が起こらないため、TP2(140℃)/TP1(140℃)は1に近づく。
 上記の構造体は、シェル成分と外添剤とで形成されていることから、トナー母粒子を測定するのではなく、トナーを測定する。
 レオメーターで140℃に測定されるTP2(140℃)/TP1(140℃)は、0.95以下であり、耐オフセット性の観点から、好ましくは0.93以下である。また、TP2(140℃)/TP1(140℃)は、高グロス性の観点から、好ましくは0.50以上であり、より好ましくは0.60以上、更に好ましくは0.70以上である。
 TP2(140℃)/TP1(140℃)の制御手段としては以下が挙げられる。
 TP2(140℃)/TP1(140℃)を小さくする為には、例えば、トナーが、コア/シェル構造を有し、コア成分とシェル微粒子成分の極性差を大きくする(水中でシェル微粒子とコア成分を付着させる場合は、コア成分よりシェル微粒子成分の極性を大きく設計し、より親水性にする)、コア成子の分子量を大きくする、コア成分の架橋密度を大きくする、コア成分にイオン架橋や金属架橋等の架橋反応を起こすような第三成分を添加する、コア成分の樹脂に分子間力を強固にする単量体成分を導入する、シェル微粒子の添加量を少なくする、シェル微粒子のコア成分に対する被覆率を小さくする、シェル微粒子の添加量が同一でも、シェル微粒子を薄い皮膜にするか、シェル成分をコア成分に潜り込ませない様なコア成分とシェル微粒子成分の極性差とする等が挙げられる。TP2(140℃)/TP1(140℃)を大きくするには、これらの逆の設計を行えばよい。
 コア成分の架橋度がシェル成分の架橋度よりも高く、かつシェル微粒子成分の極性がコア成分の極性よりも高いことが低温での優れた定着性や耐ホットオフセット性の観点から好ましく、これにより前記TP2(140℃)/TP1(140℃)及びTP1(130℃)の範囲を満足するトナーとすることができる。
 また、構造体の形成状態を示すTP1(130℃)は、低温での優れた定着性の観点から、2.5以上であり、好ましくは2.8以上である。また、TP1(130℃)は、耐ブロッキング性の観点から4.0以下が好ましく、より好ましくは3.5以下である。130℃における値としたのは、定着ローラーの温度を150℃程度の比較的低温を想定した場合に、定着工程でトナーが定着ローラーに接近した状態における、低温での優れた定着性や耐ブロッキング性の指標となるためである。TP1(130℃)が2.5以上であることで、低温での優れた定着性を維持することができる。
 本発明の静電荷像現像用トナーの態様の2つ目は、レオメーターによるtanδ測定を2回行い、1回目測定において、140℃に観測されるtanδの値をTP1(140℃)、80℃以上150℃以下に観測されるtanδの値をTP1Aとし、2回目測定において、140℃に観測されるtanδの値をTP2(140℃)、80℃以上150℃以下に観測されるtanδの値をTP2Aとすると、TP2(140℃)/TP1(140℃)が0.95以下であり、かつ、TP2A/TP1Aが最小値を示す温度が130℃以上の静電荷像現像用トナーである。
 前記TP2A/TP1Aが最小値を示す温度は、コア成分とシェル成分が溶融混合して混合体を形成し、コア成分の弾性的な振る舞いが強調された状態である温度を示し、耐ブロッキング性と耐ホットオフセット性の観点から、130℃以上であり、好ましくは135℃以上である。また、当該温度は、低温での優れた定着性の観点から145℃以下が好ましい。
 なお、TP1A及びTP2Aは、80℃以上150℃以下での連続的な値である。TP2A/TP1Aは、TP2AをTP1Aで割った値を意味し、80℃以上150℃以下の中である同じ温度に観測される値の比である。
 本発明の静電荷像現像用トナーの態様の3つ目は、レオメーターによるtanδ測定を2回行い、1回目測定において、140℃に観測されるtanδの値をTP1(140℃)とし、2回目測定において、140℃に観測されるtanδの値をTP2(140℃)とすると、TP2(140℃)/TP1(140℃)が0.90以上0.95以下、または、レオメーターによるtanδ測定を2回行い、1回目測定において、120℃に観測されるtanδの値をTP1(120℃)とし、2回目測定において、120℃に観測されるtanδの値をTP2(120℃)とすると、TP2(120℃)/TP1(120℃)が0.60以上0.70以下である静電荷像現像用トナーである。
 なお、本明細書において、「TP2(120℃)/TP1(120℃)」とは、TP2(120℃)をTP1(120℃)で割った値を意味する。
 特にマゼンタトナーの場合は、着色剤の影響により粘度が高くなる傾向があるため、前記TP2(140℃)/TP1(140℃)が0.90以上0.95以下であることが好ましい。
 TP1(140℃)は、低温での優れた定着性の観点から、2.3以上が好ましく、より好ましくは3.0以上である。また、TP1(140℃)は、耐ブロッキング性の観点から5.0以下が好ましく、より好ましくは3.5以下である。
 より低温での定着を目指す場合には、TP2(120℃)/TP1(120℃)の指標が重要となる。耐オフセット性と耐ブロッキング性の観点から、TP2(120℃)/TP1(120℃)は、好ましくは0.68以下である。また、TP2(120℃)/TP1(120℃)は、高グロス性の観点から、0.60以上である。
 構造体の形成状態を示すTP1(120℃)は、低温での優れた定着性の観点から、2.1以上が好ましく、より好ましくは2.4以上である。TP1(120℃)は、耐ブロッキング性の観点から4.0以下が好ましく、より好ましくは3.0以下である。
 また、加熱とシェアーによる構造変化後の構造体の形成状態を示すTP2(120℃)は、低温での優れた定着性の観点から、0.8以上が好ましく、より好ましくは1.0以上である。また、TP2(120℃)は、耐ブロッキング性の観点から1.5以下が好ましく、より好ましくは1.3以下である。
2.2.貯蔵弾性率G’
 本発明の静電荷像現像用トナーは、レオメーターで剪断速度1Hzにて測定した120℃における貯蔵弾性率G’が2000Pa以下であることが好ましく、1900Pa以下がより好ましく、1500Pa以下が更に好ましい。低温かつ低剪断速度の条件下で粘度が低いことは、低温定着時や高速印刷時等の、定着器からの加熱が十分でない状態でもトナーが十分に変形できるということを表している。したがって、低温定着時や高速印刷時でも紙への定着性が良好となる。
 120℃における貯蔵弾性率G’は、主に結着樹脂の組成で決定される。120℃における貯蔵弾性率G’を小さくするためには、例えば、結着樹脂の分子量を小さくする、結着樹脂のガラス転移温度(Tg)を低くする、等が挙げられる。120℃における貯蔵弾性率G’は、耐ホットオフセットの観点から、600Pa以上であることが好ましく、800Pa以上であることがより好ましい。
 120℃における貯蔵弾性率G’が低い領域に着目する必要があるため、貯蔵弾性率G’が低い試料を測定するのに適した条件として、試料を直径の大きいペレットに成型して測定することが好ましい。
2.3.軟化点
 本発明の静電荷像現像用トナーは、フローテスターで測定される軟化点が105℃以上であることが好ましく、106℃以上であることがより好ましく、107℃以上であることが更に好ましい。また、前記軟化点は、定着性の観点から115℃以下であることが好ましく、110℃以下であることがより好ましい。
 前記軟化点は、剪断速度が10~100s-1程度の速い測定方法で得られた値である。高剪断条件下で軟化温度が高いことは、トナー中の結着樹脂のポリマー鎖の絡み合いが十分に存在することを示している。したがって、定着時は、ポリマー鎖の絡み合いによるトナー層内部の凝集力が、トナーとヒ-トローラーの付着力に勝り、トナー層内部の破壊が起きにくくなることから、耐ホットオフセット性が良好となる。軟化点が高めの領域に着目する必要があるために、フローテスターにおいて荷重を重く、径1mmのダイを使用することが好ましい。
 また、印刷後は、トナー層の内部において、ポリマー鎖の絡み合いの効果でトナー層の破壊が起きにくく、テープを用いた剥離テスト等で測定される定着強度が良好となる。
 軟化点は、主に結着樹脂の組成で決定される。軟化点を大きくするためには、例えば、結着樹脂の架橋密度を大きくする、イオン架橋や金属架橋等の架橋反応を起こすような第三成分を添加する、分子間力を強固にする単量体成分を導入する、等が挙げられる。
 本発明の静電荷像現像用トナーは、レオメーターで測定した120℃における貯蔵弾性率G’と、フローテスターで測定した軟化点の両方が所定の範囲であることによって、例えば、結着樹脂の分子量ピークを小さくしてかつ架橋密度を上げる、分子量の異なる結着樹脂を複数組み合わせる、等によって調整される。
 これにより、低温定着時や高速印刷時等でも良好に定着し、同時に十分な定着強度を得ることができる。また、軟化点の高いトナーはグロスが低くなりやすい傾向があるが、レオメーターで測定した120℃における貯蔵弾性率G’が低いため、良好なグロスを得ることができる。
 トナーが前記コア/シェル構造を持つ場合には、レオメーターで測定される120℃における貯蔵弾性率G’を所定の範囲に制御するときに、結着樹脂のガラス転移温度を低くすることは有効であるが、その際に耐ブロッキング性が不十分になる場合がある。
 このとき、トナーをコア/シェル構造として、シェルに用いられる樹脂のガラス転移温度をコアに用いられる樹脂のガラス転移温度より高く調整することで、レオメーターで測定される120℃における貯蔵弾性率G’を所定の範囲に制御しながら十分な耐ブロッキング性を得ることができる。
2.4.ガラス転移温度(Tg)
 更には、トナーの示差走査熱量計(DSC)で測定されるTgも、耐ブロッキング性を維持したまま、低温定着時又は高速印刷時でも、低温での優れた定着性と高グロス性を両立するという観点から重要であり、トナーのTgの範囲は、50.0℃以下であるのが好ましく、より好ましくは47.0℃以下であり、更に好ましくは45.0℃以下である。また、トナーのTgの範囲は、37.0℃以上が好ましく、より好ましくは40.0℃以上である。
 この範囲に調整することにより、コア成分とシェル微粒子成分を上述の適した範囲に調整した範囲内で、耐ブロッキングを維持したまま、更に好ましい低温での優れた定着性と高グロス性を得ることができる。これは、トナーのTgを高くすることで耐ブロッキング性を補い、トナーのTgを低くすることで低温での優れた定着性とグロスをより好ましい範囲に調整することができるからである。
 トナーのTgを高くするには、Tgの高い単量体成分の共重合割合を増加させる、絡み合い点間分子量の2倍以下の分子量(Mc)成分を減らす(例えば、分子量調整剤等を減量する、架橋剤を増量させる等)、結着樹脂を可塑化させる融点100℃以下の可塑剤(例えば、ワックスや結晶性樹脂等)を増量すればよい。一方、トナーのTgを低くするには、この逆の設計を行えばよい。尚、「Tgの高い単量体成分」とは、Tgの高いホモポリマーを構成する単量体成分のことである。
2.5.トナー母粒子の組成
2.5.1.コア(中心部)成分
 本発明の静電荷像現像用トナーは、トナー母粒子を含むことが好ましい。
 トナー母粒子は、「少なくとも結着樹脂(例えば、重合体一次粒子からなる)、着色剤を含有するコア成分」にシェル微粒子が被覆してなっている。
 このシェル微粒子には、その他必要に応じ帯電制御剤等を含有していてもよく、ワックスが含まれていることが高温側のオフセット防止の観点から好ましくい。更に、このワックスが、結着樹脂中に実質的に内包された状態で含有されていることが、フィルミング等のワックス遊離により起こる問題をも解決できるのでより好ましい。
 ワックスを結着樹脂中に実質的に内包された状態にするには、水中及び/又は有機溶剤中において、ワックス粒子存在下で結着樹脂をそのワックス表面に、重合、析出又は凝集させる方法等が挙げられる。
 結着樹脂としては、一般にトナーを製造する際に結着樹脂として用いられるものであればよく、特に限定されないが、例えば、ポリスチレン系樹脂、ポリ(メタ)アクリル系樹脂、ポリオレフィン系樹脂、エポキシ系樹脂、ポリエステル系樹脂等の熱可塑性樹脂、これらの樹脂の混合物等が挙げられる。
 結着樹脂を製造するために用いる単量体成分としては、一般的にトナーの結着樹脂を製造する際に用いられている単量体を適宜用いることができる。例えば、酸性基を有する重合性単量体(以下、単に酸性単量体と称すことがある。)、塩基性基を有する重合性単量体(以下、単に塩基性単量体と称することがある。)、酸性基も塩基性基も有さない重合性単量体(以下、その他の単量体と称することがある。)の何れの重合性単量体も使用することができる。
 結着樹脂としてポリスチレン系樹脂及びポリ(メタ)アクリル系樹脂を使用する場合、以下の単量体が例として挙げられる。
 酸性単量体としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、ケイ皮酸等のカルボキシル基を有する重合性単量体;スルホン化スチレン等のスルホン酸基を有する重合性単量体;ビニルベンゼンスルホンアミド等のスルホンアミド基を有する重合性単量体;等が挙げられる。
 塩基性単量体としては、アミノスチレン等のアミノ基を有する芳香族ビニル化合物;ビニルピリジン、ビニルピロリドン等の窒素含有複素環含有重合性単量体;ジメチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート等のアミノ基を有する(メタ)アクリル酸エステル;等が挙げられる。
 これら酸性単量体及び塩基性単量体は、トナー母粒子の分散安定化に寄与する。単独で用いても複数種類を混合して用いてもよく、また、対イオンを伴って塩として存在していてもよい。
 更に、これら酸性単量体及び塩基性単量体は、トナー母粒子のコア成分及びシェル微粒子のどちらか一方に、あるいは双方に含まれていてもよいが、コア成分を構成する「結着樹脂と酸性又は塩基性単量体によりなる樹脂成分」と、シェル微粒子を構成する「結着樹脂と酸性又は塩基性単量体によりなる樹脂成分」は、同一の組成ではないことが好ましい。これは、シェル成分とコア成分が、tanδの1回目の測定時より2回目の測定時の方がある程度相溶しているという、絶妙なバランスで構成される必要がある為、適切な親和性に調整するという意味で、本発明おいては特に重要である。
 また、酸性(又は塩基性)単量体の添加量に依存する酸価(塩基価)について、水中でコア成分にシェル微粒子を付着させることによりトナー母粒子を製造する場合には、トナー母粒子のコア成分よりもシェル微粒子成分の酸価(塩基価)を高めた方が好ましく、具体的には、シェル微粒子成分の酸価(塩基価)をコア成分の酸価(塩基価)の1.1倍以上2.6倍以下に調整することが好ましい。この倍率が小さ過ぎると、シェル微粒子がコア成分に埋没してしまい、満足いく耐ブロッキング性が得られない場合があり、この倍率が大き過ぎると、コア成分に比し水中でシェル微粒子が安定し過ぎていて付着しない場合があるからである。
 その他の単量体としては、スチレン、メチルスチレン、クロロスチレン、ジクロロスチレン、p-t-ブチルスチレン、p-n-ブチルスチレン、p-n-ノニルスチレン等のスチレン類;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸ヒドロキシエチル、アクリル酸2-エチルヘキシル等のアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸ヒドロキシエチル、メタクリル酸2-エチルヘキシル等のメタクリル酸エステル類;アクリルアミド、N-プロピルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジプロピルアクリルアミド、N,N-ジブチルアクリルアミド等のアクリルアミド類;等が挙げられる。
 その他の単量体は、単独で用いてもよく、また複数を組み合わせて用いてもよい。
 結着樹脂を架橋樹脂とする場合、上述の重合性単量体と共に多官能性単量体が用いられ、例えば、ジビニルベンゼン、ヘキサンジオールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ヘキサエチレングリコールジメタクリレート、ノナエチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ネオペンチルグリコールジメタクリレート、ネオペンチルグリコールジアクリレート、ジアリルフタレート等が挙げられる。
 中でも二官能性重合性単量体が好ましく、ジビニルベンゼン、ヘキサンジオールジアクリレート等が特に好ましい。これら多官能性重合性単量体は、単独で用いても複数種類を混合して用いてもよい。また、反応性基をペンダントグループに有する重合性単量体、例えば、グリシジルメタクリレート、メチロールアクリルアミド、アクロレイン等を用いることも可能である。
 結着樹脂の分子量(数平均分子量、重量平均分子量)の調整には、必要に応じて公知の連鎖移動剤を使用することができる。連鎖移動剤の具体的な例としては、t-ドデシルメルカプタン、ドデカンチオール、ジイソプロピルキサントゲン、四塩化炭素、トリクロロブロモメタン等が挙げられる。連鎖移動剤は単独又は2種類以上の併用でもよく、重合性単量体に対して0~5質量%用いることが好ましい。
 ポリスチレン系樹脂及びポリ(メタ)アクリル系樹脂を結着樹脂とする場合は、ゲルパーミエーションクロマトグラフィー(以下、GPCと記載する。)における数平均分子量は好ましくは5000以上、より好ましくは8000以上、更に好ましくは1万以上であり、好ましくは3万以下、より好ましくは2万以下、更に好ましくは1.5万以下である。
 GPCにおける重量平均分子量は、好ましくは7万以上、より好ましくは9万以上、好ましくは30万以下、より好ましくは25万以下である。
 結着樹脂としてポリエステル系樹脂を使用する場合、そのポリエステル系樹脂の構成成分である2価のアルコールとして、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,4-ブテンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール等のジオール類;ビスフェノールA、水素添加ビスフェノールA、ポリオキシエチレン化ビスフェノールA、ポリオキシプロピレン化ビスフェノールA等のビスフェノールAアルキレンオキシド付加物;等が挙げられる。
 また、上記ポリエステル系樹脂の構成成分である2価の酸としては、例えば、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、フタル酸、イソフタル酸、テレフタル酸、シクロヘキサンジカルボン酸、コハク酸、アジピン酸、セバチン酸、アゼライン酸、マロン酸、これらの酸の無水物若しくは低級アルキルエステル;n-ドデセニルコハク酸、n-ドデシルコハク酸等のアルケニルコハク酸類若しくはアルキルコハク酸類;その他の2価の有機酸が挙げられる。
 結着樹脂を架橋樹脂とする場合、上述2価アルコールや酸と共に、3価以上の多価アルコールや3価以上の酸等の多官能性単量体が用いられる。
 3価以上の多価アルコールとしては、例えば、ソルビトール、1,2,3,6-ヘキサンテトロール、1,4-ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ショ糖、1,2,4-ブタントリオール、1,2,5-ペンタントリオール、グリセロール、2-メチルプロパントリオール、2-メチル-1,2,4-ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5-トリヒドロキシメチルベンゼン、その他が挙げられる。
 3価以上の酸としては、例えば、1,2,4-ベンゼントリカルボン酸、1,2,5-ベンゼントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸、2,5,7-ナフタレントリカルボン酸、1,2,4-ナフタレントリカルボン酸、1,2,5-ヘキサントリカルボン酸、1,3-ジカルボキシル-2-メチル-2-メチレンカルボキシプロパン、テトラ(メチレンカルボキシル)メタン、1,2,7,8-オクタンテトラカルボン酸、これらの無水物、その他が挙げられる。
 また、ポリエステル系樹脂の酸価について、水中でコア成分にシェル微粒子を付着させることによりトナー母粒子を製造する場合には、トナー母粒子のコア成分よりもシェル微粒子成分の酸価を高めた方が好ましく、具体的には、シェル微粒子成分の酸価をコア成分の酸価の1.1倍以上2.6倍以下に調整することが好ましい。
 これらのポリエステル系樹脂は、通常の方法にて合成することができる。具体的には、反応温度(170~250℃)、反応圧力(5mmHg~常圧)等の条件をモノマーの反応性に応じて決め、所定の物性が得られた時点で反応を終了すればよい。結着樹脂としてポリエステル系樹脂を使用する場合のGPCにおける数平均分子量は、好ましくは2000~20000、より好ましくは3000~12000である。
 本発明の静電荷像現像用トナーには、オフセット防止剤として、また、低温での優れた定着性向上のために、ワックスを使用することが好ましい。
 本発明の静電荷像現像用トナーに用いられるワックスは、具体的には、低分子量ポリエチレン、低分子量ポリプロピレン、共重合ポリエチレン等のオレフィン系ワックス;パラフィンワックス;ベヘン酸ベヘニル、モンタン酸エステル、ステアリン酸ステアリル等の長鎖脂肪族基を有するエステル系ワックス;水添ひまし油、カルナバワックス等の植物系ワックス;ジステアリルケトン等の長鎖アルキル基を有するケトン;アルキル基を有するシリコーン;ステアリン酸等の高級脂肪酸;長鎖脂肪酸(ペンタエリスリトール、トリメチロールプロパン、グリセリン等の)多価アルコールエステル若しくはその部分エステル体;オレイン酸アミド、ステアリン酸アミド等の高級脂肪酸アミド;等が例示される。
 本発明の静電荷像現像用トナーに用いられるワックスは、好ましくは、パラフィンワックス、フィッシャートロプシュワックス等の炭化水素系ワックス;エステル系ワックス;シリコーン系ワックス;等が挙げられる。
 中でも、エステル系ワックスがより好ましく、C18及び/又はC22の炭化水素を主体的に含むモノエステルワックスが更に好ましく、ベヘン酸ベヘニル、ベヘン酸ステアリル、ステアリン酸ベヘニル、それらを主体的に含むものが特に好ましい。ワックスは単独で用いても混合して用いてもよい。
 ワックスの融点ピーク温度(トナーのDSCによるTg測定の2回目昇温時における吸熱ピークトップ)は、90℃以下が好ましく、85℃以下がより好ましく、80℃以下が更に好ましく、50℃以上が好ましく、60℃以上がより好ましく、65℃以上が更に好ましい。ワックスの融点ピーク温度が低過ぎる場合、耐ブロッキング性が悪化する傾向にあり、ワックスの融点ピーク温度が高過ぎる場合、低温での優れた定着性と高グロス性を損なう傾向にある。また、ワックスの融点ピーク温度とワックスのオンセット温度(トナーのDSCによるTg測定の2回目における吸熱ピーク前のベースラインと、吸熱ピーク前に現れる最初の変曲点における接線の交点温度)の差は、15℃以下であることが好ましく、10℃以下であることがより好ましい。
 また、ワックスのオンセット温度は、86℃以下が好ましく、81℃以下がより好ましく、76℃以下が更に好ましく、46℃以上が好ましく、56℃以上がより好ましく、61℃以上が更に好ましい。上記オンセット温度が低い場合、低温での優れた定着性と高グロス性が良化する傾向にあり、上記オンセット温度が高い場合、耐ブロッキング性が良化する傾向にある。
 ワックスの使用量は、トナー100質量部に対して1質量部以上であることが好ましく、より好ましくは2質量部以上、更に好ましくは5質量部以上である。また、35質量部以下であることが好ましく、より好ましくは30質量部以下、更に好ましくは25質量部以下である。
 着色剤としては公知の着色剤を任意に用いることができる。着色剤の具体的な例としては、カーボンブラック、アニリンブルー、フタロシアニンブルー、フタロシアニングリーン、ハンザイエロー、ローダミン系染顔料、クロムイエロー、キナクリドン系、ベンジジンイエロー、ローズベンガル、トリアリルメタン系染料、モノアゾ系、ジスアゾ系、縮合アゾ系染顔料等、公知の任意の染顔料を単独で又は混合して用いることができる。
 フルカラートナーの場合には、イエローは、モノアゾ系、ジスアゾ系、ポリアゾ系、縮合アゾ系の染顔料;マゼンタは、キナクリドン系及び/又はモノアゾ系の染顔料;シアンは、フタロシアニン系の染顔料;ブラックはカーボンブラック等をそれぞれ用いることが好ましい。
 トナーセットの組み合わせとしては、TP2(140℃)/TP1(140℃)を調整する観点からマゼンタトナーは、キナクリドン系の染顔料及び/又はモノアゾ系の染顔料を含有し、ブラックトナーはカーボンブラックを含有し、シアントナーは銅フタロシアニン系の染顔料を含有し、イエロートナーは、モノアゾ系、ジスアゾ系、及び縮合アゾ系から選ばれる少なくとも1種の染顔料を含有することが好ましい。
 具体的には、シアンとしては、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、イエローとしては、C.I.ピグメントイエロー74、ジスアゾ系染顔料であるC.I.ピグメントイエロー83、縮合アゾ系染顔料であるC.I.ピグメントイエロー93、C.I.ピグメントイエロー155、C.I.ピグメントイエロー180、C.I.ピグメントイエロー185、マゼンタとしては、C.I.ピグメントレッド48:1、C.I.ピグメントレッド53:1、C.I.ピグメントレッド57:1、C.I.ピグメントレッド5、キナクリドン系染顔料であるC.I.ピグメントレッド122、C.I.ピグメントレッド209、モノアゾ系染顔料であるC.I.ピグメントレッド269(238)等を挙げることができる。着色剤は、トナー100質量部に対して、3質量部以上20質量部以下となるように用いることが好ましい。
 帯電制御剤としては公知のものを任意に用いることができる。帯電制御剤の具体的な例としては、正帯電性用としてニグロシン染料、アミノ基含有ビニル系コポリマー、四級アンモニウム塩化合物、ポリアミン樹脂等があり、負帯電性用としてクロム、亜鉛、鉄、コバルト、アルミニウム等の金属を含有する含金属アゾ染料、サリチル酸若しくはアルキルサリチル酸の前記した金属との塩、金属錯体等がある。
 帯電制御剤の量は、トナー100質量部に対して、0.1~25質量部が好ましく、1~15質量部がより好ましい。帯電制御剤はトナー母粒子内部に混合してもよく、またトナー母粒子表面に付着させた形で用いてもよい。
2.5.2.シェル微粒子の成分
 トナー母粒子は、前記コア成分と、その周囲に存在するシェル微粒子とからなる。その他必要に応じて、コア成分及び/又はシェル微粒子には、ワックス、帯電制御剤等を含有していてもよい。コア成分及び/又はシェル微粒子は、ワックスを含有することが好ましい。
 シェル微粒子の成分である「シェル微粒子成分」の種類としては、一般にトナーを製造する際に結着樹脂として用いられる前記樹脂が挙げられる。樹脂の種類は特に限定されないが、例えば、ポリスチレン系樹脂、ポリ(メタ)アクリル系樹脂、ポリオレフィン系樹脂、エポキシ系樹脂、ポリエステル系樹脂等の熱可塑性樹脂、これらの樹脂の混合物等が挙げられる。詳細な樹脂の選び方は後述する。
2.6.トナーの形態
 本発明の静電荷像現像用トナーの体積平均粒径は、4μm以上が好ましく、5μm以上がより好ましい。当該体積平均粒径は、8μm以下が好ましく、7μm以下がより好ましい。
 また、本発明の静電荷像現像用トナーの形状については、フロー式粒子像分析装置FPIA-3000を用いて測定した平均円形度が、好ましくは0.95以上、更に好ましくは0.96以上であり、好ましくは0.99以下である。
3.静電荷像現像用トナーの作製
 本発明の静電荷像現像用トナーは公知の何れの方法で製造してもよく、特に限定されない。
3.1.トナー母粒子の作製方法
3.1.1.トナー母粒子より小さい粒子を凝集してトナー母粒子を作製する方法
  各原料をトナー母粒子より小さい粒子として用意し、これらを混合・凝集することでトナー母粒子を得る方法を用いることができる。
3.1.1.1.乳化重合
 結着樹脂をトナー母粒子サイズより小さい「重合体一次粒子」として調製し、該重合体一次粒子の分散液を得る方法を以下に述べる。また、シェル微粒子の作製にも、これと同様の方法を用いることができる。
 スチレン系又は(メタ)アクリル系単量体を構成要素とする重合体一次粒子は、該単量体組成物と、必要に応じ連鎖移動剤を、乳化剤を用いて乳化重合することによって得られる。乳化剤としては公知のものが使用できるが、カチオン性界面活性剤、アニオン性界面活性剤、ノニオン性界面活性剤の中から選ばれる1種又は2種以上の乳化剤を併用して用いることができる。
 カチオン性界面活性剤としては、例えば、ドデシルアンモニウムクロライド、ドデシルアンモニウムブロマイド、ドデシルトリメチルアンモニウムブロマイド、ドデシルピリジニウムクロライド、ドデシルピリジニウムブロマイド、ヘキサデシルトリメチルアンモニウムブロマイド等が挙げられる。
 アニオン性界面活性剤としては、例えば、ステアリン酸ナトリウム、ドデカン酸ナトリウム、等の脂肪酸石けん、硫酸ドデシルナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム等が挙げられる。
 ノニオン界面活性剤としては、例えば、ポリオキシエチレンドデシルエーテル、ポリオキシエチレンヘキサデシルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンソルビタンモノオレアートエーテル、モノデカノイルショ糖等が挙げられる。
 乳化剤の使用量は、重合性単量体100質量部に対して0.1質量部以上、10質量部以下で用いられることが好ましい。乳化剤の使用量を多くすると、得られる重合体一次粒子の粒径が小さくなり、使用量を少なくすると、得られる重合体一次粒子の粒径が大きくなる。また、これらの乳化剤に、例えば、部分又は完全ケン化ポリビニルアルコール等のポリビニルアルコール類、ヒドロキシエチルセルロース等のセルロース誘導体類等の1種又は2種以上を保護コロイドとして併用することができる。
 また、必要に応じて公知の重合開始剤を1種又は2種以上組み合わせて使用することができる。例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、等の過硫酸塩、及び、これら過硫酸塩を一成分として酸性亜硫酸ナトリウム等の還元剤を組み合わせたレドックス開始剤、過酸化水素、4,4’-アゾビスシアノ吉草酸、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、等の水溶性重合開始剤、及び、これら水溶性重合開始剤を一成分として第一鉄塩等の還元剤と組み合わせたレドックス開始剤、過酸化ベンゾイル、2,2’-アゾビス-イソブチロニトリル、等が用いられる。これら重合開始剤は重合性単量体添加前、添加と同時、添加後の何れの時期に重合系に添加してもよく、必要に応じてこれらの添加方法を組み合わせてもよい。
 トナー中に好適な分散粒径でワックスを分散させるために、乳化重合時にワックスをシードとして添加する、いわゆるシード重合とすることが好ましい。シードとして添加することにより、ワックスがトナー中に微細かつ均一に分散するため、トナーの帯電性や耐熱性の悪化を抑制することができる。また、ワックスをステアリルアクリレート等の長鎖重合性単量体と予め水系分散媒体中で分散し得られるワックス・長鎖重合性単量体分散液を調製し、ワックス・長鎖重合性単量体の存在下において重合性単量体を重合することもできる。
 着色剤をシードとして乳化重合することも可能だが、着色剤存在下で重合性単量体を重合すると、着色剤中の金属がラジカル重合に影響し、樹脂の分子量やレオロジー制御が困難となり、所望の物性が得られないおそれがあるため、着色剤を乳化重合時には添加せず、次工程で着色剤分散液を添加する方法が好ましい。
3.1.1.2.樹脂を乳化する方法
 塊状重合、溶液重合、懸濁重合、乳化重合等の方法で樹脂を得た後、該樹脂を水系媒体と混合し、樹脂の融点かガラス転移温度の何れかの高い温度以上に加熱して樹脂の粘性を下げて、剪断力を与えて乳化することで、重合体一次粒子が得られる。
 剪断力を与えるための乳化機としては、例えば、ホモジナイザー、ホモミキサー、加圧ニーダー、エクストルーダー、メディア分散機等が挙げられる。乳化時の樹脂の粘度が高く所望の粒径まで小さくならない場合は、大気圧以上に加圧可能な乳化装置を用いて温度を上げ、樹脂粘度を下げた状態で乳化することで、所望の粒径の重合体一次粒子を得ることができる。
 別の方法として、あらかじめ樹脂に有機溶剤を混合して樹脂の粘度を下げる方法を用いてもよい。使用される有機溶剤としては、樹脂を溶解させるものであれば特に限定はないが、テトラヒドロフラン(THF)、酢酸メチル、酢酸エチル、メチルエチルケトン等のケトン系溶剤、ベンゼン、トルエン、キシレン等のベンゼン系溶剤等を用いることができる。更に、水系媒体との親和性向上、及び、粒度分布制御の目的で、エタノールやイソプロピルアルコール等のアルコール系溶剤を水若しくは樹脂に添加してもよい。有機溶剤を添加した場合は、乳化終了後、乳化液から有機溶剤を除去する必要がある。有機溶剤を除去する方法としては、常温若しくは加熱下で減圧しながら有機溶剤を揮発させる方法等がある。
 また、粒度分布制御の目的で、塩化ナトリウム、塩化カリウム等の塩や、アンモニア等を添加してもよい。粒度分布制御の目的で、乳化剤や分散剤を添加してもよい。例えば、ポリビニルアルコール、メチルセルロース、カルボキシメチルセルロース、ポリアクリル酸ナトリウム、等の水溶性高分子;前記の乳化剤;リン酸三カルシウム、水酸化アルミニウム、硫酸カルシウム、炭酸カルシウム、炭酸バリウム等の無機化合物等が挙げられる。使用量としては、樹脂100質量部に対して、0.01~20質量部が好ましい。酸性基又は塩基性基を含有する樹脂を用いると、乳化剤や分散剤の添加量を減らすことができるが、樹脂の吸湿性が高くなり、帯電性が悪化する場合がある。
 また、転相乳化法を用いてもよい。転相乳化法は、樹脂に、必要に応じて有機溶剤や中和剤や分散安定剤を添加して、撹拌下にて、水系媒体を滴下して、乳化粒子を得た後、樹脂分散液中の有機溶剤を除去して、乳化液を得る方法である。有機溶剤は、前述の有機溶剤と同様のものを用いることができる。中和剤としては、硝酸、塩酸、水酸化ナトリウム、アンモニア等一般の酸、アルカリを用いることができる。
3.1.1.3.凝集・熟成によるトナー母粒子の形成
 上記乳化重合及び樹脂の乳化の何れの調製方法においても、得られる重合体一次粒子の体積平均粒径は、通常0.02μm以上であり、好ましくは0.05μm以上であり、特に好ましくは0.10μm以上であり、通常3μm以下であり、好ましくは2μm以下であり、特に好ましくは1μm以下である。
 重合体一次粒子の体積平均粒径が前記下限値以上であると、凝集工程において凝集速度の制御が容易になる。一方で、重合体一次粒子の体積平均粒径が前記上限値以下であると、凝集して得られるトナー母粒子の粒径が大きくなり難く、目的とする粒径のトナー母粒子を得ることが容易になる。
 凝集工程において、前記の、重合体一次粒子、着色剤粒子、必要に応じて配合する帯電制御剤、ワックス等は、同時に又は逐次に混合する。予めそれぞれの成分の分散液、即ち、重合体一次粒子分散液、着色剤粒子分散液、必要に応じ帯電制御剤分散液、ワックス微粒子分散液を作製しておき、これらを混合して混合分散液を得ることが、組成の均一性及び粒径の均一性の観点で好ましい。着色剤は、乳化剤の存在下で水中に分散した状態で用いるのが好ましく、着色剤粒子の体積平均粒径は、好ましくは0.01μm以上、特に好ましくは0.05μm以上であり、好ましくは3μm以下、特に好ましくは1μm以下である。
 凝集工程において、凝集は、通常、撹拌装置を備えた槽内で行われるが、加熱する方法、電解質を加える方法と、これらを組み合わせる方法とがある。重合体一次粒子を撹拌下に凝集して目的とする大きさの粒子凝集体を得ようとする場合、粒子同士の凝集力と撹拌による剪断力とのバランスから粒子凝集体の粒径が制御されるが、加熱するか又は電解質を加えることによって凝集力を大きくすることができる。
 電解質を添加して凝集を行う場合の電解質としては、酸、アルカリ、塩の何れでもよく、有機系、無機系の何れでもよいが、具体的には、酸として、塩酸、硝酸、硫酸、クエン酸等;アルカリとして、水酸化ナトリウム、水酸化カリウム、アンモニア水等;塩として、NaCl、KCl、LiCl、NaSO、KSO、LiSO、MgCl、CaCl、MgSO、CaSO、ZnSO、Al(SO、Fe(SO、CHCOONa、CSONa等が挙げられる。これらのうち、2価以上の多価の金属カチオンを有する無機塩が好ましい。
 電解質の添加量は、電解質の種類、目的とする粒径等によって異なるが、混合分散液の固形成分100質量部に対して、0.02質量部以上が好ましく、0.05質量部以上が更に好ましい。また、電解質の添加量は、25質量部以下が好ましく、更には15質量部以下、特に10質量部以下が好ましい。添加量が少な過ぎると、凝集の進行が遅くなり凝集後も1μm以下の微粉が残ったり、得られた粒子凝集体の平均粒径が目的の粒径に達しない等の問題を生じたりする場合があり、一方、添加量が多過ぎると、急速な凝集になり易く粒径の制御が困難となり、得られた凝集粒子中に粗粉や不定形のものが含まれる等の問題を生じる場合がある。
 電解質を加えて凝集を行う場合の凝集温度は、好ましくは20℃以上、特に好ましくは30℃以上であり、好ましくは70℃以下、特に好ましくは60℃以下である。
 凝集に要する時間は装置形状や処理スケールにより最適化されるが、トナー母粒子の粒径が目的とする粒径に到達するためには、前記した所定の温度で、少なくとも30分以上保持することが好ましい。所定の温度へ到達するまでの昇温は、一定速度で昇温してもよいし、段階的に昇温することもできる。
 シェル微粒子を添加するタイミングは、どのタイミングであってもよく、コア成分の原料(例えば、重合体一次粒子、顔料、ワックス等)と同時に仕込んでもよいし、コア成分の原料の一部若しくは全てを凝集させた後に添加してもよい。
 コア成分とシェル微粒子を同時に仕込む場合は、熱力学的にコア成分と媒体(例えば、水)の中間の極性になる様にシェル微粒子の極性を設計すれば、自発的にコア成分の周りにシェル微粒子が付着した状態になる。水中及び/又は有機溶剤の様な湿式媒体中で、シェル微粒子を付着させる場合は、コア成分の原料の組成が決まった(トナー母粒子より小さい粒子を凝集してトナー母粒子を作製する場合には、コア成分の一部若しくは全てを凝集させた)後に、シェル微粒子を添加することが、よりコア成分の表面にシェル微粒子を配置させられる観点から好ましい。
 シェル微粒子の組成や調製方法としては、前述のものが挙げられる。添加は1回であってもよいし、複数回であってもよい。1回目のシェル微粒子と、次回以降のシェル微粒子とは、異なっていてもよく、いかなる組み合わせであってもよい。凝集工程で得られた粒子凝集体の安定性を増すために、凝集工程の後の熟成工程において凝集粒子内の融着を行うことが好ましい。熟成工程の温度は、好ましくは重合体一次粒子のTg以上、より好ましくは重合体一次粒子のTgより5℃高い温度以上である。また、熟成工程に要する時間は、目的とするトナー母粒子の形状により異なるが、重合体一次粒子のTg以上に到達した後、好ましくは0.1~10時間、特に好ましくは0.5~5時間保持することが望ましい。
 凝集工程以降、好ましくは熟成工程以前又は熟成工程中の段階で、界面活性剤を添加するか、pHを調整するか、両者を併用することが好ましい。ここで用いられる界面活性剤としては、重合体一次粒子を製造する際に用いることのできる乳化剤から1種以上を選択して用いることができるが、特に重合体一次粒子を製造した際に用いた乳化剤と同じものを用いることが好ましい。
 界面活性剤を添加する場合の添加量は限定されないが、混合分散液の固形成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.3質量部以上、また、好ましくは20質量部以下、より好ましくは15質量部以下、更に好ましくは10質量部以下である。
 凝集工程以降、熟成工程の完了前の間に界面活性剤を添加するか、pHを調整することにより、凝集工程で得られた粒子凝集体同士の凝集等を抑制することができ、熟成工程後の粗大粒子生成を抑制できる場合がある。
 熟成工程の時間を制御することにより、重合体一次粒子が凝集した形状を保った葡萄型、融着が進んだジャガイモ型、更に融着が進んだ球状等、目的に応じて様々な形状のトナー母粒子を製造することができる。
3.1.2.微粒化によりトナー母粒子のサイズの粒子を作製する方法
 各原料を混合した後、該混合物をトナー母粒子のサイズに微粒化し、微粒化する前後にシェル微粒子を添加することで、トナー母粒子を得る方法を用いることができる。
3.1.2.1.懸濁重合でトナー母粒子を作製する方法
 上述の単量体組成物と同様の「スチレン系又は(メタ)アクリル系単量体」中に、着色剤、重合開始剤、必要に応じて、ワックス、極性樹脂、帯電制御剤、架橋剤等の添加剤を加え、均一に溶解又は分散させた単量体組成物を調製する。この単量体組成物を、必要に応じ懸濁安定剤等を含有する水系媒体中に分散させる。単量体組成物の液滴が所望のトナー母粒子のサイズを有するように撹拌速度・時間を調整し、造粒する。その後、分散安定剤の作用により、粒子状態が維持され、かつ粒子の沈降が防止される程度の撹拌を行い、重合を行うことによりトナー母粒子を得ることができる。
 懸濁安定剤の具体的な例としては、リン酸カルシウム、リン酸マグネシウム、水酸化カルシウム、水酸化マグネシウム等が挙げられる。これらは、1種又は2種以上を組み合わせて用いてもよく、重合性単量体100質量部に対して、1質量部以上、10質量部以下の量が好ましい。懸濁安定剤は、重合性単量体添加前、添加と同時、添加後の何れの時期に重合系に添加してもよく、必要に応じてこれらの添加方法を組み合わせてもよい。
 単量体組成物にポリエステル系樹脂、カルボキシル基含有スチレン系樹脂などの極性樹脂が含まれている場合、水系媒体中に単量体組成物を分散させて液滴を形成したのち、極性樹脂が液滴表面近傍に移行し易い。この状態で重合を行うことによって、内部と表面で組成に差のあるトナー母粒子が得られる。例えば、単量体の重合後のTgよりもTgの高い極性樹脂を選ぶと、トナー母粒子の内部はTgが低く、表面にはTgの高い樹脂が高い比率で存在している構造が得られる。本発明ではコア成分にシェル微粒子を被覆することで得られるトナーの耐ブロッキング性を高めているが、この方法を併用すれば、良好な耐ブロッキング性が更に得られ易くなる。
 シェル微粒子を添加するタイミングは、どのタイミングであってもよく、例えば、単量体組成物に溶解させておいて、その後、水系媒体中に分散させて、シェル微粒子が、熱力学的にコア成分と水の界面に来るように、該シェル微粒子の極性を設計することもできる。また、コア成分の単量体組成物を分散させた後に、シェル微粒子を添加してもよいし、コア成分の単量体組成物を分散させて、コア成分の重合性単量体の一部又はほぼ全てを重合してから、シェル微粒子を添加してもよい。コア成分の表面にシェル微粒子を配置させる観点からは、重合性単量体の一部を重合してからシェル微粒子を添加することが好ましく、実質的に重合性単量体のほぼ全てを重合させてから、シェル微粒子を添加することがより好ましい。
 シェル微粒子の組成や調製方法としては、前述のものが挙げられる。添加は1回であってもよいし、複数回であってもよい。1回目のシェル微粒子と、次回以降のシェル微粒子は、異なっていてもよく、いかなる組み合わせであってもよい。その他、反応系には、pH調整剤、重合度調節剤、消泡剤等を適宜添加することができる。
3.1.2.2.溶解懸濁でトナー母粒子を作製する方法
 有機溶媒中に、少なくとも結着樹脂と着色剤、必要に応じワックスや帯電制御剤等が溶解又は分散している油性分散液を作り、これを水系媒体中に分散させる。その後、分散液から有機溶剤を除去し、トナー母粒子を得ることができる。シェル微粒子は、油性分散液に予め添加しておいてもよいし、水系媒体中に分散させてから添加してもよいし、有機溶剤を除去してから添加してもよい。
 シェル微粒子の組成や調製方法としては、前述のものが挙げられる。シェル微粒子の添加は、1回であってもよいし、複数回であってもよい。1回目のシェル微粒子と、次回以降のシェル微粒子とは、異なっていてもよく、いかなる組み合わせであってもよい。
 水系媒体としては、水単独でもよいが、水と混和可能な溶剤を併用することもできる。
 必要に応じて、分散剤を用いることができる。分散剤を用いた方が、粒度分布がシャープになるとともに分散が安定するので好ましい。分散剤としては、上述の乳化重合に用いる乳化剤と同様のものが使用できる。また、水系媒体中で高分子系保護コロイドを形成する各種の親水性高分子物質を存在させることができる。
 また、粒径を制御するために、無機微粒子及び/又はポリマー微粒子を用いることができる。無機微粒子としては、水に不溶ないし難溶の従来公知の各種の無機化合物が用いられる。このようなものとしては、リン酸三カルシウム、炭酸カルシウム、酸化チタン、コロイダルシリカ、ヒドロキシアパタイト等が挙げられる。ここで、ポリマー微粒子を、前記のシェル微粒子とみなしてもよい。
 油性分散液を水系媒体中に分散させる場合、分散装置として低速剪断式、高速剪断式、摩擦式、高圧ジェット式、超音波等の公知の分散機が適用できる。結着樹脂の代わりに反応性基をもつプレポリマーを用いて油性分散液を作製し、水系媒体中に分散させたのち反応性基を反応させて樹脂を伸長させてもよい。この方法では、プレポリマーが比較的低分子量なため、油性分散液の粘度が上がり難く、水系媒体中への分散が容易になる。着色剤を油性分散液中に均一分散させ易くするために、予め着色剤を樹脂と複合化されたマスターバッチとして調製し、これを有機溶剤に分散してもよい。有機溶剤を除去する方法としては、常温若しくは加熱下で減圧しながら有機溶剤を揮発させる方法等がある。
 結着樹脂として、極性の高い樹脂と、極性の低い樹脂を併用すると、水系媒体中に単量体組成物を分散させて液滴を形成したのち、極性の高い樹脂は液滴表面近傍に、極性の低い樹脂は液滴中心付近に移行する。その後有機溶剤を除去することによって、内部と表面で組成に差のあるトナー母粒子が得られる。活性水素基含有化合物と反応可能なプレポリマーを用いて油性分散液を作製する場合は、油性分散液を水系媒体中に分散させたのち、活性水素基含有化合物を添加し、該水系媒体中で液滴表面から両者を伸長反応又は架橋反応させることにより、液滴表面に優先的に伸長又は架橋樹脂が生成する。その後有機溶剤を除去することによって、内部と表面で組成に差のあるトナー母粒子が得られる。
 これらの方法で、得られる樹脂のTgを考慮して原料を選択することにより、トナー母粒子の内部よりも表面の方が高Tgの樹脂の比率が高い構造が得られる。また、分散剤に用いるポリマー微粒子を、前記のシェル微粒子とみなして、該シェル微粒子の物性に調整することで、シェル微粒子(ポリマー微粒子)がトナー母粒子表面に存在する構造を作ってもよい。
3.1.3.トナー母粒子の洗浄・乾燥
 前記した「トナー母粒子より小さい粒子を凝集してトナー母粒子を作製する方法」、「懸濁重合でトナー母粒を作製する方法」、「溶解懸濁でトナー母粒子を作製する方法」等で作製されたトナー母粒子は、水系溶媒から分離され、洗浄、乾燥され、外添処理が施されて静電荷像現像用トナーに供される。
 洗浄に用いる液体としては、水が挙げられるが、酸又はアルカリの水溶液で洗浄することもできる。また、温水や熱水で洗浄することもでき、これらの方法を併用することもできる。このような洗浄工程を経ることによって、懸濁安定剤や乳化剤、未反応モノマー等を低減、除去することができる。洗浄工程は、例えば、濾過、デカンテーション等することによって、トナー母粒子を濃厚スラリー又はウエットケーキ状とし、これに新たに洗浄するための液体を加えてトナー母粒子を分散する操作を繰り返すことが好ましい。洗浄後のトナー母粒子は、ウエットケーキ状で回収することが、引き続き行われる乾燥工程における取り扱いの面で好ましい。
 乾燥工程では、振動型流動乾燥法、循環型流動乾燥法等の流動乾燥法、気流乾燥法、真空乾燥法、凍結乾燥法、スプレードライ法、フラッシュジェット法等が用いられる。乾燥工程における温度、風量、減圧度等の操作条件は、トナー粒子のTg、使用する装置の形状、機構、大きさ等をもとに、適宜最適化される。
3.1.4.溶融混練粉砕法でトナー母粒子を作製する方法
 溶融混練粉砕法とは、結着樹脂及び着色剤に、必要に応じて帯電制御剤、離型剤、磁性体等を乾式混合した後、押出機等で溶融混練し、次いで粉砕、分級しトナー母粒子を得る方法であり、トナー母粒子を得た後の外添工程で、シェル微粒子を添加しコア成分表面に付着させてもよい。
3.1.5.シェル微粒子の添加時期
 湿式媒体中(水中及び/又は有機溶剤中)でトナー母粒子を作製する場合、上述の様にコア成分と同時にシェル微粒子を添加(溶解・分散・懸濁のいかなる状態であってもよい)し、熱力学的に、シェル微粒子を、コア成分と湿式媒体の表面に配置させてもよいし、コア成分の組成及び/又は形状が決まった後にシェル微粒子を添加し、物理的にコア成分の表面をシェル微粒子が連続的及び/又は非連続的に覆う形としてもよい。
 更には、湿式媒体中(水中及び/又は有機溶剤中)でトナー母粒子を作製する場合、コア成分の洗浄の前後でシェル微粒子を添加してもよいし、コア成分の乾燥工程の前後でシェル微粒子を添加してもよい。また、外添工程でシェル微粒子を添加してもよく、外添工程でシェル微粒子を付着させる場合は、シェル微粒子を添加し固着させてから外添剤を添加する方が好ましい。
 乾式でトナー母粒子を作製する溶融混練粉砕法においては、粉砕し分級した後の外添工程の前後でシェル微粒子を添加して、該シェル微粒子を付着させることが好ましい。より強固にコア成分とシェル微粒子を固着させる観点から、水中及び/又は有機溶剤中で、シェル微粒子を添加することが特に好ましい。
3.2.本発明のパラメーターを満たすトナーの作製
3.2.1.「TP2(140℃)/TP1(140℃)」について
 レオメーターで測定されるTP2(140℃)/TP1(140℃)が0.95以下を満たすようにするには、例えば、トナー母粒子表面にシェル成分を広く存在させ、その外側を外添剤で覆い、コア成分の結着樹脂の分子量や架橋密度などの組成、シェル微粒子の組成や量を調整し、水中で付着させる場合はコア成分とシェル微粒子成分の極性バランスを調整し、更にトナー母粒子全体の組成比を調整することが必要である。
 TP2A/TP1Aが最小値を示す温度を130℃以上にするためには、コア成分の結着樹脂の分子量や架橋密度などの組成、シェル微粒子の組成や量、ワックスの種類や量を調整し、水中で付着させる場合はコア成分とシェル微粒子成分の極性バランスを調整し、更にトナー母粒子全体の組成比を調整する。
 TP1(130℃)を2.5以上とするためには、コア成分の結着樹脂のTgや分子量や架橋密度などの組成、シェル微粒子の組成や量、ワックスの種類や量を調整する。
 シェル微粒子の体積中位径(Dv50)は、50nm以上が好ましく、100nm以上がより好ましく、350nm以下が好ましく、300nm以下がより好ましい。本発明における「体積中位径(Dv50)」は、粒子の大きさによって実施例に記載の方法で測定したものとして定義される。
 シェル微粒子の添加量は、コア成分とシェル微粒子の固形分の合計量を100質量%としたとき、2質量%以上60質量%以下であることが好ましく、5%質量以上50質量%以下であることがより好ましく、7質量%以上40質量%以下であることが特に好ましい。シェル成分は、トナーの形態となった際に表面近傍に配置されていることが望ましい。その形状としては、本発明を逸脱しない範囲であれば、粒子状・球状でもよく、薄膜状でもよい。
 レオメーターで測定されるTP2(140℃)/TP1(140℃)が0.95以下になるように調整するために、コア成分の結着樹脂とシェル成分が適度な相溶性を持つように組成を組み合わせることが望ましい。1回目測定では、コア成分の結着樹脂とシェル成分が溶融せずに接している状態で測定を開始する。1回目測定が終了すると、その間の加熱によってコア成分の結着樹脂とシェル成分が互いに溶融する。よって、2回目測定では互いに溶融した状態で測定を開始する。この違いが、TP2(140℃)/TP1(140℃)の違いに表れている。よって、コア成分の結着樹脂の種類に応じてシェル成分に含有する樹脂の種類を選定して相溶性を調整する。以下、その調整方法を例示するが、例に挙げた数値は限定されない。
 すなわち、例えば、コア成分の結着樹脂がポリ(メタ)アクリル系樹脂の1種であるスチレンアクリル系樹脂であれば、シェル微粒子に含有する樹脂もスチレンアクリル系樹脂として、スチレンモノマーとアクリルモノマーの比率を、例えば、コア成分の結着樹脂が70:30の場合はシェル微粒子に含有する樹脂は80:20とする;あるいはその他の単量体100質量部に対する親水性単量体の部数を、コア成分の結着樹脂が1部の場合はシェルに含有する樹脂は1.5部とする;コア成分の結着樹脂にスチレンアクリル系樹脂とポリエステルのハイブリッド樹脂を用いる;等といった方法で組成に差をつけることが挙げられる。
 コア成分とシェル成分の適切な相溶性が得られることから、コア成分の結着樹脂のSP値とシェル微粒子成分のSP値の差が0.1~1.1cal1/2/cm3/2であることが好ましく、0.5~1.0cal1/2/cm3/2であることがより好ましい。
 また、紙などの記録媒体との接着強度を高くし部材汚染を減らす観点から、透過型電子顕微鏡で測定したときの、コア成分とシェル成分の陰影差がないことが特に好ましい。透過型電子顕微鏡の測定条件は、実施例に記載のとおり測定し、「陰影差」については、そのように測定したときの写真を肉眼で見たときの「陰影差」とする。ここで、「陰影差がない」とは、コア成分とシェル成分の染色度合い(白黒度合い)の差がなく、シェル成分の縁(すなわち、コア成分とシェル成分の境界)が見えないことを言う。ただし、上記「陰影差がない」は、陰影差が明瞭ではなく殆ど陰影差が見えない態様まで除外するものではない。
 シェル微粒子がコア成分から離脱しないように、ある程度の親和性を有していることが重要な為、コア成分を構成する結着樹脂の単量体成分とシェル微粒子を構成する単量体成分の少なくとも一つは同一とすることが好ましい。このようにすることで、コア成分とシェル微粒子の界面がシームレスとなり、接着強度が上がることにより、例えば、湿式でシェルをコア成分の表面に付着させ、その後、外添工程でシェルを引き伸ばす際に、シェルの一部分は、コア成分にアンカーリングし、コア成分から突き出た部分を延伸化でき被覆率を稼ぐことができ、好ましいシェル成分の被覆形態を得ることができる。
 また、コア成分の結着樹脂がポリエステル系樹脂であれば、シェル微粒子に含有する樹脂もポリエステル系樹脂として、酸価を、結着樹脂が3mgKOH/g以下の場合はシェル微粒子に含有する樹脂は4mgKOH/g以上20mgKOH/g以下とする;結着樹脂は水酸基を有さないものにし、シェル微粒子に含有する樹脂は水酸基を有するものにする;等といった方法が挙げられる。
 コア成分の結着樹脂とシェル微粒子に含有される樹脂の組成及び物性が同一であると、トナー母粒子作製時に結着樹脂とシェル微粒子の溶融が進むため、レオメーターで測定されるTP2(140℃)とTP1(140℃)がほぼ同じ値をとる。また、結着樹脂とシェル微粒子の相溶性が極めて低いと、1回目測定の熱で互いに溶融せずトナーの構造が維持されて、TP2(140℃)とTP1(140℃)がほぼ同じ値をとる。シェル微粒子は樹脂を含むが、それ以外の成分、例えばワックス、帯電制御剤等を含んでもよい。
 シェル微粒子に含有される樹脂のGPCによる数平均分子量は、好ましくは5000以上、より好ましくは8000以上、更に好ましくは1万以上であり、好ましくは5万以下、より好ましくは4万以下、更に好ましくは3.5万以下であることが望ましい。シェル微粒子に含有する樹脂のGPCによる重量平均分子量は、好ましくは2万以上、より好ましくは3万以上、好ましくは30万以下、より好ましくは20万以下である。
 シェル微粒子のTgは、40℃以上が好ましく、45℃以上がより好ましく、90℃以下が好ましく、70℃以下がより好ましい。また、シェル微粒子のTgは、コア成分に含まれる結着樹脂のTgより高いこと好ましく、5℃以上高いことがより好ましく、7℃以上高いことが更に好ましい。これにより前記TP2(140℃)/TP1(140℃)及びTP1(130℃)の範囲を満足するトナーとすることができる。また、コア成分に含まれる結着樹脂のTgとシェル微粒子のTgの差は、低温での優れた定着性の観点から25℃以下が好ましく、20℃以下がより好ましい。
 トナーのレオメーターで測定されるトナーのTP2(140℃)/TP1(140℃)が、本発明の範囲に入るように調整するためには、シェル微粒子をトナー母粒子の表面近傍に配置することが必要である。そのために有効なシェル微粒子の組成としては、湿式媒体(水及び又は有機溶剤)中でトナー母粒子を作製する場合、結着樹脂よりも媒体になじみ易い組成にしておくことが挙げられる。例えば、媒体が水の場合は酸性単量体若しくは塩基性単量体の比率をコア成分の結着樹脂より高く、かつ、その他の単量体100質量部に対して酸性単量体若しくは塩基性単量体の含有量を1.0質量部以上にする;イオン性の重合開始剤を使用する;等が挙げられる。
 コア成分に含まれる結着樹脂とシェル微粒子に含まれる樹脂の質量比(シェル樹脂質量/コア樹脂質量)は、好ましくは8/92以上、より好ましくは15/85以上であり、好ましくは50/50以下、より好ましくは40/60以下である。前記範囲内であるとシェル層を薄く均一に形成でき、耐ブロッキングと低温での優れた定着性を実現できる。
4.外添
4.1.外添剤
 本発明においては、本発明の静電荷像現像用トナーの物性を得るために、また、トナーの流動性向上や帯電制御性向上のために、外添剤を添加することが好ましい。外添剤はトナー母粒子表面全体に付着するため、シェル成分が存在しない部分も外添剤で被覆されることが好ましい。外添剤としては、各種無機又は有機微粒子の中から適宜選択して使用することができる。また、2種類以上の外添剤を併用してもよい。
 無機微粒子としては、炭化ケイ素、炭化ホウ素、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウム、炭化タンタル、炭化ニオブ、炭化タングステン、炭化クロム、炭化モリブデン、炭化カルシウム等の各種炭化物、窒化ホウ素、窒化チタン、窒化ジルコニウム等の各種窒化物、ホウ化ジルコニウム等の各種ホウ化物、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化銅、酸化アルミニウム、酸化セリウム、シリカ、コロイダルシリカ等の各種酸化物、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ストロンチウム等の各種チタン酸化合物、リン酸カルシウム等のリン酸化合物、二硫化モリブデン等の硫化物、フッ化マグネシウム、フッ化炭素等のフッ化物、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の各種金属石鹸、滑石、ベントナイト、各種カーボンブラック、マグネタイト、フェライト等を用いることができる。
 有機微粒子としては、スチレン系樹脂、アクリル系樹脂、エポキシ系樹脂、メラミン系樹脂等の微粒子を用いることができる。
 また、フッ素原子を含有する微粒子を用いて帯電安定性を向上させることができる。
  これら外添剤の中では、特に、シリカ、酸化チタン、アルミナ、酸化亜鉛、各種カーボンブラックや導電性カーボンブラック等が好適に使用される。
  また、外添剤は、前記の無機又は有機微粒子の表面を、ヘキサメチルジシラザン(HMDS)、ジメチルジクロロシラン(DMDS)等のシランカップリング剤、チタネート系カップリング剤、シリコーンオイル、ジメチルシリコーンオイル、変性シリコーンオイル、アミノ変性シリコーンオイル等のシリコーンオイル処理剤、シリコーンワニス、フッ素系シランカップリング剤、フッ素系シリコーンオイル、アミノ基や第4級アンモニウム塩基を有するカップリング剤等の処理剤によって疎水化等の表面処理が施されているものを使用することもできる。該処理剤は2種以上を併用することもできる。
  外添剤の添加量は、トナー母粒子100質量部に対して、1.0質量部以上が好ましく、1.5質量部以上が特に好ましく、6.5質量部以下が好ましく、5.5質量部以下が特に好ましい。
  本発明の静電荷像現像用トナーにおいては、帯電制御の観点から、外添剤として導電性微粒子を使用してもよい。導電性微粒子としては、例えば、導電性酸化チタン、シリカ、マグネタイト、等の金属酸化物又はそれらに導電性物質をドープしたもの、ポリアセチレンやポリフェニルアセチレン、ポリ-p-フェニレン等の共役2重結合を有するポリマーに金属等の導電性物質をドープした有機微粒子、カーボンブラックやグラファイトに代表される炭素等が挙げられるが、トナーの流動性を損なわず導電性を付与できるという観点から、導電性酸化チタン又はその導電性物質をドープした金属酸化物や有機微粒子がより好ましい。
  導電性微粒子の含有量は、トナー母粒子100質量部に対して、下限は、0.05質量部以上が好ましく、0.1質量部以上であることがより好ましく、0.2質量部以上であることが特に好ましい。一方、導電性微粒子の含有量の上限は、3質量部以下が好ましく、2質量部以下がより好ましく、特に好ましくは1質量部以下である。
4.2.外添剤の外添方法
 外添剤の添加方法は、ヘンシェルミキサー等の高速撹拌機を用いる方法や、圧縮剪断応力を加えることのできる装置による方法等が挙げられる。トナーは、トナー母粒子に全ての外添剤を同時添加して外添する一段外添法により作製できるが、外添剤毎に外添する分段外添法により作製することもできる。外添中の温度上昇を防止するための方法としては、容器に冷却装置を設置する、分段外添する等が挙げられる。
5.その他
 本発明の静電荷像現像用トナーは、トナーをキャリアとともに用いる二成分系現像剤、又は、キャリアを使用しない磁性若しくは非磁性一成分系現像剤の何れの形態で用いてもよい。二成分系現像剤として用いる場合、キャリアとしては、鉄粉、マグネタイト粉、フェライト粉等の磁性物質又はそれらの表面に樹脂コーティングを施したものや磁性キャリア等公知のものを用いることができる。樹脂コーティングキャリアの被覆樹脂としては一般的に知られているスチレン系樹脂、アクリル系樹脂、スチレンアクリル共重合系樹脂、シリコーン樹脂、変性シリコーン樹脂、フッ素樹脂、又はこれらの混合物等が利用できる。
 以下、本発明を実施例により更に具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。以下の例で単に「部」、「%」とあるのは、質量に関するものは、「質量部」、「質量%」を意味する。
 下記の実施例及び比較例中、体積中位径、個数中位径、粒子径分布(Dv50/Dn50)、平均円形度、数平均分子量(Mn)、重量平均分子量(Mw)、エマルション固形分濃度等は次のように測定した。本発明では、それぞれの数値は、次のように測定したものとして定義される。
<体積中位径測定1>
 1μm未満の体積中位径を有す粒子の体積中位径(Dv50)は、日機装株式会社製型式MicrotracNanotrac150(以下、「ナノトラック」と略す。)、及び、同社製解析ソフトMicrotracParticle Analyzer Ver10.1.2-019EEを用い、電気伝導度が0.5μS/cmのイオン交換水を溶媒とし、溶媒屈折率:1.333、測定時間:120秒、測定回数:5回の測定条件で、取り扱い説明書に記載された方法で測定し、その平均値を求めた。その他の設定条件は、粒子屈折率:1.59、透過性:透過、形状:真球形、密度:1.04とした。
<体積中位径測定2>
 1μm以上の体積中位径を有する粒子の体積中位径(Dv50)と個数中位径(Dn50)は、ベックマン・コールター社製、マルチサイザーIII(アパーチャー径100μm)(以下、「マルチサイザー」と略す。)を用い、同社製アイソトンIIを分散媒として、分散質濃度0.03質量%になるように分散させて測定した。粒子径分布は、Dv50をDn50で除した値とした。
<平均円形度>
 平均円形度は、分散質を分散媒(セルシース:シスメックス社製)に、5720~7140個/μLとなるように分散させ、フロー式粒子分析装置(FPIA3000:シスメックス社製)を用いて、HPF分析量0.35μL、HPF検出量2000~2500個の条件下でHPFモードにより測定した。
<数平均分子量(Mn)、重量平均分子量(Mw)>
 重合体一次粒子分散液のTHF可溶成分を、以下の条件でゲルパーミエーションクロマトグラフィー(GPC)により測定した。
 装置:東ソー社製GPC装置 HLC-8320、カラム:TOSOH TSKgel SuperHM-H(直径6mmx長さ150mmx2本)、溶媒:THF、カラム温度40℃、流量0.5mL/分、試料濃度:0.1質量%、検量線:標準ポリスチレン
<エマルション固形分濃度>
 エマルション固形分濃度は、ケット科学研究所社製、赤外線水分計FD-610を用い、2gの試料を195℃で90分加熱して水分を蒸発させることにより求めた。
<Tg(ガラス転移温度)>
 示差走査熱量計(DSC)によるTg測定は、ティー・エイ・インスツルメント社のQ20を用い、次のとおり行った。試料3±1mgをアルミニウム製パンに入れて0.1mgの桁まで精秤し、酸化アルミニウム3mgを充填したアルミニウム製パンをリファレンスとして、窒素気流中、0℃から120℃まで10℃/分で昇温した。120℃にて10分間保持した後、10℃/分で0℃まで降温し、5分間保持した後に10℃/分で再び120℃まで昇温した。2回目昇温時の吸熱ピーク前のベースラインと、吸熱ピーク開始後30~60℃に現れる最初の変曲点における接線の交点の温度をTgとした。試料が水分散体の場合は、凍結乾燥して水分を除去してから上記方法で測定した。
<貯蔵弾性率G’(120℃)>
 レオメーターで測定される120℃におけるG’は以下の手順で求めた。測定は、TA Instruments製レオメーターARES(測定制御ソフトウェアTA Orchestrator V7.2.0.2)を用い、以下のとおり行った。サンプル約1.3gを20mm径用の治具に入れ、50℃に加熱したプレス機(小平製作所製 5トンプレスPE-5Y)によって圧力30kg/cmで10分間加圧し、ペレットに成型した。ペレットを直径25mmの円形パラレルプレートを装着し温度を40℃に設定した測定装置にセットしたのち、120℃へ昇温した。上部プレートを下げ治具へ融着させた。その後すみやかに40℃に冷却した。その後、以下の条件で測定し、得られたG’から120℃におけるG’を求めた。
 測定周波数 ‘Frequency’ 6.28rad/sec
 初期温度 ‘Initial Temp.’ 40.0℃
 最終温度 ‘Final Temp.’ 165.0℃
 昇温速度 ‘Ramp Rate’ 4.0℃/min
 昇温後保持時間 ‘Soak Time After Ramp’ 20s(秒)
 測定サイクル時間 ‘Time Per Measure’ 1s(秒)
 歪み ‘Strain’ 0.1%
<軟化点>
 フローテスターで測定される軟化点は以下の手順で求めた。測定装置は、島津製作所製フローテスターCFT-500Dを用い、以下の方法で測定を行った。サンプル約1.0gをプレス機で加圧してペレットに成型した。ダイ径1mm、ダイ長さ1mm、荷重20kgの条件で、温度を60℃から6℃/分で昇温した。試料が流出し始めてから流出し終わるまでの中点の温度を軟化点とした。
<ワックス分散液A1の作製:乳化工程>
 ワックスとしてエステルワックス1(日油株式会社製 品名:WEP-3、DSCによるTg測定の2回目測定融点ピーク:71.0℃、DSCによるTg測定の2回目測定オンセット温度:68.6℃、DSCによるTg測定の2回目測定変曲点:69.9℃、カタログ酸価0.1mgKOH/g、カタログ水酸基価3mgKOH/g以下)30.00部(1440g)、デカグリセリンデカベヘネート(三菱化学フーズ株式会社製、品名:B100D、水酸基価27、融点70℃)0.24部、20%ドデシルベンゼンスルホン酸ナトリウム水溶液(以下、「20%DBS水溶液」と略す。)1.93部、脱塩水67.83部、を90℃に加熱して、45℃傾斜3段パドル翼を備えたCSTR型撹拌層内で20分混合した。
 次いで、この分散液を90℃に加熱したまま、バルブホモジナイザー(ゴーリン社製、15-M-8PA型)を用いて25MPaの加圧条件で循環乳化を開始し、ナノトラックにて粒子径を測定し、体積中位径が245nmになるまで分散して、ワックス分散液A1(エマルション固形分濃度=31.2%、ワックス成分濃度30.8%)を作製した。
<ワックス分散液A2の作製:乳化工程>
 ワックスとしてパラフィンワックス1(日本精蝋株式会社製 品名:HNP-9、カタログ融点:75℃)27.30部、ステアリルアクリレート(東邦化学株式会社製、品名:ST-A)2.70部、20%DBS水溶液1.93部、脱塩水68.07部、を90℃に加熱して、45℃傾斜3段パドル翼を備えたCSTR型撹拌層内で20分混合した。
 次いで、この分散液を90℃に加熱したまま、バルブホモジナイザー(ゴーリン社製、15-M-8PA型)を用いて25MPaの加圧条件で循環乳化を開始し、ナノトラックで粒子径を測定し、体積中位径が260nmになるまで分散して、ワックス分散液A2(エマルション固形分濃度=30.2%、ワックス成分濃度29.8%)を作製した。
<ワックス分散液A3の作製:乳化工程>
 ワックスとしてエステルワックス2(日油株式会社製 品名:ユニスターH-476、融点:62℃)30.00部、20%DBS水溶液2.48部、脱塩水67.52部、を85℃に加熱して、45℃傾斜3段パドル翼を備えたCSTR型撹拌層内で20分混合した。次いで、この分散液を85℃に加熱したまま、バルブホモジナイザー(ゴーリン社製、15-M-8PA型)を用いて20MPaの加圧条件で循環乳化を開始し、ナノトラックで粒子径を測定し、体積中位径が246nmになるまで分散して、ワックス分散液A3(エマルション固形分濃度=30.1%、ワックス成分濃度29.5%)を作製した。
<ワックス分散液A4の作製:乳化工程>
 原料として上記エステルワックス1を22.50部、エステルワックス3(日油株式会社製、品名:WEP-5、カタログ融点82℃、カタログ酸価0.1mgKOH/g、カタログ水酸基価3mgKOH/g以下)7.50部(1080g)、デカグリセリンデカベヘネート0.24部、20%DBS水溶液1.93部、脱塩水67.83部を用い、ワックス分散液A1と同様の方法で、ワックス分散液A4(エマルション固形分濃度=31.4%、ワックス成分濃度31.0%)を作製した。
<ワックス分散液A5の作製:乳化工程>
 ワックスとして下記構造(1)を有するアルキル変性シリコーンワックス(表面張力27mN/m、融点63℃、融解熱量97J/g、融解ピーク半値幅10.9℃、結晶化ピーク半値幅17.0℃)27.0部、アニオン性界面活性剤(第一工業製薬社製、ネオゲンSC)0.3部、脱塩水73.0部、を90℃に加熱して、45℃傾斜3段パドル翼を備えたCSTR型撹拌層内で10分混合した。
 次いで、この分散液を90℃に加熱したまま、バルブホモジナイザー(ゴーリン社製、15-M-8PA型)を用いて20MPaの加圧条件で循環乳化を開始し、ナノトラックで粒子径を測定し、体積中位径が246nmになるまで分散して、ワックス分散液A5(エマルション固形分濃度=27.1%、ワックス成分濃度26.9%)を作製した。
Figure JPOXMLDOC01-appb-C000001
 (式(1)中、R=メチル基、m=10、X=Y=平均炭素数30のアルキル基である。)
<重合体一次粒子B1の作製:重合工程>
 撹拌装置、加熱冷却装置、濃縮装置、及び、各原料・助剤仕込み装置を備えた反応器に、ワックス分散液A1を10.8部(ワックス成分として)、脱塩水256部、0.5%硫酸鉄(II)7水和物水溶液0.02部を仕込み、撹拌しながら窒素気流下で90℃に昇温した。
 その後、撹拌を続けたまま、事前にホモジナイザーで30分間撹拌した下記のモノマー類・乳化剤水溶液の混合物を240分かけて添加した。このモノマー類・乳化剤水溶液の混合物を添加開始した時間を重合開始とし、下記の開始剤水溶液を重合開始0分から480分かけて添加した。重合開始240分に下記の硫酸鉄水溶液を添加した。重合開始300分に95℃に昇温した。重合開始540分まで加熱撹拌を継続した。
[モノマー類]
  スチレン               72.7部
  アクリル酸ブチル           27.3部
  アクリル酸               0.95部
  トリクロロブロモメタン         1.43部
  ヘキサンジオールジアクリレート     1.41部
[乳化剤水溶液]
  20%DBS水溶液           1.0部
  脱塩水                67.2部
[開始剤水溶液]
  8%過酸化水素水溶液         28.0部
  8%L-(+)アスコルビン酸水溶液  28.0部
[硫酸鉄水溶液]
  0.5%硫酸鉄(II)7水和物水溶液  0.08部
 重合開始540分後、30℃まで冷却し、乳白色の重合体一次粒子B1を得た。ナノトラックを用いて測定した体積中位径は243nmだった。数平均分子量(Mn)は13000、重量平均分子量(Mw)は102000だった。固形分濃度は、23.7質量%であり、Tgは40℃であった。
<重合体一次粒子B2の作製:重合工程>
 撹拌装置、加熱冷却装置、濃縮装置、及び、各原料・助剤仕込み装置を備えた反応器に、ワックス分散液A2を10.5部(ワックス成分として)、脱塩水282部、0.5%硫酸鉄(II)7水和物水溶液0.02部を仕込み、撹拌しながら窒素気流下で90℃に昇温した。
 その後、撹拌を続けたまま、事前にホモジナイザーで30分間撹拌した下記のモノマー類・乳化剤水溶液・硫酸鉄水溶液の混合物を300分かけて添加した。このモノマー類・乳化剤水溶液・硫酸鉄水溶液の混合物を添加開始した時間を重合開始とし、下記の開始剤水溶液1を重合開始30分から270分かけて添加した。その後、下記の開始剤水溶液2を重合開始300分から120分かけて添加した。重合開始540分まで加熱撹拌を継続した。
[モノマー類]
  スチレン               76.8部
  アクリル酸ブチル           23.2部
  アクリル酸               1.50部
  トリクロロブロモメタン         1.00部
  ヘキサンジオールジアクリレート     0.70部
[乳化剤水溶液]
  20%DBS水溶液           1.0部
  脱塩水                67.1部
[開始剤水溶液1]
  8%過酸化水素水溶液         15.5部
  8%L-(+)アスコルビン酸水溶液  15.5部
[開始剤水溶液2]
  8%過酸化水素水溶液          0.00部
  8%L-(+)アスコルビン酸水溶液  14.7部
[硫酸鉄水溶液]
  0.5%硫酸鉄(II)7水和物水溶液  0.02部
 重合開始540分後、30℃まで冷却し、乳白色の重合体一次粒子B2を得た。ナノトラックを用いて測定した体積中位径は254nmだった。数平均分子量(Mn)は16000、重量平均分子量(Mw)は88000だった。固形分濃度は、20.6質量%であり、Tgは51℃であった。
<重合体一次粒子B3の作製:重合工程>
 撹拌装置、加熱冷却装置、濃縮装置、及び、各原料・助剤仕込み装置を備えた反応器に、ワックス分散液A3を12.5部(ワックス成分として)、脱塩水334部、0.5%硫酸鉄(II)7水和物水溶液0.02部を仕込み、撹拌しながら窒素気流下で70℃に昇温した。
 その後、撹拌を続けたまま、事前にホモジナイザーで30分間撹拌した下記のモノマー類・乳化剤水溶液・硫酸鉄水溶液の混合物を300分かけて添加した。
 このモノマー類・乳化剤水溶液・硫酸鉄水溶液の混合物を添加開始した時間を重合開始とし、下記の開始剤水溶液1を重合開始5分前に一括添加した。その後、下記の開始剤水溶液2を重合開始0分から300分かけて添加した。その後、下記の開始剤水溶液3を重合開始300分から180分かけて添加した。重合開始300分に90℃に昇温した。重合開始540分まで加熱撹拌を継続した。
[モノマー類]
  スチレン               76.9部
  アクリル酸ブチル           23.1部
  アクリル酸               1.50部
  トリクロロブロモメタン         0.45部
  ヘキサンジオールジアクリレート     1.00部
[乳化剤水溶液]
  20%DBS水溶液           0.9部
  脱塩水                67.4部
[開始剤水溶液1]
  8%過酸化水素水溶液          3.2部
  8%L-(+)アスコルビン酸水溶液   3.2部
[開始剤水溶液2]
  8%過酸化水素水溶液         14.0部
  8%L-(+)アスコルビン酸水溶液  14.0部
[開始剤水溶液3]
  8%過酸化水素水溶液          9.31部
  8%L-(+)アスコルビン酸水溶液   9.31部
[硫酸鉄水溶液]
  0.5%硫酸鉄(II)7水和物水溶液  0.01部
 重合開始540分後、30℃まで冷却し、乳白色の重合体一次粒子B3を得た。ナノトラックを用いて測定した体積中位径は190nmだった。数平均分子量(Mn)は30000、重量平均分子量(Mw)は141000だった。固形分濃度は、18.8質量%であった。
<重合体一次粒子B4の作製:重合工程>
 撹拌装置、加熱冷却装置、濃縮装置、及び、各原料・助剤仕込み装置を備えた反応器に、ワックス分散液A1を10.7部(ワックス成分として)、脱塩水253部、0.5%硫酸鉄(II)7水和物水溶液0.02部を仕込み、撹拌しながら窒素気流下で90℃に昇温した。
 その後、撹拌を続けたまま、事前にホモジナイザーで30分間撹拌した下記のモノマー類・乳化剤水溶液の混合物を240分かけて添加した。このモノマー類・乳化剤水溶液の混合物を添加開始した時間を重合開始とし、下記の開始剤水溶液を重合開始0分から480分かけて添加した。重合開始240分に下記の硫酸鉄水溶液を添加した。重合開始300分に95℃に昇温した。重合開始540分まで加熱撹拌を継続した。
[モノマー類]
  スチレン               70.9部
  アクリル酸ブチル           29.1部
  アクリル酸               0.85部
  トリクロロブロモメタン         1.00部
  ヘキサンジオールジアクリレート     1.00部
[乳化剤水溶液]
  20%DBS水溶液           1.0部
  脱塩水                66.9部
[開始剤水溶液]
  8%過酸化水素水溶液         28.0部
  8%L-(+)アスコルビン酸水溶液  28.0部
[硫酸鉄水溶液]
  0.5%硫酸鉄(II)7水和物水溶液  0.08部
 重合開始540分後、30℃まで冷却し、乳白色の重合体一次粒子B4を得た。ナノトラックを用いて測定した体積中位径は245nmだった。数平均分子量(Mn)は16000、重量平均分子量(Mw)は67000だった。固形分濃度は、23.6質量%であり、Tgは39℃であった。
<重合体一次粒子B5の作製:重合工程>
 撹拌装置、加熱冷却装置、濃縮装置、及び、各原料・助剤仕込み装置を備えた反応器に、ワックス分散液A1を10.8部(ワックス成分として)、脱塩水255部、0.5%硫酸鉄(II)7水和物水溶液0.02部を仕込み、撹拌しながら窒素気流下で90℃に昇温した。
 その後、撹拌を続けたまま、事前にホモジナイザーで30分間撹拌した下記のモノマー類・乳化剤水溶液の混合物を240分かけて添加した。このモノマー類・乳化剤水溶液の混合物を添加開始した時間を重合開始とし、下記の開始剤水溶液を重合開始0分から480分かけて添加した。重合開始240分に下記の硫酸鉄水溶液を添加した。重合開始300分に95℃に昇温した。重合開始540分まで加熱撹拌を継続した。
[モノマー類]
  スチレン               75.4部
  アクリル酸ブチル           24.6部
  アクリル酸               0.95部
  トリクロロブロモメタン         1.43部
  ヘキサンジオールジアクリレート     1.505部
[乳化剤水溶液]
  20%DBS水溶液           1.0部
  脱塩水                67.3部
[開始剤水溶液]
  8%過酸化水素水溶液         27.9部
  8%L-(+)アスコルビン酸水溶液  27.9部
[硫酸鉄水溶液]
  0.5%硫酸鉄(II)7水和物水溶液  0.08部
 重合開始540分後、30℃まで冷却し、乳白色の重合体一次粒子B5を得た。ナノトラックを用いて測定した体積中位径は251nmだった。数平均分子量(Mn)は13000、重量平均分子量(Mw)は72300だった。固形分濃度は、23.7質量%であった。
 <シェル微粒子C1の作製:重合工程>
 撹拌装置、加熱冷却装置、濃縮装置、及び、各原料・助剤仕込み装置を備えた反応器に、ワックス分散液A2を10.5部(ワックス成分として)、脱塩水282部、0.5%硫酸鉄(II)7水和物水溶液0.02部を仕込み、撹拌しながら窒素気流下で90℃に昇温した。
 その後、撹拌を続けたまま、事前にホモジナイザーで30分間撹拌した下記のモノマー類・乳化剤水溶液・硫酸鉄水溶液の混合物を300分かけて添加した。このモノマー類・乳化剤水溶液・硫酸鉄水溶液の混合物を添加開始した時間を重合開始とし、下記の開始剤水溶液1を重合開始30分から270分かけて添加した。その後、下記の開始剤水溶液2を重合開始300分から120分かけて添加した。重合開始540分まで加熱撹拌を継続した。
[モノマー類]
  スチレン               76.8部
  アクリル酸ブチル           23.2部
  アクリル酸               1.50部
  トリクロロブロモメタン         1.00部
  ヘキサンジオールジアクリレート     0.70部
[乳化剤水溶液]
  20%DBS水溶液           1.0部
  脱塩水                67.1部
[開始剤水溶液1]
  8%過酸化水素水溶液         15.5部
  8%L-(+)アスコルビン酸水溶液  15.5部
[開始剤水溶液2]
  8%過酸化水素水溶液          0.00部
  8%L-(+)アスコルビン酸水溶液  14.7部
[硫酸鉄水溶液]
  0.5%硫酸鉄(II)7水和物水溶液  0.02部
 重合開始540分後、30℃まで冷却し、乳白色のシェル微粒子C1を得た。ナノトラックを用いて測定した体積中位径は254nmだった。重量平均分子量(Mw)は88000だった。固形分濃度は、20.6質量%であり、Tgは51℃であった。
<シェル微粒子C2の作製:重合工程>
 撹拌装置、加熱冷却装置、濃縮装置、及び、各原料・助剤仕込み装置を備えた反応器に、ワックス分散液A4を50.6部、粒子径調整用乳化剤(DBS SP)として、20%DBS水溶液2.96部、脱塩水350部を仕込み、撹拌しながら窒素気流下で75℃に昇温した。
 下記の開始剤水溶液1を添加して5分後、撹拌を続けたまま、事前にホモジナイザーで30分間撹拌した下記のモノマー類・乳化剤水溶液の混合物を180分かけて添加した。このモノマー類・乳化剤水溶液の混合物の添加を開始した時間を重合開始とし、下記の開始剤水溶液2を重合開始240分から60分かけて連続的に添加した。下記の開始剤水溶液3を重合開始240分から120分かけて連続的に添加した。重合開始180分に下記の硫酸鉄水溶液を添加した。重合開始180分に93℃に昇温した。重合開始480分まで加熱撹拌を継続した。
[モノマー類]
  スチレン                97.9部
  アクリル酸ブチル             2.1部
  アクリル酸                1.5部
  1-ドデカンチオール           1.0部
[乳化剤水溶液]
  20%DBS水溶液            1.0部
  脱塩水                 66.7部
[開始剤水溶液1]
  20%過硫酸アンモニウム水溶液      6.0部
[開始剤水溶液2]
  8%過酸化水素水溶液          14.2部
[開始剤水溶液3]
  8%L-(+)アスコルビン酸水溶液   21.3部
[硫酸鉄水溶液]
  0.5%硫酸鉄(II)7水和物水溶液    0.05部
 重合開始480分後、30℃まで冷却し、乳白色のシェル微粒子C2を得た。ナノトラックを用いて測定した体積中位径は158nmだった。重量平均分子量(Mw)は59000だった。固形分濃度は20.0%でありTgは80℃であった。
<シェル微粒子C3の作製:重合工程>
 撹拌装置、加熱冷却装置、濃縮装置、及び、各原料・助剤仕込み装置を備えた反応器に、粒子径調整用乳化剤(DBS SP)として、20%DBS水溶液1.72部、脱塩水285部、0.5%硫酸鉄(II)7水和物水溶液0.01部を仕込み、撹拌しながら窒素気流下で90℃に昇温した。
 その後、撹拌を続けたまま、事前にホモジナイザーで30分間撹拌した下記のモノマー類・乳化剤水溶液の混合物を300分かけて添加した。このモノマー類・乳化剤水溶液の混合物を添加開始した時間を重合開始とし、下記の開始剤水溶液1を重合開始5分前に一括添加した。その後、下記の開始剤水溶液2を重合開始0分から300分かけて添加した。その後、下記の開始剤水溶液3を重合開始300分から120分かけて添加した。重合開始300分に95℃に昇温した。硫酸鉄水溶液を重合開始300分に下記の硫酸鉄水溶液を添加した。重合開始540分まで加熱撹拌を継続した。
[モノマー類]
  スチレン              100.0部
  アクリル酸ブチル            0.0部
  アクリル酸               0.50部
  トリクロロブロモメタン         0.75部
  ヘキサンジオールジアクリレート     0.00部
[乳化剤水溶液]
  20%DBS水溶液           1.0部
  脱塩水                66.0部
[開始剤水溶液1]
  8%過酸化水素水溶液          3.2部
  8%L-(+)アスコルビン酸水溶液   3.2部
[開始剤水溶液2]
  8%過酸化水素水溶液         15.7部
  8%L-(+)アスコルビン酸水溶液  15.7部
[開始剤水溶液3]
  8%過酸化水素水溶液          0.00部
  8%L-(+)アスコルビン酸水溶液  14.2部
[硫酸鉄水溶液]
  0.5%硫酸鉄(II)7水和物水溶液  0.05部
 重合開始540分後、30℃まで冷却し、乳白色のシェル微粒子C3を得た。ナノトラックを用いて測定した体積中位径は141nmだった。重量平均分子量(Mw)は63000だった。固形分濃度は、19.9質量%であった。
<シェル微粒子C4の作製:重合工程>
 撹拌装置、加熱冷却装置、濃縮装置、及び、各原料・助剤仕込み装置を備えた反応器に、粒子径調整用乳化剤(DBS SP)として、20%DBS水溶液1.72部、脱塩水304部、0.5%硫酸鉄(II)7水和物水溶液0.004部を仕込み、撹拌しながら窒素気流下で90℃に昇温した。
 その後、撹拌を続けたまま、事前にホモジナイザーで30分間撹拌した下記のモノマー類・乳化剤水溶液・硫酸鉄水溶液の混合物を300分かけて添加した。このモノマー類・乳化剤水溶液・硫酸鉄水溶液の混合物を添加開始した時間を重合開始とし、下記の開始剤水溶液1を重合開始5分前に一括添加した。その後、下記の開始剤水溶液2を重合開始0分から300分かけて添加した。その後、下記の開始剤水溶液3を重合開始300分から120分かけて添加した。重合開始480分まで加熱撹拌を継続した。
[モノマー類]
  スチレン               88.0部
  アクリル酸ブチル           12.0部
  アクリル酸               1.50部
  トリクロロブロモメタン         0.48部
  ヘキサンジオールジアクリレート     0.40部
[乳化剤水溶液]
  20%DBS水溶液           1.5部
  脱塩水                66.4部
[開始剤水溶液1]
  8%過酸化水素水溶液          3.2部
  8%L-(+)アスコルビン酸水溶液   3.2部
[開始剤水溶液2]
  8%過酸化水素水溶液         15.7部
  8%L-(+)アスコルビン酸水溶液  15.7部
[開始剤水溶液3]
  8%過酸化水素水溶液          0.00部
  8%L-(+)アスコルビン酸水溶液  14.2部
[硫酸鉄水溶液]
  0.5%硫酸鉄(II)7水和物水溶液  0.004部
 重合開始480分後、30℃まで冷却し、乳白色のシェル微粒子C4を得た。ナノトラックを用いて測定した体積中位径は118nmだった。重量平均分子量(Mw)は102000だった。固形分濃度は、18.9質量%であった。
<シェル微粒子C5の作製:重合工程>
 撹拌装置、加熱冷却装置、濃縮装置、及び、各原料・助剤仕込み装置を備えた反応器に、ワックス分散液A5を5.9部(ワックス成分として)、脱塩水323部を仕込み、撹拌しながら窒素気流下で90℃に昇温した。
 その後、撹拌を続けたまま、事前にホモジナイザーで30分間撹拌した下記のモノマー類・乳化剤水溶液の混合物を300分かけて添加した。このモノマー類・乳化剤水溶液の混合物を添加開始した時間を重合開始とし、下記の開始剤水溶液1を重合開始5分前に一括添加した。その後、下記の開始剤水溶液2を重合開始0分から360分かけて添加した。重合開始420分まで加熱撹拌を継続した。
[モノマー類]
  スチレン               92.5部
  アクリル酸ブチル            7.5部
  アクリル酸               1.50部
  トリクロロブロモメタン         0.50部
  ヘキサンジオールジアクリレート     0.00部
[乳化剤水溶液]
  20%DBS水溶液           0.7部
  脱塩水                67.0部
[開始剤水溶液1]
  8%過酸化水素水溶液          3.2部
  8%L-(+)アスコルビン酸水溶液   3.2部
[開始剤水溶液2]
  8%過酸化水素水溶液         18.9部
  8%L-(+)アスコルビン酸水溶液  18.9部
 重合開始420分後、30℃まで冷却し、乳白色のシェル微粒子C5を得た。ナノトラックを用いて測定した体積中位径は283nmだった。重量平均分子量(Mw)は74000だった。固形分濃度は、19.6質量%であった。
[実施例1]
<トナー母粒子分散液1の調製:凝集工程>
 撹拌装置、加熱冷却装置、及び各原料・助剤仕込み装置を備えた混合器に、上記で得られた重合体一次粒子B1 60.9部(固形分)、20%DBS水溶液0.12部(固形分)、脱イオン水19部、5%硫酸鉄(II)七水和物水溶液0.53部(固形分)、シアン着色剤EP-700(大日精化(株)製)24部を撹拌しながら順に添加して均一に混合した。
 その後、脱イオン水41部を6分かけて添加した。続けて内温を40℃まで昇温し、更に体積中位径が4.9μmになるまで段階的に昇温した。この温度(一次凝集温度)は40℃であった。
 すみやかに一次凝集温度より2℃温度を下げると同時に重合体一次粒子B1 6.8部(固形分)を添加した。90分後、シェル微粒子C1 32.3部(固形分)を添加した。60分後、20%DBS水溶液4.0部(固形分)と脱イオン水23部を添加してから、80分かけて77℃まで昇温し、その後円形度が0.966になるまで段階的に昇温した。円形度が0.966に到達した時の温度(最終円形化温度)は、80℃であった。その後、すみやかに30℃まで冷却し、トナー母粒子分散液1を得た。
<トナー母粒子1の作製:洗浄・乾燥工程>
 得られたトナー母粒子分散液1を抜き出し、5種C(東洋濾紙(株)社製、No.5C)の濾紙を用いてアスピレーターにより吸引濾過した。濾紙上に残ったケーキを、撹拌機(プロペラ翼)を備えたステンレス容器に移し、電気伝導度が1μS/cmのイオン交換水を加え撹拌することにより均一に分散させ、その後30分間撹拌した。この工程をろ液の電気伝導度が2μS/cmになるまで繰り返した後、得られたケーキを、40℃に設定された送風乾燥機内で48時間乾燥することにより、トナー母粒子1を得た。
<トナー1の製造:外添工程>
 トナー母粒子1に外添する外添工程には、以下の外添剤W~Zを用いた。
   外添剤W:シリカ粒子(BET:67m/g)
   外添剤X:正帯電性シリカ粒子(BET:119m/g)
   外添剤Y:複合酸化物粒子(BET:56m/g)
   外添剤Z:大粒径シリカ粒子(BET:37m/g)
 サンプルミル(協立理工(株)製)を、あらかじめ30℃に加温しておいた。そこに上記で得られたトナー母粒子1 100部に対し、外添剤W(シリカ粒子)を0.45部、外添剤X(正帯電性シリカ粒子)を0.15部、外添剤Y(複合酸化物粒子)を1.20部、外添剤Z(大粒径シリカ粒子)を1.00部添加し、4000rpmで11分間撹拌・混合して外添し、篩別することによりトナー1を得た。
[実施例2]
<トナー母粒子分散液2の調製:凝集工程>
 撹拌装置、加熱冷却装置、及び各原料・助剤仕込み装置を備えた混合器に、上記で得られた重合体一次粒子B1 72.5部(固形分)、20%DBS水溶液0.12部(固形分)、脱イオン水19部、5%硫酸鉄(II)七水和物水溶液0.53部(固形分)、シアン着色剤EP-700(大日精化(株)製)24部を撹拌しながら順に添加して均一に混合した。その後、脱イオン水41部を6分かけて添加した。続けて内温を40℃まで昇温し、更に体積中位径が4.9μmになるまで段階的に昇温した。この温度(一次凝集温度)は45℃であった。
 すみやかに一次凝集温度より2℃温度を下げると同時に重合体一次粒子B1 6.8部(固形分)を添加した。30分後、シェル微粒子C1 19.5部(固形分)を添加した。60分後、20%DBS水溶液4.0部(固形分)と脱イオン水23部を添加してから、80分かけて77℃まで昇温し、その後円形度が0.966になるまで段階的に昇温した。円形度が0.966に到達した時の温度(最終円形化温度)は、79℃であった。その後、すみやかに30℃まで冷却し、トナー母粒子分散液2を得た。
<トナー母粒子2の作製:洗浄・乾燥工程>
 トナー母粒子分散液1の代わりにトナー母粒子分散液2を用いた事以外は、トナー母粒子1と同様の方法で、トナー母粒子2を得た。
<トナー2の製造:外添工程>
 トナー母粒子1の代わりにトナー母粒子2を用いた事以外は、トナー1と同様の方法で、トナー2を得た。
[比較例1]
<トナー母粒子分散液3の調製:凝集工程>
 撹拌装置、加熱冷却装置、及び各原料・助剤仕込み装置を備えた混合器に、上記で得られた重合体一次粒子B4 85.1部(固形分)、20%DBS水溶液0.26部(固形分)、脱イオン水32部、5%硫酸鉄(II)七水和物水溶液0.52部(固形分)、シアン着色剤EP-700(大日精化(株)製)18部を撹拌しながら順に添加して均一に混合した。その後、脱イオン水41部を6分かけて添加した。続けて内温を43℃まで昇温し、更に体積中位径が5.2μmになるまで段階的に昇温した。この温度(一次凝集温度)は45℃であった。
 すみやかに一次凝集温度より2℃温度を下げると同時に重合体一次粒子B4 9.5部(固形分)を添加した。30分後、シェル微粒子C2 5.4部(固形分)を添加した。120分後、20%DBS水溶液4.0部(固形分)と脱イオン水23部を添加してから、50分かけて66℃まで昇温し、その後円形度が0.976になるまで段階的に昇温した。円形度が0.976に到達した時の温度(最終円形化温度)は、68℃であった。その後、すみやかに30℃まで冷却し、トナー母粒子分散液3を得た。
<トナー母粒子3の作製:洗浄・乾燥工程>
 トナー母粒子分散液1の代わりにトナー母粒子分散液3を用いた事以外は、トナー母粒子1と同様の方法で、トナー母粒子3を得た。
<トナー3の製造:外添工程>
 トナー母粒子1の代わりにトナー母粒子3を用いた事以外は、トナー1と同様の方法で、トナー3を得た。
[比較例2]
<トナー母粒子分散液4の調製:凝集工程>
 撹拌装置、加熱冷却装置、及び各原料・助剤仕込み装置を備えた混合器に、上記で得られた重合体一次粒子B2 92.5部(固形分)、20%DBS水溶液0.07部(固形分)、脱イオン水12部、5%硫酸鉄(II)七水和物水溶液0.58部(固形分)、シアン着色剤EP-700(大日精化(株)製)16部を撹拌しながら順に添加して均一に混合した。その後、0.5%硫酸アルミニウム水溶液0.10部(固形分)を10分かけて添加した。続けて内温を52℃まで昇温し、更に体積中位径が6.0μmになるまで段階的に昇温した。この温度(一次凝集温度)は55℃であった。
 その後、すみやかにシェル微粒子C3 7.5部(固形分)を添加した。30分後、20%DBS水溶液6.1部(固形分)と脱イオン水20部を添加してから、30分かけて90℃まで昇温し、その後円形度が0.980になるまで段階的に昇温した。
 円形度が0.980に到達した時の温度(最終円形化温度)は、99℃であった。その後、すみやかに30℃まで冷却し、トナー母粒子分散液4を得た。
<トナー母粒子4の作製:洗浄・乾燥工程>
 トナー母粒子分散液1の代わりにトナー母粒子分散液4を用いた事以外は、トナー母粒子1と同様の方法で、トナー母粒子4を得た。
<トナー4の製造:外添工程>
 トナー母粒子1の代わりにトナー母粒子4を用いた事以外は、トナー1と同様の方法で、トナー4を得た。
  [比較例3]
<トナー母粒子分散液5の調製:凝集工程>
 撹拌装置、加熱冷却装置、及び各原料・助剤仕込み装置を備えた混合器に、上記で得られた重合体一次粒子B3 95.0部(固形分)、20%DBS水溶液0.10部(固形分)、脱イオン水59部、5%硫酸鉄(II)七水和物水溶液0.34部(固形分)、シアン着色剤EP-700(大日精化(株)製)17部を撹拌しながら順に添加して均一に混合した。その後、0.5%硫酸アルミニウム水溶液0.15部(固形分)を14分かけて、脱イオン水15部を2分かけて添加した。続けて内温を51℃まで昇温し、更に体積中位径が6.7μmになるまで段階的に昇温した。この温度(一次凝集温度)は53℃であった。
 その後、すみやかにシェル微粒子C4 5.0部(固形分)を添加した。30分後、20%DBS水溶液4.8部(固形分)と脱イオン水12部を添加してから、30分かけて90℃まで昇温し、その後円形度が0.960になるまで段階的に昇温した。
 円形度が0.960に到達した時の温度(最終円形化温度)は、94℃であった。その後、すみやかに30℃まで冷却し、トナー母粒子分散液5を得た。
<トナー母粒子5の作製:洗浄・乾燥工程>
 トナー母粒子分散液1の代わりにトナー母粒子分散液5を用いた事以外は、トナー母粒子1と同様の方法で、トナー母粒子5を得た。
<トナー5の製造:外添工程>
 トナー母粒子1の代わりにトナー母粒子5を用いた事以外は、トナー1と同様の方法で、トナー5を得た。
[比較例4]
<トナー母粒子分散液6の調製:凝集工程>
 撹拌装置、加熱冷却装置、及び各原料・助剤仕込み装置を備えた混合器に、上記で得られた重合体一次粒子B2 95.0部(固形分)、20%DBS水溶液0.10部(固形分)、脱イオン水13部、5%硫酸鉄(II)七水和物水溶液0.62部(固形分)、シアン着色剤EP-700(大日精化(株)製)16部を撹拌しながら順に添加して均一に混合した。
 その後、0.5%硫酸アルミニウム水溶液0.05部(固形分)を5分かけて、脱イオン水88部を11分かけて添加した。続けて内温を53℃まで昇温し、更に体積中位径が6.4μmになるまで段階的に昇温した。この温度(一次凝集温度)は55℃であった。
 その後、すみやかにシェル微粒子C5 5.0部(固形分)を添加した。30分後、20%DBS水溶液6.2部(固形分)と脱イオン水10部を添加してから、30分かけて90℃まで昇温し、その後円形度が0.960になるまで段階的に昇温した。
 円形度が0.960に到達した時の温度(最終円形化温度)は、98℃であった。その後、すみやかに30℃まで冷却し、トナー母粒子分散液6を得た。
<トナー母粒子6の作製:洗浄・乾燥工程>
 トナー母粒子分散液1の代わりにトナー母粒子分散液6を用いた事以外は、トナー母粒子1と同様の方法で、トナー母粒子6を得た。
<トナー6の製造:外添工程>
 トナー母粒子1の代わりにトナー母粒子6を用いた事以外は、トナー1と同様の方法で、トナー6を得た。
[実施例3]
<トナー母粒子分散液7の調製:凝集工程>
 撹拌装置、加熱冷却装置、及び各原料・助剤仕込み装置を備えた混合器に、上記で得られた重合体一次粒子B5 72.5部(固形分)、20%DBS水溶液0.02部(固形分)、脱イオン水49部、5%硫酸鉄(II)七水和物水溶液0.49部(固形分)、シアン着色剤EP-700(大日精化(株)製)24部を撹拌しながら順に添加して均一に混合した。続けて内温を45℃まで昇温し、更に体積中位径が4.9μmになるまで段階的に昇温した。この温度(一次凝集温度)は48℃であった。
 すみやかに一次凝集温度より2℃温度を下げると同時に重合体一次粒子B5 6.8部(固形分)を添加した。30分後、シェル微粒子C1 32.3部(固形分)を添加した。60分後、20%DBS水溶液4.0部(固形分)と脱イオン水23部を添加してから、70分かけて85℃まで昇温し、その後円形度が0.966になるまで段階的に昇温した。円形度が0.966に到達した時の温度(最終円形化温度)は、85℃であった。その後、すみやかに30℃まで冷却し、トナー母粒子分散液7を得た。
<トナー母粒子7の作製:洗浄・乾燥工程>
 トナー母粒子分散液1の代わりにトナー母粒子分散液7を用いた事以外は、トナー母粒子1と同様の方法で、トナー母粒子7を得た。
<トナー7の製造:外添工程>
 トナー母粒子1の代わりにトナー母粒子7を用いた事以外は、トナー1と同様の方法で、トナー7を得た。
 実施例1~3及び比較例1~4について、重合体一次粒子のワックス種類、数平均分子量、重量平均分子量、シェル微粒子の体積中位径と重量平均分子量、及び、凝集工程での一次凝集温度・最終円形化温度を表1に示す。更に、トナー母粒子を外添したトナーの体積中位径(Dv50)、個数中位径(Dn50)、粒子径分布(Dv50/Dn50)、平均円形度も表1に示す。
 なお、表1中、Stはスチレンを、BAはアクリル酸ブチルを、AAはアクリル酸を意味する。
Figure JPOXMLDOC01-appb-T000002
  実施例1~3及び比較例1~4で得られたトナーを用いて、以下の方法で評価し、判定した。測定したトナー(サンプル)は、製造直後、すなわち外添直後のものであったが、経時したものであっても、既に現像層等に入っているものであっても、測定数値は殆ど変わらないことは技術常識である。また、50℃以上の環境下に置かれた外添後のトナーは、適切なTP1の値が得られないことがある。
[粘弾性]
 レオメーターで測定されるTP2/TP1は以下の手順で求めた。
 測定装置は、アントンパール社製、レオメーターMCR302を用い、以下の方法で測定を行った。
 サンプル約1.0gを18mm径用の治具に入れ、50℃に加熱したプレス機(小平製作所 5トンプレス PE-5Y)によって型締力1.5トン(ゲージ30kg/cm)で10分間加圧し、ペレットに成型した。本発明において、これを「成型体」と略記する場合がある。
 1回目昇温測定:ペレット(成型体)を直径20mmの円形パラレルプレートを装着し、ギャップを5mmとし、温度を20℃に設定した測定装置にセットし、120℃に温度設定し、約4分で120℃へ昇温した。その後すみやかにギャップを2mmにし治具へ融着させると共に、約2分かけてトリミング(プレートからはみ出した部分の除去)を実施した。その後すみやかに80℃に温度設定し、約2分で80℃へ冷却した。その後、温度安定化まで約2分保持した後、以下の条件で測定した。
  装置:アントンパール社レオメーター MCR302
  温調:上下ペルチェ温調システム(P-PTD200 + H-PTD200) 窒素フロー(200NL/h)
  治具:20mmΦディスポーザブルパラレルプレート
  温度:80℃から150℃へ4℃/minにて昇温測定(測定点間隔15秒)
  周波数 :1Hz
  歪み:0.1%
  Gap:2mm
 2回目昇温測定:1回目昇温測定の後、すみやかに約3分で150℃から80℃へ冷却した。その後、約7分間80℃にて保持した。その後すみやかに、1回目と同じ条件で2回目昇温時の測定を行った。
 なお、本測定は熱履歴による差異を確認するものであるため、急速昇温/降温が可能となるペルチェ温調システムを用いることが望ましい。用いるトナーは製造後50℃以上の熱履歴が無いものを用いることが望ましい。
 1回目昇温測定で得られた損失弾性率G”を貯蔵弾性率G’で除すことによりtanδ(すなわち、損失正接=G”/G’)を求め、140℃に現れるtanδのTP1(140℃)(図2参照)を求めた。同様に、2回目測定の140℃に現れるtanδのTP2(140℃)(図2参照)を求め、TP2(140℃)をTP1(140℃)で除すことにより、「TP2(140℃)/TP1(140℃)」を求めた。
 同様に、1回目測定の130℃に現れるtanδのTP1(130℃)を求めた。
 同様に、80℃から150℃の範囲において、TP2A/TP1Aが最小値を示す温度である「TP2A/TP1A最小温度」を求めた。
 実施例1~3及び比較例1~4についての、TP1(140℃)、TP2(140℃)及び「TP2(140℃)/TP1(140℃)」、TP1(130℃)、「TP2A/TP1A最小温度」の結果を表2に示す。
 また、実施例1~2並びに比較例1及び3についての、上記方法で測定した貯蔵弾性率G’(120℃)及び軟化点の結果を表2に示す。
 また、市場から入手できる「シェルが形成されている可能性のある公知トナー」について、TP1(140℃)とTP2(140℃)を同様に測定し、「TP2(140℃)/TP1(140℃)」と共に、表3に示した。
[トナー性能]
<Tg測定>
 示差走査熱量計(DSC)によるTg測定は、ティー・エイ・インスツルメント社のQ20を用い、次のとおり行った。トナー3±1mgをアルミニウム製パンに入れて0.1mgの桁まで精秤し、酸化アルミニウム3mgを充填したアルミニウム製パンをリファレンスとして、窒素気流中、0℃から120℃まで10℃/分で昇温した。120℃にて10分間保持した後、10℃/分で0℃まで降温し、5分間保持した後に10℃/分で再び120℃まで昇温した。2回目昇温時の吸熱ピーク前のベースラインと、吸熱ピーク開始後30~60℃に現れる最初の変曲点における接線の交点の温度をTg(ガラス転移温度)とした。この様にして求めたトナーのTgを表2に示した。
 なお、重合一次体粒子、シェル微粒子の試料が水分散体の場合のTgは、凍結乾燥して水分を除去してから上記方法で測定した。また、実施例3については、Tgを測定しなかった。
<耐ブロッキング性>
 トナー10gを内径3cm、高さ6cmの円筒形の容器に入れ、20gの荷重をのせ、温度45℃、湿度80%の環境下に48時間放置した後、トナーを容器から取り出し、上から荷重をかけることで凝集の程度を確認した。その崩壊荷重について、以下の判定基準で判定し、結果を表2に示した。
 〇:100g以下の荷重で崩れた。
 ×:100gを超える荷重をかけないと崩れなかった。
[耐ホットオフセット性]
 ローラーの表面温度を165℃から5℃刻みで昇温し、付着量約1.2mg/cmの未定着のトナー像を担持した記録紙を定着ニップ部に搬送し、定着画像を得た。
 各温度での定着画像の剥がれ程度を目視で判定した。
 耐オフセット性を以下の判定基準で判定し、結果を表2に示した。
 〇:195℃以上で定着した。
 ×:195℃で定着せず、一部または全部が剥がれた。
[定着性]
<低温定着性>
 未定着のトナー像を担持した記録紙(坪量80g/m紙)を用意し、熱ロール定着方式の定着機を用い、以下のように試験した。
 ローラーは直径27mmであり、ニップ幅は9mmであり、定着速度は229mm/secであり、上ローラーはヒーターを有し、ローラー表面がPFA(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体)で構成されており、シリコーンオイルは塗布されていなかった。
 ローラーの表面温度を140℃から5℃刻みで昇温し、付着量約1.2mg/cmの未定着のトナー像を担持した記録紙を定着ニップ部に搬送し、定着画像を得た。
 定着画像にメンディングテープを貼り、その上を2kgの錘を通過させテープと定着画像を密着させた。メンディングテープを剥離し、定着画像がテープに移行する程度を目視で判定した。上記試験を3回行い、定着したときの温度の3回の平均値で低温定着性を以下の判定基準で判定し、結果を表2に示した。
 ◎:145℃以下で定着した。
 〇:145℃より上、150℃以下で定着した。
 △:150℃より上、155℃以下で定着した。
 ×:155℃で定着しなかった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[結果]
 表2から分かるように、実施例1~3のトナーでは、耐ブロッキング性を維持したまま、低温での優れた定着性と耐ホットオフセット性の両立が達成されていたが、比較例1~4のトナーでは、低温での優れた定着性と耐ホットオフセット性の両立が達成されず、低温での優れた定着性と耐ホットオフセット性の何れかが劣っていた。
[実施例4]
<マゼンタ着色剤分散液の調整>
 撹拌機(プロペラ翼)を備えた内容積300Lの容器に、マゼンタ顔料のピグメントレッド238、すなわちN-(5-クロロ-2-メトキシフェニル)-3-ヒドロキシ-4-[[2-メトキシ-5-[(フェニルアミノ)カルボニル]フェニル]アゾ]ナフタレン-2-カルボキシアミドを20部(40kg)、20%のドデシルベンゼンスルホン酸ナトリウム水溶液1部、HLB15.3のポリオキシエチレンラウリルエーテル4部、および電気伝導度が1.5μS/cm以下のイオン交換水75部を加えて予備分散して顔料プレミックス液を得た。
 上記顔料プレミックス液を原料スラリーとして湿式ビーズミルに供給し、循環分散を行った。なお、ステータの内径はφ75mm、セパレータの径がφ60mm、セパレータとディスク間の間隔は15mmとし、分散用のメディアとして直径が50μmのジルコニアビーズ(真密度6.0g/cm)を用いた。ステータの有効内容積は0.5Lであり、メデイアの充填容積は0.35Lとしたので、メディア充填率は70質量%であった。ロータの回転速度を一定(ロータ先端の周速が11m/秒)として、供給口より前記顔料プレミックス液を無脈動定量ポンプにより供給速度50L/hrで連続的に供給し、排出口より連続的に排出させ、これを繰り返し循環させる事により所定の粒径に達した時点でマゼンタ着色剤分散液を得た。マゼンタ着色剤分散液をナノトラックで測定した体積中位径は151nmであり、pHは5.8、固形分濃度は25.5質量%であった。
<トナー母粒子分散液3Aの調製:凝集工程>
 撹拌装置、加熱冷却装置、及び各原料・助剤仕込み装置を備えた混合器に、上記で得られた重合体一次粒子B1 72.0部(固形分)、20%DBS水溶液0.15部(固形分)、脱イオン水22部、5%硫酸鉄(II)七水和物水溶液0.49部(固形分)、マゼンタ着色剤分散液32.5部を撹拌しながら順に添加して均一に混合した。
 その後、0.5%硫酸アルミニウム水溶液0.08部(固形分)を8分かけて、脱イオン水41部を6分かけて添加した。続けて内温を40℃まで昇温し、更に体積中位径が5.1μmになるまで段階的に昇温した。この温度(一次凝集温度)は46℃であった。
 すみやかに一次凝集温度より2℃温度を下げると同時に重合体一次粒子B1 8.0部(固形分)を添加した。30分後、シェル微粒子C1 20.0部(固形分)を添加した。80分後、20%DBS水溶液4.0部(固形分)と脱イオン水23部を添加してから、70分かけて75℃まで昇温し、その後円形度が0.966になるまで段階的に昇温した。円形度が0.966に到達した時の温度(最終円形化温度)は、80℃であった。その後、すみやかに30℃まで冷却し、トナー母粒子分散液3Aを得た。
<トナー母粒子3Aの作製:洗浄・乾燥工程>
 トナー母粒子分散液1の代わりにトナー母粒子分散液3Aを用いた事以外は、トナー母粒子1と同様の方法で、トナー母粒子3Aを得た。
<トナー3Aの製造:外添工程>
 サンプルミル(協立理工(株)製)を、あらかじめ30℃に加温しておいた。そこに上記で得られたトナー母粒子3A 100部に対し、外添剤W(シリカ粒子)を0.40部、外添剤X(正帯電性シリカ粒子)を0.15部、外添剤Y(複合酸化物粒子)を1.20部、外添剤Z(大粒径シリカ粒子)を0.75部添加し、4000rpmで11分間撹拌・混合して外添し、篩別することによりトナー3Aを得た。
[実施例5]
<トナー母粒子分散液4Aの調製:凝集工程>
 撹拌装置、加熱冷却装置、及び各原料・助剤仕込み装置を備えた混合器に、上記で得られた重合体一次粒子B1 82.8部(固形分)、20%DBS水溶液0.17部(固形分)、脱イオン水25部、5%硫酸鉄(II)七水和物水溶液0.49部(固形分)、マゼンタ着色剤分散液32.5部を撹拌しながら順に添加して均一に混合した。その後、0.5%硫酸アルミニウム水溶液0.08部(固形分)を8分かけて、脱イオン水41部を6分かけて添加した。続けて内温を43℃まで昇温し、更に体積中位径が5.2μmになるまで段階的に昇温した。この温度(一次凝集温度)は45℃であった。
 すみやかに一次凝集温度より2℃温度を下げると同時に重合体一次粒子B1 9.2部(固形分)を添加した。60分後、シェル微粒子C1 8.0部(固形分)を添加した。60分後、20%DBS水溶液4.0部(固形分)と脱イオン水23部を添加してから、70分かけて74℃まで昇温し、その後円形度が0.966になるまで段階的に昇温した。円形度が0.966に到達した時の温度(最終円形化温度)は、78℃であった。その後、すみやかに30℃まで冷却し、トナー母粒子分散液4Aを得た。
<トナー母粒子4Aの作製:洗浄・乾燥工程>
 トナー母粒子分散液1の代わりにトナー母粒子分散液4Aを用いた事以外は、トナー母粒子1と同様の方法で、トナー母粒子4Aを得た。
<トナー4Aの製造:外添工程>
 トナー母粒子3Aの代わりにトナー母粒子4Aを用いた事以外は、トナー3Aと同様の方法で、トナー4Aを得た。
 実施例4~5で得られたトナーを用い、上述した各試験方法に準じて試験した。結果を表4に示した。
Figure JPOXMLDOC01-appb-T000005
 表4から分かるように、実施例4~5のトナーでは、耐ブロッキング性を維持したまま、低温での優れた定着性と耐ホットオフセット性の両立が達成されていた。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2017年1月20日出願の日本特許出願(特願2017-008706)、2017年1月20日出願の日本特許出願(特願2017-008707)、及び2017年1月27日出願の日本特許出願(特願2017-013610)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の静電荷像現像用トナーは、耐ブロッキング性が良好のまま、低温での優れた定着性と耐ホットオフセット性を両立できるので、プリンター、複写機、ファクシミリ等、静電荷像を可視化する画像形成の分野に広く利用されることは勿論、高光沢性や高グロス性が要求され、写真・グラフィック等の画像を美しく出力することが必要なプロフェッショナル分野にも広く利用されるものである。
 また、更に、本発明の静電荷像現像用トナーは、耐ブロッキング性が良好のまま、低温での優れた定着性と耐ホットオフセット性を両立できるので、プリンター、複写機、ファクシミリ等、静電荷像を可視化する画像形成の分野に広く利用されるものである。
1  シェル成分と外添剤からなる構造体(不連続部分があってもよい)
2  コア成分(トナーの中心部を構成する成分)
3  1回目測定のtanδ曲線とTP1(140℃)
4  2回目測定のtanδ曲線とTP2(140℃)

Claims (12)

  1.   レオメーターによるtanδ測定を2回行い、
      1回目測定において、130℃に観測されるtanδの値をTP1(130℃)、140℃に観測されるtanδの値をTP1(140℃)とし、
      2回目測定において、140℃に観測されるtanδの値をTP2(140℃)とすると、
      TP2(140℃)/TP1(140℃)が0.95以下であり、TP1(130℃)が2.5以上である、静電荷像現像用トナー。
  2.   TP2(140℃)/TP1(140℃)が0.50以上である、請求項1に記載の静電荷像現像用トナー。
  3.   TP1(130℃)が4.0以下である、請求項1又は2に記載の静電荷像現像用トナー。
  4.   少なくとも結着樹脂と着色剤を含有するトナー母粒子、及び、外添剤を含む、請求項1~3のいずれか1項に記載の静電荷像現像用トナー。
  5.   レオメーターで120℃に観測される貯蔵弾性率G’が2000Pa以下で、かつフローテスターで測定される軟化点が105℃以上である、請求項1~4のいずれか1項に記載の静電荷像現像用トナー。
  6.   前記静電荷像現像用トナーが、少なくとも結着樹脂と着色剤を含むコア成分と、その周囲に存在する少なくとも結着樹脂を含むシェル成分とを含有するコア/シェル構造を有し、前記コア成分の架橋度が前記シェル成分の架橋度よりも高く、かつ前記シェル成分の極性が前記コア成分の極性よりも高い、請求項1~5のいずれか1項に記載の静電荷像現像用トナー。
  7.   前記コア成分に含まれる結着樹脂のガラス転移温度が、前記シェル成分に含まれる結着樹脂のガラス転移温度より5℃以上低い、請求項6に記載の静電荷像現像用トナー。
  8.   体積平均粒径が4~8μmである、請求項1~7のいずれか1項に記載の静電荷像現像用トナー。
  9.   平均円形度が0.95~0.99である、請求項1~8のいずれか1項に記載の静電荷像現像用トナー。
  10.   前記静電荷像現像用トナーが、着色剤として銅フタロシアニン系の染顔料を含む、請求項1~9のいずれか1項に記載の静電荷像現像用トナー。
  11.   レオメーターによるtanδ測定を2回行い、
      1回目測定において、140℃に観測されるtanδの値をTP1(140℃)、80℃以上150℃以下に観測されるtanδの値をTP1Aとし、
      2回目測定において、140℃に観測されるtanδの値をTP2(140℃)、80℃以上150℃以下に観測されるtanδの値をTP2Aとすると、
      TP2(140℃)/TP1(140℃)が0.95以下であり、かつ、TP2A/TP1Aが最小値を示す温度が130℃以上である、静電荷像現像用トナー。
  12.   レオメーターによるtanδ測定を2回行い、
      1回目測定において、140℃に観測されるtanδの値をTP1(140℃)とし、
      2回目測定において、140℃に観測されるtanδの値をTP2(140℃)とすると、
      TP2(140℃)/TP1(140℃)が0.90以上0.95以下、または、
      レオメーターによるtanδ測定を2回行い、
      1回目測定において、120℃に観測されるtanδの値をTP1(120℃)とし、
      2回目測定において、120℃に観測されるtanδの値をTP2(120℃)とすると、
      TP2(120℃)/TP1(120℃)が0.60以上0.70以下である、静電荷像現像用トナー。
PCT/JP2018/001466 2017-01-20 2018-01-18 静電荷像現像用トナー WO2018135600A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880007123.4A CN110178089B (zh) 2017-01-20 2018-01-18 静电图像显影用调色剂
US16/516,923 US10725392B2 (en) 2017-01-20 2019-07-19 Electrostatic charge image developing toner

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017008706 2017-01-20
JP2017-008707 2017-01-20
JP2017-008706 2017-01-20
JP2017008707 2017-01-20
JP2017-013610 2017-01-27
JP2017013610 2017-01-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/516,923 Continuation US10725392B2 (en) 2017-01-20 2019-07-19 Electrostatic charge image developing toner

Publications (1)

Publication Number Publication Date
WO2018135600A1 true WO2018135600A1 (ja) 2018-07-26

Family

ID=62908075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001466 WO2018135600A1 (ja) 2017-01-20 2018-01-18 静電荷像現像用トナー

Country Status (4)

Country Link
US (1) US10725392B2 (ja)
JP (1) JP2018124547A (ja)
CN (1) CN110178089B (ja)
WO (1) WO2018135600A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145635A (ja) * 2006-12-08 2008-06-26 Mitsubishi Chemicals Corp トナーの製造方法、トナー、現像剤及び画像形成方法
JP2012083593A (ja) * 2010-10-13 2012-04-26 Canon Inc 再生電子写真用ローラの製造方法
JP2014209188A (ja) * 2013-03-19 2014-11-06 三菱化学株式会社 トナー母粒子及び静電荷像現像用トナー

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3661544B2 (ja) * 2000-02-21 2005-06-15 富士ゼロックス株式会社 静電荷像現像用トナー及びその製造方法、現像剤、並びに画像形成方法
JP2004151638A (ja) * 2002-11-01 2004-05-27 Nippon Zeon Co Ltd 静電荷像現像用カラートナー
JP4375181B2 (ja) * 2004-09-21 2009-12-02 富士ゼロックス株式会社 静電潜像現像用トナーの製造方法
US7910278B2 (en) * 2004-12-28 2011-03-22 Zeon Corporation Toner for developing electrostatic image
JP4075949B2 (ja) 2006-07-28 2008-04-16 富士ゼロックス株式会社 静電荷現像用トナー、静電荷現像用現像剤、カートリッジ及び画像形成装置
JP5371608B2 (ja) 2009-07-29 2013-12-18 キヤノン株式会社 トナー
JP5672935B2 (ja) 2010-10-15 2015-02-18 株式会社ジェイテクト 電動パワーステアリング装置
JP5287957B2 (ja) 2011-09-13 2013-09-11 株式会社リコー トナー、現像剤、及び画像形成装置
JP6175826B2 (ja) * 2013-03-21 2017-08-09 三菱ケミカル株式会社 画像形成方法
WO2015030208A1 (ja) 2013-08-29 2015-03-05 三菱化学株式会社 静電荷像現像用トナー
JP6446914B2 (ja) 2013-08-29 2019-01-09 三菱ケミカル株式会社 静電荷像現像用トナー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145635A (ja) * 2006-12-08 2008-06-26 Mitsubishi Chemicals Corp トナーの製造方法、トナー、現像剤及び画像形成方法
JP2012083593A (ja) * 2010-10-13 2012-04-26 Canon Inc 再生電子写真用ローラの製造方法
JP2014209188A (ja) * 2013-03-19 2014-11-06 三菱化学株式会社 トナー母粒子及び静電荷像現像用トナー

Also Published As

Publication number Publication date
US10725392B2 (en) 2020-07-28
US20190339630A1 (en) 2019-11-07
CN110178089A (zh) 2019-08-27
CN110178089B (zh) 2023-12-26
JP2018124547A (ja) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2015030208A1 (ja) 静電荷像現像用トナー
US11194261B2 (en) Electrostatic charge image developing toner
JP6446914B2 (ja) 静電荷像現像用トナー
JP2014067021A (ja) 静電荷像現像用トナー
JP5742309B2 (ja) 静電荷像現像用トナーの製造方法
JP5671993B2 (ja) 静電荷像現像用トナーの製造方法及びトナー
JP6503797B2 (ja) 静電荷像現像用負帯電トナー
JP2011180298A (ja) 静電荷像現像用トナー及びトナーの製造方法
JP2015079150A (ja) 静電荷像現像用トナー
JP6354224B2 (ja) 静電荷像現像用負帯電トナー
JP3875032B2 (ja) 静電荷像現像用トナー及びその製造方法
WO2018135600A1 (ja) 静電荷像現像用トナー
JP6874365B2 (ja) 静電荷像現像用トナー
JP6870322B2 (ja) 静電荷像現像用トナー
JP5617528B2 (ja) 静電荷像現像用トナーの製造方法及びトナー
JP6870323B2 (ja) 静電荷像現像用トナー
JP2017146570A (ja) 静電荷像現像用トナー
JP2006276308A (ja) 静電荷現像用トナー及びその製造方法、並びに静電荷現像用現像剤、画像形成方法
WO2017221997A1 (ja) 静電荷像現像用トナーセット、ブラックトナー及びマゼンタトナー
JP4189601B2 (ja) トナー、トナーの製造方法、画像形成方法
JP2011209430A (ja) 静電荷像現像用トナー及びトナーの製造方法
JP2009271342A (ja) 静電荷像現像用トナーとその製造方法
JP2002156780A (ja) 静電荷像現像用トナー、静電荷像現像用トナーの製造方法及びトナーの定着方法
JP2015175913A (ja) 静電荷像現像用トナーの製造方法
JP2005336222A (ja) 樹脂微粒子及びその製造方法、静電荷像現像用トナー及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18741480

Country of ref document: EP

Kind code of ref document: A1