WO2018135346A1 - マウンタ用エア制御装置 - Google Patents

マウンタ用エア制御装置 Download PDF

Info

Publication number
WO2018135346A1
WO2018135346A1 PCT/JP2018/000299 JP2018000299W WO2018135346A1 WO 2018135346 A1 WO2018135346 A1 WO 2018135346A1 JP 2018000299 W JP2018000299 W JP 2018000299W WO 2018135346 A1 WO2018135346 A1 WO 2018135346A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
nozzle
mounter
valve
rate adjusting
Prior art date
Application number
PCT/JP2018/000299
Other languages
English (en)
French (fr)
Inventor
進 入江
Original Assignee
シンフォニアテクノロジー株式会社
クロダニューマティクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シンフォニアテクノロジー株式会社, クロダニューマティクス株式会社 filed Critical シンフォニアテクノロジー株式会社
Priority to EP18742240.7A priority Critical patent/EP3573442A4/en
Priority to US16/469,265 priority patent/US11202399B2/en
Priority to CN201880006798.7A priority patent/CN110192446B/zh
Publication of WO2018135346A1 publication Critical patent/WO2018135346A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • H05K13/0409Sucking devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • B25J15/0616Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum
    • B25J15/0625Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum provided with a valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • B25J15/0616Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum
    • B25J15/065Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum provided with separating means for releasing the gripped object after suction
    • B25J15/0658Pneumatic type, e.g. air blast or overpressure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/0882Control systems for mounting machines or assembly lines, e.g. centralized control, remote links, programming of apparatus and processes as such

Definitions

  • the present invention relates to an air control device for a mounter that can appropriately perform a vacuum break of a nozzle through a head module of the mounter.
  • a mounter is known as a printed circuit board mounting apparatus (for example, Patent Document 1).
  • This type of mounter includes a head module that can move in the XY-axis direction in the apparatus, and a nozzle is attached to the head module, and a mounting component (hereinafter referred to as a part) is adsorbed and released at the tip of the nozzle. Configured to be implemented.
  • a head module In the head module, an air cylinder and a servo motor for moving the nozzle up and down in the Z-axis direction are provided.
  • the operation of the head module will be described with reference to FIG. 2 of the document.
  • the part P is adsorbed by the vacuum pump 66
  • the part P is mounted on the printed circuit board by release by the air pipe 68, that is, by vacuum break.
  • the valve 62 is used for switching at that time.
  • the vacuum When releasing part P, the vacuum is broken by injecting pressure from air pipe 68. Considering the presence of moisture and static electricity, the tip of the nozzle is set to a predetermined pressure so that part P is forcibly dropped gently. Generally composed.
  • 1, 2, 4, 8, 12, and 24 nozzles are mounted on one head module, and one throttle valve is attached to each nozzle.
  • the upstream of the throttle valve is connected to an air pipe or the like that is a positive pressure region through a common regulator.
  • FIG. 9 shows a configuration in which the nozzle n is connected to the positive pressure region and the negative pressure region via the three-port valve b which is a solenoid valve in the head module HM, focusing on one nozzle n.
  • air is supplied from the air pipe c through the regulator d and the throttle valve e.
  • the regulator d plays a role of stabilizing the pressure of the unstable air piping, and the throttle valve e is capable of adjusting the throttle amount manually.
  • the negative pressure region is connected to the vacuum pump f.
  • the nozzle n, the three-port valve b, and the throttle valve e are provided in parallel between the regulator d and the vacuum pump f by the number of nozzles.
  • the nozzle n can be selectively switched to a positive pressure region or a negative pressure region by a three-port valve b as in FIG. 9, and a two-port valve that is a solenoid valve upstream of the three-port valve b.
  • the air supply to the 3-port valve b is turned on / off by g or the 3-port valve h.
  • a two-port valve m for cutting off the nozzle n from the positive pressure region and a two-port valve k for cutting off the nozzle n from the negative pressure region are connected in parallel to the nozzle n. It is set as the structure.
  • Such head modules HM are roughly classified into high-speed and multi-function types.
  • the high-speed type is configured for mounting a small chip component for a smartphone, for example, has a large number of nozzles n, a small nozzle diameter, and a small amount of air to be supplied for vacuum break after suction of parts.
  • the multi-function type is configured for mounting relatively large deformed parts such as connectors, the number of nozzles n is small, the nozzle diameter is large, and the flow rate of air supplied for vacuum break after parts suction is relatively high Many are set. For this reason, the adjustment of the throttle valve e and the regulator d in FIGS. 9 to 11 varies depending on the use of the head module HM, and a plurality of types of head modules HM are prepared for high-speed use and multi-function use depending on the use.
  • the nozzle when it is necessary to replace the nozzle n when the mounter is operating, for example, when changing parts, the nozzle is generally replaced without stopping the operation of the apparatus.
  • the head module HM must be replaced. When it is necessary, it is necessary to stop the equipment, which leads to a decrease in the facility operation rate.
  • one head module HM can be used for both high speed and multi-function.
  • the head module HM adjusted for high speed is used for multiple functions, it takes a long time to reach a required flow rate because the flow rate is small, resulting in a new problem that the tact is reduced.
  • the head module HM adjusted for multiple functions is used for high speed, a new problem arises that a small chip blows off when released because the flow rate is too high.
  • the conventional throttle valve e is generally a fixed throttle valve that cannot be changed or a manually adjusted throttle valve, and is used as a fixed throttle during operation of the device.
  • nozzles are replaced, there is a question as to whether the appropriate flow rate is maintained for each part or nozzle.
  • the present invention has been made paying attention to such a problem, and can perform appropriate air control accompanying nozzle replacement without stopping the operation of the mounter.
  • the purpose is to realize an unprecedented air control device for a mounter that can be provided by one head module.
  • the mounter air control device of the present invention includes a flow rate adjusting mechanism mounted on the head module of the mounter and a control means for controlling the flow rate adjusting mechanism.
  • the control means Including a function capable of continuously changing the flow rate of the air passing between the pressure region and the nozzle, the control means, after making the nozzle negative pressure, based on a predetermined applied voltage or applied current, It is configured to supply air toward the nozzle by controlling the flow rate of the flow rate adjusting mechanism.
  • the flow rate of the air supplied to the nozzle can be controlled by the flow rate adjusting mechanism, the flow rate can be adjusted according to the type of parts and nozzles without stopping the mounter. For this reason, the types of parts and nozzles that can be properly handled by one head module are increased, and the equipment operation rate can be improved.
  • control means is configured to control the flow rate of the corresponding flow rate adjustment mechanism at a voltage level or a current level according to the application.
  • the flow rate adjustment mechanism can control the flow rate suitable for high-speed and multi-function applications, so the flow rate control is small for small parts and large for large parts. It can be performed. This enables highly versatile usage without replacing the head module, reducing the number of parts by sharing the head module, and improving the facility operating rate by the amount required for head module replacement. Is possible.
  • a plurality of flow rate adjusting mechanisms are provided for each of the plurality of nozzles, and the control unit is configured to control the flow rate of the corresponding flow rate adjusting mechanism at a voltage level or a current level corresponding to the nozzles.
  • control means sets the applied voltage value or the applied current value for each flow rate adjustment mechanism in advance, and the voltage value or current value set in the setting section when the on / off command is input. It is effective to include an output control unit that applies voltage or current to the corresponding flow rate adjusting mechanism.
  • the flow rate and pressure can be accurately digitally managed, and once set, voltage or current can be applied in response to an on / off command, enabling instantaneous and appropriate flow control. It becomes possible.
  • Specific embodiments include a configuration in which the flow rate adjustment mechanism is configured using a piezoelectric valve with a flow rate adjustment function, and a configuration in which the flow rate adjustment mechanism is configured using a proportional valve.
  • the mounter head module HM to which the mounter air control device of this embodiment is applied, as shown in FIG. 1, includes a vacuum pump 1 constituting a negative pressure region and a regulator 2 arranged in the positive pressure region.
  • the regulator 2 is also connected to an air pipe 3 that is a source of compressed air in the positive pressure region.
  • a nozzle n1 suitable for conventional high-speed applications and a nozzle n2 suitable for multi-functions can be attached. Further, a plurality of nozzles n1 having different diameters can be attached. A plurality of types of nozzles n2 for multi-function use can be attached.
  • the flow rate control mechanism 4 is connected to each nozzle n1,..., N2,..., And the circuit on the vacuum breaking side of the flow rate control mechanism 4 is connected in parallel to the common regulator 2 upstream.
  • the suction side circuit is connected to the common vacuum pump 1 upstream.
  • the flow rate adjusting mechanism 4 is mounted on the head module HM, and a control means 5 for controlling the flow rate adjusting mechanism 4 is provided.
  • the flow rate adjusting mechanism 4 includes a regulator 2 and a nozzle n (n1 or n1) constituting a positive pressure region. n2) is provided with a function capable of continuously changing the flow rate of the air passing between the nozzles n (n1 or n2). Based on the applied current, the flow rate of the flow rate adjustment mechanism 4 is controlled to supply air toward the nozzle n (n1 or n2).
  • FIG. 2 shows a flow rate adjusting mechanism 4 constituting a mounter air control device for one nozzle n (n1 or 2) and a control means 5 for controlling the flow rate adjusting mechanism 4.
  • the flow rate adjusting mechanism 4 is shown in FIG. Is constituted by a throttle valve 41 for breaking the vacuum of the nozzle n.
  • the control means 5 is also configured to control the switching valve 61 for evacuation.
  • This circuit configuration is an improved version of the conventional example of FIG.
  • an operating portion 41c is interposed between a first port 41a that communicates with the discharge port of the regulator 2 that constitutes the positive pressure region, and a second port 41b that communicates with the nozzle n, so that the first operating position.
  • the two ports 41a and 41b are cut off by a two-port valve that communicates between the ports 41a and 41b in the second operating position.
  • the throttle valve 41 is a piezoelectric valve using a piezo element, which is normally closed and continuously between the first operating position and the second operating position in accordance with the externally applied voltage level.
  • the operating portion 41c is displaced or deformed to make the throttle amount variable, and has a flow rate adjusting function for changing the flow rate of the passing air.
  • the flow rate and pressure of the air supplied to the nozzle n can be finely adjusted by the 2-port valve 41.
  • the piezoelectric valve is employed, for example, the responsiveness after applying a voltage is quicker than that of an electromagnetic valve or a proportional valve.
  • the switching valve 61 has an operating portion 61c interposed between a third port 61a that communicates with the suction port of the vacuum pump 1 that is a negative pressure region and a fourth port 61b that communicates with the nozzle n, and the first switching position
  • the two ports 61a and 61b are shut off, and the two ports 61a and 61b communicate with each other at the second switching position.
  • the valve 61 is a solenoid valve, and is normally closed, and the operating unit 61c is switched from the first switching position to the second switching position by an external voltage command.
  • control means 5 includes a piezoelectric valve driver 51, and this piezoelectric valve driver 51 is connected to the host controller 52.
  • the piezoelectric valve driver 51 includes a communication input / output unit 51a, a setting input unit 51b, a setting unit 51c, a command input unit 51d, an output control unit 51e, and a voltage output circuit 51f.
  • the host control device 52 includes a driver setting unit. 52a and a valve operation command unit 52b.
  • the driver setting unit 52a sets the flow rate to the setting unit 51c of the piezoelectric valve driver 51 through the communication input / output unit 51a. Further, the valve operation command unit 52 b inputs a valve on / off command to the piezoelectric valve driver 5 and the solenoid valve 61.
  • the valve operation command unit 52b includes a communication station number indicating which valve is to be driven.
  • the piezoelectric valve driver 5 Write to 51c.
  • the setting unit 51c holds the output voltage setting, the communication station number, and the operation logic for each nozzle type.
  • the output voltage setting is a setting related to the flow rate (valve opening)
  • the communication station number specifies which piezoelectric valve 41 is set
  • the operation logic is a one-shot output whether it is a synchronous output with respect to the signal of the command input unit 51d. Switching, setting of voltage output waveform such as rising and falling, setting of one-shot pulse time, and the like are performed.
  • the piezoelectric valve driver 5 causes the setting input unit 51b to set the output voltage setting, operation logic, synchronous output and one-shot output switching, voltage output waveform setting such as rising and falling, and one-shot pulse time. Write settings etc. A plurality of these set values are stored as one group. By switching the group by switching means such as contact input, the setting is switched at a higher speed than the data communication means.
  • the host control device 52 first turns on the solenoid valve 61 when picking up the mounted components (parts) to bring the nozzle tip into the required negative pressure state, and then opens the solenoid valve when opening the parts. 61 is turned off and the piezoelectric valve driver 51 is turned on. Accordingly, the piezoelectric valve driver 51 applies an output voltage to the piezoelectric valve 41 of the corresponding nozzle n via the output control unit 51e and the voltage output circuit 51f according to the operation logic set by the setting unit 51c in association with the communication station number. To do. Thus, the responsiveness of the air supply is accelerated by determining the applied voltage.
  • the operating part 41c is continuously displaced according to the applied voltage, and air is supplied at a flow rate and pressure optimum for the type of nozzle. This air reaches the nozzle n and releases the adsorbed parts by vacuum break. The released part is mounted on the target printed circuit board.
  • the host controller 52 assumes a valve delay or a pressure change delay until the nozzle tip reaches the target pressure before the head module HM reaches the target position.
  • a valve operation command is issued in parallel with the movement of the nozzle n on the XYZ axes.
  • the mounter air control apparatus includes the flow rate adjusting mechanism 4 mounted on the head module HM of the mounter and the control means 5 for controlling the flow rate adjusting mechanism 4.
  • the flow rate adjusting mechanism 4 includes a function capable of continuously changing the flow rate of the air passing between the positive pressure region and the nozzle n. Based on the determined applied voltage or applied current, the flow rate of the flow rate adjusting mechanism 4 is controlled to supply air toward the nozzle n.
  • the flow rate of the air supplied to the nozzle n can be controlled by the flow rate adjusting mechanism 4, the flow rate can be adjusted according to the type of the part and the nozzle n without stopping the operation of the mounter. For this reason, the types of parts and nozzles that can be appropriately handled by one head module HM are increased, and the facility operation rate can be improved.
  • the flow rate adjusting mechanism 4 is provided for both the high-speed nozzle n1 and the multi-function nozzle n2, and the control means 5 responds at the voltage level or current level according to the application.
  • the flow rate adjustment mechanism 4 is configured to control the flow rate.
  • the flow rate adjusting mechanism 4 can control the flow rate suitable for applications such as high speed and multi-function, so that the flow rate is small for small parts and large for large parts. Control can be performed. As a result, it can be used with high versatility without replacing the head module HM, and the number of parts required for the replacement of the head module HM as well as the number of parts of the head module HM by sharing the head module HM are reduced. It becomes possible to improve the facility operation rate.
  • a plurality of flow rate adjusting mechanisms 4 are provided for each of the plurality of nozzles n1 (for each n2) included in one application, and the control unit 5 corresponds to the flow rate corresponding to the voltage level or current level corresponding to the nozzle n1 (n2).
  • the flow rate of the adjustment mechanism 4 is configured to be controlled.
  • control unit 5 sets the applied voltage value or the applied current value for each flow rate adjusting mechanism 4 in advance, and the voltage value set in the setting unit 51c by inputting the on / off command or And an output control unit 51e that applies voltage or current to the flow rate adjusting mechanism 4 corresponding to the current value.
  • the flow rate and pressure can be accurately digitally managed, and once set, voltage or current can be applied in response to an on / off command, enabling instantaneous and appropriate flow control. It becomes possible.
  • the flow rate adjusting mechanism 4 is constituted by one 2-port valve 41.
  • the flow rate adjusting mechanism 4 includes one 2-port valve 42 and one 3-port valve 43 in series. The difference is that it is configured by connecting.
  • This circuit configuration is an improved version of the conventional example of FIG.
  • a two-port valve 42 as a throttle valve that is interposed between the regulator 2 constituting the positive pressure region and the nozzle n and performs continuous flow rate adjustment is constituted by a piezoelectric valve, and a three-port valve disposed downstream thereof.
  • 43 is configured as a switching valve for switching between evacuation and vacuum break.
  • the three-port valve 43 shuts off the positive pressure region with respect to the nozzle n and sets the position where the vacuum pump 1 is connected to a normal state, and shuts off the vacuum pump 1 and receives positive pressure when a valve operation command is input from the host controller 52.
  • the operation of connecting the area to the nozzle n is performed.
  • the two-port valve 42 has a function of continuously changing the flow rate, and operates by an input from the piezoelectric valve driver 51 as in the above embodiment.
  • the flow rate adjusting mechanism 4 is constituted by a 2-port valve 41 that is a throttle valve.
  • the flow rate adjusting mechanism 4 is a 2-port valve 45 that is a throttle valve and a 3-port valve that is a switching valve.
  • the flow rate adjusting mechanism 4 is different from that of the three-port valve 44 that is a throttle valve and the two-port valve 45 that is a switching valve.
  • This circuit configuration is also an improved version of the conventional example of FIG.
  • the piezoelectric valve 44 that continuously intervenes between the regulator 2 and the nozzle n constituting the positive pressure region and adjusts the flow rate normally shuts off the positive pressure region and connects the vacuum pump 1 to the nozzle n.
  • the valve operation command is input from the piezoelectric valve driver 51, the vacuum pump 1 is shut off, and the positive pressure region and the nozzle n are connected while changing the opening degree continuously.
  • the 2-port valve 45 plays a role of turning on and off between the regulator 2 and the 3-port valve 44 and operates by an input from a valve operation command unit of the host controller 52.
  • valves including the function of the flow rate adjusting mechanism 4 are adopted.
  • a three-port valve that is a throttle valve is used as the flow rate adjusting mechanism 4, and a negative pressure is applied to the three-port valve.
  • the difference is that it has an area switching function.
  • This circuit configuration is an improved version of the conventional example of FIG.
  • the three-port valve 46 shuts off the regulator 2 constituting the positive pressure region with respect to the nozzle n and sets the position where the vacuum pump 1 constituting the negative pressure region is connected to the normal state. Is input, the vacuum pump 1 is shut off and the positive pressure region is continuously connected to the nozzle n while changing the aperture.
  • the throttle valve of the flow rate adjusting mechanism 4 is constituted by a piezoelectric valve, but the flow rate adjusting mechanism 4 of this embodiment is different in that the throttle valve is changed to a proportional valve 47.
  • this is an improved version of the conventional circuit configuration shown in FIG. 11, and a proportional valve 47 is employed in place of the throttle valve e, and the throttle between the nozzle n and the regulator 2 constituting the positive pressure region is adopted.
  • a certain opening is continuously varied by the output from the analog output unit 52c of the host controller 52, and a 2-port valve m that connects the nozzle n to the positive pressure region and a 2-port that connects to the negative pressure region
  • the valve k is operated by a valve operation command unit 52b.
  • FIG. 7 shows an improved version of the conventional circuit configuration shown in FIG. 10, which employs a proportional valve 48 instead of the throttle valve e and is controlled by the analog output section 52c.
  • FIG. 8 shows an improved version of the conventional circuit configuration shown in FIG. 9, which employs a proportional valve 49 instead of the throttle valve e, and is controlled by the analog output unit 52c.
  • the nozzle n and the flow rate adjusting mechanism 4 have a one-to-one relationship.
  • one flow rate adjusting mechanism is provided for a plurality of nozzles, and each nozzle is provided downstream of the flow rate adjusting mechanism.
  • a directional control valve flow path control valve
  • the piezoelectric driver is arranged outside the head module in the above embodiment, it may be mounted on the head module as long as weight and space are not a problem.
  • the vacuum pump is mounted on the head module, but it may be arranged outside the head module as long as the vacuum exhaust is performed appropriately.
  • the air control device of this embodiment is applied to the mounter 2, it is not limited to this, and may be applied to an appearance inspection machine, a measurement sorting machine, a taping machine, and the like.
  • the present invention can be used as an air control device for a mounter that can appropriately perform a vacuum break of a nozzle through a head module of the mounter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Operations Research (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Manipulator (AREA)

Abstract

【課題】マウンタの稼動を停止せずにノズル交換に伴う適切なエア制御を行うことができ、複数のヘッドモジュールの機能を1つのヘッドモジュールでまかなえる、マウンタ用エア制御装置を提供する。 【解決手段】このマウンタ用エア制御装置は、マウンタのヘッドモジュールHMに搭載される流量調整機構4と、この流量調整機構4を制御する制御手段5とを備え、流量調整機構4は、正圧域とノズルnの間に介在して通過するエアの流量を連続的に変更可能な機能を含み、制御手段5は、ノズルnを負圧にした後、予め定めた印加電圧または印加電流に基づき、流量調整機構4の流量を制御してノズルnに向けたエア供給を行うように構成される。

Description

マウンタ用エア制御装置
 本発明は、マウンタのヘッドモジュールを通してノズルの真空破壊を適切に行えるようにしたマウンタ用エア制御装置に関するものである。
 従来より、プリント基板の実装装置としてマウンタが知られている(例えば特許文献1)。
 この種のマウンタは、装置内にXY軸方向に移動可能なヘッドモジュールを備え、このヘッドモジュールにノズルを取り付けて、ノズル先端に実装部品(以下、パーツと称する)を吸着、解放させ、プリント基板に実装するように構成される。ヘッドモジュール内には、ノズルをZ軸方向に上下させるためのエアシリンダやサーボモータが備えられている。
 同文献の図2に基づいてヘッドモジュールの動作を説明すると、真空ポンプ66によるパーツPの吸着後、エア配管68による解放すなわち真空破壊によってパーツPをプリント基板上にマウントする。バルブ62はその際の切替用である。
 パーツPの解放時は、エア配管68から圧力を注入して真空破壊を行うが、湿気や静電気の存在を考慮して、ノズル先端を所定圧力にして、パーツPを強制的に優しく落とすように構成されるのが一般的である。
特開2014-123612号公報
 ところで、1つのヘッドモジュールには、例えば、1、2、4、8、12、24個のノズルが搭載されており、ノズルそれぞれに、1つずつ、絞り弁がついている。絞り弁の上流は共通のレギュレータを介して正圧域であるエア配管等に接続されている。
 図9は1つのノズルnに着目して、ヘッドモジュールHM内でノズルnがソレノイドバルブである3ポートバルブbを介して正圧域と負圧域に背反的に接続される構成を示しており、正圧域はエア配管cからレギュレータd及び絞り弁eを介してエアが供給されるようになっている。レギュレータdは不安定なエア配管の圧力を安定化する役割を担い、絞り弁eはマニュアルで絞り量が調整可能とされている。負圧域は真空ポンプfに接続されている。ノズルn、3ポートバルブb及び絞り弁eは、レギュレータdと真空ポンプfの間にノズル数分だけ並列的に設けられている。
 図10の構成は図9と同様に3ポートバルブbによってノズルnを正圧域又は負圧域に選択的に切り替え可能とした上で、3ポートバルブbの上流にソレノイドバルブである2ポートバルブg又は3ポートバルブhによって3ポートバルブbへのエア供給のオン・オフを行っている。
 さらに、図11の構成はノズルnを正圧域に対して断切する2ポートバルブmと、ノズルnを負圧域に対して断切する2ポートバルブkとがノズルnに対して並列的に接続された構成とされている。
 このようなヘッドモジュールHMは、大きくは高速、多機能タイプに分類されている。高速タイプは例えばスマートフォン向けの小さなチップ部品実装用に構成され、ノズルnの数は多く、ノズル径は小さく、パーツ吸着後の真空破壊のために供給するエアの流量も少量に設定される。一方、多機能タイプは例えばコネクタなどの比較的大きな異形部品実装用に構成され、ノズルnの数は少なく、ノズル径は大きく、パーツ吸着後の真空破壊のために供給するエアの流量も比較的多く設定される。このため、図9~図11の絞り弁e及びレギュレータdの調整はヘッドモジュールHMの用途ごとに異なり、ヘッドモジュールHM自体が用途に応じて高速用、多機能用として複数種類用意されている。
 ところで、マウンタの稼働中、パーツの変更時などにノズルnの交換が必要となった場合、ノズル交換は装置の稼動を止めずに行われるのが一般的であるが、ヘッドモジュールHMの交換が必要となった場合は、装置を止めて行う必要があり、設備稼働率の低下につながっている。
 そこで、1つのヘッドモジュールHMで高速用と多機能用を兼用させることが一つの対策として考えられる。しかしながら、仮に、高速用に調整したヘッドモジュールHMを多機能用で使うと、流量が少ないために所要の流量に達するまでに時間が掛かり、その結果、タクトが下がるという新たな課題が生じる。逆に、多機能用に調整したヘッドモジュールHMを高速用で使うと、流量が多すぎるために小さいチップが解放時に吹き飛ぶという新たな課題が生じる。これを解決するためには、1つのヘッドモジュールHMが高速用と多機能用の複数の用途を充足するものであることが望まれる。
 また、従来の絞り弁eは変更できない固定の絞り弁または、手動調整の絞り弁が一般的であり、装置の稼働中は固定絞りとして用いられるため、稼働中に実装部品であるパーツの変更やノズルの交換があったときに、パーツやノズル毎に適した流量が維持されるかどうか疑問がある。
 本発明は、このような課題に着目してなされたものであって、マウンタの稼動を停止せずにノズル交換に伴う適切なエア制御を行うことができ、さらに複数のヘッドモジュールの機能を1つのヘッドモジュールでまかなえることを可能にした、従来にはないマウンタ用エア制御装置を実現することを目的としている。
 本発明は、以上のような課題を解決するために、次のような手段を講じたものである。
 すなわち、本発明のマウンタ用エア制御装置は、マウンタのヘッドモジュールに搭載される流量調整機構と、この流量調整機構を制御する制御手段とを備えたものであって、前記流量調整機構は、正圧域とノズルの間に介在して通過するエアの流量を連続的に変更可能な機能を含み、前記制御手段は、ノズルを負圧にした後、予め定めた印加電圧または印加電流に基づき、前記流量調整機構の流量を制御してノズルに向けたエア供給を行うように構成されることを特徴とする。
 このようにすると、流量調整機構でノズルに供給するエアの流量制御ができるため、マウンタの稼動を停止せずにパーツやノズルの種類に応じた流量調整を行うことができる。このため、1つのヘッドモジュールで適切に取り扱えるパーツやノズルの種類が増え、設備稼働率も向上させることが可能となる。
 この場合、流量調整機構が、異なる用途向けに複数設けられ、制御手段が、用途に応じた電圧レベルまたは電流レベルで対応する流量調整機構の流量を制御するように構成されることが好ましい。
 このようにすると、流量調整機構に対して高速用や多機能用などの用途に相応しい流量制御ができるため、小さい部品に対しては流量を小さく、大きい部品に対しては流量を大きくする流量制御を行うことができる。これにより、ヘッドモジュールの交換を行うことなく汎用性の高い使い方ができ、ヘッドモジュールを共用することによる部品点数の削減とともに、ヘッドモジュールの交換に要していた分、設備稼働率を向上させることが可能となる。
 或いは、流量調整機構が、複数のノズルごとに複数設けられ、制御手段が、ノズルに応じた電圧レベルまたは電流レベルで対応する流量調整機構の流量を制御するように構成されることが好ましい。
 このようにすると、用途が同一か否かによらず、ノズル別に更に細かい流量制御を行うことが可能となる。
 さらに、制御手段が、予め流量調整機構ごとに印加電圧値または印加電流値の設定を行う設定部と、オン・オフ指令を入力されることにより前記設定部に設定されている電圧値または電流値で対応する流量調整機構への電圧印加または電流印加を行う出力制御部とを備えることが効果的である。
 このようにすると、流量や圧力を正確にデジタル管理できるうえに、一旦設定を行ったうえでオン・オフ指令により電圧印加または電流印加を行うことで、瞬時に適切な流量制御を実現することが可能となる。
 
 具体的な実施の態様としては、前記流量調整機構が、流量調整機能付きの圧電バルブを用いて構成されるものや、前記流量調整機構が、比例弁を用いて構成されるものが挙げられる。
 以上、説明した本発明によれば、マウンタの稼動を停止せずにノズル交換に伴う適切なエア制御を行うことができ、さらに複数のヘッドモジュールの機能を1つのヘッドモジュールでまかなえることを可能にした、新規有用なマウンタ用エア制御装置を提供することが可能となる。
本発明が適用されるマウンタの構成要素であるヘッドモジュールのエア回路構成を示す図。 本発明の第1実施形態に係るエア制御装置を示す図。 本発明の第2実施形態に係るエア制御装置を示す図。 本発明の第3実施形態に係るエア制御装置を示す図。 本発明の第4実施形態に係るエア制御装置を示す図。 本発明の第5実施形態に係るエア制御装置を示す図。 本発明の他の実施形態に係るエア制御装置を示す図。 本発明のさらに他の実施形態に係るエア制御装置を示す図。 従来のエア制御装置の一例を示す図。 従来のエア制御装置の他の一例を示す図。 従来のエア制御装置の上記以外の一例を示す図。
 以下、本発明の実施形態を、図面を参照して説明する。
<第1実施形態>
 この実施形態のマウンタ用エア制御装置が適用されるマウンタのヘッドモジュールHMは、図1に示すように、負圧域を構成する真空ポンプ1と正圧域中に配置されるレギュレータ2を搭載しており、レギュレータ2は同じく正圧域の圧縮空気源となるエア配管3に接続されている。ヘッドモジュールHMには、従来の高速用途に適合するノズルn1と、多機能用に適合するノズルn2が取り付け可能とされており、更に、高速用途のノズルn1も径の異なる複数種類が取り付け可能とされ、多機能用途のノズルn2も径の異なる複数種類が取り付け可能とされている。そして、各ノズルn1…、n2…ごとに流量制御機構4が接続され、流量制御機構4の真空破壊側の回路は上流を共通のレギュレータ2に並列的に接続されている。また、吸引側の回路は上流を共通の真空ポンプ1に接続されている。
 そして、ヘッドモジュールHMに流量調整機構4を搭載するとともに、この流量調整機構4を制御する制御手段5を設け、流量調整機構4には、正圧域を構成するレギュレータ2とノズルn(n1またはn2)の間に介在して通過するエアの流量を連続的に変更可能な機能を持たせ、制御手段5は、ノズルn(n1またはn2)を負圧にした後、予め定めた印加電圧または印加電流に基づき、流量調整機構4の流量を制御してノズルn(n1またはn2)に向けたエア供給を行うように構成されている。
 図2は1つのノズルn(n1あるいは2)に対してマウンタ用エア制御装置を構成する流量調整機構4と、この流量調整機構4を制御する制御手段5とを示しており、流量調整機構4はノズルnの真空破壊用の絞り弁41によって構成されている。制御手段5はこれ以外に真空排気用の切替弁61も制御するように構成されている。この回路構成は図11の従来例を改良した形となっている。
 絞り弁41は、正圧域を構成するレギュレータ2の吐出口に連通する第1ポート41aと、ノズルnに連通する第2ポート41bとの間に作動部41cが介在し、第1の作動位置で両ポート41a、41b間を遮断し、第2の作動位置で両ポート41a、41b間を連通する2ポートバルブによって構成されている。具体的には、この絞り弁41はピエゾ素子を用いた圧電バルブで、ノーマルクローズに設定され、外部からの印加電圧レベルに応じて第1の作動位置と第2の作動位置の間で連続的に作動部41cが変位又は変形することにより絞り量を可変として、通過するエアの流量を変更する流量調整機能を有したものとなっている。このため、この2ポートバルブ41によってノズルnに供給するエアの流量および圧力を微調整することができる。また、圧電バルブを採用しているため、例えば電磁弁や比例弁に比べて電圧が印加されてからの応答性が素早いという特徴を有している。
 切替弁61は、負圧域である真空ポンプ1の吸引口に連通する第3ポート61aと、ノズルnに連通する第4ポート61bとの間に作動部61cが介在し、第1の切替位置で両ポート61a、61b間を遮断し、第2の切替位置で両ポート61a、61b間を連通する2ポートバルブによって構成される。具体的には、このバルブ61はソレノイドバルブで、ノーマルクローズに設定され、外部からの電圧指令によって作動部61cが第1の切替位置から第2の切替位置に切り替わる。
 一方、制御手段5は、圧電バルブ用ドライバ51を具備し、この圧電バルブ用ドライバ51は上位制御装置52に接続されている。
 圧電バルブ用ドライバ51は、通信入出力部51a、設定入力部51b、設定部51c、指令入力部51d、出力制御部51e、電圧出力回路51fを備えており、上位制御装置52は、ドライバ設定部52aと、バルブ動作指令部52bとを備えている。
 ドライバ設定部52aは圧電バルブ用ドライバ51の設定部51cに通信入出力部51aを通じて流量設定を行う。また、バルブ動作指令部52bは、バルブのオン・オフ指令を圧電バルブドライバ5とソレノイドバルブ61に入力する。バルブ動作指令部52bにはどのバルブを駆動するかの通信局番が含まれる。
 通信入出力部51aが、RS485やEthernet、CAN等に代表させるデータ通信による通信手段の場合、圧電バルブ用ドライバ5は、通信入出力部51aに流量設定データが入力されると、これを設定部51cに書き込む。これにより設定部51cには、ノズルタイプごとの出力電圧設定、通信局番、動作論理が保持される。出力電圧設定は流量(バルブ開度)に関する設定であり、通信局番はどの圧電バルブ41に関する設定かを特定し、動作論理には指令入力部51dの信号に対して同期出力なのかワンショット出力なのかの切替、立ち上がり、立ち下り等の電圧出力波形の設定、ワンショットパルス時間の設定等が行われる。
 次に、通信入出力部51aが、接点入力のような切替による通信手段を使用する場合について記述する。圧電バルブ用ドライバ5は、設定入力部51bにより、設定部51cに、出力電圧設定、動作論理、同期出力とワンショット出力切替、立ち上がり、立ち下り等の電圧出力波形の設定、ワンショットパルス時間の設定等を書き込む。これら設定値をひとつのグループとし複数記憶される。接点入力のような切替手段により、グループを切り替えることで、データ通信手段よりも高速に設定の切替が行われる。
 このような構成では、上位制御装置52は先ず、実装部品(パーツ)を吸着する際にソレノイドバルブ61をオンにしてノズル先端を所要の負圧状態にし、次にパーツを開放する際にソレノイドバルブ61をオフにするとともに圧電バルブドライバ51をオンにする。これにより圧電バルブドライバ51は、通信局番に関連づけて設定部51cで設定されている動作論理に従って、対応するノズルnの圧電バルブ41に出力制御部51e及び電圧出力回路51fを介して出力電圧を印加する。このように、印加電圧を決め打ちすることで、エア供給の応答性を早くしている。
 圧電バルブ41は、印加電圧に応じて作動部41cが連続的に変位し、ノズルの品種に最適な流量および圧力でエアを供給する。このエアはノズルnに到達し、吸着されているパーツを真空破壊によって開放する。開放されたパーツは、対象となるプリント基板上にマウントされる。
 上位制御装置52では、マウンタのタクトを上げるために、ヘッドモジュールHMが目的の位置に到達するまえに、バルブの遅れや、ノズル先端が目標圧力になるまでの圧力変化の遅れを想定して、ノズルnのXYZ軸の移動と並行してバルブの動作指令を出している。
 以上のように、本実施形態のマウンタ用エア制御装置は、マウンタのヘッドモジュールHMに搭載される流量調整機構4と、この流量調整機構4を制御する制御手段5とを備えたものであって、流量調整機構4は、正圧域とノズルnの間に介在して通過するエアの流量を連続的に変更可能な機能を含み、制御手段5は、ノズルnを負圧にした後、予め定めた印加電圧または印加電流に基づき、流量調整機構4の流量を制御してノズルnに向けたエア供給を行うように構成される。
 このようにすると、流量調整機構4でノズルnに供給するエアの流量制御ができるため、マウンタの稼動を停止せずにパーツやノズルnの種類に応じた流量調整を行うことができる。このため、1つのヘッドモジュールHMで適切に取り扱えるパーツやノズルの種類が増え、設備稼働率も向上させることが可能となる。
 特に流量調整機構4が、高速用のノズルn1を対象としたものと、多機能用のノズルn2を対象したものとを併設し、制御手段5が、用途に応じた電圧レベルまたは電流レベルで対応する流量調整機構4の流量を制御するように構成されている。
 このようにすると、流量調整機構4に対して高速用や多機能用などの用途に相応しい流量制御ができるため、小さい部品に対しては流量を小さく、大きい部品に対しては流量を大きくする流量制御を行うことができる。これにより、ヘッドモジュールHMの交換を行うことなく汎用性の高い使い方ができ、ヘッドモジュールHMを共用することによる部品すなわちヘッドモジュールHMの点数の削減とともに、ヘッドモジュールHMの交換に要していた分、設備稼働率を向上させることが可能となる。
 さらに流量調整機構4は、一の用途に含まれる複数のノズルn1ごと(n2ごと)にも複数設けられ、制御手段5が、ノズルn1(n2)に応じた電圧レベルまたは電流レベルで対応する流量調整機構4の流量を制御するように構成される。
 このようにすることで、用途別、ノズル別に更に細かい流量制御を行うことが可能となる。
 また制御手段5が、予め流量調整機構4ごとに印加電圧値または印加電流値の設定を行う設定部51cと、オン・オフ指令を入力されることにより設定部51cに設定されている電圧値または電流値で対応する流量調整機構4への電圧印加または電流印加を行う出力制御部51eとを備えている。
 このようにすると、流量や圧力を正確にデジタル管理できるうえに、一旦設定を行ったうえでオン・オフ指令により電圧印加または電流印加を行うことで、瞬時に適切な流量制御を実現することが可能となる。
 そして、流量調整機構4が、流量調整機能付きの圧電バルブを41用いて構成されるため、高速、長寿命なエア制御装置を実現することが可能となる。
<第2実施形態>
 次に、本発明の第2実施形態を、図3を参照して説明する。なお、概ね共通する部分には同一符号を付すか或いは一部符合を省略し、説明についても省略する。
 前記第1実施形態では流量調整機構4が1つの2ポートバルブ41によって構成されていたが、この実施形態では、流量調整機構4が1つの2ポートバルブ42と1つの3ポートバルブ43を直列に接続することによって構成されている点が異なる。この回路構成は図10の従来例を改良した形となっている。
 すなわち、正圧域を構成するレギュレータ2とノズルnの間に介在して連続的な流量調整を行う絞り弁としての2ポートバルブ42が圧電バルブによって構成され、その下流に配置された3ポートバルブ43は真空排気と真空破壊を切り替える切替弁として構成されている。3ポートバルブ43はノズルnに対して正圧域を遮断し真空ポンプ1を接続する位置をノーマル状態とし、上位制御装置52からバルブ動作指令が入力されることによって真空ポンプ1を遮断し正圧域をノズルnに接続する動作を行う。2ポートバルブ42は、連続的に流量を変化させる機能を備え、前記実施形態と同様に圧電バルブドライバ51からの入力によって動作する。
 このように構成しても、前記実施形態と同様の作用効果を奏する。
<第3実施形態>
 次に、本発明の第3実施形態を、図4を参照して説明する。なお、概ね共通する部分には同一符号を付すか或いは一部符合を省略し、説明についても省略する。
 前記第1実施形態では流量調整機構4が絞り弁である2ポートバルブ41によって構成され、前記第2実施形態では流量調整機構4が絞り弁である2ポートバルブ45と切替弁である3ポートバルブ44によって構成されていたが、この実施形態では、流量調整機構4が絞り弁である3ポートバルブ44と切替弁である2ポートバルブ45によって構成されている点が異なる。この回路構成も図10の従来例を改良した形となっている。
 すなわち、正圧域を構成するレギュレータ2とノズルnの間に介在して連続的な流量調整を行う圧電バルブ44はノズルnに対して正圧域を遮断し真空ポンプ1を接続する位置をノーマル状態とし、圧電バルブドライバ51からバルブ動作指令が入力されることによって真空ポンプ1を遮断し正圧域とノズルnの間を連続的に開度を変えながら接続する動作を行う。また、2ポートバルブ45は、レギュレータ2と3ポートバルブ44の間をオンオフする役割を担い、上位制御装置52のバルブ動作指令部からの入力によって動作する。
 このように構成しても、前記各実施形態に準じた作用効果を奏する。
<第4実施形態>
 次に、本発明の第4実施形態を、図5を参照して説明する。なお、概ね共通する部分には同一符号を付すか或いは一部符合を省略し、説明についても省略する。
 前記各実施形態では流量調整機構4の機能を含んで2つのバルブが採用されていたが、この実施形態では流量調整機構4に絞り弁である3ポートバルブを用い、この3ポートバルブに負圧域の切替機能を持たせている点が異なる。この回路構成は図9の従来例を改良した形となっている。
 すなわち、この3ポートバルブ46はノズルnに対して正圧域を構成するレギュレータ2を遮断し負圧域を構成する真空ポンプ1を接続する位置をノーマル状態とし、圧電バルブドライバ51からバルブ動作指令が入力されることによって真空ポンプ1を遮断し正圧域を連続的に絞りを変えながらノズルnに接続する動作を行う。
 このように構成しても、前記各実施形態に準じた作用効果を奏する。
<第5実施形態>
 次に、本発明の第5実施形態を、図6を参照して説明する。なお、概ね共通する部分には同一符号を付すか或いは一部符合を省略し、説明についても省略する。
 前記各実施形態では、流量調整機構4の絞り弁が圧電バルブによって構成されていたのに対し、この実施形態の流量調整機構4は、絞り弁を比例弁47に変更している点が異なる。
 すなわち、このものは図11に示す従来の回路構成を改良した形であり、絞り弁eに代えて比例弁47を採用して、ノズルnと正圧域を構成するレギュレータ2の間の絞りである開度を上位制御装置52のアナログ出力部52cからの出力によって連続的に可変しているものであり、ノズルnを正圧域に接続する2ポートバルブmおよび負圧域に接続する2ポートバルブkはバルブ動作指令部52bによって動作させるようにしている。
 比例弁47をノズルnごとに個別に持たせるとヘッドモジュールHMの重量が増大するうえに、応答性も悪いため瞬時に切替はできないが、ヘッドモジュールHMを共用してマウンタの稼動を停止することなく高速用から多機能用までを賄え、ヘッドモジュールの交換を不要にできる点では、比例弁47を用いても、圧電バルブを用いた上記実施形態に準じた作用効果が奏される。
<その他の実施形態>
 図7は図10に示す従来の回路構成を改良した形であって、絞り弁eに変えて比例弁48を採用し、アナログ出力部52cによって制御するようにしたものである。また、図8は図9に示す従来の回路構成を改良した形であって、絞り弁eに変えて比例弁49を採用し、アナログ出力部52cによって制御するようにしたものである。
 このようにしても、第5実施形態と同様の作用効果が奏される。
 以上、本発明の幾つかの実施形態について説明したが、各部の具体的な構成は、上述した実施形態のみに限定されるものではない。
 例えば、流量調整機構4に対し、多機能用途、高速用途などのノズルのカテゴリーに関係なく、複数のノズルに対して本発明を適用することで、ノズルに適合した流量制御を行うことが可能である。
 また、上記実施形態ではノズルnと流量調整機構4は1対1の関係であったが、図示しないが、複数のノズルに対して1つの流量調整機構を設け、流量調整機構その下流に各ノズルに対して方向制御弁(流路制御弁)を設ける構成としても構わない。
 さらに、上記実施形態では圧電ドライバはヘッドモジュール外に配置しているが、重量やスペースが問題にならなければヘッドモジュールに搭載しても構わない。
 或いは、上記実施形態では真空ポンプがヘッドモジュールに搭載されているが、真空排気が適切に行われればヘッドモジュール外に配置しても構わない。
 さらにまた、本実施形態のエア制御装置はマウンタ2に適用されたが、これに限定されず、外観検査機、測定分別機およびテーピング機などに適用されてもよい。
 その他の構成も、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
本発明は、マウンタのヘッドモジュールを通してノズルの真空破壊を適切に行えるようにしたマウンタ用エア制御装置としての利用が可能である。
 4…流量調整機構
 5…制御手段
 51c…設定部
 51e…出力制御部
 HM…ヘッドモジュール
 n…ノズル
 n1…ノズル(高速用)
 n2…ノズル(多機能用)
 
 

Claims (6)

  1.  マウンタのヘッドモジュールに搭載される流量調整機構と、この流量調整機構を制御する制御手段とを備えたものであって、
     前記流量調整機構は、正圧域とノズルの間に介在して通過するエアの流量を連続的に変更可能な機能を含み、
     前記制御手段は、ノズルを負圧にした後、予め定めた印加電圧または印加電流に基づき、前記流量調整機構の流量を制御してノズルに向けたエア供給を行うように構成されることを特徴とするマウンタ用エア制御装置。
  2. 流量調整機構が、異なる用途向けに複数設けられ、制御手段が、用途に応じた電圧レベルまたは電流レベルで対応する流量調整機構の流量を制御するように構成される請求項1に記載のマウンタ用エア制御装置。
  3. 流量調整機構が、複数のノズルごとに複数設けられ、制御手段が、ノズルに応じた電圧レベルまたは電流レベルで対応する流量調整機構の流量を制御するように構成される請求項1又は2に記載のマウンタ用エア制御装置。
  4. 制御手段が、予め流量調整機構ごとに印加電圧値または印加電流値の設定を行う設定部と、オン・オフ指令を入力されることにより前記設定部に設定されている電圧値または電流値で対応する流量調整機構への電圧印加または電流印加を行う出力制御部とを備える請求項1~3の何れかに記載のマウンタ用エア制御装置。
  5.  前記流量調整機構が、流量調整機能付きの圧電バルブを用いて構成される請求項1~4の何れかに記載のマウンタ用エア制御装置。
  6.  前記流量調整機構が、比例弁を用いて構成される請求項1~4の何れかに記載のマウンタ用エア制御装置。
     
PCT/JP2018/000299 2017-01-17 2018-01-10 マウンタ用エア制御装置 WO2018135346A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18742240.7A EP3573442A4 (en) 2017-01-17 2018-01-10 AIR REGULATION DEVICE OF A MOUNTING DEVICE
US16/469,265 US11202399B2 (en) 2017-01-17 2018-01-10 Mounter air controller
CN201880006798.7A CN110192446B (zh) 2017-01-17 2018-01-10 安装机用空气控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017005803A JP6969873B2 (ja) 2017-01-17 2017-01-17 マウンタ用エア制御装置
JP2017-005803 2017-01-17

Publications (1)

Publication Number Publication Date
WO2018135346A1 true WO2018135346A1 (ja) 2018-07-26

Family

ID=62908618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000299 WO2018135346A1 (ja) 2017-01-17 2018-01-10 マウンタ用エア制御装置

Country Status (5)

Country Link
US (1) US11202399B2 (ja)
EP (1) EP3573442A4 (ja)
JP (1) JP6969873B2 (ja)
CN (1) CN110192446B (ja)
WO (1) WO2018135346A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086842A (ja) * 2019-11-25 2021-06-03 ヤマハ発動機株式会社 部品実装機、ノズルのブロー圧較正方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246899A (ja) * 1988-03-29 1989-10-02 Toshiba Corp 部品装着装置
JP2003023294A (ja) * 2001-07-06 2003-01-24 Yamaha Motor Co Ltd 表面実装機
JP2003273588A (ja) * 2002-03-19 2003-09-26 Yamaha Motor Co Ltd 表面実装機
JP2014123612A (ja) 2012-12-20 2014-07-03 Fuji Mach Mfg Co Ltd ノズル検査装置及びノズル検査方法
WO2015011751A1 (ja) * 2013-07-22 2015-01-29 富士機械製造株式会社 部品実装機
US20150298316A1 (en) * 2014-04-18 2015-10-22 Kla-Tencor Corporation Pick and place device with automatic pick-up-height adjustment and a method and a computer program product to automatically adjust the pick-up-height of a pick and place device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130235A (ja) * 1994-11-01 1996-05-21 Fujitsu Ltd 電子部品の移送装置と移送方法
JP3802954B2 (ja) * 1996-11-27 2006-08-02 富士機械製造株式会社 回路部品搬送装置
JP2004202673A (ja) * 2002-11-07 2004-07-22 Koganei Corp 吸着検出方法および吸着検出装置
JP4320350B2 (ja) * 2006-08-23 2009-08-26 Tdk株式会社 導電性部材供給装置及び導電性部材供給方法
JP4794483B2 (ja) * 2007-03-09 2011-10-19 富士機械製造株式会社 部品実装機
JP5457080B2 (ja) * 2009-06-10 2014-04-02 Juki株式会社 電子部品実装装置
CN105379444A (zh) * 2013-07-12 2016-03-02 富士机械制造株式会社 元件安装机
JP6389716B2 (ja) * 2014-09-19 2018-09-12 Juki株式会社 電子部品実装装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246899A (ja) * 1988-03-29 1989-10-02 Toshiba Corp 部品装着装置
JP2003023294A (ja) * 2001-07-06 2003-01-24 Yamaha Motor Co Ltd 表面実装機
JP2003273588A (ja) * 2002-03-19 2003-09-26 Yamaha Motor Co Ltd 表面実装機
JP2014123612A (ja) 2012-12-20 2014-07-03 Fuji Mach Mfg Co Ltd ノズル検査装置及びノズル検査方法
WO2015011751A1 (ja) * 2013-07-22 2015-01-29 富士機械製造株式会社 部品実装機
US20150298316A1 (en) * 2014-04-18 2015-10-22 Kla-Tencor Corporation Pick and place device with automatic pick-up-height adjustment and a method and a computer program product to automatically adjust the pick-up-height of a pick and place device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3573442A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086842A (ja) * 2019-11-25 2021-06-03 ヤマハ発動機株式会社 部品実装機、ノズルのブロー圧較正方法
JP7353938B2 (ja) 2019-11-25 2023-10-02 ヤマハ発動機株式会社 部品実装機、ノズルのブロー圧較正方法

Also Published As

Publication number Publication date
CN110192446B (zh) 2020-11-27
EP3573442A1 (en) 2019-11-27
JP2018117007A (ja) 2018-07-26
EP3573442A4 (en) 2020-10-07
CN110192446A (zh) 2019-08-30
US20200107482A1 (en) 2020-04-02
JP6969873B2 (ja) 2021-11-24
US11202399B2 (en) 2021-12-14

Similar Documents

Publication Publication Date Title
CN208311184U (zh) 用于在测试电磁阀时使阀定位器稳定的装置以及阀定位器
JP5578502B2 (ja) スピードコントローラ
US20090004027A1 (en) Ventilation of an Operating Element
WO2018135346A1 (ja) マウンタ用エア制御装置
WO2023155406A1 (zh) 应用于废气处理系统的阀门控制装置
US20010035512A1 (en) Environmentally friendly electro-pneumatic positioner
US20170324021A1 (en) Servo valve with asymetrical redundant piezoelectric actuator
JP7001425B2 (ja) マウンタ用エア制御装置
CN113669316A (zh) 阀装置、系统和方法
EP2669905B1 (en) Oil immersed solenoid
KR20160121355A (ko) 부품 지지 헤드
CN207676230U (zh) 用于控制阀的故障-安全系统
WO2013144598A1 (en) Pressure control valve manifold
EP3434914A1 (en) Fluidic device
EP1016793B1 (en) Pressure controller
CN208153788U (zh) 一种阀的控制机构及滑套控制阀
EP4349504A1 (en) Fluid circuit for intermittent air discharge
KR20190023533A (ko) 진공 척
KR100285801B1 (ko) 전공식 밸브개폐자동위치제어장치의 자동제어방법 및 전공식 밸
JP4376582B2 (ja) ポジショナー
US20240117821A1 (en) Pneumatic cylinder system
US10073470B1 (en) High speed, broad range electro pneumatic flow control valve
JP2017141926A (ja) 油圧制御装置
KR20160063914A (ko) 압축기 제어 시스템
JP2007057079A (ja) 油圧制御装置及び射出成形機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018742240

Country of ref document: EP

Effective date: 20190819