WO2018134988A1 - 回転子、電動機、空気調和装置、および回転子の製造方法 - Google Patents
回転子、電動機、空気調和装置、および回転子の製造方法 Download PDFInfo
- Publication number
- WO2018134988A1 WO2018134988A1 PCT/JP2017/002066 JP2017002066W WO2018134988A1 WO 2018134988 A1 WO2018134988 A1 WO 2018134988A1 JP 2017002066 W JP2017002066 W JP 2017002066W WO 2018134988 A1 WO2018134988 A1 WO 2018134988A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- shaft
- magnet
- rotor core
- face
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
- H02K1/2766—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0018—Indoor units, e.g. fan coil units characterised by fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/20—Electric components for separate outdoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/26—Refrigerant piping
- F24F1/32—Refrigerant piping for connecting the separate outdoor units to indoor units
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2746—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/28—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
- H02K1/30—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/21—Devices for sensing speed or position, or actuated thereby
- H02K11/215—Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/03—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/12—Impregnating, heating or drying of windings, stators, rotors or machines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
- H02K21/16—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
Definitions
- the present invention relates to a rotor, an electric motor, an air conditioner, and a method for manufacturing the rotor.
- a rotor having an annular resin magnet is known as a rotor of an electric motor.
- resin ribs are radially formed between the resin magnet and the shaft (rotating shaft).
- a pre-molded resin magnet is placed in a molding die together with a shaft, and a rib is formed by pouring resin.
- the resin magnet and the shaft are held in a state of being separated in the radial direction, it is necessary to match the central axes of the two. Therefore, the central axis of the resin magnet and the shaft are made to coincide with each other by bringing a tapered surface formed in advance on the inner peripheral portion of the resin magnet into contact with the contact surface of the molding die (for example, see Patent Document 1). .
- a magnet-embedded rotor in which a magnet is embedded in the rotor is also known.
- a magnet insertion hole is formed in a rotor core composed of a laminate of electromagnetic steel plates, and a magnet is attached in the magnet insertion hole.
- the present invention has been made to solve the above-described problems, and an object thereof is to provide a rotor capable of improving the coaxiality between the rotor core and the shaft.
- the rotor of the present invention is composed of a shaft, an electromagnetic steel plate, an annular rotor core centered on the shaft, and the shaft attached to one side of the rotor core in the axial direction of the shaft. And an annular position detecting magnet.
- the position detecting magnet has a first end face facing the rotor core and a second end face opposite to the first end face. On the inner periphery of the position detection magnet, there is a tapered portion that is inclined so that the distance from the shaft is maximized at the second end face.
- the concentricity between the shaft and the position detecting magnet is obtained by bringing the tapered portion of the position detecting magnet into contact with, for example, a contact surface provided in the molding die.
- the degree of coaxiality with the rotor core attached to the position detection magnet can be improved. Thereby, the performance of the rotor and the electric motor having the same can be improved.
- FIG. 3 is a partial cross-sectional view showing the electric motor in the first embodiment.
- FIG. 3 is a cross-sectional view showing the mold stator in the first embodiment.
- FIG. 2A is a diagram showing a stator core in the first embodiment and
- FIG. 2B is an enlarged diagram showing a part of the stator core. It is the figure which shows the stator core developed in strip
- 3 is a partial cross-sectional view showing a configuration in which a bracket and a cap are removed from the electric motor in Embodiment 1.
- FIG. FIG. 3 is a cross-sectional view showing a bracket of the electric motor in the first embodiment.
- FIG. 3 is a cross-sectional view showing the rotor in the first embodiment.
- FIG. 3 is a cross-sectional view showing the rotor in the first embodiment.
- It is the front view (A) and sectional drawing (B) which show the sensor magnet as a position detection sensor in Embodiment 1.
- FIG. 5 is a schematic diagram for explaining a molding die used in the manufacturing process of the rotor in Embodiment 1.
- FIG. It is the top view (A) and sectional drawing (B) which show the sensor magnet in the modification of Embodiment 1.
- FIG. It is a figure which shows the structural example of the air conditioning apparatus to which the electric motor in Embodiment 1, 2 is applied.
- FIG. 1 is a cross-sectional view showing a configuration of an electric motor 1 according to Embodiment 1 of the present invention.
- the electric motor 1 is a brushless DC motor driven by an inverter.
- the electric motor 1 includes a rotor 2 having a shaft 11, a mold stator 50 provided so as to surround the rotor 2, and a conductive bracket 15 attached to the mold stator 50.
- the mold stator 50 includes a stator 5 and a mold resin portion 55 that covers the stator 5.
- the shaft 11 is a rotation axis of the rotor 2.
- the direction of the central axis C1 of the shaft 11 is simply referred to as “axial direction”.
- the circumferential direction centering on the central axis C1 of the shaft 11 is simply referred to as “circumferential direction”, and is indicated by an arrow R1 in the drawing (FIG. 7).
- the radial direction of the stator 5 and the rotor 2 with respect to the central axis C1 of the shaft 11 is simply referred to as “radial direction”.
- the shaft 11 protrudes from the mold stator 50 to the left side in FIG. 1, and an impeller of a blower fan, for example, is attached to an attachment portion 11a formed on the protrusion. Therefore, the protruding side (left side in FIG. 1) of the shaft 11 is referred to as “load side”, and the opposite side (right side in FIG. 1) is referred to as “anti-load side”.
- the mold stator 50 includes the stator 5 and the mold resin portion 55 as described above.
- the stator 5 includes a stator core 51, an insulating part (insulator) 52 attached to the stator core 51, and a coil (winding) 53 wound around the stator core 51 via the insulating part 52. .
- the mold resin portion 55 has a bearing support portion 501 on one side in the axial direction (right side in FIG. 1), and an opening 505 on the other side (left side in FIG. 1).
- the rotor 2 is inserted into the hollow portion 56 (FIG. 2) inside the mold stator 50 through the opening 505.
- a metal bracket 15 is attached to the opening 505 of the mold resin portion 55.
- the bracket 15 holds one bearing 12 that supports the shaft 11.
- a cap 14 for preventing water or the like from entering the bearing 12 is attached to the outside of the bearing 12.
- the bearing support portion 501 has a cylindrical inner peripheral surface 502 (FIG. 2).
- the inner peripheral surface 502 holds the other bearing 13 that supports the shaft 11.
- FIG. 2 is a cross-sectional view showing the configuration of the mold stator 50.
- the mold resin portion 55 of the mold stator 50 is made of an unsaturated polyester resin.
- a lump clay-like thermosetting BMC (bulk molding compound) resin obtained by adding an additive to an unsaturated polyester resin is desirable.
- Unsaturated polyester resin (especially BMC) has a linear expansion coefficient equivalent to that of iron constituting stator core 51, and has a thermal shrinkage rate of 1/10 or less that of thermoplastic resin, thereby obtaining high dimensional accuracy. Most desirable above. In particular, since the bearings 12 and 13 are held by the mold resin portion 55, the dimensional accuracy of the mold resin portion 55 affects the coaxiality between the stator 5 and the rotor 2. Since the unsaturated polyester resin has a small thermal shrinkage, high dimensional accuracy can be obtained even after molding. In addition, even when the electric motor 1 becomes high temperature, since the linear expansion coefficient of the unsaturated polyester resin is equivalent to that of iron, it is possible to suppress the rattling of the bearings 12 and 13 due to the difference in thermal expansion.
- the mold resin portion 55 is made of an unsaturated polyester resin, higher heat dissipation is obtained than when a metal outer shell such as iron or aluminum is used.
- the metal outer shell needs to be separated from the coil 53 and the substrate 6 for insulation.
- the unsaturated polyester resin is an insulator, the coil 53 and the substrate 6 can be covered. This is because of the high thermal conductivity.
- the mold resin portion 55 is made of a thermoplastic resin such as PBT (polybutylene terephthalate) or PPS (polyphenylene sulfide), there is an advantage that the resin remaining in the runner of the molding die can be easily reused. .
- the mold resin portion 55 is made of an unsaturated polyester resin (particularly BMC).
- the mold resin part 55 comprised with unsaturated polyester resin suppresses a deformation
- FIG. 3A is a plan view showing the configuration of the stator core 51.
- FIG. 3B is an enlarged view showing a part of the stator core 51.
- the stator core 51 is configured by laminating a plurality of electromagnetic steel plates in the axial direction.
- the stator core 51 includes a yoke 511 that extends in a ring shape in the circumferential direction around the central axis C1, and a plurality of teeth 512 that extend radially inward (toward the central axis C1) from the yoke 511. .
- Teeth tip 513 on the radially inner side of teeth 512 faces the outer peripheral surface of rotor 2 (FIG. 1).
- the number of teeth 512 is 12 here, but is not limited thereto.
- the stator core 51 is divided into a plurality (here, 12) of divided cores 51A for each tooth 512. As shown in an enlarged view in FIG. 3B, the divided core 51 ⁇ / b> A is divided by a dividing surface 518 formed at an intermediate position between adjacent teeth 512 in the yoke 511.
- the dividing surface 518 extends from the inner peripheral surface of the yoke 511 toward the outer peripheral surface, and a hole 517 is formed at the end thereof.
- the outer peripheral side of the hole 517 of the yoke 511 is a thin portion 516 that can be plastically deformed.
- FIG. 4 (A) is a plan view showing the stator core 51 developed in a band shape.
- FIG. 4B is an enlarged view showing a part of the stator core 51 developed in a band shape.
- the stator core 51 can be developed in a band shape as shown in FIG.
- the thin portion 516 between the adjacent split cores 51A is plastically deformed as shown in FIG. That is, the plurality of split cores 51 ⁇ / b> A constituting the stator core 51 are connected to each other at the thin portion 516.
- the coil 53 can be wound around the teeth 512 in a state where the stator core 51 is developed in a band shape.
- belt-shaped stator core 51 is combined cyclically
- the stator core 51 is covered with the mold resin portion 55 as described above.
- the rigidity of the mold resin portion 55 is improved by increasing the thickness of the mold resin portion 55 on the outer peripheral side of the stator core 51 (that is, the distance from the outer periphery of the stator core 51 to the outer periphery of the mold resin portion 55). Can do.
- the thickness of the mold resin portion 55 on the inner peripheral side of the stator core 51 is thinner.
- the inner peripheral end surface of the stator core 51 is not covered with the mold resin portion 55.
- stator core 51 is composed of the above-described split core 51A, the rigidity is low compared to a stator core that is not split. Therefore, the merit of covering the stator core 51 with the mold resin portion 55 (unsaturated polyester resin) is great. In particular, the deformation of the teeth 512 due to the excitation force of the electric motor 1 can be suppressed by interposing the mold resin portion 55 between the adjacent teeth 512 (FIG. 3A).
- the insulating part 52 formed in the stator core 51 is made of a thermoplastic resin such as PBT, for example.
- the insulating part 52 is formed integrally with the stator core 51 or is formed by assembling a thermoplastic resin molded body to the stator core 51.
- the coil 53 is wound around the teeth 512 of the stator core 51 via the insulating portion 52.
- the stator 5 described above is configured by attaching (or integrally forming) the insulating portion 52 to the stator core 51 and winding the coil 53 thereon.
- a substrate 6 is arranged on one side of the stator 5 in the axial direction, here on the opposite side of the load (right side in FIG. 2).
- a drive circuit 61 that is an IC (Integrated Circuit) for driving the electric motor 1 and a magnetic sensor 62 are mounted.
- the magnetic sensor 62 is composed of a Hall IC and is disposed so as to face the sensor magnet 3 (FIG. 8) of the rotor 2.
- the magnetic sensor 62 detects a position (rotational position) in the circumferential direction of the rotor 2 based on a change in magnetic flux (N / S) from the sensor magnet 3 and outputs a detection signal.
- the lead wire 63 includes a power supply lead wire for supplying power to the coil 53 of the stator 5 and a sensor lead wire for transmitting a signal of a magnetic sensor 62 described later to the outside.
- a lead wire lead-out component 64 for pulling out the lead wire 63 is attached to the outer peripheral portion of the mold resin portion 55.
- the detection signal of the magnetic sensor 62 is output to the drive circuit outside the motor 1 via the drive circuit 61 or the sensor lead wire.
- the drive circuit 61 (or a drive circuit outside the electric motor 1) controls the current that flows through the coil 53 according to the relative rotational position of the rotor 2 with respect to the stator 5 based on the detection signal from the magnetic sensor 62.
- FIG. 5 is a view showing a configuration in which the bracket 15 and the cap 14 are removed from the electric motor 1.
- FIG. 6 is a cross-sectional view showing the bracket 15.
- the bracket 15 is press-fitted into an annular portion 506 provided on the outer peripheral edge of the opening 505 of the mold resin portion 55.
- the bracket 15 is formed of a conductive metal, such as a galvanized steel plate, but is not limited thereto.
- the bracket 15 includes a cylindrical portion 151 centered on the central axis C ⁇ b> 1, a disc portion 152 formed outside the cylindrical portion 151, and a rectangular cross section formed in the disc portion 152. And an annular press-fit portion 153.
- the press-fitting part 153 is a part that is press-fitted into the annular part 506 of the mold resin part 55.
- the outer diameter of the press-fit portion 153 is larger than the inner diameter of the annular portion 506 by the press-fit allowance (the amount of elastic deformation due to press-fit).
- a wall portion 155 is formed so as to close the distal end portion (left end portion in FIG. 6) of the cylindrical portion 151.
- a hole 156 that allows the shaft 11 to pass therethrough is formed in the center of the wall portion 155.
- FIG. 7 is a cross-sectional view showing the configuration of the rotor 2.
- the rotor 2 includes a shaft 11 that is a rotating shaft, a rotor core 20 that is disposed radially outside the shaft 11, and a plurality (here, five) of main magnets 4 that are attached to the rotor core 20. And a resin portion 25 that supports the rotor core 20 with respect to the shaft 11.
- the rotor core 20 is an annular member centered on the central axis C1 and has a center hole 205 on the inner peripheral side.
- the rotor core 20 has a plurality (here, five) of magnet insertion holes 201 in the circumferential direction.
- the five magnet insertion holes 201 are arranged at equal intervals in the circumferential direction and at equal distances from the central axis C1. Adjacent magnet insertion holes 201 are separated from each other.
- Each magnet insertion hole 201 penetrates the rotor core 20 in the axial direction.
- each magnet insertion hole 201 is arrange
- the rotor core 20 is a laminated body in which a plurality of laminated elements (more specifically, electromagnetic steel sheets) that are soft magnetic materials are laminated in the axial direction.
- the thickness of the electrical steel sheet is 0.1 mm to 0.7 mm.
- the main magnet 4 as a rotor magnet is inserted into each of the five magnet insertion holes 201.
- the main magnet 4 has a flat plate shape with a rectangular cross section orthogonal to the axial direction.
- the thickness of the main magnet 4 is 2 mm, for example.
- the main magnet 4 is a rare earth magnet, more specifically, a neodymium sintered magnet mainly composed of Nd (neodymium) -Fe (iron) -B (boron).
- a neodymium sintered magnet mainly composed of Nd (neodymium) -Fe (iron) -B (boron).
- the flux barrier unit 203 brings the magnetic flux density distribution on the outer peripheral surface of the rotor 2 closer to a sine wave, and suppresses short-circuiting of magnetic flux between adjacent main magnets 4 (ie, leakage magnetic flux).
- the five main magnets 4 are arranged with the same magnetic poles (for example, N poles) toward the outer peripheral side of the rotor core 20.
- a magnetic pole (for example, an S pole) opposite to the main magnet 4 is formed in a region CP between the adjacent main magnets 4 in the rotor core 20.
- the rotor 2 has ten magnetic poles.
- the first magnetic pole is an N pole
- the second magnetic pole is an S pole
- the first magnetic pole may be an S pole
- the second magnetic pole may be an N pole.
- the ten magnetic poles of the rotor 2 are arranged at equiangular intervals in the circumferential direction with a pole pitch of 36 degrees (360 degrees / 10).
- Such a rotor 2 is referred to as a continuous pole type. That is, of the ten magnetic poles of the rotor 2, half of the five magnetic poles (first magnetic pole) are formed by the main magnet 4. The remaining five magnetic poles (second magnetic poles) are formed by a region CP between the adjacent main magnets 4 in the rotor core 20.
- each magnetic pole includes both a magnet magnetic pole and a virtual magnetic pole.
- the number of magnetic poles is an even number of 4 or more.
- the outer periphery 202 of the rotor core 20 has a so-called flower circle shape.
- the outer diameter 202 of the rotor core 20 has the largest outer diameter at the pole centers P1 and P2 (the center in the circumferential direction of each magnetic pole), and the smallest outer diameter between the poles P3 (between adjacent magnetic poles).
- the pole center P1, P2 to the gap P3 has an arc shape.
- the pole center P1 is the center of the first magnetic pole (main magnet 4)
- the pole center P2 is the center of the second magnetic pole (region CP).
- the angle from the pole center P1 of the first magnetic pole to the gap P3 (the angle with respect to the central axis C1) is the same as the angle from the pole center P2 of the second magnetic pole to the gap P3. is there.
- the outer diameter of the rotor core 20 at the pole center P1 is the same as the outer diameter of the rotor core 20 at the pole center P2.
- the circumferential length of the magnet insertion hole 201 (including the flux barrier portion 203) is wider than the pole pitch.
- a plurality of arc-shaped holes 204 (here, five) having a center axis C ⁇ b> 1 as the center are formed on the radially inner side of the magnet insertion hole 201.
- Each hole 204 extends in an arc shape between the pole centers (center positions in the circumferential direction) of two main magnets 4 adjacent to each other in the circumferential direction.
- a portion radially outside the hole 204 and a portion radially inside the hole 204 are mutually connected by a bridge portion 29 formed at a position corresponding to the pole center of the main magnet 4. It is connected.
- the resin part 25 supports the rotor core 20 with respect to the shaft 11 and is made of a thermoplastic resin (for example, PBT). Magnetic separation between the shaft 11 and the rotor core 20 by the resin portion 25 suppresses leakage of magnetic flux that flows through the shaft 11.
- a thermoplastic resin for example, PBT
- the continuous pole type rotor 2 has a property that magnetic flux passing through the virtual magnetic pole easily flows to the shaft 11 because no actual magnet exists in the virtual magnetic pole (region CP).
- the configuration in which the shaft 11 and the rotor core 20 are separated from each other by the resin portion 25 is particularly effective in suppressing magnetic flux leakage in the continuous pole type rotor 2.
- the resin part 25 includes an inner cylinder part 21 attached to the outer peripheral surface of the shaft 11, an annular outer cylinder part 23 disposed on the radially outer side of the inner cylinder part 21, and the inner cylinder part 21 and the outer cylinder part 23. And a plurality of (here, five) ribs 22.
- the shaft 11 passes through the inner cylinder portion 21 of the resin portion 25.
- the ribs 22 are arranged at equal intervals in the circumferential direction, and extend radially outward from the inner tube portion 21 in the radial direction.
- the formation position of the rib 22 corresponds to the pole center of the main magnet 4.
- a cavity G is formed between the ribs 22 adjacent in the circumferential direction.
- the cavity G desirably penetrates the rotor core 20 in the axial direction.
- the amount of resin used can be reduced. Further, since the natural frequency of the rotor 2 can be adjusted by changing the dimensions of the ribs 22, the torsional resonance between the electric motor 1 and the impeller attached thereto can be suppressed.
- the resin part 25 also has a filling part 24 arranged in the arcuate hole 204 of the rotor core 20.
- a filling part 24 arranged in the arcuate hole 204 of the rotor core 20.
- FIG. 8 is a cross-sectional view of the rotor 2 on a plane including the central axis C1.
- the resin portion 25 includes an end face covering portion 27 that covers one end face in the axial direction of the rotor core 20 (right end face in FIG. 8), and an end face covering portion 28 that covers the other end face in the axial direction of the rotor core 20.
- the end surface covering portions 27 and 28 are continuously formed with respect to the rib 22, the outer cylinder portion 23, and the filling portion 24 described above.
- the end surface covering portions 27 and 28 of the resin portion 25 also cover both axial end surfaces of the main magnet 4 attached to the rotor core 20. For this reason, it is possible to prevent the main magnet 4 from falling off and axial displacement. Further, since the main magnet 4 is not exposed to the outside, the secular change of the main magnet 4 can be suppressed. Compared with the case where a single plate is attached to both axial ends of the rotor core 20 to prevent the main magnet 4 from falling off, the number of parts and the number of man-hours for manufacturing can be reduced, and the productivity and manufacturing cost can be reduced. Can be reduced.
- An annular sensor magnet 3 as a position detection magnet is attached to one side (right side in FIG. 8) of the rotor core 20 in the axial direction.
- the sensor magnet 3 is covered from the inside and outside in the radial direction by the end face covering portion 27 of the resin portion 25 described above. That is, the sensor magnet 3 is integrally formed by the resin portion 25 together with the shaft 11 and the rotor core 20.
- the sensor magnet 3 has the same number (10 in this case) of magnetic poles as the main magnet 4.
- the sensor magnet 3 is attached to the side facing the substrate 6 shown in FIG.
- the magnetic field of the sensor magnet 3 is detected by the magnetic sensor 62 (FIG. 2) of the substrate 6, thereby detecting the position (rotational position) of the rotor 2 in the circumferential direction.
- FIG. 9A is a plan view showing the sensor magnet 3.
- FIG. 9B is a cross-sectional view taken along the line 9B-9B shown in FIG. 9A.
- the sensor magnet 3 is an annular member centered on the central axis C1.
- the sensor magnet 3 has a first end face 34 that faces the rotor core 20 (FIG. 8) and a second end face 37 that is the opposite face.
- the first end surface 34 and the second end surface 37 are both end surfaces of the sensor magnet 3 in the axial direction.
- the inner peripheral surface of the sensor magnet 3 has, in order from the first end surface 34 side, a cylindrical surface 35 whose inner diameter is constant in the axial direction and a tapered surface (tapered portion) 36 whose inner diameter increases.
- the tapered surface 36 increases in inner diameter from r1 to r2 (> r1) from the terminal end of the cylindrical surface 35 to the second end surface 37. That is, the sensor magnet 3 has a tapered surface 36 inclined on the inner periphery thereof so that the inner diameter is maximum at the second end surface 37 (that is, the distance from the central axis C1 is maximum).
- the tapered surface 36 is formed in an annular shape in the circumferential direction around the central axis C1. However, it is not limited to such an example.
- the tapered surfaces 36 may be formed in a distributed manner at a plurality of locations in the circumferential direction centered on the central axis C1.
- a protrusion 31 (first protrusion) protruding in the axial direction is formed on the inner peripheral side of the first end face 34 of the sensor magnet 3.
- the plurality of protrusions 31 are evenly arranged in the circumferential direction.
- the number of protrusions 31 (here, 5) is the same as the number of main magnets 4.
- the protrusion 31 enters the inside of the hole 204 (FIG. 8) of the rotor core 20 and contacts the inner surface of the hole 204 from the inner peripheral side. As described above, the protrusion 31 abuts (that is, engages) with the inner surface of the hole portion 204, so that the coaxiality between the sensor magnet 3 and the rotor core 20 can be improved. In other words, the coaxiality between the shaft 11 and the rotor core 20 can be improved via the sensor magnet 3.
- the protrusion 31 is surrounded by the filling portion 24 inside the hole portion 204 of the rotor core 20. Therefore, a function (rotation prevention function) for locking the rotation of the sensor magnet 3 with respect to the rotor core 20 is obtained. If the number of the protrusions 31 is increased and the holes 204 are configured to contact both ends in the circumferential direction, the anti-rotation function can be more effectively exhibited.
- a protrusion 32 (second protrusion) protruding in the axial direction is formed on the outer peripheral side of the first end face 34 of the sensor magnet 3.
- the plurality of protrusions 32 are evenly arranged in the circumferential direction.
- the protrusion amount of the protrusion 32 in the axial direction is smaller than the protrusion amount of the protrusion 31 in the axial direction.
- the protrusion 32 enters the inside of the magnet insertion hole 201 (FIG. 8) of the rotor core 20 and abuts on the axial end surface of the main magnet 4.
- the main magnet 4 can be positioned in the axial direction by the protrusion 32 coming into contact with the axial end surface of the main magnet 4. Thereby, the magnetic flux of the main magnet 4 can be utilized to the maximum, and the performance of the electric motor 1 can be improved.
- the number of the protrusions 32 and the arrangement in the circumferential direction are the same as those of the protrusions 31 here, but are not limited to such an example.
- the protrusion 32 only needs to be disposed at a position where it comes into contact with the axial end surface of the main magnet 4.
- the protrusion 32 is surrounded by the end face covering portion 27 inside the magnet insertion hole 201 of the rotor core 20. Therefore, a function (rotation prevention function) for locking the rotation of the sensor magnet 3 with respect to the rotor core 20 is obtained.
- a hollow portion 33 extending in the radial direction is formed so as to connect the inner peripheral surface and the outer peripheral surface of the sensor magnet 3.
- the cavity 33 is a groove formed so as to open in the first end face 34.
- the rotor 2 is manufactured by integrally molding the shaft 11, the rotor core 20, and the sensor magnet 3 with resin.
- the rotor core 20 is formed by stacking electromagnetic steel plates and fixing them together by caulking, and the main magnet 4 is inserted into the magnet insertion hole 201.
- FIG. 10 is a cross-sectional view showing a molding die 9 for integrally molding the rotor core 20, the shaft 11, and the sensor magnet 3 with resin.
- the molding die 9 has a fixed die (lower die) 7 and a movable die (upper die) 8.
- the fixed mold 7 and the movable mold 8 have mold mating surfaces 75 and 85 that face each other.
- the shaft insertion hole 71 into which the end portion (here, the lower end portion) of the shaft 11 is inserted, the contact surface 70 in contact with the tapered surface 36 of the sensor magnet 3, and the rotor core 20 are inserted. Inserted inside the rotor core insertion portion 73, the installation surface 72 facing the second end surface 37 of the sensor magnet 3, the cylindrical portion 74 facing the outer peripheral surface of the shaft 11, and the center hole 205 of the rotor core 20. And a cavity forming portion 76 to be formed.
- the contact surface 70 of the fixed mold 7 has an inclination corresponding to the tapered surface 36 of the sensor magnet 3.
- the contact surface 70 is formed at a plurality of locations in the circumferential direction around the central axis of the shaft insertion hole 71 (corresponding to the central axis of the shaft 11).
- the movable mold 8 includes a shaft insertion hole 81 into which an end portion (here, an upper end portion) of the shaft 11 is inserted, a rotor core insertion portion 83 into which the rotor core 20 is inserted, and an axial end surface of the rotor core 20. , A cylindrical portion 84 that faces the periphery of the shaft 11, and a cavity forming portion 86 that is inserted inside the center hole 205 of the rotor core 20.
- the shaft 11 is inserted into the shaft insertion hole 71 of the fixed mold 7. Thereby, the shaft 11 is positioned.
- the sensor magnet 3 is installed on the installation surface 72 of the fixed mold 7 with the second end surface 37 facing downward. At this time, the tapered surface 36 of the sensor magnet 3 comes into contact with the contact surface 70 of the fixed mold 7. Thereby, the central axis of the shaft 11 and the central axis of the sensor magnet 3 coincide.
- the rotor core 20 is installed on the sensor magnet 3 installed on the installation surface 72 of the fixed mold 7.
- the protrusion 32 of the sensor magnet 3 comes into contact with the end face of the main magnet 4 in the magnet insertion hole 201 of the rotor core 20.
- the rotor core 20 and the main magnet 4 are positioned in the axial direction.
- the protrusion 31 of the sensor magnet 3 engages with the inside of the hole 204 of the rotor core 20. Therefore, the center axis of the sensor magnet 3 and the center axis of the rotor core 20 coincide. That is, the central axes of the shaft 11, the sensor magnet 3, and the rotor core 20 are coincident with each other.
- the movable mold 8 is lowered as indicated by an arrow in FIG. 10, and the mold mating surfaces 75 and 85 are brought into contact with each other.
- the molding die 9 is heated, and a resin such as PBT is injected from the runner.
- the resin fills the hole 204 and the center hole 205 of the rotor core 20 inserted into the rotor core insertion portions 73 and 83.
- the resin is also filled into the space inside the cylindrical portions 74 and 84, and further filled into the space between the installation surfaces 72 and 82 and the rotor core 20.
- the molding die 9 After injecting the resin into the molding die 9 in this way, the molding die 9 is cooled. Thereby, resin hardens
- the resin cured between the cylindrical portions 74 and 84 of the molding die 9 and the shaft 11 becomes the inner cylindrical portion 21 (FIG. 7).
- the resin cured inside the central hole 205 of the rotor core 20 (however, the portion where the cavity forming portion 76 is not disposed) becomes the rib 22 and the outer cylinder portion 23 (FIG. 7).
- a portion corresponding to the cavity forming portion 76 of the molding die 9 is a cavity portion G (FIG. 7).
- the resin hardened inside the hole 204 of the rotor core 20 becomes the filling part 24 (FIG. 7). Further, the resin cured between the installation surfaces 72 and 82 of the molding die 9 and the rotor core 20 becomes the end surface covering portions 27 and 28 (FIG. 8).
- the stator 5 When the electric motor 1 is manufactured, the stator 5 is assembled by winding the coil 53 around the stator core 51 via the insulating portion 52 and combining them in an annular shape as shown in FIG. Thereafter, the stator 5 is placed in a molding die, and a resin (for example, unsaturated polyester resin) is injected and heated to form the mold resin portion 55 so as to cover the stator 5. Thereby, the mold stator 50 is completed.
- a resin for example, unsaturated polyester resin
- the bearings 12 and 13 are attached to the shaft 11 of the rotor 2 and inserted into the hollow portion 56 from the opening 505 of the mold stator 50.
- the bracket 15 is attached to the opening 505 of the mold stator 50.
- the cap 14 is attached to the outside of the bracket 15. Thereby, manufacture of the electric motor 1 is completed.
- the taper surface 36 of the sensor magnet 3 abuts against the abutment surface 70 of the molding die 9, so that the coaxiality between the shaft 11 and the sensor magnet 3 is improved. Further, when the projection 32 of the sensor magnet 3 abuts against the end surface of the main magnet 4, the main magnet 4 is positioned in the axial direction. Furthermore, when the protrusion 31 of the sensor magnet 3 is engaged with the hole 204 of the rotor core 20, the coaxiality between the sensor magnet 3 and the rotor core 20 is improved. Thus, since the coaxiality of the shaft 11, the rotor core 20, and the sensor magnet 3 is improved, the high-performance electric motor 1 can be manufactured.
- the protrusions 31 and 32 for positioning the rotor core 20 and the main magnet 4 are provided not on the sensor magnet 3 but on the molding die 9. However, in this case, a portion corresponding to the protrusion of the molding die 9 of the resin portion 25 becomes a cavity, so that a part of the main magnet 4 is exposed, and the main magnet 4 may deteriorate over time.
- the rotor core 20 and the main magnet 4 are positioned by the protrusions 31 and 32 provided on the sensor magnet 3, so that the main magnet 4 can be completely covered with the resin portion 25. Therefore, it is possible to suppress the deterioration of the main magnet 4 over time.
- the contact surface 70 is provided on the fixed mold 7, but the contact surface 70 may be provided on the movable mold 8. In that case, if the sensor magnet 3 is installed on the upper side of the rotor core 20, the taper surface 36 of the sensor magnet 3 contacts the contact surface 70, and the effect of improving the coaxiality as described above can be obtained.
- the sensor magnet 3 has the cylindrical surface 35 and the tapered surface 36, but a configuration without the cylindrical surface 35 is also possible.
- stator core 51 is not limited to the divided configuration as shown in FIGS. 3 and 4, and a stator core that is not divided may be used.
- the rotor 2 includes the shaft 11, the rotor core 20, and the sensor magnet 3, and the sensor magnet 3 is opposed to the rotor core 20. And a second end surface 37 on the opposite side, and a tapered surface 36 (tapered portion) inclined on the inner periphery of the sensor magnet 3 so that the inner diameter (distance from the shaft 11) is maximized at the second end surface 37. ) Is provided. Therefore, the coaxiality between the shaft 11 and the sensor magnet 3 can be improved by bringing the tapered surface 36 of the sensor magnet 3 into contact with the contact surface 70 of the molding die 9.
- the minimum inner diameter of the taper surface 36 is r1
- the maximum inner diameter is r2
- the axial length of the taper surface 36 is t
- t ⁇ (r2-r1) is established.
- the coaxiality can be easily adjusted by contacting the contact surface 36 with the contact surface 70 of the molding die 9.
- the sensor magnet 3 since the sensor magnet 3 has the protrusion 31 and the protrusion 31 engages with the hole 204 of the rotor core 20, the sensor magnet 3 and the rotor core 20 are engaged by the engagement between the protrusion 31 and the hole 204. And the coaxiality can be improved.
- the main magnet 4 can be positioned in the axial direction by the contact between the protrusion 32 and the main magnet 4.
- the resin part 25 (end surface coating
- the rotor 2 is a continuous pole type rotor in which a magnetic pole is formed by the main magnet 4 and a virtual magnetic pole is formed by the rotor core 20, the rotor 2 is compared with an electric motor having the same number of magnetic poles.
- the number of magnets 4 can be halved. As a result, the expensive main magnet 4 can be reduced and the manufacturing cost of the electric motor 1 can be reduced.
- the resin portion 25 that integrally holds the rotor core 20, the shaft 11, and the sensor magnet 3 is provided, the rotor core 20, the shaft 11, and the sensor magnet 3 can be firmly held.
- the rotor core 20 and the shaft 11 are separated from each other by the resin portion 25, magnetic flux leakage to the shaft 11 that is likely to occur in the continuous pole type rotor 2 can be suppressed. As a result, the performance of the electric motor 1 can be improved. Moreover, the usage-amount of the electromagnetic steel plate which comprises the rotor core 20 can be decreased, and manufacturing cost can be reduced.
- the resin part 25 has the ribs 22 extending radially from the periphery of the shaft 11, the cavity part G can be formed between the ribs 22. Therefore, the usage amount of the resin constituting the resin part 25 can be reduced, and the manufacturing cost can be reduced. Moreover, since the natural frequency of the rotor 2 can be adjusted by changing the shape (thickness, length, etc.) of the rib 22, the torsional resonance between the electric motor 1 and the impeller attached thereto can be suppressed.
- the main magnet 4 can be covered so as not to be exposed, and deterioration of the main magnet 4 over time can be suppressed. . Further, since the resin enters the inside of the magnet insertion hole 201, the main magnet 4 can be positioned inside the magnet insertion hole 201.
- FIG. 11A is a plan view showing a sensor magnet 3 of a modification of the first embodiment.
- FIG. 11B is a cross-sectional view taken along line 11B-11B shown in FIG.
- the sensor magnet 3 of this modification has a protrusion 31A extending in an arc shape around the central axis C1 instead of the protrusion 31 (FIG. 9A) shown in FIG. 9A.
- the protrusion 31 ⁇ / b> A extends along the inner periphery of the first end surface 34 of the sensor magnet 3.
- the number of protrusions 31A is the same as the number of main magnets 4 (here, five). Between the protrusions 31 ⁇ / b> A adjacent in the circumferential direction, a hollow portion 33 that connects the inner peripheral surface and the outer peripheral surface of the sensor magnet 3 is formed.
- the arc-shaped protrusion 31A of this modification is engaged with an arc-shaped hole 204 (FIG. 9) formed in the rotor core 20 by fitting. Therefore, the coaxiality between the sensor magnet 3 and the rotor core 20 is further improved. In addition, the function of locking the rotation of the sensor magnet 3 relative to the rotor core 20 (rotation prevention function) is also improved.
- the electric motor of this modification is configured similarly to the electric motor 1 of the first embodiment except for the sensor magnet 3A.
- the protrusion 31A extends in an arc shape, the coaxiality between the sensor magnet 3 and the rotor core 20 is further improved, and the rotation prevention function of the sensor magnet 3 with respect to the rotor core 20 is provided. This can be further improved.
- FIG. FIG. 12 is a cross-sectional view showing the sensor magnet 300 according to the second embodiment of the present invention on a plane including the central axis C1.
- the sensor magnet 300 according to the second embodiment includes a spacer portion (first portion) 320 on the first end surface 34 side and a magnet portion (second portion) on the second end surface 37 side in the axial direction. Part) 310.
- the magnet portion 310 is a portion in a range of a distance L that is longer than the above-described distance t (the axial length of the tapered surface 36) from the second end surface 37 of the sensor magnet 300.
- the magnet unit 310 has the same number (10 in this case) of magnetic poles as the main magnet 4.
- the magnetic field of the magnet unit 310 is detected by the magnetic sensor 62 (FIG. 2) of the substrate 6, thereby detecting the position (rotational position) of the rotor 2 in the circumferential direction.
- the spacer part 320 is made of a material cheaper than the magnet part 310, for example, plastic.
- the spacer part 320 has the protrusion 31, the protrusion 32, and the cavity part 33 described in the first embodiment. Further, instead of the protrusion 31, the protrusion 31A shown in FIG.
- the magnet unit 310 generates a magnetic flux necessary for detecting the rotational position of the rotor 2, and the spacer unit 320 is made of an inexpensive material, thereby reducing the production cost without deteriorating the performance of the electric motor 1. Can be reduced.
- a tapered surface (second contact portion) 312 whose outer diameter increases as it approaches the second end surface 37 in the axial direction is formed on the outer peripheral portion of the magnet portion 310.
- a protruding portion 321 that protrudes toward the magnet portion 310 in the axial direction is formed on the outer peripheral portion of the spacer portion 320.
- the protruding portion 321 is formed with a tapered surface (first abutting portion) 322 whose inner diameter increases as it approaches the tip in the protruding direction.
- the taper surface 312 of the magnet part 310 and the taper surface 322 of the spacer part 320 are in contact with each other, so that the coaxiality between the magnet part 310 and the spacer part 320 is improved.
- the tapered surfaces 312 and 322 are respectively provided at a plurality of locations in the circumferential direction with the central axis C1 as the center.
- the pair of tapered surfaces 312 and 322 is provided at the same location as the protrusion 31 in the circumferential direction, for example.
- the number of pairs of the tapered surfaces 312 and 322 may be any number that can improve the coaxiality between the magnet unit 310 and the spacer unit 320.
- the coaxiality between the shaft 11 and the sensor magnet 300 is one. Coaxiality equivalent to that obtained when the body-shaped sensor magnet 3 (FIG. 9) is used is obtained.
- the protrusions 31 and 32 of the spacer part 320 are engaged with the rotor core 20 in advance. Then, the rotor core 20 to which the spacer part 320 is attached is installed on the magnet part 310 previously installed in the molding die 9 (FIG. 10). Since the taper surface 322 of the spacer portion 320 attached to the rotor core 20 abuts on the taper surface 312 of the magnet portion 310, the central axes of the shaft 11, the sensor magnet 300, and the rotor core 20 can be made to coincide with each other. .
- the magnet unit 310 and the spacer unit 320 may be fixed in advance with caulking or an adhesive with the tapered surfaces 312 and 322 in contact with each other. If the magnet part 310 and the spacer part 320 (that is, the sensor magnet 300) thus fixed are installed in the molding die 9, and then the rotor core 20 is installed on the sensor magnet 300 as in the first embodiment.
- the protrusions 31 and 32 of the spacer part 320 engage with the rotor core 20 so that the central axes of the shaft 11, the sensor magnet 300, and the rotor core 20 can coincide with each other.
- the sensor magnet 300 is divided into the magnet part 310 on the second end face 37 side and the spacer part 320 on the first end face 34 side. Therefore, a magnetic flux required for detecting the rotational position of the rotor 2 can be generated by the magnet unit 310, and the spacer unit 320 can be configured with an inexpensive material. Thereby, the manufacturing cost can be reduced without degrading the performance of the electric motor.
- the sensor magnet 300 and the spacer portion 320 are positioned with respect to each other by the tapered surfaces 312, 322, the coaxiality of the shaft 11, the sensor magnet 300, and the rotor core 20 can be improved.
- FIG. 13 is a diagram illustrating a configuration of an air conditioner 600 to which the electric motor 1 can be applied.
- the air conditioner 600 includes an outdoor unit 601, an indoor unit 602, and a refrigerant pipe 603 that connects them.
- the outdoor unit 601 includes a first fan (blower) 605 and a first electric motor 606 that rotates an impeller of the first fan 605.
- the indoor unit 602 includes a second fan 607 and a second electric motor 608 that rotates the impeller of the second fan 607.
- FIG. 11 also shows a compressor 609 that compresses the refrigerant in the outdoor unit 601.
- the electric motor 1 described in each embodiment and modification can be applied to at least one of the first electric motor 606 and the second electric motor 608.
- the electric motor 1 described in each embodiment and modification has high coaxiality of the shaft 11, the sensor magnet 3, and the rotor core 20, and exhibits high performance. Therefore, the performance of the air conditioner 600 is improved. can do.
- the electric motor 1 described in each embodiment and the modification is reduced in cost by adopting the continuous pole type rotor 2, the manufacturing cost of the air conditioner 600 can be reduced.
- the electric motor 1 demonstrated by each embodiment and modification can also be mounted in electric equipments other than an air conditioning apparatus.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
回転子は、シャフトと、回転子コアと、位置検出用マグネットとを備える。回転子コアは、電磁鋼板で構成され、シャフトを中心とする環状に形成されている。位置検出用マグネットは、シャフトの軸方向において回転子コアの一方の側に取り付けられ、シャフトを中心とする環状に形成されている。位置検出用マグネットは、回転子コアに対向する第1端面と、第1端面とは反対側の第2端面とを有する。位置検出用マグネットの内周に、第2端面でシャフトからの距離が最大となるように傾斜したテーパ部を有する。
Description
本発明は、回転子、電動機、空気調和装置、および回転子の製造方法に関する。
従来より、電動機の回転子において、環状の樹脂マグネットを備えた回転子が知られている。この種の回転子では、樹脂マグネットとシャフト(回転軸)との間に、樹脂製のリブが放射状に形成される。
回転子の製造時には、予め成形した樹脂マグネットをシャフトと共に成形金型に設置し、樹脂を流し込んでリブを成形する。成形金型内では、樹脂マグネットとシャフトとが径方向に離間した状態で保持されるため、両者の中心軸を一致させる必要がある。そこで、樹脂マグネットの内周部分に予め形成したテーパ面を、成形金型の当接面に当接させることにより、樹脂マグネットとシャフトの中心軸を一致させている(例えば、特許文献1参照)。
一方、回転子にマグネットが埋め込まれた磁石埋込型の回転子も知られている。磁石埋込型の回転子では、電磁鋼板の積層体で構成された回転子コアに磁石挿入孔が形成され、この磁石挿入孔内にマグネットが取り付けられている。
ここで、磁石埋込型の回転子において、回転子磁束のシャフトへの漏れを抑制するために、回転子コアとシャフトとの間に樹脂製のリブを形成することも考えられる。
しかしながら、電磁鋼板の積層体で構成された回転子コアの内周部分にテーパ面を形成することは、電磁鋼板の間に段差を生じるため、難しい。そのため、回転子コアとシャフトの同軸度の向上が課題となる。
本発明は、上記の課題を解決するためになされたものであり、回転子コアとシャフトとの同軸度を向上することが可能な回転子を提供することを目的とする。
本発明の回転子は、シャフトと、電磁鋼板で構成され、シャフトを中心とする環状の回転子コアと、シャフトの軸方向において回転子コアの一方の側に取り付けられた、シャフトを中心とする環状の位置検出用マグネットとを備える。位置検出用マグネットは、回転子コアに対向する第1端面と、第1端面とは反対側の第2端面とを有する。位置検出用マグネットの内周に、第2端面でシャフトからの距離が最大となるように傾斜したテーパ部を有する。
本発明によれば、回転子の製造工程において、位置検出用マグネットのテーパ部を、例えば成形金型に設けた当接面に当接させることにより、シャフトと位置検出用マグネットとの同軸度を向上し、位置検出用マグネットに取り付けられる回転子コアとの同軸度も向上することができる。これにより、回転子、およびこれを有する電動機の性能を向上することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。
実施の形態1.
<電動機1の構成>
図1は、本発明の実施の形態1における電動機1の構成を示す断面図である。電動機1は、インバータで駆動されるブラシレスDCモータである。電動機1は、シャフト11を有する回転子2と、回転子2を囲むように設けられたモールド固定子50と、モールド固定子50に取り付けられる導電性のブラケット15とを備える。モールド固定子50は、固定子5と、固定子5を覆うモールド樹脂部55とを有する。シャフト11は、回転子2の回転軸である。
<電動機1の構成>
図1は、本発明の実施の形態1における電動機1の構成を示す断面図である。電動機1は、インバータで駆動されるブラシレスDCモータである。電動機1は、シャフト11を有する回転子2と、回転子2を囲むように設けられたモールド固定子50と、モールド固定子50に取り付けられる導電性のブラケット15とを備える。モールド固定子50は、固定子5と、固定子5を覆うモールド樹脂部55とを有する。シャフト11は、回転子2の回転軸である。
以下の説明では、シャフト11の中心軸線C1の方向を、単に「軸方向」と称する。また、シャフト11の中心軸線C1を中心とする周方向を、単に「周方向」と称し、図面(図7)に矢印R1で示す。また、シャフト11の中心軸線C1に対する固定子5および回転子2の半径方向を、単に「径方向」と称する。
シャフト11は、モールド固定子50から図1における左側に突出しており、その突出部に形成された取付け部11aには、例えば送風ファンの羽根車が取り付けられる。そのため、シャフト11の突出側(図1における左側)を「負荷側」と称し、反対側(図1における右側)を「反負荷側」と称する。
<モールド固定子50の構成>
モールド固定子50は、上記の通り、固定子5とモールド樹脂部55とを有する。固定子5は、固定子コア51と、固定子コア51に取り付けられた絶縁部(インシュレータ)52と、絶縁部52を介して固定子コア51に巻き付けられたコイル(巻線)53とを有する。
モールド固定子50は、上記の通り、固定子5とモールド樹脂部55とを有する。固定子5は、固定子コア51と、固定子コア51に取り付けられた絶縁部(インシュレータ)52と、絶縁部52を介して固定子コア51に巻き付けられたコイル(巻線)53とを有する。
モールド樹脂部55は、軸方向の一方の側(図1の右側)に軸受支持部501を有し、他方の側(図1の左側)に開口部505を有する。回転子2は、開口部505からモールド固定子50の内部の中空部分56(図2)に挿入される。
モールド樹脂部55の開口部505には、金属製のブラケット15が取り付けられている。このブラケット15には、シャフト11を支持する一方の軸受12が保持される。また、軸受12の外側には、軸受12への水等の侵入を防止するためのキャップ14が取り付けられている。軸受支持部501は、円筒状の内周面502(図2)を有する。この内周面502には、シャフト11を支持するもう一方の軸受13が保持される。
図2は、モールド固定子50の構成を示す断面図である。モールド固定子50のモールド樹脂部55は、不飽和ポリエステル樹脂で構成される。特に、不飽和ポリエステル樹脂に添加物を加えた塊粘土状の熱硬化性BMC(バルクモールディングコンパウンド)樹脂が望ましい。
不飽和ポリエステル樹脂(特にBMC)は、固定子コア51を構成する鉄と同等の線膨張係数を有し、また熱収縮率が熱可塑性樹脂の1/10以下であるため、高い寸法精度を得る上で最も望ましい。特に、軸受12,13がモールド樹脂部55によって保持されるため、モールド樹脂部55の寸法精度は固定子5と回転子2との同軸度に影響する。不飽和ポリエステル樹脂は熱収縮が小さいため、成形後も高い寸法精度が得られる。加えて、電動機1が高温になった場合でも、不飽和ポリエステル樹脂の線膨張係数が鉄と同等であるため、熱膨張差に起因する軸受12,13のがたつきを抑制することができる。
また、モールド樹脂部55を不飽和ポリエステル樹脂で構成した場合、鉄またはアルミニウム等の金属の外殻を用いた場合よりも高い放熱性が得られる。金属の外殻は、絶縁のため、コイル53および基板6から離間させる必要があるが、不飽和ポリエステル樹脂は絶縁体であるため、コイル53および基板6を覆うことができ、また不飽和ポリエステル樹脂の熱伝導率が高いためである。
なお、モールド樹脂部55を、PBT(ポリブチレンテレフタレート)、PPS(ポリフェニレンサルファイド)等の熱可塑性樹脂で構成した場合には、成形金型のランナに残った樹脂を再利用しやすいという利点がある。但し、上述した各理由により、モールド樹脂部55は不飽和ポリエステル樹脂(特にBMC)で構成することが最も望ましい。また、不飽和ポリエステル樹脂で構成したモールド樹脂部55は、電動機1の加振力に伴う固定子5の変形を抑制し、振動および騒音を抑制する効果も奏する。
図3(A)は、固定子コア51の構成を示す平面図である。図3(B)は、固定子コア51の一部を拡大して示す図である。固定子コア51は、複数枚の電磁鋼板を軸方向に積層して構成される。固定子コア51は、中心軸線C1を中心とする周方向に環状に延在するヨーク511と、ヨーク511から径方向内側に(中心軸線C1に向かって)延在する複数のティース512とを有する。ティース512の径方向内側のティース先端部513は、回転子2(図1)の外周面に対向する。ティース512の数は、ここでは12であるが、これに限定されるものではない。
固定子コア51は、ティース512毎に複数(ここでは12)の分割コア51Aに分割されている。分割コア51Aは、図3(B)に拡大して示すように、ヨーク511において隣り合うティース512の中間位置に形成された分割面518で分割されている。分割面518は、ヨーク511の内周面から外周面に向けて延在し、その終端に穴517が形成されている。ヨーク511の穴517の外周側は、塑性変形可能な薄肉部516となる。
図4(A)は、帯状に展開した固定子コア51を示す平面図である。図4(B)は、帯状に展開した固定子コア51の一部を拡大して示す図である。固定子コア51は、図4(A)に示すように帯状に展開することができる。このとき、隣り合う分割コア51Aの間の薄肉部516は、図4(B)に示すように塑性変形する。すなわち、固定子コア51を構成する複数の分割コア51Aは、薄肉部516において互いに連結されている。
このように構成されているため、固定子コア51は帯状に展開した状態で、ティース512へのコイル53の巻き付けを行うことができる。なお、コイル53を巻き付けた後、帯状の固定子コア51を環状に組み合わせ、端部(図3(A)に符号Wで示す)で溶接する。
図2に戻り、固定子コア51は、上述したようにモールド樹脂部55で覆われている。モールド樹脂部55の剛性は、固定子コア51の外周側のモールド樹脂部55の厚さ(すなわち、固定子コア51の外周からモールド樹脂部55の外周までの距離)を広げることで向上することができる。
一方、固定子コア51の内周側のモールド樹脂部55の厚さは、薄い方が望ましい。図2に示した例では、固定子コア51の内周端面は、モールド樹脂部55に覆われていない。この場合には、ティース512(図3(A))の先端のできるだけ近くまでモールド樹脂部55を充填し、ティース512の変形を抑制することが望ましい。
固定子コア51が上述した分割コア51Aで構成されているため、分割構成でない固定子コアと比較して剛性が低い。そのため、モールド樹脂部55(不飽和ポリエステル樹脂)で固定子コア51を覆うメリットは大きい。特に、隣り合うティース512(図3(A))の間にモールド樹脂部55が介在することで、電動機1の加振力に伴うティース512の変形を抑制することができる。
固定子コア51に形成される絶縁部52は、例えばPBT等の熱可塑性樹脂で構成されている。絶縁部52は、固定子コア51と一体成形されるか、あるいは熱可塑性樹脂の成形体を固定子コア51に組み付けることによって形成される。コイル53は、絶縁部52を介して、固定子コア51のティース512の周囲に巻き付けられている。固定子コア51に絶縁部52を取り付け(または一体成形し)、さらにコイル53を巻き付けることにより、上述した固定子5が構成される。
固定子5に対して軸方向の一方の側、ここでは反負荷側(図2の右側)には、基板6が配置されている。基板6には、電動機1を駆動するためのIC(Integrated Circuit)である駆動回路61と、磁気センサ62とが実装されている。
磁気センサ62は、ホールICで構成され、回転子2のセンサマグネット3(図8)に対向するように配置されている。磁気センサ62は、センサマグネット3からの磁束(N/S)の変化に基づき、回転子2の周方向における位置(回転位置)を検出し、検出信号を出力する。
また、基板6には、リード線63が配線されている。リード線63は、固定子5のコイル53に電力を供給するための電源リード線と、後述する磁気センサ62の信号を外部に伝達するためのセンサリード線とを含む。モールド樹脂部55の外周部分には、リード線63を外部に引き出すためのリード線口出し部品64が取り付けられている。
磁気センサ62の検出信号は、駆動回路61、または、センサリード線を介して電動機1外の駆動回路に出力される。駆動回路61(または電動機1外の駆動回路)は、磁気センサ62からの検出信号に基づき、固定子5に対する回転子2の相対的な回転位置に応じてコイル53に流す電流を制御する。
図5は、電動機1からブラケット15およびキャップ14を取り外した構成を示す図である。図6は、ブラケット15を示す断面図である。ブラケット15は、モールド樹脂部55の開口部505の外周縁に設けられた環状部506に圧入される。ブラケット15は、導電性を有する金属、例えば亜鉛メッキ鋼板で形成されるが、これに限定されるものではない。
図6に示すように、ブラケット15は、中心軸線C1を中心とする円筒部151と、円筒部151の外側に形成された円板部152と、円板部152に形成された矩形状の断面を有する環状の圧入部153とを有する。
圧入部153は、モールド樹脂部55の環状部506に圧入される部分である。圧入部153の外径は、環状部506の内径よりも、圧入代(圧入による弾性変形量)の分だけ大きい。円筒部151の先端部(図6では左端部)を塞ぐように、壁部155が形成されている。壁部155の中央には、シャフト11を貫通させる穴156が形成されている。
<回転子2の構成>
図7は、回転子2の構成を示す断面図である。回転子2は、回転軸であるシャフト11と、シャフト11に対して径方向外側に配置された回転子コア20と、回転子コア20に取り付けられた複数(ここでは5つ)のメインマグネット4と、シャフト11に対して回転子コア20を支持する樹脂部25とを有する。
図7は、回転子2の構成を示す断面図である。回転子2は、回転軸であるシャフト11と、シャフト11に対して径方向外側に配置された回転子コア20と、回転子コア20に取り付けられた複数(ここでは5つ)のメインマグネット4と、シャフト11に対して回転子コア20を支持する樹脂部25とを有する。
回転子コア20は、中心軸線C1を中心とする環状の部材であり、内周側に中心孔205を有する。回転子コア20は、周方向に複数(ここでは5つ)の磁石挿入孔201を有する。5つの磁石挿入孔201は、周方向に等間隔で、且つ中心軸線C1から等距離に配置されている。隣り合う磁石挿入孔201は、互いに離間している。各磁石挿入孔201は、回転子コア20を軸方向に貫通する。また、各磁石挿入孔201は、回転子コア20の外周部分に配置され、周方向に幅を有する。
回転子コア20は、軟磁性材料である複数枚の積層要素(より具体的には、電磁鋼板)を軸方向に積層した積層体である。電磁鋼板の厚さは、0.1mm~0.7mmである。
5つの磁石挿入孔201には、回転子マグネットとしてのメインマグネット4がそれぞれ挿入されている。メインマグネット4は、軸方向に直交する断面形状が矩形状の平板形状を有する。メインマグネット4の厚さは、例えば2mmである。
メインマグネット4は、希土類磁石であり、より具体的には、Nd(ネオジム)-Fe(鉄)-B(ホウ素)を主成分とするネオジム焼結磁石である。磁石挿入孔201の周方向の両端には、空隙であるフラックスバリア部203がそれぞれ形成されている。フラックスバリア部203は、回転子2の外周面の磁束密度分布を正弦波に近付け、隣り合うメインマグネット4の間の磁束の短絡(すなわち漏れ磁束)を抑制する。
5つのメインマグネット4は、互いに同一の磁極(例えばN極)を回転子コア20の外周側に向けて配置されている。回転子コア20において隣り合うメインマグネット4の間の領域CPには、メインマグネット4とは反対の磁極(例えばS極)が形成される。
すなわち、回転子2には、5つの第1の磁極(例えばN極)と、5つの第2の磁極(例えばS極)とが周方向に交互に配列される。従って、回転子2は、10個の磁極を有する。ここでは、第1の磁極をN極とし、第2の磁極をS極としたが、第1の磁極をS極とし、第2の磁極をN極としてもよい。回転子2の10個の磁極は、極ピッチを36度(360度/10)として、周方向に等角度間隔に配置される。
このような回転子2を、コンシクエントポール型と称する。すなわち、回転子2の10個の磁極うち、半分の5つの磁極(第1の磁極)は、メインマグネット4によって形成される。残りの5つの磁極(第2の磁極)は、回転子コア20において隣り合うメインマグネット4の間の領域CPによって形成される。
言い換えると、回転子2では、メインマグネット4を有する5つの磁石磁極と、メインマグネット4を有さない5つの仮想磁極(領域CP)とが、周方向に交互に配列されている。以下では、「各磁極」という場合、磁石磁極および仮想磁極の両方を含むものとする。
コンシクエントポール型の回転子2では、磁極数は4以上の偶数となる。回転子コア20の外周202は、いわゆる花丸形状を有する。言い換えると、回転子コア20の外周202は、極中心P1,P2(各磁極の周方向の中心)で外径が最大となり、極間P3(隣り合う磁極の間)で外径が最小となり、極中心P1,P2から極間P3までが弧状となる形状を有する。ここでは、極中心P1は第1の磁極(メインマグネット4)の中心であり、極中心P2は第2の磁極(領域CP)の中心である。
図7に示した例では、第1の磁極の極中心P1から極間P3までの角度(中心軸線C1に対する角度)は、第2の磁極の極中心P2から極間P3までの角度と同じである。また、極中心P1における回転子コア20の外径と、極中心P2における回転子コア20の外径と同じである。なお、磁石挿入孔201の周方向の長さ(フラックスバリア部203を含む)は、極ピッチよりも広い。
また、回転子コア20において、磁石挿入孔201よりも径方向内側には、中心軸線C1を中心とする円弧状の複数(ここでは5つ)の穴部204が形成されている。各穴部204は、周方向において、互いに隣接する2つのメインマグネット4の極中心(周方向の中心位置)の間で、円弧状に延在している。
回転子コア20において、穴部204よりも径方向外側の部分と、穴部204よりも径方向内側の部分とは、メインマグネット4の極中心に対応する位置に形成されたブリッジ部29で互いに連結されている。
樹脂部25は、シャフト11に対して回転子コア20を支持するものであり、熱可塑性樹脂(例えばPBT)で構成される。樹脂部25によってシャフト11と回転子コア20とを磁気的に離間させることにより、回転子磁束がシャフト11に流れる磁束漏れを抑制する。
コンシクエントポール型の回転子2は、仮想磁極(領域CP)に実際の磁石が存在しないため、仮想磁極を通った磁束がシャフト11に流れやすいという性質を有する。樹脂部25によってシャフト11と回転子コア20とを互いに離間させる構成は、コンシクエントポール型の回転子2における磁束漏れの抑制に特に有効である。
樹脂部25は、シャフト11の外周面に取り付けられた内筒部21と、内筒部21の径方向外側に配置された環状の外筒部23と、内筒部21と外筒部23とを連結する複数(ここでは5つ)のリブ22とを備えている。
樹脂部25の内筒部21には、シャフト11が貫通している。リブ22は、周方向に等間隔で配置され、内筒部21から径方向外側に放射状に延在している。リブ22の形成位置は、メインマグネット4の極中心に対応している。周方向に隣り合うリブ22間には、空洞部Gが形成される。空洞部Gは、回転子コア20を軸方向に貫通することが望ましい。
このように放射状のリブ22を設け、リブ22の間に空洞部Gを設けることにより、樹脂の使用量を低減することができる。また、リブ22の寸法の変更によって回転子2の固有振動数の調整が可能であるため、電動機1とそれに取り付けられる羽根車とのねじり共振を抑制することができる。
樹脂部25は、また、回転子コア20の円弧状の穴部204内に配置された充填部24を有する。回転子コア20に穴部204を形成することにより、回転子コア20を構成する電磁鋼板の使用量を低減することができる。また、第2の磁極(領域CP)からシャフト11への磁束の漏れを抑制する作用が得られる。
図8は、回転子2を示す、中心軸線C1を含む面における断面図である。樹脂部25は、回転子コア20の軸方向の一方の端面(図8の右側端面)を覆う端面被覆部27と、回転子コア20の軸方向の他方の端面を覆う端面被覆部28とを有する。端面被覆部27,28は、上述したリブ22、外筒部23および充填部24に対して、連続して形成されている。
樹脂部25の端面被覆部27,28は、回転子コア20に取り付けられたメインマグネット4の軸方向両端面も覆う。そのため、メインマグネット4の脱落および軸方向の位置ずれを防止することができる。また、メインマグネット4が外部に露出しないため、メインマグネット4の経年変化を抑制することができる。メインマグネット4の脱落を防止するために回転子コア20の軸方向両端に単板を取り付けた場合と比較して、部品点数および製造時の作業工数を低減することができ、生産性および製造コストを低減することができる。
回転子コア20の軸方向における一方の側(図8の右側)には、位置検出用マグネットとしての環状のセンサマグネット3が取り付けられている。センサマグネット3は、上記の樹脂部25の端面被覆部27によって、径方向内側および外側から覆われている。すなわち、センサマグネット3は、シャフト11および回転子コア20と共に、樹脂部25によって一体に成形されている。
センサマグネット3は、メインマグネット4と同数(ここでは10個)の磁極を有する。センサマグネット3は、図2に示した基板6に対向する側に取り付けられる。センサマグネット3の磁界は、基板6の磁気センサ62(図2)によって検出され、これにより回転子2の周方向における位置(回転位置)が検出される。
図9(A)は、センサマグネット3を示す平面図である。図9(B)は、図9(A)に示す線分9B-9Bにおける矢視方向の断面図である。図9(A)に示すように、センサマグネット3は、中心軸線C1を中心とする環状の部材である。
図9(B)に示すように、センサマグネット3は、回転子コア20(図8)に対向する第1端面34と、その反対面である第2端面37とを有する。第1端面34および第2端面37は、軸方向におけるセンサマグネット3の両端面である。
また、センサマグネット3の内周面は、第1端面34側から順に、内径が軸方向に一定である円筒面35と、内径が拡大するテーパ面(テーパ部)36とを有する。円筒面35の内径をr1とする。テーパ面36は、円筒面35の終端部から第2端面37にかけて、内径がr1からr2(>r1)に拡大する。すなわち、センサマグネット3は、その内周に、第2端面37で内径が最大となる(つまり中心軸線C1からの距離が最大となる)ように傾斜したテーパ面36を有する。
円筒面35とテーパ面36との境界から第2端面37までの距離(すなわちテーパ面36の軸方向長さ)をtで表すと、t≧(r2-r1)が成立する。言い換えると、テーパ面36の中心軸線C1に対する傾斜角度は、45度以下である。
センサマグネット3の内径r1,r2および距離tがt≧(r2-r1)を満足するように構成する理由は、シャフト11、回転子コア20およびセンサマグネット3を樹脂(樹脂部25)で一体成形する際に、テーパ面36を成形金型9(図10)内の当接面に当接させることで、シャフト11とセンサマグネット3との同軸度を向上するためである。
テーパ面36は、ここでは、中心軸線C1を中心とする周方向に環状に形成されている。但し、このような例に限定されるものではない。テーパ面36は、中心軸線C1を中心とする周方向の複数箇所に分散して形成されていてもよい。
センサマグネット3の第1端面34の内周側には、軸方向に突出する突起31(第1の突起)が形成されている。ここでは、複数の突起31が、周方向に均等に配置されている。突起31の数(ここでは5つ)は、メインマグネット4の数と同じである。
突起31は、回転子コア20の穴部204(図8)の内側に入り込み、穴部204の内面に内周側から当接する。このように突起31が穴部204の内面に当接する(すなわち係合する)ことにより、センサマグネット3と回転子コア20との同軸度を向上することができる。言い換えると、センサマグネット3を介して、シャフト11と回転子コア20との同軸度を向上することができる。
突起31は、図8に示すように、回転子コア20の穴部204の内部で、充填部24によって囲まれる。そのため、回転子コア20に対するセンサマグネット3の回転を係止する機能(回り止め機能)が得られる。なお、突起31の数を増やし、穴部204の周方向両端に当接するように構成すれば、回り止め機能をより効果的に発揮することができる。
センサマグネット3の第1端面34の外周側には、軸方向に突出する突起32(第2の突起)が形成されている。ここでは、複数の突起32が、周方向に均等に配置されている。突起32の軸方向の突出量は、突起31の軸方向の突出量よりも小さい。突起32は、回転子コア20の磁石挿入孔201(図8)の内側に入り込み、メインマグネット4の軸方向端面に当接する。
突起32がメインマグネット4の軸方向端面に当接することにより、メインマグネット4を軸方向に位置決めすることができる。これにより、メインマグネット4の磁束を最大限に利用することが可能となり、電動機1の性能を向上することができる。
突起32の数および周方向の配置は、ここでは突起31と同様であるが、このような例に限定されるものではない。突起32は、メインマグネット4の軸方向端面に当接する位置に配置されていればよい。
突起32は、図8に示すように、回転子コア20の磁石挿入孔201の内部で、端面被覆部27によって囲まれる。そのため、回転子コア20に対するセンサマグネット3の回転を係止する機能(回り止め機能)が得られる。
また、センサマグネット3の内周面と外周面とをつなぐように、径方向に延在する空洞部33が形成されている。空洞部33は、第1端面34に開口するように形成された溝である。シャフト11、回転子コア20およびセンサマグネット3を樹脂(樹脂部25)で一体成形する際に、樹脂が空洞部33を通ってセンサマグネット3の内周側および外周側に行き渡る。そのため、一回の成形で、センサマグネット3を内周側および外周側から覆うように端面被覆部27(図8)を形成することができ、生産性が向上する。
<回転子2の製造工程>
次に、回転子2の製造工程について説明する。回転子2は、シャフト11と、回転子コア20と、センサマグネット3とを、樹脂で一体成形することによって製造される。回転子コア20は、電磁鋼板を積層してカシメで一体に固定することにより形成され、磁石挿入孔201にメインマグネット4が挿入される。
次に、回転子2の製造工程について説明する。回転子2は、シャフト11と、回転子コア20と、センサマグネット3とを、樹脂で一体成形することによって製造される。回転子コア20は、電磁鋼板を積層してカシメで一体に固定することにより形成され、磁石挿入孔201にメインマグネット4が挿入される。
図10は、回転子コア20とシャフト11とセンサマグネット3とを樹脂で一体成形する成形金型9を示す断面図である。成形金型9は、固定金型(下型)7と可動金型(上型)8とを有する。固定金型7および可動金型8は、互いに対向する金型合わせ面75,85を有している。
固定金型7は、シャフト11の端部(ここでは下端部)を挿入するシャフト挿入孔71と、センサマグネット3のテーパ面36に当接する当接面70と、回転子コア20が挿入される回転子コア挿入部73と、センサマグネット3の第2端面37に対向する設置面72と、シャフト11の外周面に対向する筒状部74と、回転子コア20の中心孔205の内側に挿入される空洞形成部76とを有する。
固定金型7の当接面70は、センサマグネット3のテーパ面36に対応する傾斜を有する。この当接面70は、シャフト挿入孔71の中心軸(シャフト11の中心軸に対応)を中心とする周方向の複数箇所に形成されている。
可動金型8は、シャフト11の端部(ここでは上端部)を挿入するシャフト挿入孔81と、回転子コア20が挿入される回転子コア挿入部83と、回転子コア20の軸方向端面に対向する設置面82と、シャフト11の周囲に対向する筒状部84と、回転子コア20の中心孔205の内側に挿入される空洞形成部86とを有する。
成形時には、シャフト11を固定金型7のシャフト挿入孔71に挿入する。これにより、シャフト11が位置決めされる。
また、センサマグネット3を、第2端面37を下に向けて、固定金型7の設置面72上に設置する。このとき、センサマグネット3のテーパ面36が、固定金型7の当接面70に当接する。これにより、シャフト11の中心軸とセンサマグネット3の中心軸とが一致する。
次に、固定金型7の設置面72に設置されたセンサマグネット3上に、回転子コア20を設置する。このとき、センサマグネット3の突起32が、回転子コア20の磁石挿入孔201内のメインマグネット4の端面に当接する。これにより、回転子コア20およびメインマグネット4が軸方向に位置決めされる。
また、センサマグネット3の突起31が、回転子コア20の穴部204の内側に係合する。そのため、センサマグネット3の中心軸と回転子コア20の中心軸とが一致する。すなわち、シャフト11、センサマグネット3および回転子コア20の中心軸が互いに一致する。
その後、可動金型8を図10に矢印で示すように下降させて、金型合わせ面75,85を当接させる。この状態で、成形金型9を加熱し、ランナからPBT等の樹脂を注入する。樹脂は、回転子コア挿入部73,83に挿入された回転子コア20の穴部204および中心孔205に充填される。樹脂は、また、筒状部74,84の内側の空間にも充填され、さらに、設置面72,82と回転子コア20と間の空間にも充填される。
このように成形金型9に樹脂を注入した後、成形金型9を冷却する。これにより、樹脂が硬化して、樹脂部25が形成される。すなわち、シャフト11、回転子コア20およびセンサマグネット3が、樹脂部25によって一体化され、回転子2が形成される。
具体的には、成形金型9の筒状部74,84とシャフト11との間で硬化した樹脂は、内筒部21(図7)となる。回転子コア20の中心孔205の内部(但し、空洞形成部76が配置されていない部分)で硬化した樹脂は、リブ22および外筒部23(図7)となる。成形金型9の空洞形成部76に相当する部分は、空洞部G(図7)となる。
さらに、回転子コア20の穴部204の内部で硬化した樹脂は、充填部24(図7)となる。また、成形金型9の設置面72,82と回転子コア20との間で硬化した樹脂は、端面被覆部27,28(図8)となる。
その後、可動金型8を上昇させ、固定金型7から回転子2を取り出す。これにより、回転子2の製造が完了する。
電動機1を製造する際には、固定子コア51に絶縁部52を介してコイル53を巻き付け、図3に示すように円環状に組み合わせることで、固定子5を組み立てる。その後、固定子5を成形金型に設置し、樹脂(例えば不飽和ポリエステル樹脂)を注入して加熱することにより、固定子5を覆うようにモールド樹脂部55を形成する。これにより、モールド固定子50が完成する。
その後、上記の回転子2のシャフト11に軸受12,13を取り付け、モールド固定子50の開口部505から中空部分56に挿入する。次に、ブラケット15をモールド固定子50の開口部505に取り付ける。さらに、ブラケット15の外側にキャップ14を取り付ける。これにより、電動機1の製造が完了する。
上述した製造工程では、センサマグネット3のテーパ面36が、成形金型9の当接面70に当接することにより、シャフト11とセンサマグネット3との同軸度が向上する。また、センサマグネット3の突起32がメインマグネット4の端面に当接することにより、メインマグネット4が軸方向に位置決めされる。さらに、センサマグネット3の突起31が回転子コア20の穴部204に係合することにより、センサマグネット3と回転子コア20との同軸度が向上する。このように、シャフト11、回転子コア20およびセンサマグネット3の同軸度が向上するため、高性能の電動機1を製造することができる。
なお、回転子コア20およびメインマグネット4の位置決めのための突起31,32を、センサマグネット3ではなく、成形金型9に設けることも考えられる。しかしながら、その場合、樹脂部25の成形金型9の突起に相当する部分が空洞となるため、メインマグネット4の一部が露出し、メインマグネット4の経年劣化が生じる可能性がある。
これに対し、この実施の形態1では、センサマグネット3に設けた突起31,32で回転子コア20およびメインマグネット4を位置決めするため、メインマグネット4を樹脂部25で完全に覆うことができる。そのため、メインマグネット4の経年劣化を抑制することができる。
ここでは、固定金型7に当接面70を設けたが、可動金型8に当接面70を設けても良い。その場合には、回転子コア20の上側にセンサマグネット3を設置すれば、センサマグネット3のテーパ面36が当接面70に当接し、上記のように同軸度を向上する効果が得られる。
また、図9(A)に示した例では、センサマグネット3が円筒面35とテーパ面36とを有しているが、円筒面35を有さない構成も可能である。
また、固定子コア51は、図3および図4に示したような分割構成に限定されるものではなく、分割構成でない固定子コアを用いても良い。
<実施の形態の効果>
以上説明したように、本発明の実施の形態では、回転子2が、シャフト11と回転子コア20とセンサマグネット3とを備え、センサマグネット3が、回転子コア20に対向する第1端面34と、その反対側の第2端面37とを有し、センサマグネット3の内周に、第2端面37で内径(シャフト11からの距離)が最大となるように傾斜したテーパ面36(テーパ部)が設けられている。そのため、センサマグネット3のテーパ面36を成形金型9の当接面70に当接させることで、シャフト11とセンサマグネット3との同軸度を向上することができる。
以上説明したように、本発明の実施の形態では、回転子2が、シャフト11と回転子コア20とセンサマグネット3とを備え、センサマグネット3が、回転子コア20に対向する第1端面34と、その反対側の第2端面37とを有し、センサマグネット3の内周に、第2端面37で内径(シャフト11からの距離)が最大となるように傾斜したテーパ面36(テーパ部)が設けられている。そのため、センサマグネット3のテーパ面36を成形金型9の当接面70に当接させることで、シャフト11とセンサマグネット3との同軸度を向上することができる。
また、テーパ面36の最小内径をr1とし、最大内径をr2とし、テーパ面36の軸方向長さをtとした場合に、t≧(r2-r1)が成り立つようにすることにより、テーパ面36と成形金型9の当接面70との当接による同軸度の調整が容易になる。
また、センサマグネット3が突起31を有し、この突起31が回転子コア20の穴部204に係合するため、突起31と穴部204との係合により、センサマグネット3と回転子コア20との同軸度を向上することができる。
また、センサマグネット3が、回転子コア20の磁石挿入孔201に入り込む突起32を有するため、突起32とメインマグネット4との当接により、メインマグネット4を軸方向に位置決めすることができる。
また、センサマグネット3が、内周面と外周面とをつなぐ空洞部33を有するため、成形時に樹脂が空洞部33を通ってセンサマグネット3の内周側および外周側に行き渡る。そのため、一回の成形で、センサマグネット3の内周側および外周側を覆うように樹脂部25(端面被覆部27)を形成することができる。
また、回転子2が、メインマグネット4によって磁石磁極が形成され、回転子コア20によって仮想磁極が形成されるコンシクエントポール型の回転子であるため、同じ磁極数の電動機と比較して、メインマグネット4の数を半分にすることができる。その結果、高価なメインマグネット4を少なくし、電動機1の製造コストを低減することができる。
また、回転子コア20、シャフト11およびセンサマグネット3を一体的に保持する樹脂部25を備えるため、回転子コア20、シャフト11およびセンサマグネット3を強固に保持することができる。
また、回転子コア20とシャフト11とが樹脂部25によって互いに離間されるため、コンシクエントポール型の回転子2で発生しやすいシャフト11への磁束漏れを抑制することができる。その結果、電動機1の性能を向上することができる。また、回転子コア20を構成する電磁鋼板の使用量を少なくし、製造コストを低減することができる。
また、樹脂部25は、シャフト11の周囲から放射状に延在するリブ22を有するため、リブ22の間に空洞部Gを形成することができる。そのため、樹脂部25を構成する樹脂の使用量を少なくし、製造コストを低減することができる。また、リブ22の形状(厚さ、長さ等)を変更することで回転子2の固有振動数を調節できるため、電動機1とそれに取り付けられる羽根車とのねじり共振を抑制することができる。
回転子コア20の軸方向端面が樹脂(端面被覆部27,28)で覆われているため、メインマグネット4を露出させないように覆うことができ、メインマグネット4の経年劣化を抑制することができる。また、磁石挿入孔201の内部にも樹脂が入り込むため、磁石挿入孔201の内部でメインマグネット4を位置決めすることができる。
変形例.
図11(A)は、実施の形態1の変形例のセンサマグネット3を示す平面図である。図11(B)は、図11(A)に示す線分11B-11Bにおける矢視方向の断面図である。この変形例のセンサマグネット3は、図9(A)に示した突起31(図9(A))の代わりに、中心軸線C1を中心として円弧状に延在する突起31Aを有している。
図11(A)は、実施の形態1の変形例のセンサマグネット3を示す平面図である。図11(B)は、図11(A)に示す線分11B-11Bにおける矢視方向の断面図である。この変形例のセンサマグネット3は、図9(A)に示した突起31(図9(A))の代わりに、中心軸線C1を中心として円弧状に延在する突起31Aを有している。
突起31Aは、センサマグネット3の第1端面34の内周に沿って延在している。突起31Aの数は、メインマグネット4の数と同じ(ここでは5つ)である。周方向に隣接する突起31Aの間には、センサマグネット3の内周面と外周面とをつなぐ空洞部33が形成されている。
この変形例の円弧状の突起31Aは、回転子コア20に形成された円弧状の穴部204(図9)に、嵌め合いによって係合する。そのため、センサマグネット3と回転子コア20との同軸度がさらに向上する。加えて、回転子コア20に対するセンサマグネット3の回転を係止する機能(回り止め機能)も向上する。
この変形例の電動機は、センサマグネット3Aを除き、実施の形態1の電動機1と同様に構成される。
この変形例では、突起31Aが円弧状に延在しているため、センサマグネット3と回転子コア20との同軸度をさらに向上し、また、回転子コア20に対するセンサマグネット3の回り止め機能をさらに向上することができる。
実施の形態2.
図12は、本発明の実施の形態2のセンサマグネット300を示す、中心軸線C1を含む面における断面図である。図12に示すように、実施の形態2のセンサマグネット300は、軸方向において、第1端面34側のスペーサ部(第1の部分)320と、第2端面37側のマグネット部(第2の部分)310とに分割されている。
図12は、本発明の実施の形態2のセンサマグネット300を示す、中心軸線C1を含む面における断面図である。図12に示すように、実施の形態2のセンサマグネット300は、軸方向において、第1端面34側のスペーサ部(第1の部分)320と、第2端面37側のマグネット部(第2の部分)310とに分割されている。
マグネット部310は、センサマグネット300の第2端面37から、上述した距離t(テーパ面36の軸方向長さ)よりも長い距離Lの範囲の部分である。マグネット部310は、メインマグネット4と同数(ここでは10個)の磁極を有する。マグネット部310の磁界は、基板6の磁気センサ62(図2)によって検出され、これにより回転子2の周方向における位置(回転位置)が検出される。
一方、スペーサ部320は、マグネット部310よりも安価な材料、例えばプラスチックで構成される。スペーサ部320は、実施の形態1で説明した突起31、突起32、および空洞部33を有している。また、突起31の代わりに、図11に示した突起31Aを有していても良い。
このように、マグネット部310により、回転子2の回転位置の検出に必要な磁束を発生し、スペーサ部320を安価な材料で構成することにより、電動機1の性能を低下させることなく、製造コストを低減することが可能になる。
ここで、マグネット部310とスペーサ部320との位置決めについて説明する。マグネット部310の外周部分には、軸方向に第2端面37に近づくほど外径が増加するテーパ面(第2の当接部)312が形成されている。
また、スペーサ部320の外周部分には、軸方向にマグネット部310側に突出する突出部321が形成されている。突出部321には、突出方向の先端に近づくほど内径が増加するテーパ面(第1の当接部)322が形成されている。
マグネット部310のテーパ面312とスペーサ部320のテーパ面322とが互いに当接することで、マグネット部310とスペーサ部320との同軸度が向上する。なお、テーパ面312,322は、中心軸線C1を中心とする周方向の複数箇所にそれぞれ設けられる。ここでは、テーパ面312,322の対は、周方向において、例えば突起31と同じ箇所に設けられている。但し、テーパ面312,322の対の数は、マグネット部310とスペーサ部320との同軸度を向上できる数であればよい。
このように、マグネット部310とスペーサ部320とが、テーパ面312,322の当接によって位置決めされるため、シャフト11とセンサマグネット300(マグネット部310およびスペーサ部320)との同軸度は、一体型のセンサマグネット3(図9)を用いた場合と同等の同軸度が得られる。
成形金型9での成形時には、予めスペーサ部320の突起31,32を回転子コア20に係合させておく。そして、先に成形金型9(図10)内に設置したマグネット部310の上に、スペーサ部320を取り付けた回転子コア20を設置する。マグネット部310のテーパ面312に、回転子コア20に取り付けられたスペーサ部320のテーパ面322が当接するため、シャフト11、センサマグネット300および回転子コア20の中心軸を互いに一致させることができる。
あるいは、予めマグネット部310とスペーサ部320とを、テーパ面312,322を互いに当接させた状態で、カシメまたは接着剤により固定しておいてもよい。このように固定したマグネット部310とスペーサ部320(すなわちセンサマグネット300)を成形金型9に設置し、その後、実施の形態1と同様に、センサマグネット300上に回転子コア20を設置すれば、スペーサ部320の突起31,32が回転子コア20に係合し、シャフト11、センサマグネット300および回転子コア20の中心軸を互いに一致させることができる。
以上説明したように、本発明の実施の形態2では、センサマグネット300を、第2端面37側のマグネット部310と、第1端面34側のスペーサ部320とに分割している。そのため、回転子2の回転位置の検出に必要な磁束をマグネット部310で発生させ、スペーサ部320を安価な材料で構成することができる。これにより、電動機の性能を低下させることなく、製造コストを低減することができる。
また、センサマグネット300とスペーサ部320とが、テーパ面312,322で互いに位置決めされるため、シャフト11、センサマグネット300および回転子コア20の同軸度を向上させることができる。
<空気調和装置>
次に、各実施の形態および変形例で説明した電動機1が適用可能な空気調和装置の構成例について説明する。図13は、電動機1が適用可能な空気調和装置600の構成を示す図である。
次に、各実施の形態および変形例で説明した電動機1が適用可能な空気調和装置の構成例について説明する。図13は、電動機1が適用可能な空気調和装置600の構成を示す図である。
空気調和装置600は、室外機601と、室内機602と、これらを接続する冷媒配管603とを備える。室外機601は、第1のファン(送風機)605と、第1のファン605の羽根車を回転させる第1の電動機606とを備える。室内機602は、第2のファン607と、第2のファン607の羽根車を回転させる第2の電動機608とを備える。なお、図11には、室外機601において冷媒を圧縮する圧縮機609も示されている。
第1の電動機606および第2の電動機608の少なくとも一方には、各実施の形態および変形例で説明した電動機1が適用可能である。上記の通り、各実施の形態および変形例で説明した電動機1は、シャフト11、センサマグネット3および回転子コア20の同軸度が高く、高い性能を発揮するため、空気調和装置600の性能を向上することができる。また、各実施の形態および変形例で説明した電動機1は、コンシクエントポール型の回転子2の採用により低コスト化を図っているため、空気調和装置600の製造コストを低減することができる。
なお、各実施の形態および変形例で説明した電動機1は、空気調和装置以外の電気機器に搭載することもできる。
以上、本発明の望ましい実施の形態について具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良または変形を行なうことができる。
1 電動機、 2 回転子、 3,3A センサマグネット(位置検出用マグネット)、 4 メインマグネット(回転子マグネット)、 5 固定子、 6 基板、 7 固定金型、 8 可動金型、 9 成形金型、 11 シャフト、 12,13 軸受、 15 ブラケット、 20 回転子コア、 21 内筒部、 22 リブ、 23 外筒部、 24 充填部、 25 樹脂部、 26 充填部、 27,28 端面被覆部、 29 ブリッジ部、 31,31A 突起(第1の突起)、 32 突起(第2の突起)、 33 空洞部、 34 第1端面、 35 円筒面、 36 テーパ面(テーパ部)、 37 第2端面、 50 モールド固定子、 51 固定子コア、 51A 分割コア、 52 絶縁部、 53 コイル、 55 モールド樹脂部、 56 中空部分、 61 駆動回路、 62 磁気センサ、 70 当接面、 71 シャフト挿入孔、 72 設置面、 73 回転子コア挿入部、 74 筒状部、 75 金型合わせ面、 76 空洞形成部、 81 シャフト挿入孔、 82 設置面、 83 回転子コア挿入部、 84 筒状部、 85 金型合わせ面、 86 空洞形成部、 201 磁石挿入孔、 202 外周、 203 フラックスバリア部、 204 穴部、 205 中心孔、 300 センサマグネット(位置検出用マグネット)、 310 マグネット部(第2の部分)、 312 テーパ面(第2の当接部)、 320 スペーサ部(第1の部分)、 321 突出部、 322 テーパ面(第1の当接部)、 501 軸受支持部、 502 内周面、 505 開口部、 506 環状部、 511 ヨーク、 512 ティース、 513 ティース先端部、 516 薄肉部、 517 穴、 518 分割面、 600 空気調和装置、 601 室外機、 602 室内機、 603 冷媒配管、 605 第1のファン、 606 第1の電動機、 607 第2のファン、 608 第2の電動機、 609 圧縮機、 C1 中心軸線、 G 空洞部。
Claims (18)
- シャフトと、
電磁鋼板で構成され、前記シャフトを中心とする環状の回転子コアと、
前記シャフトの軸方向において前記回転子コアの一方の側に取り付けられた、前記シャフトを中心とする環状の位置検出用マグネットと
を備え、
前記位置検出用マグネットは、前記回転子コアに対向する第1端面と、前記第1端面とは反対側の第2端面とを有し、
前記位置検出用マグネットの内周に、前記第2端面で前記シャフトからの距離が最大となるように傾斜したテーパ部を有する
回転子。 - 前記位置検出用マグネットは、前記テーパ部に対して前記回転子コアに近い側に、前記シャフトからの距離が前記軸方向に一定となる部分を有する
請求項1に記載の回転子。 - 前記シャフトの中心軸線からの前記テーパ部までの最小距離をr1とし、最大距離をr2とし、前記テーパ部の前記軸方向の長さをtとすると、
t≧(r2-r1)
が成り立つ
請求項1または2に記載の回転子。 - 前記位置検出用マグネットは、前記回転子コアの側に突出する第1の突起を有し、
前記回転子コアは、前記第1の突起が係合する穴部を有する
請求項1から3までの何れか1項に記載の回転子。 - 前記第1の突起は、前記シャフトを中心とする円弧状に延在する
請求項4に記載の回転子。 - 回転子マグネットをさらに備え、
前記回転子コアは、前記回転子マグネットを取り付ける磁石挿入孔を有する
請求項1から5までの何れか1項に記載の回転子。 - 前記位置検出用マグネットは、前記回転子コアの前記磁石挿入孔に入り込む第2の突起を有する
請求項6に記載の回転子。 - 前記回転子は、前記回転子マグネットによって一方の磁極が形成され、前記回転子コアによって他方の磁極が形成されるコンシクエントポール型の回転子である
請求項6または7に記載の回転子。 - 前記位置検出用マグネットは、当該位置検出用マグネットの内周面と外周面とをつなぐ空洞部を有する
請求項1から8までの何れか1項に記載の回転子。 - 前記回転子コア、前記シャフトおよび前記位置検出用マグネットを一体的に保持する樹脂部をさらに備える
請求項1から9までの何れか1項に記載の回転子。 - 前記回転子コアと前記シャフトとは、前記樹脂部によって互いに離間される
請求項10に記載の回転子。 - 前記樹脂部は、前記シャフトの周囲から放射状に延在する複数のリブを有する
請求項10または11に記載の回転子。 - 前記回転子コアの前記位置検出用マグネットとは反対側の端面が樹脂で覆われている
請求項1から12までの何れか1項に記載の回転子。 - 前記位置検出用マグネットは、前記軸方向において、前記第1端面を含む第1の部分と、前記第2端面を含む第2の部分とに分割されている
請求項1から13までの何れか1項に記載の回転子。 - 前記第1の部分は、前記第2の部分に対向する側の外周に第1の当接部を有し、
前記第2の部分は、前記第1の当接部に当接する第2の当接部を有し、
前記第1の当接部および前記第2の当接部は、いずれも、前記軸方向において前記回転子コアから離れるほど前記シャフトからの距離が増加するように傾斜している
請求項14に記載の回転子。 - 回転子と、
前記回転子を囲むように設けられた固定子と
を備え、
前記回転子は、
シャフトと、
電磁鋼板で構成され、前記シャフトを中心とする環状の回転子コアと、
前記シャフトの軸方向において前記回転子コアの一方の側に取り付けられた、前記シャフトを中心とする環状の位置検出用マグネットと
を備え、
前記位置検出用マグネットは、前記回転子コアに対向する第1端面と、前記第1端面とは反対側の第2端面とを有し、
前記位置検出用マグネットの内周に、前記第2端面で前記シャフトからの距離が最大となるように傾斜したテーパ部を有する
電動機。 - 第1のファンと、前記第1のファンを駆動する第1の電動機とを備えた室外機と、
第2のファンと、前記第2のファンを駆動する第2の電動機とを備えた室内機と、
前記室外機と前記室内機とを連結する冷媒配管と
を備え、
前記第1の電動機および前記第2の電動機の少なくとも一方は、
回転子と、
前記回転子を囲むように設けられた固定子と
を備え、
前記回転子は、
シャフトと、
電磁鋼板で構成され、前記シャフトを中心とする環状の回転子コアと、
前記シャフトの軸方向において前記回転子コアの一方の側に取り付けられた、前記シャフトを中心とする環状の位置検出用マグネットと
を備え、
前記位置検出用マグネットは、前記回転子コアに対向する第1端面と、前記第1端面とは反対側の第2端面とを有し、
前記位置検出用マグネットの内周に、前記第2端面で前記シャフトからの距離が最大となるように傾斜したテーパ部を有する
空気調和装置。 - シャフトと、電磁鋼板で構成された環状の回転子コアと、環状の位置検出用マグネットを用意する工程と、
当接部を有する成形金型に、前記シャフトと前記回転子コアと前記位置検出用マグネットとを設置する設置工程と、
前記成形金型に樹脂を注入する工程と
を有し、
前記位置検出用マグネットは、軸方向の両端面である第1端面と第2端面とを有し、且つ、前記位置検出用マグネットの内周には、前記第2端面で前記シャフトからの距離が最大となるように傾斜したテーパ部が設けられ、
前記成形金型は、前記シャフトの端部が挿入されるシャフト挿入部と、前記位置検出用マグネットの前記テーパ部に当接する当接面とを有し、
前記設置工程では、前記成形金型の前記シャフト挿入部に前記シャフトの前記端部を挿入し、前記成形金型の前記当接面に前記位置検出用マグネットの前記テーパ部を当接させる
回転子の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/002066 WO2018134988A1 (ja) | 2017-01-23 | 2017-01-23 | 回転子、電動機、空気調和装置、および回転子の製造方法 |
JP2018562842A JP6689416B2 (ja) | 2017-01-23 | 2017-01-23 | 回転子、電動機、空気調和装置、および回転子の製造方法 |
US16/462,584 US11101708B2 (en) | 2017-01-23 | 2017-01-23 | Rotor, motor, air conditioning apparatus, and manufacturing method of rotor |
CN201780078928.3A CN110178289B (zh) | 2017-01-23 | 2017-01-23 | 转子、电动机、空调装置及转子的制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/002066 WO2018134988A1 (ja) | 2017-01-23 | 2017-01-23 | 回転子、電動機、空気調和装置、および回転子の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018134988A1 true WO2018134988A1 (ja) | 2018-07-26 |
Family
ID=62909204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002066 WO2018134988A1 (ja) | 2017-01-23 | 2017-01-23 | 回転子、電動機、空気調和装置、および回転子の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11101708B2 (ja) |
JP (1) | JP6689416B2 (ja) |
CN (1) | CN110178289B (ja) |
WO (1) | WO2018134988A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020129210A1 (ja) * | 2018-12-20 | 2020-06-25 | 三菱電機株式会社 | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 |
WO2020129207A1 (ja) * | 2018-12-20 | 2020-06-25 | 三菱電機株式会社 | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 |
WO2020129205A1 (ja) * | 2018-12-20 | 2020-06-25 | 三菱電機株式会社 | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 |
WO2021020195A1 (ja) * | 2019-07-26 | 2021-02-04 | 三菱電機株式会社 | 電動機、送風機、空気調和装置および電動機の製造方法 |
WO2021171474A1 (ja) * | 2020-02-27 | 2021-09-02 | 三菱電機株式会社 | コンシクエントポール型ロータ、電動機、ファン、及び空気調和機 |
WO2021171554A1 (ja) * | 2020-02-28 | 2021-09-02 | 三菱電機株式会社 | 電動機、送風機および空気調和装置 |
US20220399769A1 (en) * | 2018-10-04 | 2022-12-15 | ZF Active Safety US Inc. | Integrated rotor |
US20230071188A1 (en) * | 2020-02-26 | 2023-03-09 | Mitsubishi Electric Corporation | Stator, motor, fan, air conditioner, and manufacturing method of stator |
US20230113826A1 (en) * | 2020-03-26 | 2023-04-13 | Novares France | Rotor for an electric motor provided with rod sensors |
WO2023195076A1 (ja) * | 2022-04-05 | 2023-10-12 | 三菱電機株式会社 | 電動機、送風機および空気調和装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003111324A (ja) * | 2001-09-27 | 2003-04-11 | Mitsubishi Electric Corp | 直流ブラシレスモータの回転子及び送風機及び空気調和機 |
JP2004048827A (ja) * | 2002-07-08 | 2004-02-12 | Nidec Shibaura Corp | ブラシレスdcモータの回転子 |
JP2006314165A (ja) * | 2005-05-09 | 2006-11-16 | Nippon Densan Corp | モータ |
JP2009194944A (ja) * | 2008-02-12 | 2009-08-27 | Mitsubishi Electric Corp | 電動機の回転子及び電動機及び空気調和機 |
JP2016119806A (ja) * | 2014-12-22 | 2016-06-30 | 日本精工株式会社 | センサマグネット固定構造及びその固定構造を備えたモータ並びにそれを搭載した電動パワーステアリング装置及び車両 |
JP2016174472A (ja) * | 2015-03-17 | 2016-09-29 | 株式会社富士通ゼネラル | 永久磁石電動機 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4208683B2 (ja) | 2003-09-24 | 2009-01-14 | 三菱電機株式会社 | 電動機の回転子及び電動機及び空気調和機 |
JP4367204B2 (ja) * | 2004-03-31 | 2009-11-18 | 株式会社デンソー | 同期式ブラシレスモータ装置 |
JP4394079B2 (ja) * | 2006-02-15 | 2010-01-06 | 三菱電機株式会社 | 電動機の回転子及び電動機及び空気調和機 |
JP2008206354A (ja) | 2007-02-22 | 2008-09-04 | Mitsuba Corp | ブラシレスモータ |
JP2009284658A (ja) | 2008-05-22 | 2009-12-03 | Asmo Co Ltd | ロータ及びモータ |
JP2013148457A (ja) * | 2012-01-19 | 2013-08-01 | Nippon Seiki Co Ltd | プラスチックマグネットロータおよびそのプラスチックマグネットロータを用いた回転角度検出装置 |
JP6275415B2 (ja) * | 2013-08-29 | 2018-02-07 | 東京パーツ工業株式会社 | ブラシレスモータ |
US10326339B2 (en) * | 2014-07-08 | 2019-06-18 | Mitsubishi Electric Corporation | Rotor of electric motor, electric motor, and air conditioner |
JP6444533B2 (ja) * | 2015-11-13 | 2018-12-26 | 三菱電機株式会社 | ロータ、回転電機及びロータの製造方法 |
-
2017
- 2017-01-23 JP JP2018562842A patent/JP6689416B2/ja active Active
- 2017-01-23 WO PCT/JP2017/002066 patent/WO2018134988A1/ja active Application Filing
- 2017-01-23 US US16/462,584 patent/US11101708B2/en active Active
- 2017-01-23 CN CN201780078928.3A patent/CN110178289B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003111324A (ja) * | 2001-09-27 | 2003-04-11 | Mitsubishi Electric Corp | 直流ブラシレスモータの回転子及び送風機及び空気調和機 |
JP2004048827A (ja) * | 2002-07-08 | 2004-02-12 | Nidec Shibaura Corp | ブラシレスdcモータの回転子 |
JP2006314165A (ja) * | 2005-05-09 | 2006-11-16 | Nippon Densan Corp | モータ |
JP2009194944A (ja) * | 2008-02-12 | 2009-08-27 | Mitsubishi Electric Corp | 電動機の回転子及び電動機及び空気調和機 |
JP2016119806A (ja) * | 2014-12-22 | 2016-06-30 | 日本精工株式会社 | センサマグネット固定構造及びその固定構造を備えたモータ並びにそれを搭載した電動パワーステアリング装置及び車両 |
JP2016174472A (ja) * | 2015-03-17 | 2016-09-29 | 株式会社富士通ゼネラル | 永久磁石電動機 |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220399769A1 (en) * | 2018-10-04 | 2022-12-15 | ZF Active Safety US Inc. | Integrated rotor |
US11777350B2 (en) * | 2018-10-04 | 2023-10-03 | ZF Active Safety US Inc. | Integrated rotor |
JP7012878B2 (ja) | 2018-12-20 | 2022-01-28 | 三菱電機株式会社 | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 |
US11973378B2 (en) | 2018-12-20 | 2024-04-30 | Mitsubishi Electric Corporation | Rotor, motor, fan, air conditioner, and manufacturing method of rotor |
JPWO2020129207A1 (ja) * | 2018-12-20 | 2021-06-03 | 三菱電機株式会社 | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 |
JPWO2020129205A1 (ja) * | 2018-12-20 | 2021-06-10 | 三菱電機株式会社 | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 |
JPWO2020129210A1 (ja) * | 2018-12-20 | 2021-06-10 | 三菱電機株式会社 | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 |
CN113169598A (zh) * | 2018-12-20 | 2021-07-23 | 三菱电机株式会社 | 转子、电动机、送风机、空调装置及转子的制造方法 |
CN113169599A (zh) * | 2018-12-20 | 2021-07-23 | 三菱电机株式会社 | 转子、电动机、送风机、空调装置及转子的制造方法 |
WO2020129210A1 (ja) * | 2018-12-20 | 2020-06-25 | 三菱電機株式会社 | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 |
JP7062089B2 (ja) | 2018-12-20 | 2022-05-02 | 三菱電機株式会社 | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 |
CN113169598B (zh) * | 2018-12-20 | 2023-12-05 | 三菱电机株式会社 | 转子、电动机、送风机、空调装置及转子的制造方法 |
WO2020129207A1 (ja) * | 2018-12-20 | 2020-06-25 | 三菱電機株式会社 | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 |
JP7090740B2 (ja) | 2018-12-20 | 2022-06-24 | 三菱電機株式会社 | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 |
WO2020129205A1 (ja) * | 2018-12-20 | 2020-06-25 | 三菱電機株式会社 | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 |
JP7185048B2 (ja) | 2019-07-26 | 2022-12-06 | 三菱電機株式会社 | 電動機、送風機および空気調和装置 |
WO2021020195A1 (ja) * | 2019-07-26 | 2021-02-04 | 三菱電機株式会社 | 電動機、送風機、空気調和装置および電動機の製造方法 |
JPWO2021020195A1 (ja) * | 2019-07-26 | 2021-11-25 | 三菱電機株式会社 | 電動機、送風機、空気調和装置および電動機の製造方法 |
US11996754B2 (en) | 2019-07-26 | 2024-05-28 | Mitsubishi Electric Corporation | Motor, fan, air conditioner, and manufacturing method of motor |
US20230071188A1 (en) * | 2020-02-26 | 2023-03-09 | Mitsubishi Electric Corporation | Stator, motor, fan, air conditioner, and manufacturing method of stator |
JP7450783B2 (ja) | 2020-02-27 | 2024-03-15 | 三菱電機株式会社 | コンシクエントポール型ロータ、電動機、ファン、及び空気調和機 |
WO2021171474A1 (ja) * | 2020-02-27 | 2021-09-02 | 三菱電機株式会社 | コンシクエントポール型ロータ、電動機、ファン、及び空気調和機 |
US12081097B2 (en) | 2020-02-28 | 2024-09-03 | Mitsubishi Electric Corporation | Motor, fan, and air conditioner |
WO2021171554A1 (ja) * | 2020-02-28 | 2021-09-02 | 三菱電機株式会社 | 電動機、送風機および空気調和装置 |
US20230113826A1 (en) * | 2020-03-26 | 2023-04-13 | Novares France | Rotor for an electric motor provided with rod sensors |
WO2023195076A1 (ja) * | 2022-04-05 | 2023-10-12 | 三菱電機株式会社 | 電動機、送風機および空気調和装置 |
Also Published As
Publication number | Publication date |
---|---|
US11101708B2 (en) | 2021-08-24 |
US20200067358A1 (en) | 2020-02-27 |
CN110178289B (zh) | 2021-03-12 |
CN110178289A (zh) | 2019-08-27 |
JP6689416B2 (ja) | 2020-04-28 |
JPWO2018134988A1 (ja) | 2019-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018134988A1 (ja) | 回転子、電動機、空気調和装置、および回転子の製造方法 | |
JP6789396B2 (ja) | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 | |
US20190173337A1 (en) | Consequent-pole type rotor, electric motor, air conditioner, and method for manufacturing consequent-pole type rotor | |
JP6545393B2 (ja) | コンシクエントポール型の回転子、電動機および空気調和機 | |
JP6692494B2 (ja) | ロータ、電動機および空気調和装置 | |
WO2018025407A1 (ja) | コンシクエントポール型の回転子、電動機および空気調和機 | |
JP7090740B2 (ja) | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 | |
JP5005063B2 (ja) | 電動機の回転子及び電動機及び電動機の回転子の製造方法及び空気調和機 | |
JP7301972B2 (ja) | 電動機、送風機、空気調和装置および電動機の製造方法 | |
JP7258213B2 (ja) | ステータ、電動機、送風機、空気調和装置およびステータの製造方法 | |
JP7234455B2 (ja) | 回転子、電動機、送風機、空気調和装置、及び回転子の製造方法 | |
CN113169598B (zh) | 转子、电动机、送风机、空调装置及转子的制造方法 | |
JP7012878B2 (ja) | 回転子、電動機、送風機、空気調和装置および回転子の製造方法 | |
JP7219331B2 (ja) | 電動機、送風機、空気調和装置および電動機の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17893206 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018562842 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17893206 Country of ref document: EP Kind code of ref document: A1 |