WO2018133740A1 - 一种地下建筑及其施工法 - Google Patents

一种地下建筑及其施工法 Download PDF

Info

Publication number
WO2018133740A1
WO2018133740A1 PCT/CN2018/072520 CN2018072520W WO2018133740A1 WO 2018133740 A1 WO2018133740 A1 WO 2018133740A1 CN 2018072520 W CN2018072520 W CN 2018072520W WO 2018133740 A1 WO2018133740 A1 WO 2018133740A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
chain
tunnel
construction
cutter
Prior art date
Application number
PCT/CN2018/072520
Other languages
English (en)
French (fr)
Inventor
王燏斌
Original Assignee
王燏斌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王燏斌 filed Critical 王燏斌
Publication of WO2018133740A1 publication Critical patent/WO2018133740A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes

Definitions

  • the invention relates to an underground building and a construction method thereof, and belongs to the technical field of civil engineering foundation construction.
  • the existing underground building construction generally adopts the method of overall excavation construction
  • the foundation pit support generally adopts the technology of grading, slope reinforcement, row pile and underground continuous wall.
  • the construction method using grading and slope reinforcement has the problems of large excavation area, high requirements for surrounding environment, and difficulty in foundation pit drainage.
  • the use of row pile support foundation pit excavation requires prefabrication of piles, and the bottom soil The requirements are relatively high, the amount of support engineering is huge, and the safety factor is low.
  • the underwater construction quality in the tank is difficult to control and detect, the construction period is long, the interface between the trough sections is difficult to construct and easy to seep. .
  • the present invention proposes an underground building and a construction method thereof, the purpose of which is to overcome the drawbacks of the prior art. Its main advantages are: using the wall and the top cover to form the water retaining cofferdam, forming a dry construction environment after drainage, and then removing the rock inside the building in the dry environment, pouring the floor or the floor; in addition, the construction period of the wall itself is short. , low cost and simple construction.
  • a rail is arranged at the bottom of the load-bearing wall 1 of the underground building.
  • a chain cutter for excavating rock and earth is installed on the track, and the chain cutter is composed of a chain and a cutter fixed on the chain, the chain cutter and the transmission
  • the device is composed of a chain excavation device.
  • the transmission device is located above the ground and is composed of a sprocket and a driving device.
  • the driving device drives the chain cutter, the chain cutter runs along the track, the cutter at the bottom of the wall 1 excavates the rock and soil, and the chain runs from the bottom upward.
  • the knife brings the excavated rock to the top, and the chain knife at the bottom of the wall 1 descends together with the wall 1.
  • the prefabrication method is divided into the following steps:
  • the wall 1 is poured in the fixed formwork on the site.
  • the fixed formwork does not move during construction.
  • the wall 1 sinks and sinks; the chain excavation device consists of the bottom track and the intermediate machine.
  • the frame and the upper device are composed, the bottom rail is integrally connected with the bottom of the wall 1; the bottom of the intermediate frame is connected with the prefabricated bottom of the wall 1, the top of the intermediate frame is connected with the upper device, and the intermediate frame is installed with chain running
  • the track and the intermediate frame are also part of the wall 1 steel cage; the chain running upwards from the bottom and the closed cavity of the intermediate frame form a chain-type vertical soil conveyor, with the bottom of the wall 1 sinking, the intermediate frame Simultaneously sinking;
  • the upper device is fixed on the work platform or fixed on the top of the intermediate frame, the upper device is equipped with a chain drive device and a tensioning device, and the chain of the bottom rail passes through the intermediate frame and the upper device to drive, tension
  • the devices are connected; the specific construction is divided into the following steps:
  • the invention has the advantages that the defects of the prior art are overcome, and since the wall itself has an excavating device, it can be prefabricated in the factory, or can be lowered while being poured in the fixed template on the site, and the construction is simple;
  • the top cover constitutes a water retaining cofferdam, which forms a dry construction environment after drainage, and then removes the rock inside the building in the dry environment, pouring the floor or the floor; in addition, the construction period of the wall itself is short and the cost is low.
  • FIG. 1 is a schematic structural view of the wall 1 and a structural schematic view of the chain excavating device 2 when excavating the bottom rock of the foundation, and is also a structural schematic diagram of the transmission device 2-1 and the chain cutter 3 constituting the chain excavating device 2, and is also a component transmission device.
  • Figure 2 is a view taken along line A of Figure 1;
  • FIG. 3 is a cross-sectional view taken along line BB of FIG. 1 , and is a structural schematic view of the core cutter 3 excavating both the rock and the horizontal soil at the bottom of the foundation, and is also provided with a mud pipeline 6 in the wall 1 , and the end of the pipeline 6 is a nozzle 6 .
  • Figure 4 is a cross-sectional view taken along line C-C of Figure 1, and is also a schematic structural view of a vertical geotechnical conveying device 7 composed of a chain cutter 3 and a side cover 1-3;
  • FIG. 5 is a schematic structural view of the chain cutter 3, and (a) is a schematic structural view of the chain 3-1 and the cutter 3-2, and is also composed of A ten-byte 3-1-1 and B ten-byte 3-1-2. Schematic diagram of the ten-byte structure of the chain 3-1; also a schematic diagram of the structure in which the chain 3-1 realizes space bending. (b) is a schematic structural view of the chain cutter composed of the rope 3-1B and the cutter 3-2B; also a schematic structural view of the rope 3-1B and the cutter 3-2B;
  • Figure 6 is a schematic view showing the construction of the wall 1 by the A method
  • FIG. 7 is a schematic view showing the construction of the B method of the wall 1, and is also a schematic structural view of the bottom rail B-1 and the pouring form B-4, which is a schematic structural view of the upper device B-3 being fixed on the working platform without lifting;
  • Figure 8 is a view taken along line A of Figure 7, and is also a schematic structural view of the intermediate frame B-2 and the upper device B-3;
  • a in FIG. 9 is a schematic diagram of an initial state during construction of the B method, and is a structural schematic view in which the upper device B-3 is fixed to the top of the intermediate frame B-2, and b is a schematic view of the bottom portion starting to excavate the upper portion to start pouring;
  • Figure c is the schematic diagram of the B method when the foundation 1 sinks to a certain depth
  • d is the schematic diagram after the foundation 1 reaches the design depth to remove the construction equipment
  • FIG. 11 is a schematic structural view of a load-bearing wall 1 around a subway station or a multi-story building, and is also a structural schematic view in which the surrounding walls are embedded with each other;
  • Figure 12 is a view of the AA of Figure 11, and is also a schematic view of the load-bearing wall 1 on both sides of the subway station and the tunnel reaching the design depth, and also at the interface position of the retaining wall 1-4 on the wall 1 and the corresponding floor of each wall on the wall 1.
  • Figure 13 is a schematic view of cleaning the upper layer of rock, installing the prefabricated top cover 4 or the cast-in-place top cover 4;
  • Figure 14 is a schematic view of the cast-in-place floor slab 5 after the backfill of the top cover 4, after the construction of the upper road surface, excavation of the rock layer of the negative layer, and removal of the groove cover plate 1-7;
  • Figure 15 is a schematic view showing the structure of the floor slab 5 after the limestone removal in the subway station or the multi-storey building is completed;
  • Figure 16 is a plan view of the underwater tunnel, and is also the structure of the working area of the construction tunnel after the closed area surrounded by the water retaining walls 1-4 on both sides (including the tunnel wall 1 at the bottom) and the cross-sectional water wall 1-5.
  • Figure 17 is a schematic view showing the structure of the working area formed by the water retaining walls 1-4 on both sides (including the tunnel wall 1 at the bottom thereof) and the cross water wall 1-5;
  • 18 is a structural schematic view of the support 1-6 of the longitudinal retaining wall or the retaining wall 1-5 on both sides, and is also a structural schematic view of removing part of the rock in the upper part of the tunnel wall 1 after forming the working area by using the retaining wall;
  • 19 is a structural schematic view of the backfilling of the rock after the water retaining wall 1-4 is separated from the tunnel wall 1 after the construction of the top cover 4 of the tunnel is completed;
  • 20 is a schematic structural view of the bottom floor 5 of the construction tunnel after the tunnel wall 1 and the rock in the roof 4 of the tunnel are cleaned;
  • the type of the rail includes five types of A1, A2, B, C, and D, wherein A1 and A2 are concave, B is flat, and C is Convex type
  • Figure 22 is a schematic view showing the structure in which D is a longitudinal multi-row track staggered into a tapered shape
  • Figure 23 is a schematic view showing the structure of the D-shaped rail and the multi-row chain cutter of the wall 1.
  • 1 in the figure is the load-bearing wall on both sides of the tunnel and the load-bearing wall around the metro station;
  • 1-1 is the track running the chain cutter 3 at the bottom of the wall 1;
  • 1-2 is the track on the side of the wall 1 running the chain cutter 3;
  • 1-3 is the bottom Side cover of the wall 1 with a beveled corner;
  • 1-4 is the longitudinal retaining wall or retaining wall in the upper part of the wall 1;
  • 1-5 is the transverse retaining wall perpendicular to the length of the tunnel;
  • 1-6 is the longitudinal retaining of both sides
  • 1-7 is the pre-groove of the wall 1 at the interface position corresponding to each floor;
  • 2 is a chain excavating device;
  • 2-1 is the transmission of the chain excavating device 2 ;
  • 2-1-1 is the driving device of the transmission 2-1;
  • 2-1-2 is the sprocket of the transmission 2-1;
  • 2-1-3
  • a track is arranged at the bottom of the load-bearing wall 1 of the underground building.
  • a chain cutter for excavating rock and earth is installed on the track.
  • the chain cutter is composed of a chain and a cutter fixed on the chain, and the chain cutter and the transmission constitute a chain.
  • Excavating device, the transmission device is located above the ground and is composed of a sprocket and a driving device.
  • the driving device drives the chain knife, the chain knife runs along the track, the tool at the bottom of the wall 1 excavates the rock and soil, and the chain knife running from the bottom up will be excavated.
  • the rock belt is brought up to the top, and the chain knife at the bottom of the wall 1 is lowered together with the wall 1.
  • the construction method of the wall 1 is a prefabrication method, which is divided into the following steps:
  • the wall 1 is placed in the fixed formwork on the site except for the prefabricated bottom.
  • the fixed formwork does not move during the construction.
  • the wall 1 sinks while the side is sinking; the chain excavation device consists of the bottom track.
  • the intermediate frame and the upper device are composed, the bottom rail is integrally connected with the bottom of the wall 1; the bottom of the intermediate frame is connected with the prefabricated bottom of the wall 1, the top of the intermediate frame is connected with the upper device, and the middle frame is installed with The chain running track, the middle frame is also a part of the wall 1 steel cage; the chain running upwards from the bottom and the closed cavity of the middle frame constitute a chain-type vertical soil conveyor, with the bottom of the wall 1 sinking,
  • the intermediate frame is also simultaneously sunk; the upper device is fixed on the work platform or fixed on the top of the intermediate frame, the upper device is equipped with a chain drive device and a tensioning device, and the chain of the bottom rail passes through the intermediate frame and the upper device.
  • the tensioning device is connected; the specific construction is divided into the following steps:
  • the top when the top is lower than the ground (or water surface), the top is installed with a temporary retaining wall (or water wall) higher than the ground (or water surface).
  • the water retaining wall (or retaining wall) is beyond the wall 1 in the width direction and is lower than the bottom (or ground), and a chain knife is installed at the bottom of the portion.
  • a temporary lane through which the vehicle passes is provided in the wall 1 or in the upper portion of the wall 1.
  • the wall 1 has a prefabricated groove at a position corresponding to each floor slab, and a steel bar or a welded steel plate or a connecting piece for connecting the wall 1 to the floor is reserved in the groove.
  • the top cover is first constructed, and after the construction of the top cover is completed, the lower part of the top cover is constructed.
  • the underground building is a subway station or a multi-storey underground building.
  • the specific construction method is divided into the following steps:
  • the underground building is a bottom tunnel, and a plurality of connection supports are arranged between the water retaining walls on both sides of the tunnel, and the bottom plane of the support is higher than the upper plane of the top of the tunnel, and one end is a horizontal water retaining wall perpendicular to the two sides of the wall.
  • the enclosed area enclosed by the water retaining walls on both sides (including the tunnel wall at the bottom) and the cross-sectional water wall is drained and becomes the working area of the construction tunnel.
  • the bottom of the transverse water wall and the bottom of the supporting lower plane below the bottom of the water are provided with a rail, and the rail is equipped with a chain cutter for excavating the rock, the chain cutter is composed of a chain and a cutter fixed on the chain, the chain
  • the knife and the transmission form a chain excavation device.
  • the transmission device is composed of a sprocket and a driving device above the water surface. During the construction, the driving device drives the chain, the chain drives the tool to run along the track, and the bottom tool excavates the rock and soil and runs vertically upwards.
  • the chain knife brings the excavated geotechnical to the top, the tunnel wall (including the side retaining wall) and the cross-blocking water wall descend to the design depth, the water retaining walls on both sides (including the tunnel wall at the bottom) and the cross-span water
  • the wall forms a closed area in which drainage, excavation, and construction of tunnels are carried out; the specific construction is divided into the following steps:
  • tunnel wall including side retaining wall
  • support and cross-span water wall construction section including side retaining wall
  • drainage section including side retaining wall
  • excavation section including side retaining wall
  • tunnel construction section including side retaining wall
  • retaining wall demolition section perform corresponding functions in each functional section.
  • the underground building is a land tunnel, and the area between the retaining walls on both sides (including the tunnel wall at the bottom) is the working area of the construction tunnel. Its characteristics are divided into the following steps:
  • the load-bearing wall on both sides of the tunnel and the bottom of the load-bearing wall 1 around the subway station are provided with a track 1-1.
  • a chain knife 3 for excavating rock and earth is installed on the track, and the chain knife 3 is chained.
  • the 3-1 is composed of a cutter 3-2 fixed to the chain, the chain cutter 3 and the transmission device 2-1 constitute a chain excavating device 2, and the transmission device 2-1 is located above the ground by the driving device 2-1-1 and the chain
  • the wheel 2-12 and the like are composed, the driving device 2-1-1 drives the chain 3-1, the chain 3-1 drives the cutter 3-2 to run along the track, and the cutter 3-2 at the bottom of the wall 1 excavates the rock and soil, vertically upward
  • the running chain cutter 3 brings the excavated geologic soil to the top, and the chain cutter 3 at the bottom of the wall 1 descends together with the wall 1.
  • the wall 1 is divided into the following steps by the A method prefabrication method:
  • the prefabricated parts of the wall 1 can be assembled on the ground, or they can be assembled while sinking, as shown in c in the figure;
  • the wall 1 is divided into the following steps by the B method:
  • connection supports 1-6 are arranged between the water retaining walls 1-4 on both sides of the underwater tunnel, and the bottom plane of the support is higher than the upper plane of the tunnel top, and one end is perpendicular to the horizontal walls of the two sides.
  • the water retaining wall 1-5 is drained by the closed area surrounded by the water retaining walls 1-4 on both sides (including the tunnel wall 1 at the bottom) and the cross water wall 1-5 to become the working area of the construction tunnel.
  • the bottom of the wall 1 and the bottom of the support below the bottom of the foundation are provided with rails, the chain cutters 3 for excavating geotechnicals are installed on the rails, and the cutters 3-2 at the bottom are excavated.
  • the chain cutter 3 running vertically upwards brings the excavated geotechnical soil to the top, and the tunnel wall 1 (including the side retaining wall 1-4) and the crossover water wall 1-5 are lowered to the design depth, and the water retaining walls on both sides 1-4 (including the tunnel wall 1 at the bottom) and the cross-sectional water wall 1-5 form a closed area in which drainage, excavation and construction of tunnels are carried out; the specific construction is divided into the following steps:
  • One or several working areas are formed by the water retaining walls 1-4 on both sides (including the tunnel wall 1 at the bottom) and the cross wall 1-5;
  • tunnel wall 1 including side retaining wall 1-4), support 1-6 and cross-block water wall 1-5 construction section, drainage section, excavation section, tunnel construction section and retaining wall Demolition of the section, the corresponding functional operations in each functional section;

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

一种地下建筑及其施工法,其周边承重墙(1)的底部设有轨道(1-1),施工时,轨道(1-1)上安装有挖掘岩土的链刀(3),链刀(3)由链条(3-1)和固定于链条(3-1)上的刀具(3-2)组成,链刀(3)和传动装置(2-1)组成了链式挖掘装置(2),传动装置(2-1)位于地面以上由链轮(2-1-2)和驱动装置(2-1-1)等组成,驱动装置(2-1-1)驱动链刀(3),链刀(3)沿着轨道(1-1)运行,墙(1)底部的刀具(3-2)挖掘岩土,由底部向上运行的链刀(3)将已挖掘的岩土带至上方,墙(1)底部的链刀(3)和墙(1)一起下降。该建筑物的墙自身带有挖掘装置,因此可以在工厂分块预制,也可以在现场的固定模板中边浇筑边下降,施工简单;利用墙和顶盖构成挡水围堰,在干地环境中清除建筑物内部的岩土,浇筑楼板或者底板;另外墙自身结构的施工周期短,成本低。

Description

一种地下建筑及其施工法 技术领域
本发明涉及的是一种地下建筑及其施工法,属于土木工程基础施工技术领域。
背景技术
现有地下建筑建设一般采用整体开挖施工的方式,基坑支护一般采用放坡、坡体加固、排桩和地下连续墙技术。采用放坡、坡体加固的施工方式存在有开挖的面积大、对周边环境要求高、基坑降排水难度大的问题;采用排桩支护基坑开挖需预制排桩,对底部土壤要求较高,支护工程量庞大,安全系数低;采用地下连续墙护壁后开挖,其槽内水下施工质量难以控制和检测、施工周期长、槽段之间的接口施工困难且易渗水。
发明内容
本发明提出的是一种地下建筑及其施工法,其目的旨在克服现有技术存在的缺陷。其主要优点:利用墙和顶盖构成挡水围堰,排水后形成干地施工环境,然后在干地环境中清除建筑物内部的岩土,浇筑楼板或者底板;另外墙自身结构的施工周期短,成本低,施工简单。
本发明的技术解决方案:地下建筑周边承重墙1的底部设有轨道,施工时,轨道上安装有挖掘岩土的链刀,链刀由链条和固定于链条上的刀具组成,链刀和传动装置组成了链式挖掘装置,传动装置位于地面以上由链轮和驱动装置等组成,驱动装置驱动链刀,链刀沿着轨道运行,墙1底部的刀具挖掘岩土,由底部向上运行的链刀将已挖掘的岩土带至上方,墙1底部的链刀和墙1一起下降。
预制法,分如下步骤:
1)在工场分块或整体预制墙1;
2)运至现场拼装墙1并蹲位,并在其底部的轨道上安装链刀;
3)安装链条驱动等装置,连接安装有挖掘刀的链条;
4)驱动链条,链刀挖掘底部的岩土,经岩土输送装置送至上方,墙1随之下降;
5)墙1下降至设计深度拆除链刀后灌浆。
墙1除预制底部外,均在现场的固定模板中浇筑,施工时固定模板不动,随着底部岩土的挖掘,墙1边浇筑边下沉;链式挖掘装置由底部的轨道、中间机架和上部装置组成,底部轨道与墙1的底部固连成一体;中间机架的底部与墙1的预制底部相连,中间机架的顶部与上部装置相连,中间机架内安装有链条运行的轨道,中间机架同时也是墙1钢筋笼的组成 部分;由底部向上运行的链条和中间机架的封闭腔组成了链式岩土垂直输送机,随着墙1底部的下沉,中间机架也同步下沉;上部装置固定于作业平台上或固定于中间机架的顶部,上部装置安装有链条驱动装置和张紧装置,底部轨道的链条通过中间机架与上部装置内驱动装置、张紧装置相连;具体施工分如下步骤:
1)清理现场,搭建作业平台;
2)墙1底部蹲位,并在其底部的轨道上安装链刀;
3)组装中间机架、上部装置和浇筑模板;
4)安装链条驱动装置、张紧装置,将底部轨道、中间机架、上部装置的链刀连接成一体,组成链式挖掘装置;
5)制作钢筋笼,在模板中浇筑混凝土;
6)驱动链条,链刀挖掘墙1底部的岩土,并将已挖掘的岩土经中间机架输送至上方,墙1随之下降;
7)随着墙1底部的下降,模板中的墙1边浇筑边下降;
8)墙1下降至设计深度拆除链刀后灌浆,拆除浇筑模板。
本发明的优点:克服了现有技术存在的缺陷,由于墙自身带有挖掘装置,所以即可以在工厂分块预制,也可以在现场的固定模板中边浇筑边下降,施工简单;利用墙和顶盖构成挡水围堰,排水后形成干地施工环境,然后在干地环境中清除建筑物内部的岩土,浇筑楼板或者底板;另外墙自身结构的施工周期短,成本低。
附图说明
图1是墙1的结构示意图,也是链式挖掘装置2挖掘基础底部岩土时的结构示意图,也是组成链式挖掘装置2的传动装置2-1和链刀3的结构示意图,也是组成传动装置2-1的驱动装置2-1-1、链轮2-1-2和张紧装置2-1-3的结构示意图;
图2是图1的A向视图;
图3是图1的B-B剖视图,也是链刀3在基础底部既挖掘岩土又是岩土水平输送的结构示意图,也是墙1内设有泥浆管路6,管路6的端部是喷嘴6-1的结构示意图;
图4是图1的C-C剖视图,也是由链刀3和侧面罩1-3组成的垂直岩土输送装置7的结构示意图;
图5是链刀3的结构示意图,(a)是链条3-1和刀具3-2的结构示意图,也是由A十字节3-1-1和B十字节3-1-2组成的链条3-1的十字节的结构示意图;也是链条3-1实现空间弯曲的结构 示意图。(b)是链刀由绳索3-1B和刀具3-2B组成的结构示意图;也是绳索3-1B和刀具3-2B的结构示意图;
图6是墙1的A法施工示意图;
图7是墙1的B法施工示意图,也是底部轨道B-1、浇筑模板B-4的结构示意图,是上部装置B-3固定于作业平台不升降的结构示意图;
图8是图7的A向视图,也是中间机架B-2和上部装置B-3的结构示意图;
图9中的a是B法施工时的初始状态示意图,也是上部装置B-3固定于中间机架B-2的顶部的结构示意图,b是底部开始挖掘上部开始浇筑的示意图;
图10中的c是基础1下沉至一定深度时的B法施工示意图,d是基础1达到设计深度拆除施工设备后的示意图;
图11是地铁车站或多层建筑物周边承重墙1的结构示意图,也是周边墙是相互嵌入的结构示意图;
图12是图11的A-A视图,也是地铁车站和隧道两侧承重墙1达到设计深度后的示意图,也是墙1上的挡土墙1-4和墙1上对应每层楼板的接口位置处的预制凹槽1-7的结构示意图;
图13是清理上层岩土,安装预制顶盖4或现浇顶盖4的示意图;
图14是回填顶盖4上的岩土后,施工上方路面,挖掘负一层的岩土,拆除凹槽盖板1-7后现浇楼板5的示意图;
图15是地铁车站或多层建筑物内的岩土清除后,楼板5全部现浇完的结构示意图;
图16是水底隧道的俯视图,也是由两侧挡水墙1-4(含其底部的隧道墙1)和横挡水墙1-5围成的封闭区域排水后成为施工隧道的作业区的结构示意图;
图17是由两侧挡水墙1-4(含其底部的隧道墙1)和横挡水墙1-5形成作业区域的结构示意图;
图18是两边纵向挡土墙或者挡水墙1-5的支撑1-6的结构示意图,也是利用挡水墙形成作业区域后,清除隧道墙1内上部的部分岩土的结构示意图;
图19是隧道的顶盖4施工完成后,挡水墙1-4与隧道墙1分离后岩土回填的结构示意图;
图20是清理隧道墙1和隧道的顶盖4内的岩土后,施工隧道的底部楼板5的结构示意图;
图21是墙1的底部链刀轨道和侧面链刀轨道的结构示意图,轨道的类型包括A1、A2、B、C和D共5种,其中A1、A2是凹型,B是平面型,C是凸型;
图22是D为纵向多排轨道错开成锥型的结构示意图;
图23是墙1的D型轨道和多排链刀的结构示意图。
图中的1是隧道两侧承重墙和地铁车站周边承重墙;1-1是墙1底部运行链刀3的轨道;1-2是墙1侧面运行链刀3的轨道;1-3是底部带刃角的墙1的侧面罩;1-4是墙1上部的纵向挡土墙或者挡水墙;1-5是垂直于隧道长度方向的横挡水墙;1-6是两边纵向挡土墙或者挡水墙1-4的支撑;1-7是墙1在对应每层楼板的接口位置处的预制凹槽;2是链式挖掘装置;2-1是链式挖掘装置2的传动装置;2-1-1是传动装置2-1的驱动装置;2-1-2是传动装置2-1的链轮;2-1-3是传动装置2-1的张紧装置;3是组成链式挖掘装置2的链刀;3-1是组成链刀3的链条,包括履带、绳索和柔性带;3-1-1是组成链条十字节的A十字节;3-1-2是组成链条十字节的B十字节;3-1B是组成链刀3的钢索;3-2是固定在链条3-1上的挖掘岩土的刀具;3-2B是固定在钢索3-1B上的挖掘岩土的刀具;4是隧道或者地铁车站的顶盖;5是隧道或者地铁车站的楼板;6是墙1内的泥浆管路;6-1是管路泥浆6的端部的喷嘴;7是垂直岩土输送装置;B-1是B法中的底部轨道;B-2是B法中的中间机架;B-3是B法中的上部装置;B-4是B法中的浇筑模板。
具体实施方式
一种地下建筑周边承重墙1的底部设有轨道,施工时,轨道上安装有挖掘岩土的链刀,链刀由链条和固定于链条上的刀具组成,链刀和传动装置组成了链式挖掘装置,传动装置位于地面以上由链轮和驱动装置等组成,驱动装置驱动链刀,链刀沿着轨道运行,墙1底部的刀具挖掘岩土,由底部向上运行的链刀将已挖掘的岩土带至上方,墙1底部的链刀和墙1一起下降。
所述的墙1的施工法是预制法,分如下步骤:
1)在工场分块或整体预制墙1;
2)运至现场拼装墙1并蹲位,并在其底部的轨道上安装链刀;
3)安装链条驱动等装置,连接安装有挖掘刀的链条;
4)驱动链条,链刀挖掘底部的岩土,经岩土输送装置送至上方,墙1随之下降;
5)墙1下降至设计深度拆除链刀后灌浆。
所述的墙1除预制底部外,均在现场的固定模板中浇筑,施工时固定模板不动,随着底部岩土的挖掘,墙1边浇筑边下沉;链式挖掘装置由底部的轨道、中间机架和上部装置组成,底部轨道与墙1的底部固连成一体;中间机架的底部与墙1的预制底部相连,中间机架的顶部与上部装置相连,中间机架内安装有链条运行的轨道,中间机架同时也是墙1钢筋笼的组成部分;由底部向上运行的链条和中间机架的封闭腔组成了链式岩土垂直输送机,随着墙1底部的下沉,中间机架也同步下沉;上部装置固定于作业平台上或固定于中间机架的 顶部,上部装置安装有链条驱动装置和张紧装置,底部轨道的链条通过中间机架与上部装置内驱动装置、张紧装置相连;具体施工分如下步骤:
1)清理现场,搭建作业平台;
2)墙1底部蹲位,并在其底部的轨道上安装链刀;
3)组装中间机架、上部装置和浇筑模板;
4)安装链条驱动装置、张紧装置,将底部轨道、中间机架、上部装置的链刀连接成一体,组成链式挖掘装置;
5)制作钢筋笼,在模板中浇筑混凝土;
6)驱动链条,链刀挖掘墙1底部的岩土,并将已挖掘的岩土经中间机架输送至上方,墙1随之下降;
7)随着墙1底部的下降,模板中的墙1边浇筑边下降;
8)墙1下降至设计深度拆除链刀后灌浆,拆除浇筑模板。
所述的墙1施工时,当顶部低于地面(或水面)时,顶部安装有高于地面(或水面)临时的挡土墙(或档水墙)。
所述的挡水墙(或挡土墙)在宽度方向是超出墙1的,且是低于水底(或地面)的,则此部分的底部安装有链刀。
所述的墙1施工时,墙1内或墙1的上部设有车辆通行的临时车道。
所述的墙1在对应每层楼板的接口位置处有一预制凹槽,凹槽内预留有墙1与楼板连接用的钢筋或焊接钢板或连接件。
所述的墙1下沉到设计深度后先施工顶盖,顶盖施工结束后再施工顶盖以下部分。
所述的地下建筑是地铁车站或多层地下建筑,具体施工法分如下步骤:
1)施工四周承重墙1;
2)安装预制顶盖或现浇顶盖;
3)施工顶盖上方路面,挖掘负一层的岩土;
4)拆除凹槽盖板,现浇负一层楼板;
5)挖掘负二层的岩土;
6)拆除凹槽盖板,现浇负二层楼板;
重复步骤3)、4)作业,从上往下施工直至地下楼层全部完工。
所述的地下建筑是水底隧道,隧道两侧的挡水墙之间设有若干连接支撑,支撑的底部平面高于隧道顶的上平面,其中一端是垂直于两侧墙的横挡水墙,由两侧挡水墙(含其底 部的隧道墙)和横挡水墙围成的封闭区域排水后成为施工隧道的作业区。
所述的横挡水墙的底部和施工前下平面低于水底的支撑的底部设有轨道,轨道上安装有挖掘岩土的链刀,链刀由链条和固定于链条上的刀具组成,链刀和传动装置组成了链式挖掘装置,传动装置位于水面以上由链轮和驱动装置等组成;施工时驱动装置驱动链条,链条带动刀具沿着轨道运行,底部的刀具挖掘岩土,垂直向上运行的链刀将已挖掘的岩土带至上方,隧道墙(含侧挡水墙)和横挡水墙一起下降至设计深度,两侧挡水墙(含其底部的隧道墙)和横挡水墙形成封闭区域,在此区域内排水、挖土、施工隧道;具体施工分如下步骤:
1)用两侧挡水墙(含其底部的隧道墙)和横挡水墙形成一个或若干作业区域;
2)把作业区域分为隧道墙(含侧挡水墙)、支撑和横挡水墙施工段、排水段、挖土段、隧道施工段和挡水墙拆除段,在各功能段进行相应的功能作业;
3)挡水墙拆除段位于隧道顶施工完成后,将挡水墙与隧道墙分离;
4)将拆除的挡水墙移至前端,形成新的作业区域;
5)重复上述1)~4)循环施工,直至完成;
上述2)中的分段,当只有一个区域时,按时间分段;当有若干个区域时,按空间分段。
所述的地下建筑是陆地隧道,两侧挡土墙(含其底部的隧道墙)之间的区域是施工隧道的作业区。其特征是分如下步骤:
1)施工两侧隧道墙和挡土墙形成若干作业区域;
2)把作业区域分为两侧墙和挡土墙施工段、挖土段、隧道施工段和挡土墙拆除段,在各功能段进行相应的功能作业;
3)挡土墙拆除段位于隧道顶施工完成之后,将挡土墙与隧道墙体分离;
4)将拆除的挡土墙移至前端,形成新的作业区域;
5)重复上述1)~4)循环施工,直至完成;
上述2)中的分段,当只有一个区域时,按时间分段;当有若干个区域时,按空间分段。
下面结合附图进一步描述本发明:
如图1~图5所示,隧道两侧承重墙和地铁车站周边承重墙1的底部设有轨道1-1,施工时,轨道上安装有挖掘岩土的链刀3,链刀3由链条3-1和固定于链条上的刀具3-2组成,链刀3和传动装置2-1组成了链式挖掘装置2,传动装置2-1位于地面以上由驱动装置2-1-1和链轮2-1-2等组成,驱动装置2-1-1驱动链条3-1,链条3-1带动刀具3-2沿着轨道运行,墙1底部的刀具3-2挖掘岩土,垂直向上运行的链刀3将已挖掘的岩土带至上方,墙1底部的链刀3 和墙1一起下降。
如图6所示墙1采用A法预制法分如下步骤:
1)在工场分块预制墙1,运至现场拼装墙1并蹲位,并在其底部的轨道1-1上安装链刀3,安装链条驱动装置2-1-1等装置,连接安装有挖掘刀3的链条3-1,如图中的a所示;
2)驱动链条3-1,链刀挖掘底部的岩土,经链刀3送至上方,墙1随之下降,如图中b所示;
3)下降至一定深度后,在地面拼装墙1的预制件,也可边下沉边拼装,如图中c所示;
4)下降至设计深度后灌浆,或拆除链刀3后再灌浆,如图中d所示。
图7~图10所示,墙1采用B法现浇法分如下步骤:
1)清理现场,搭建作业平台;
2)组装底部轨道B-1和浇筑模板B-4,即墙1的底部蹲位,并在其底部的轨道上安装链刀3;
3)组装中间机架B-2、上部装置B-3;
4)安装链条驱动装置2-1-1、张紧装置2-1-3,将底部轨道B-1、中间机架B-2、上部装置B-3和链条3-1连接成一体,组成链式挖掘装置2;
5)制作钢筋笼,将中间机架B-2与钢筋笼焊接成一体,中间机架B-2同时也是浇筑模板的组成部分;
6)在模板B-4中浇筑混凝土;
7)驱动链条3-1,链刀3挖掘底部的岩土,并将已挖掘的岩土经中间机架B-2输送至上方,墙1随之下降;
8)随着墙1底部的挖掘,模板B-4中的墙1边浇筑边下降;
9)下降至设计深度拆除链刀3后灌浆;
10)拆除上部装置和中间机架高于墙1的部分,拆除浇筑模板。
如图12~图15所示,地铁车站或多层地下建筑施工法分如下步骤:
1)施工地铁车站承重墙1;
2)安装预制顶盖4或现浇顶盖4;
3)施工顶盖上方路面,挖掘负一层的岩土;
4)拆除凹槽盖板,现浇负一层楼板5;
5)挖掘负二层的岩土;
6)拆除凹槽盖板,现浇负二层楼板5;
重复步骤3)、4)作业,从上往下施工直至地下楼层全部完工。
如图16所示,水底隧道两侧的挡水墙1-4之间设有若干连接支撑1-6,支撑的底部平面高于隧道顶的上平面,其中一端是垂直于两侧墙的横挡水墙1-5,由两侧挡水墙1-4(含其底部的隧道墙1)和横挡水墙1-5围成的封闭区域排水后成为施工隧道的作业区。
如图16~图20所示,墙1的底部和施工前下平面低于水底的支撑的底部设有轨道,轨道上安装有挖掘岩土的链刀3,底部的刀具3-2挖掘岩土,垂直向上运行的链刀3将已挖掘的岩土带至上方,隧道墙1(含侧挡水墙1-4)和横挡水墙1-5一起下降至设计深度,两侧挡水墙1-4(含其底部的隧道墙1)和横挡水墙1-5形成封闭区域,在此区域内排水、挖土、施工隧道;具体施工分如下步骤:
1)用两侧挡水墙1-4(含其底部的隧道墙1)和横挡水墙1-5形成一个或若干作业区域;
2)把作业区域分为隧道墙1(含侧挡水墙1-4)、支撑1-6和横挡水墙1-5施工段、排水段、挖土段、隧道施工段和挡水墙拆除段,在各功能段进行相应的功能作业;
3)挡水墙1-4拆除段位于隧道顶4施工完成后,将挡水墙与隧道墙分离;
4)将拆除的挡水墙1-4移至前端,形成新的作业区域;
5)重复上述1)~4)循环施工,直至完成;
上述2)中的分段,当只有一个区域时,按时间分段;当有若干个区域时,按空间分段。

Claims (12)

  1. 一种地下建筑,其特征是地下建筑周边承重墙(1)的底部设有轨道,施工时,轨道上安装有挖掘岩土的链刀,链刀由链条和固定于链条上的刀具组成,链刀和传动装置组成了链式挖掘装置,传动装置位于地面以上由链轮和驱动装置等组成,驱动装置驱动链刀,链刀沿着轨道运行,墙(1)底部的刀具挖掘岩土,由底部向上运行的链刀将已挖掘的岩土带至上方,墙(1)底部的链刀和墙(1)一起下降。
  2. 根据权利要求1所述的一种地下建筑,其特征是所述的墙(1)的施工法是预制法,分如下步骤:
    1)在工场分块或整体预制墙(1);
    2)运至现场拼装墙(1)并蹲位,并在其底部的轨道上安装链刀;
    3)安装链条驱动等装置,连接安装有挖掘刀的链条;
    4)驱动链条,链刀挖掘底部的岩土,经岩土输送装置送至上方,墙(1)随之下降;
    5)墙(1)下降至设计深度拆除链刀后灌浆。
  3. 根据权利要求1所述的一种地下建筑,其特征是所述的墙(1)除预制底部外,均在现场的固定模板中浇筑,施工时固定模板不动,随着底部岩土的挖掘,墙(1)边浇筑边下沉;链式挖掘装置由底部的轨道、中间机架和上部装置组成,底部轨道与墙(1)的底部固连成一体;中间机架的底部与墙(1)的预制底部相连,中间机架的顶部与上部装置相连,中间机架内安装有链条运行的轨道,中间机架同时也是墙(1)钢筋笼的组成部分;由底部向上运行的链条和中间机架的封闭腔组成了链式岩土垂直输送机,随着墙(1)底部的下沉,中间机架也同步下沉;上部装置固定于作业平台上或固定于中间机架的顶部,上部装置安装有链条驱动装置和张紧装置,底部轨道的链条通过中间机架与上部装置内驱动装置、张紧装置相连;具体施工分如下步骤:
    1)清理现场,搭建作业平台;
    2)墙(1)底部蹲位,并在其底部的轨道上安装链刀;
    3)组装中间机架、上部装置和浇筑模板;
    4)安装链条驱动装置、张紧装置,将底部轨道、中间机架、上部装置的链刀连接成一体,组成链式挖掘装置;
    5)制作钢筋笼,在模板中浇筑混凝土;
    6)驱动链条,链刀挖掘墙(1)底部的岩土,并将已挖掘的岩土经中间机架输送至上方,墙(1)随之下降;
    7)随着墙(1)底部的下降,模板中的墙(1)边浇筑边下降;
    8)墙(1)下降至设计深度拆除链刀后灌浆,拆除浇筑模板。
  4. 根据权利要求1所述的一种地下建筑,其特征是所述的墙(1)施工时,当顶部低于地面(或水面)时,顶部安装有高于地面(或水面)临时的挡土墙(或档水墙)。
  5. 根据权利要求4所述的一种地下建筑,其特征是所述的挡水墙(或挡土墙)在宽度方向是超出墙(1)的,且是低于水底(或地面)的,则此部分的底部安装有链刀。
  6. 根据权利要求1所述的一种地下建筑,其特征是所述的墙(1)施工时,墙(1)内或墙(1)的上部设有车辆通行的临时车道。
  7. 根据权利要求1所述的一种地下建筑,其特征是所述的墙(1)在对应每层楼板的接口位置处有一预制凹槽,凹槽内预留有墙(1)与楼板连接用的钢筋或焊接钢板或连接件。
  8. 根据权利要求1所述的一种地下建筑,其特征是所述的墙(1)下沉到设计深度后先施工顶盖,顶盖施工结束后再施工顶盖以下部分。
  9. 根据权利要求2、3、8所述的一种地下建筑,其特征是所述的地下建筑是地铁车站或多层地下建筑,具体施工法分如下步骤:
    1)施工四周承重墙(1);
    2)安装预制顶盖或现浇顶盖;
    3)施工顶盖上方路面,挖掘负一层的岩土;
    4)拆除凹槽盖板,现浇负一层楼板;
    5)挖掘负二层的岩土;
    6)拆除凹槽盖板,现浇负二层楼板;
    重复步骤3)、4)作业,从上往下施工直至地下楼层全部完工。
  10. 根据权利要求1所述的一种地下建筑,其特征是所述的地下建筑是水底隧道,隧道两侧的挡水墙之间设有若干连接支撑,支撑的底部平面高于隧道顶的上平面,其中一端是垂直于两侧墙的横挡水墙,由两侧挡水墙(含其底部的隧道墙)和横挡水墙围成的封闭区域排水后成为施工隧道的作业区。
  11. 根据权利要求10所述的一种地下建筑物,其特征是所述的横挡水墙的底部和施工前下平面低于水底的支撑的底部设有轨道,轨道上安装有挖掘岩土的链刀,链刀由链条和固定于链条上的刀具组成,链刀和传动装置组成了链式挖掘装置,传动装置位于水面以上由链轮和驱动装置等组成;施工时驱动装置驱动链条,链条带动刀具沿着轨道运行,底部的刀具挖掘岩土,垂直向上运行的链刀将已挖掘的岩土带至上方,隧道墙(含侧挡水墙)和横挡水墙一起下降至设计深度,两侧挡水墙(含其底部的隧道墙)和横挡水墙形成封闭区域,在此区域内 排水、挖土、施工隧道;具体施工分如下步骤:
    1)用两侧挡水墙(含其底部的隧道墙)和横挡水墙形成一个或若干作业区域;
    2)把作业区域分为隧道墙(含侧挡水墙)、支撑和横挡水墙施工段、排水段、挖土段、隧道施工段和挡水墙拆除段,在各功能段进行相应的功能作业;
    3)挡水墙拆除段位于隧道顶施工完成后,将挡水墙与隧道墙分离;
    4)将拆除的挡水墙移至前端,形成新的作业区域;
    5)重复上述1)~4)循环施工,直至完成;
    上述2)中的分段,当只有一个区域时,按时间分段;当有若干个区域时,按空间分段。
  12. 根据权利要求1所述的一种地下建筑,其特征是所述的地下建筑是陆地隧道,两侧挡土墙(含其底部的隧道墙)之间的区域是施工隧道的作业区,其特征是分如下步骤:
    1)施工两侧隧道墙和挡土墙形成若干作业区域;
    2)把作业区域分为两侧墙和挡土墙施工段、挖土段、隧道施工段和挡土墙拆除段,在各功能段进行相应的功能作业;
    3)挡土墙拆除段位于隧道顶施工完成之后,将挡土墙与隧道墙体分离;
    4)将拆除的挡土墙移至前端,形成新的作业区域;
    5)重复上述1)~4)循环施工,直至完成;
    上述2)中的分段,当只有一个区域时,按时间分段;当有若干个区域时,按空间分段。
PCT/CN2018/072520 2017-01-18 2018-01-13 一种地下建筑及其施工法 WO2018133740A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710037690.1 2017-01-18
CN201710037690.1A CN106759463A (zh) 2017-01-18 2017-01-18 一种地下建筑及其施工法

Publications (1)

Publication Number Publication Date
WO2018133740A1 true WO2018133740A1 (zh) 2018-07-26

Family

ID=58943377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072520 WO2018133740A1 (zh) 2017-01-18 2018-01-13 一种地下建筑及其施工法

Country Status (2)

Country Link
CN (1) CN106759463A (zh)
WO (1) WO2018133740A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107059877A (zh) * 2017-01-18 2017-08-18 王燏斌 一种施工时底部带有链刀的基础及其施工法
CN106759463A (zh) * 2017-01-18 2017-05-31 王燏斌 一种地下建筑及其施工法
CN109778909A (zh) * 2019-03-06 2019-05-21 王燏斌 一种用于地下室的下沉施工法及其施工装置
CN110056003A (zh) * 2019-03-06 2019-07-26 王燏斌 一种用于地下室的整体下沉施工法及其施工装置
CN114164929A (zh) * 2021-10-21 2022-03-11 王树生 一种沉墙基础及其施工装置
CN114164860A (zh) * 2021-10-21 2022-03-11 王树生 沉框基础及其地面预制装备和下沉装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049694A (zh) * 1989-08-19 1991-03-06 陆祖荫 组合联锁钢筋混凝土预制构件修建地下工程直接沉插方法及其装置
JP2007247208A (ja) * 2006-03-15 2007-09-27 Shimizu Corp 広幅矩形連続孔掘削作業機
CN102535559A (zh) * 2012-03-15 2012-07-04 中国铁建重工集团有限公司 一种链刀式搅拌桩成墙设备
CN202466660U (zh) * 2012-03-15 2012-10-03 中国铁建重工集团有限公司 一种链刀式连续墙链轮传动机构
CN106120723A (zh) * 2016-06-25 2016-11-16 张永忠 地下成墙机
CN106703079A (zh) * 2017-01-18 2017-05-24 王燏斌 一种水底隧道的倒u型构件及其施工法
CN106759486A (zh) * 2017-01-18 2017-05-31 王燏斌 一种由桩和墙组成的地下建筑物及其施工法
CN106759418A (zh) * 2017-01-18 2017-05-31 王燏斌 一种桥墩基础及其施工法
CN106759463A (zh) * 2017-01-18 2017-05-31 王燏斌 一种地下建筑及其施工法
CN106759464A (zh) * 2017-01-18 2017-05-31 王燏斌 一种地下建筑及其施工法
CN107059877A (zh) * 2017-01-18 2017-08-18 王燏斌 一种施工时底部带有链刀的基础及其施工法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985021A (ja) * 1982-11-05 1984-05-16 Kajima Corp 地下連続壁工法及びその工法に使用する装置
JPS62233328A (ja) * 1986-04-01 1987-10-13 Fusao Sakano 爪付篦型バケットを備えた掘削装置本体を介して置き去り式に擁壁を設置する設置装置
CN2260103Y (zh) * 1996-08-05 1997-08-20 郭同元
CN103334422B (zh) * 2013-06-26 2015-07-15 中国建筑股份有限公司 一种可装配埋入式预制空心地下连续墙及其施工方法
CN104343131A (zh) * 2013-07-27 2015-02-11 廖河山 一种半预制半现浇地下连续墙体及施工工艺
CN103741714B (zh) * 2013-12-09 2016-09-14 中国建筑第二工程局有限公司 地下工程全盖挖逆作法施工方法
CN105887806B (zh) * 2016-06-13 2018-08-24 上海强劲地基工程股份有限公司 装配式地下连续墙及其施工方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049694A (zh) * 1989-08-19 1991-03-06 陆祖荫 组合联锁钢筋混凝土预制构件修建地下工程直接沉插方法及其装置
JP2007247208A (ja) * 2006-03-15 2007-09-27 Shimizu Corp 広幅矩形連続孔掘削作業機
CN102535559A (zh) * 2012-03-15 2012-07-04 中国铁建重工集团有限公司 一种链刀式搅拌桩成墙设备
CN202466660U (zh) * 2012-03-15 2012-10-03 中国铁建重工集团有限公司 一种链刀式连续墙链轮传动机构
CN106120723A (zh) * 2016-06-25 2016-11-16 张永忠 地下成墙机
CN106703079A (zh) * 2017-01-18 2017-05-24 王燏斌 一种水底隧道的倒u型构件及其施工法
CN106759486A (zh) * 2017-01-18 2017-05-31 王燏斌 一种由桩和墙组成的地下建筑物及其施工法
CN106759418A (zh) * 2017-01-18 2017-05-31 王燏斌 一种桥墩基础及其施工法
CN106759463A (zh) * 2017-01-18 2017-05-31 王燏斌 一种地下建筑及其施工法
CN106759464A (zh) * 2017-01-18 2017-05-31 王燏斌 一种地下建筑及其施工法
CN107059877A (zh) * 2017-01-18 2017-08-18 王燏斌 一种施工时底部带有链刀的基础及其施工法

Also Published As

Publication number Publication date
CN106759463A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018133740A1 (zh) 一种地下建筑及其施工法
US9322137B2 (en) Method for building structures, particularly passages under operating railways or the like
WO2018133739A1 (zh) 一种施工时底部带有链刀的基础及其施工法
CN103306289B (zh) 基坑桩锚护壁混凝土锚索冠梁结构及其施工方法
CN103741714A (zh) 地下工程全盖挖逆作法施工方法
AU2019439324A1 (en) Wall sinking construction method
CN110306593A (zh) 一种车站施工方法
CN107524141B (zh) 一种块石土地基钻孔灌注桩的施工方法
CN108360543A (zh) 一种深大沉井预制结构及其安装方法
WO2018133746A1 (zh) 一种由桩和墙组成的地下建筑物及其施工法
WO2018177307A1 (zh) 一种装配式地下建筑及其施工法
CN110863498A (zh) 一种紧邻地铁站的深基坑组合支护施工方法
WO2018133711A1 (zh) 一种桥墩基础及其施工法
CN115450221B (zh) 一种地铁穿越河道的施工方法
WO2023066327A1 (zh) 用于由沉墙基础组成的地下建筑的施工法
CN111455977A (zh) 一种地下连续墙施工方法
WO2018177304A1 (zh) 一种装配式地下建筑及其施工法
CN103866787B (zh) 一种敞挖逆筑法混凝土防渗墙建造施工工艺
CN110258600B (zh) 一种适用于深水水域的立式围堰施工工法
CN107542065A (zh) 一种高陡泄槽小钢模翻升施工方法
CN207228156U (zh) 一种由桩和墙组成的地下建筑物
CN111535298A (zh) 一种地下连续墙防渗施工方法
WO2018133748A1 (zh) 一种用于水下隧道的工程船及其施工法
KR102171437B1 (ko) 터널 구조물내 보도판블록의 시공공법
CN209958372U (zh) 铁路新增二线台后路基桩管帷幕支护结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18741587

Country of ref document: EP

Kind code of ref document: A1