WO2018133508A1 - 一种多重缓冲蓄能装置及其应用 - Google Patents

一种多重缓冲蓄能装置及其应用 Download PDF

Info

Publication number
WO2018133508A1
WO2018133508A1 PCT/CN2017/110365 CN2017110365W WO2018133508A1 WO 2018133508 A1 WO2018133508 A1 WO 2018133508A1 CN 2017110365 W CN2017110365 W CN 2017110365W WO 2018133508 A1 WO2018133508 A1 WO 2018133508A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
hydraulic
piston
cylinder
energy storage
Prior art date
Application number
PCT/CN2017/110365
Other languages
English (en)
French (fr)
Inventor
王成龙
邱志伟
曾庆良
陈萌
刘志海
马淑萌
王跃
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to JP2019513105A priority Critical patent/JP6712361B2/ja
Priority to US16/345,673 priority patent/US10801475B2/en
Priority to AU2017344368A priority patent/AU2017344368B2/en
Publication of WO2018133508A1 publication Critical patent/WO2018133508A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G1/00Spring motors
    • F03G1/02Spring motors characterised by shape or material of spring, e.g. helical, spiral, coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G1/00Spring motors
    • F03G1/06Other parts or details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G1/00Spring motors
    • F03G1/06Other parts or details
    • F03G1/08Other parts or details for winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • F15B1/08Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
    • F15B1/24Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with rigid separating means, e.g. pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/003Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors with multiple outputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/008Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors with rotary output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/06Details
    • F15B7/08Input units; Master units
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1853Rotary generators driven by intermittent forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G1/00Spring motors
    • F03G1/02Spring motors characterised by shape or material of spring, e.g. helical, spiral, coil
    • F03G1/022Spring motors characterised by shape or material of spring, e.g. helical, spiral, coil using spiral springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/31Accumulator separating means having rigid separating means, e.g. pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the invention relates to a multi-buffer energy storage device and an application thereof, and belongs to the technical field of energy conversion and reuse.
  • the accumulators commonly used in the loading mode can be divided into a spring type, a heavy hammer type, and a gas type.
  • the energy storage form of the above accumulator is single, and the energy is not stored and further utilized.
  • Chinese Patent Publication No. CN204037271U discloses an energy retrievable oil and gas suspension, including a hydraulic cylinder, an accumulator, a pipeline, a rodless chamber and an accumulator that communicates with the hydraulic cylinder; the hydraulic motor is disposed in the pipeline, the generator Connected to the hydraulic motor drive.
  • the suspension system of the present application adds a controllable energy recovery device to the energy recovery oil and gas suspension, and has an energy recovery function, which improves the fuel economy of the vehicle to a certain extent.
  • the energy device cannot achieve energy storage and accumulation, and the hydraulic cylinder does not have an automatic reset function.
  • the present invention provides a multiple buffer energy storage device.
  • the present invention also provides a method of operating the above described multiple buffered energy storage device.
  • a multiple buffer energy storage device includes an energy storage cylinder, a fuel tank, a first scroll mechanism, a second scroll mechanism, a hydraulic motor, a differential planetary gear train and a generator;
  • the accumulator cylinder comprises a closed cylinder body, one end of the closed cylinder body is provided with an elastic moving device, and the other end is provided with an energy transfer device, and a repulsive magnetic force is stored between the elastic moving device and the energy transfer device, and the elastic moving device and the energy transfer device are
  • the sealed cylinder is filled with hydraulic oil
  • the closed cylinder, the hydraulic motor and the oil tank are connected by an oil passage to form a hydraulic circuit, the energy transfer device is connected with the first scroll mechanism, the hydraulic motor is connected with the second scroll mechanism, and the first scroll mechanism and the second coil mechanism pass the difference.
  • the moving planetary gear train is connected to the generator.
  • the elastic moving device comprises a piston rod, a piston rod head, a return spring, a piston, a magnetic wheel and a piston permanent magnet
  • the piston is located in the closed cylinder body
  • the magnetic wheel is disposed in the piston and is connected with one end of the piston rod
  • the magnetic wheel is arranged in the circumferential direction
  • the other end of the piston rod is sequentially connected to the piston rod head through the sealing cylinder and the return spring.
  • the energy transfer device comprises a magnetodynamic output shaft, a cylinder bottom permanent magnet and a diaphragm, and a magnetic power output shaft
  • a magnetodynamic output shaft One end is located in the closed cylinder body and the cylinder bottom permanent magnet is arranged in the circumferential direction thereof, and the other end of the magnetic power output shaft passes through the sealed cylinder body, and the partition plate is disposed in the closed cylinder body and is located in the energy transfer device and the elastic moving device.
  • the polarity of the cylinder bottom permanent magnet on the opposite side of the piston permanent magnet is the same.
  • the piston permanent magnets are disposed at an oblique angle in a circumferential direction of the magnetic wheel, and the cylinder bottom permanent magnets are disposed at an oblique angle in a circumferential direction of the magnetic power output shaft, and the inclination angle between the piston permanent magnet and the cylinder bottom permanent magnet the same.
  • the first scroll mechanism and the differential planetary gear train are connected by a gear train, a sprocket mechanism or a pulley mechanism.
  • the first scroll mechanism and the second coil mechanism each include a corrugated spring, a ratchet gear, a pawl and a hydraulic cylinder, and the piston rod of the hydraulic cylinder is hinged with the pawl, and the pawl cooperates with the ratchet gear.
  • the ratchet gear and the spring are connected by a shaft.
  • the multiple buffer energy storage device further comprises a flywheel, and the differential planetary gear train is connected to the generator through the flywheel.
  • the sealed cylinder body is provided with an oil inlet port and an oil outlet port, and the oil inlet port and the oil outlet port are located between the partition plate and the elastic moving device, and the oil inlet port is connected with the oil tank through the oil passage, and the oil outlet port passes through
  • the two branch oil passages are respectively connected to a hydraulic motor and a hydraulic cylinder.
  • an oil inlet check valve is disposed on the oil passage connected to the oil tank, and an oil outlet check valve is disposed on the branch oil passage connected to the hydraulic motor.
  • a working method of a multiple buffer energy storage device comprising the following steps,
  • the piston rod moves and drives the piston to move accordingly, the piston squeezes the hydraulic oil to generate pressure of the hydraulic oil, and the return spring is compressed; the hydraulic oil with pressure passes through a branch oil of the oil outlet
  • the hydraulic cylinders of the first vortex spring mechanism and the second vortex spring mechanism are controlled to retract the hydraulic cylinder piston rods of the first vortex spring mechanism and the second vortex spring mechanism, and the hydraulic cylinder piston rod is retracted to drive the pawl to rotate. Stuck the pawl into the ratchet gear;
  • the magnetic power output shaft rotates and drives the first scroll mechanism to start accumulating energy;
  • the hydraulic oil is compressed by the piston and flows into the hydraulic pressure through the oil outlet.
  • the multiple buffer energy storage device of the invention can realize the conversion and storage of excess energy by using the energy storage cylinder, for example, the electric energy generated by the generator and the elastic potential energy of the vortex spring, thereby reducing energy waste and saving resources.
  • the energy storage device of the invention has ingenious structure design, convenient installation and use, high energy conversion rate and storage rate, obvious effect and remarkable effect, and good economic and social benefits.
  • FIG. 1 is a schematic structural view of an energy storage device of the present invention
  • Figure 2 is a cross-sectional view of the accumulator cylinder
  • FIG. 3 is a schematic structural view of a piston permanent magnet
  • Figure 4 is a schematic structural view of a first vortex spring mechanism
  • Figure 5 is a cross-sectional view of the first scroll mechanism
  • Figure 6 is a schematic view showing the force of the piston permanent magnet and the cylinder bottom permanent magnet
  • Figure 7 is a schematic structural view of a cylinder bottom energy transfer device
  • the embodiment provides a multiple buffer energy storage device including a fuel tank 27 , an accumulator cylinder 3 , a first scroll mechanism 28 , a second scroll mechanism 29 , a hydraulic motor 24 , and a differential Planetary gear train 20 and generator 26;
  • the accumulator cylinder 3 comprises a closed cylinder body.
  • the closed cylinder body is composed of a cylinder head and a cylinder head 2 and a cylinder bottom 10 at both ends of the cylinder tube.
  • the cylinder head 2 is provided with an elastic moving device at one end, and an energy transfer device is provided at one end of the cylinder bottom 10, and the elastic body is elastic.
  • Mobile device and energy transfer device There is a repulsive magnetic force between the devices, and the sealed cylinder between the elastic moving device and the energy transfer device is filled with hydraulic oil;
  • the sealed cylinder, the hydraulic motor 24, and the oil tank 27 are connected by an oil passage to form a hydraulic circuit, the energy transfer device is connected to the first scroll mechanism 28, the hydraulic motor 24 is connected to the second scroll mechanism 29, and the first scroll mechanism 28 and the first The two-spring mechanism 29 is coupled to the generator 26 via a differential planetary gear train 20.
  • the elastic moving device comprises a piston rod 1, a piston rod head 31, a return spring 4, a piston 13, a magnetic wheel 14 and a piston permanent magnet 5.
  • the piston 13 is located in the cylinder, the piston 13 has a cavity, and the magnetic wheel 14 is placed.
  • the piston is connected to one end of the piston rod 1 , and the piston permanent magnet 5 is arranged in the circumferential direction of the magnetic wheel 14 .
  • the other end of the piston rod 1 is sequentially connected to the cylinder head 2 and the return spring 4 and then connected to the piston rod head 31 .
  • the energy transfer device includes a magneto-dynamic output shaft 8, a cylinder bottom permanent magnet 7 and a partition plate 6 having one end located inside the cylinder barrel and arranging the cylinder bottom permanent magnet 7 in the circumferential direction thereof, and the magnetic power output shaft 8 The other end passes through the cylinder bottom 10 and is provided with a bearing 9 at the bottom of the outlet cylinder.
  • the partition 6 is disposed in the cylinder and between the energy transfer device and the elastic moving device.
  • the cylinder bottom permanent magnet 7 is opposite to the piston permanent magnet 5. The sides have the same polarity.
  • the piston permanent magnets 5 are disposed at an oblique angle in the circumferential direction of the magnetic wheel 14, and the cylinder bottom permanent magnets 7 are disposed at an oblique angle in the circumferential direction of the magnetodynamic output shaft 8, and the inclination angles of the piston permanent magnets 5 and the cylinder bottom permanent magnets 7 are the same. , both are a (as shown in Figure 6), the calculation process of the rotational magnetic force F rotation between the cylinder bottom permanent magnet and the piston permanent magnet is as follows:
  • the first scroll mechanism 28 and the second coil mechanism 29 are identical in composition, and the first coil mechanism 28 includes a first coil spring 16, a first ratchet gear 17, a first pawl 25, and a first hydraulic cylinder 23,
  • the first volute spring mechanism 28 is fixed by the first yoke mechanism bracket 43; the piston rod of the first hydraulic cylinder 23 is hinged with the first pawl 25 (the piston rod of the first hydraulic cylinder is extended when there is no pressure, when there is pressure)
  • the piston rod of a hydraulic cylinder is retracted, the first pawl 25 is engaged with the first ratchet gear 17, and the first ratchet gear 17 is coupled to the first scroll spring 16 via the first scroll mechanism output shaft 46, the first coil spring 16 outer ring is connected to the first scroll mechanism output plate 42, the first ratchet gear 17, the first scroll mechanism output shaft 46, and the first scroll mechanism
  • the output plates 42 are rigidly connected to each other.
  • the second scroll mechanism 29 includes a second scroll spring 35, a second ratchet gear 34, a second pawl 33, and a second hydraulic cylinder 32.
  • the second scroll mechanism 29 is fixed by the second coil mechanism bracket 45; the second hydraulic pressure
  • the piston rod of the cylinder 32 is hinged to the second pawl 33 (the piston rod of the second hydraulic cylinder is extended when there is no pressure, the piston rod of the second hydraulic cylinder is retracted when there is pressure), the second pawl 33 and the second spine 33
  • the gear 34 is matched, and the second ratchet gear 34 is connected to the second coil spring 35 through the second scroll mechanism output shaft 47.
  • the second coil spring 35 is connected to the second coil spring output plate 44, the second ratchet gear 34,
  • the second scroll mechanism output plate 44 and the second coil spring output shaft 47 are rigidly connected to each other.
  • the cylinder tube is provided with an oil inlet port 11 and an oil outlet port 12, and the oil inlet port 11 and the oil outlet port 12 are located between the partition plate 6 and the elastic moving device, and the oil inlet port 11 is connected to the oil tank 27 through the oil passage, and the oil outlet port 12 is connected to the hydraulic motor oil inlet 37, the first hydraulic cylinder 23, and the second hydraulic cylinder 32 through the two branch oil passages, and the hydraulic motor 24 is also connected to the oil tank 27 through the hydraulic motor oil outlet 36.
  • the oil inlet port 11 is provided with an oil inlet check valve 15 on the oil passage connected to the oil tank 27 to prevent the hydraulic oil from flowing backward, and an oil discharge check valve 38 is provided on the branch oil passage connecting the oil outlet port 12 and the hydraulic motor oil inlet port 37.
  • the first vortex spring mechanism 28 and the differential planetary gear train 20 are drivingly coupled by means of a gear train, wherein the gear train includes a meshing magnetic power input pinion 18 and a magnetic power input bull gear 19, and a first yoke mechanism output shaft 46 is connected to the magnetic power input pinion 18 after being connected to the first volute spring 16, and the magnetic power input pinion 18 meshes with the magnetic power input large gear 19, and the magnetic power input large gear 19 and the planet of the differential planetary gear train 20 Rack rigid connection.
  • the second scroll mechanism output shaft 47 is rigidly connected to the center gear of the differential planetary gear train 20 after being connected to the second coil spring 35.
  • the first coil spring output shaft 46 and the second coil spring output shaft 47 pass through the differential planet.
  • the gear train 20 is coupled to the flywheel input shaft 40; the flywheel input shaft 40 is rigidly coupled to the flywheel 21; and the flywheel 21 is coupled to the generator input shaft 41 via a coupling 30 via a one-way bearing 39.
  • the flywheel 21 can only rotate under the rotation of the flywheel input shaft 40, and the flywheel 21 does not cause the flywheel input shaft 40 to rotate, and the one-way bearing 39 realizes one-way rotation, thereby ensuring stable output of energy.
  • a multiple buffer accumulator device having the structure as described in Embodiment 1 is different in that the first scroll mechanism 28 is drivingly coupled to the differential planetary gear train 20 via a chain sprocket mechanism (not shown).
  • the sprocket is rigidly connected to the planet carrier of the differential planetary gear train 20
  • the first yoke mechanism output shaft 46 is connected to the sprocket through the chain
  • the second yoke mechanism output shaft 47 is connected at one end to the second volute spring 35. The other end is rigidly connected to the sun gear of the differential planetary gear train 20 after passing through the sprocket.
  • a multiple buffer accumulator device having the structure as described in Embodiment 2 is different in that: the first scroll mechanism 28
  • the differential planetary gear train 20 is drivingly coupled by means of a pulley mechanism (not shown).
  • the pulley is rigidly connected to the planet carrier of the differential planetary gear train 20
  • the first scroll mechanism output shaft 46 is coupled to the pulley through the belt
  • the second coil spring output shaft 47 is connected at one end to the second coil spring 35. The other end is rigidly connected to the center gear of the differential planetary gear train 20 after passing through the pulley.
  • the piston rod 1 moves and drives the piston 13 to move accordingly, the piston 13 presses the hydraulic oil to generate pressure of the hydraulic oil, and the return spring 4 is compressed; the hydraulic oil with pressure passes through the oil A branch oil passage of the port 12 controls the first volute spring mechanism, the first hydraulic cylinder 23 of the second vortex spring mechanism, and the second hydraulic cylinder 32 such that the piston rod of the first hydraulic cylinder 23 and the piston rod of the second hydraulic cylinder 32 Retracting, the piston rod of the first hydraulic cylinder 23 and the piston rod of the second hydraulic cylinder 32 are retracted, and the first pawl 25 and the second pawl 33 are rotated to make the first pawl 25 and the second pawl 33 Clamping the first ratchet gear 17 and the second ratchet gear 34 respectively;
  • the magnetic power output shaft 8 rotates and drives the first scroll mechanism to start accumulating energy;
  • the hydraulic oil is compressed by the piston 13
  • the oil outlet 12 flows into the hydraulic motor 24 to drive the hydraulic motor 24 to rotate, and the hydraulic motor 24 drives the second scroll mechanism to start accumulating energy;
  • the first and second hydraulic cylinders 23, 23 of the first and second spring mechanisms have no hydraulic oil
  • the piston rod of the first hydraulic cylinder 23 and the second The piston rod of the hydraulic cylinder 32 is extended to rotate the first pawl 25 and the second pawl 33 to release the first ratchet gear 17 and the second ratchet gear 34, so that the first scroll mechanism 28 and the second coil mechanism 29
  • the first coil spring 16 and the second coil spring 35 release the stored energy
  • the first coil spring mechanism 28 transmits energy to the first ratchet gear 17 through the first coil spring output plate 42 to rotate the first ratchet gear 17,
  • the second scroll mechanism 29 transmits energy to the second ratchet gear 34 through the second scroll mechanism output plate 44 to rotate the second ratchet gear 34
  • the first ratchet gear 17 rotates while driving the meshing magnetic power input pinion 18
  • the magnetic power input large gear 19 rotates and transmits energy to the differential planetary gear train 20 through the magnetic power input large gear 19, and the second ratchet gear 34 rotate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种多重缓冲蓄能装置及其应用,所述多重缓冲蓄能装置包括蓄能缸(3)、油箱(27)、第一涡簧机构(28)、第二涡簧机构(29)、液压马达(24)、差动行星齿轮系(20)和发电机(26);蓄能缸(3)包括密闭缸体,密闭缸体一端设有弹性移动装置、另一端设有能量传递装置,弹性移动装置和能量传递装置之间填充液压油;密闭缸体、液压马达(24)、油箱(27)通过油路连接形成液压回路,能量传递装置与第一涡簧机构(28)连接,液压马达(24)与第二涡簧机构(29)连接,第一涡簧机构(28)和第二涡簧机构(29)通过差动行星齿轮系(20)与发电机(26)连接。所述多重缓冲蓄能装置,利用蓄能缸(3)能够实现多余能量的转化和存储,减少能量浪费,节约资源,所述蓄能装置结构设计巧妙,安装使用方便,且能量的转化率和存储率高。

Description

一种多重缓冲蓄能装置及其应用 技术领域
本发明涉及一种多重缓冲蓄能装置及其应用,属于能量转换和再利用技术领域。
背景技术
目前,按加载方式常见的蓄能器可分为弹簧式、重锤式、气体式,上述蓄能器的能量存储形式单一,且能量没有被存储起来得到进一步利用。
例如,中国专利文献CN204037271U公开了一种能量可回收油气悬架,包括液压缸、蓄能器、管路、连通液压缸的无杆腔与蓄能器;液压马达设置在管路中,发电机与液压马达传动连接。本申请的悬架系统对能量回收油气悬架增加了可控能量回收装置,具有能量回收功能,在一定程度上提高了车辆的燃油经济性。但该能量装置却无法实现能量的储备和蓄集,且该液压缸还不具备自动复位功能。
发明内容
针对现有技术的不足,本发明提供一种多重缓冲蓄能装置。
本发明还提供上述多重缓冲蓄能装置的工作方法。
本发明的技术方案如下:
一种多重缓冲蓄能装置,包括蓄能缸、油箱、第一涡簧机构、第二涡簧机构、液压马达、差动行星齿轮系和发电机;
蓄能缸包括密闭缸体,密闭缸体一端设有弹性移动装置、另一端设有能量传递装置,弹性移动装置和能量传递装置之间存有相斥磁力,在弹性移动装置和能量传递装置之间的密闭缸体内填充液压油;
密闭缸体、液压马达、油箱通过油路连接形成液压回路,能量传递装置与第一涡簧机构连接,液压马达与第二涡簧机构连接,第一涡簧机构和第二涡簧机构通过差动行星齿轮系与发电机连接。
优选的,所述弹性移动装置包括活塞杆、活塞杆头、复位弹簧、活塞、磁轮和活塞永磁体,活塞位于密闭缸体内,磁轮置于活塞内并与活塞杆一端连接,磁轮周向上布置所述的活塞永磁体,活塞杆的另一端依次贯穿密闭缸体、复位弹簧后与活塞杆头连接。
优选的,所述能量传递装置包括磁动力输出轴、缸底永磁体和隔板,磁动力输出轴 一端位于密闭缸体内并在其周向上布置所述的缸底永磁体,磁动力输出轴另一端穿出密闭缸体,隔板设置在密闭缸体内且位于能量传递装置与弹性移动装置之间,缸底永磁体与活塞永磁体相对侧的极性相同。
优选的,所述活塞永磁体在磁轮周向上成倾斜夹角设置,所述缸底永磁体在磁动力输出轴周向上成倾斜夹角设置,活塞永磁体与缸底永磁体的倾斜夹角相同。
优选的,所述第一涡簧机构与差动行星齿轮系之间通过齿轮系、链轮机构或带轮机构连接。
优选的,所述第一涡簧机构和第二涡簧机构均包括涡簧、棘齿轮、棘爪和液压缸,所述液压缸的活塞杆与棘爪铰接,棘爪与棘齿轮相配合,棘齿轮与涡簧通过轴连接。
优选的,所述多重缓冲蓄能装置还包括飞轮,差动行星齿轮系通过飞轮与发电机连接。
优选的,所述密闭缸体上设置有进油口和出油口,进油口和出油口位于隔板与弹性移动装置之间,进油口通过油路与油箱连接,出油口通过两个分支油路分别与液压马达、液压缸连接。
优选的,所述进油口与油箱连接的油路上设置有进油单向阀,所述出油口与液压马达连接的分支油路上设置有出油单向阀。
一种多重缓冲蓄能装置的工作方法,包括以下步骤,
当冲击物体接触到活塞杆头时,活塞杆移动并带动活塞随之运动,活塞挤压液压油使液压油产生压力,同时复位弹簧被压缩;具有压力的液压油通过出油口的一个分支油路控制第一涡簧机构和第二涡簧机构的液压缸,使第一涡簧机构和第二涡簧机构的液压缸活塞杆缩回,液压缸活塞杆缩回的同时带动棘爪转动,使棘爪卡住棘齿轮;
活塞上的活塞永磁体逐渐靠近缸底永磁体后,在磁力同性相斥的作用下,磁动力输出轴转动并带动第一涡簧机构开始蓄能;液压油被活塞压缩通过出油口流入液压马达,带动液压马达旋转,液压马达带动第二涡簧机构开始蓄能;
当活塞杆头的冲击消失后,第一涡簧机构和第二涡簧机构的液压缸没有液压油作用,液压缸的活塞杆伸出,使棘爪转动释放棘齿轮,第一涡簧机构和第二涡簧机构的涡簧释放储存的能量,第一涡簧机构和第二涡簧机构通过差动行星齿轮系将能量输出到飞轮,最终经过飞轮将能量输出到发电机。
本发明的有益效果在于:
本发明多重缓冲蓄能装置,利用蓄能缸能够实现多余能量的转化和存储,例如发电机产生的电能及涡簧的弹性势能等,减少了能量的浪费,节约了资源。本发明蓄能装置结构设计巧妙,安装使用方便,且能量的转化率和存储率高,其作用明显、效果显著,具有良好的经济价值和社会效益。
附图说明
图1为本发明蓄能装置的结构示意图;
图2为蓄能缸的剖视图;
图3为活塞永磁体的结构示意图;
图4为第一涡簧机构的结构示意图;
图5为第一涡簧机构的剖视图;
图6为活塞永磁体和缸底永磁体的受力示意图;
图7为缸底能量传递装置的结构示意图;
其中:1、活塞杆;2、缸盖;3、蓄能缸;4、复位弹簧;5、活塞永磁体;6、隔板;7、缸底永磁体;8、磁动力输出轴;9、轴承;10、缸底;11、进油口;12、出油口;13、活塞;14、磁轮;15、进油单向阀;16、第一涡簧;17、第一棘齿轮;18、磁动力输入小齿轮、19、磁动力输入大齿轮;20、差动行星齿轮系;21、飞轮;22、控制油管;23、第一液压缸;24、液压马达;25、第一棘爪;26、发电机;27、油箱、28、第一涡簧机构;29、第二涡簧机构;30、联轴器;31、活塞杆头;32、第二液压缸;33、第二棘爪;34、第二棘齿轮;35、第二涡簧;36、液压马达出油口;37、液压马达进油口;38、出油单向阀;39、单向轴承;40、飞轮输入轴;41、发电机输入轴;42、第一涡簧机构输出板;43、第一涡簧机构支架;44、第二涡簧机构输出板;45、第二涡簧机构支架;46、第一涡簧机构输出轴;47、第二涡簧机构输出轴。
具体实施方式
下面通过实施例并结合附图对本发明做进一步说明,但不限于此。
实施例1:
如图1至图7所示,本实施例提供一种多重缓冲蓄能装置,包括油箱27、蓄能缸3、第一涡簧机构28、第二涡簧机构29、液压马达24、差动行星齿轮系20和发电机26;
蓄能缸3包括密闭缸体,密闭缸体由缸筒及缸筒两端的缸盖2和缸底10组成,缸盖2一端设有弹性移动装置、缸底10一端设有能量传递装置,弹性移动装置和能量传递装 置之间存有相斥磁力,在弹性移动装置和能量传递装置之间的密闭缸体内填充液压油;
密闭缸体、液压马达24、油箱27通过油路连接形成液压回路,能量传递装置与第一涡簧机构28连接,液压马达24与第二涡簧机构29连接,第一涡簧机构28和第二涡簧机构29通过差动行星齿轮系20与发电机26连接。
其中,弹性移动装置包括活塞杆1、活塞杆头31、复位弹簧4、活塞13、磁轮14和活塞永磁体5,活塞13位于缸筒内,活塞13开设有一空腔,磁轮14置于空腔内并与活塞杆1一端连接,磁轮14周向上布置所述的活塞永磁体5,活塞杆1的另一端依次贯穿缸盖2、复位弹簧4后与活塞杆头31连接。
能量传递装置包括磁动力输出轴8、缸底永磁体7和隔板6,磁动力输出轴8一端位于缸筒内并在其周向上布置所述的缸底永磁体7,磁动力输出轴8另一端穿出缸底10且在穿出缸底部位设置有轴承9,隔板6设置在缸筒内且位于能量传递装置与弹性移动装置之间,缸底永磁体7与活塞永磁体5相对侧的极性相同。活塞永磁体5在磁轮14周向上成倾斜夹角设置,缸底永磁体7在磁动力输出轴8周向上成倾斜夹角设置,活塞永磁体5与缸底永磁体7的倾斜夹角相同,均为a(如图6所示),则缸底永磁体与活塞永磁体之间的旋转磁力F旋转的计算过程如下:
F水平=F·Sina
F垂直=F·Cosa
F旋转=n·F水平>F摩擦
则缸底永磁体7在活塞永磁体5不断接近的过程中克服轴承9摩擦力旋转起来;
其中:F-永磁体之间的同性斥力;
a-永磁体与活塞杆轴线的夹角;
n-磁轮上永磁体个数;
F摩擦-轴承摩擦力;
第一涡簧机构28和第二涡簧机构29结构组成上完全相同,第一涡簧机构28包括第一涡簧16、第一棘齿轮17、第一棘爪25和第一液压缸23,第一涡簧机构28通过第一涡簧机构支架43固定;第一液压缸23的活塞杆与第一棘爪25铰接(无压力时,第一液压缸的活塞杆伸出,有压力时第一液压缸的活塞杆缩回),第一棘爪25与第一棘齿轮17相配合,第一棘齿轮17通过第一涡簧机构输出轴46与第一涡簧16连接,第一涡簧16外圈连接第一涡簧机构输出板42,第一棘齿轮17、第一涡簧机构输出轴46、第一涡簧机构 输出板42三者相互均为刚性连接。
第二涡簧机构29包括第二涡簧35、第二棘齿轮34、第二棘爪33和第二液压缸32,第二涡簧机构29通过第二涡簧机构支架45固定;第二液压缸32的活塞杆与第二棘爪33铰接(无压力时,第二液压缸的活塞杆伸出,有压力时第二液压缸的活塞杆缩回),第二棘爪33与第二棘齿轮34相配合,第二棘齿轮34通过第二涡簧机构输出轴47与第二涡簧35连接,第二涡簧35外圈连接第二涡簧机构输出板44,第二棘齿轮34、第二涡簧机构输出板44、第二涡簧机构输出轴47三者相互均为刚性连接。
缸筒上设置有进油口11和出油口12,进油口11和出油口12位于隔板6与弹性移动装置之间,进油口11通过油路与油箱27连接,出油口12通过两个分支油路分别与液压马达进油口37、第一液压缸23、第二液压缸32连接,液压马达24还通过液压马达出油口36与油箱27连接。进油口11与油箱27连接的油路上设置有进油单向阀15,防止液压油倒流,出油口12与液压马达进油口37连接的分支油路上设置有出油单向阀38。
第一涡簧机构28与差动行星齿轮系20之间借助齿轮系进行传动连接,其中齿轮系包括相啮合的磁动力输入小齿轮18和磁动力输入大齿轮19,第一涡簧机构输出轴46贯穿连接第一涡簧16后与磁动力输入小齿轮18传动连接,磁动力输入小齿轮18与磁动力输入大齿轮19相啮合,磁动力输入大齿轮19与差动行星齿轮系20的行星架刚性连接。第二涡簧机构输出轴47贯穿连接第二涡簧35后与差动行星齿轮系20的中心齿轮刚性连接,第一涡簧机构输出轴46与第二涡簧机构输出轴47通过差动行星齿轮系20与飞轮输入轴40连接;飞轮输入轴40与飞轮21刚性连接;飞轮21通过单向轴承39经联轴器30与发电机输入轴41连接。飞轮21只能在飞轮输入轴40转动下转动,不会出现飞轮21带动飞轮输入轴40转动,通过单向轴承39实现单向转动,从而保证能量的稳定输出。
实施例2:
一种多重缓冲蓄能装置,结构如实施例1所述,其不同之处在于:第一涡簧机构28借助链条链轮机构(图中未示出)与差动行星齿轮系20传动连接。
具体地,链轮与差动行星齿轮系20的行星架刚性连接,第一涡簧机构输出轴46通过链条与链轮传动连接,第二涡簧机构输出轴47一端贯穿连接第二涡簧35、另一端贯穿链轮后与差动行星齿轮系20的中心齿轮刚性连接。
实施例3:
一种多重缓冲蓄能装置,结构如实施例2所述,其不同之处在于:第一涡簧机构28 借助皮带轮机构(图中未示出)与差动行星齿轮系20传动连接。
具体地,带轮与差动行星齿轮系20的行星架刚性连接,第一涡簧机构输出轴46通过皮带与带轮传动连接,第二涡簧机构输出轴47一端贯穿连接第二涡簧35、另一端贯穿带轮后与差动行星齿轮系20的中心齿轮刚性连接。
实施例4:
一种利用实施例1所述的多重缓冲蓄能装置的工作方法,包括以下步骤,
当冲击物体接触到活塞杆头31时,活塞杆1移动并带动活塞13随之运动,活塞13挤压液压油使液压油产生压力,同时复位弹簧4被压缩;具有压力的液压油通过出油口12的一个分支油路控制第一涡簧机构、第二涡簧机构的第一液压缸23和第二液压缸32,使第一液压缸23的活塞杆和第二液压缸32的活塞杆缩回,第一液压缸23的活塞杆和第二液压缸32的活塞杆缩回的同时带动第一棘爪25、第二棘爪33转动,使第一棘爪25、第二棘爪33分别卡住第一棘齿轮17、第二棘齿轮34;
活塞13上的活塞永磁体5逐渐靠近缸底永磁体7后,在磁力同性相斥的作用下,磁动力输出轴8转动并带动第一涡簧机构开始蓄能;液压油被活塞13压缩通过出油口12流入液压马达24,带动液压马达24旋转,液压马达24带动第二涡簧机构开始蓄能;
当活塞杆头31的冲击消失后,第一涡簧机构和第二涡簧机构的第一液压缸23、第二液压缸32没有了液压油作用,第一液压缸23的活塞杆和第二液压缸32的活塞杆伸出,使第一棘爪25、第二棘爪33转动释放第一棘齿轮17、第二棘齿轮34,使第一涡簧机构28和第二涡簧机构29的第一涡簧16、第二涡簧35释放储存的能量,第一涡簧机构28通过第一涡簧机构输出板42将能量传递给第一棘齿轮17,使第一棘齿轮17转动,第二涡簧机构29通过第二涡簧机构输出板44将能量传递给第二棘齿轮34,使第二棘齿轮34转动,第一棘齿轮17转动的同时带动相啮合的磁动力输入小齿轮18、磁动力输入大齿轮19转动,并通过磁动力输入大齿轮19将能量传递给差动行星齿轮系20,第二棘齿轮34转动的同时通过第二涡簧机构输出轴47将能量传递给差动行星齿轮系20,最终由差动行星齿轮系20通过飞轮21传递给发电机26运行发电。

Claims (10)

  1. 一种多重缓冲蓄能装置,其特征在于,包括蓄能缸、油箱、第一涡簧机构、第二涡簧机构、液压马达、差动行星齿轮系和发电机;
    蓄能缸包括密闭缸体,密闭缸体一端设有弹性移动装置、另一端设有能量传递装置,弹性移动装置和能量传递装置之间存有相斥磁力,在弹性移动装置和能量传递装置之间的密闭缸体内填充液压油;
    密闭缸体、液压马达、油箱通过油路连接形成液压回路,能量传递装置与第一涡簧机构连接,液压马达与第二涡簧机构连接,第一涡簧机构和第二涡簧机构通过差动行星齿轮系与发电机连接。
  2. 如权利要求1所述的多重缓冲蓄能装置,其特征在于,所述弹性移动装置包括活塞杆、活塞杆头、复位弹簧、活塞、磁轮和活塞永磁体,活塞位于密闭缸体内,磁轮置于活塞内并与活塞杆一端连接,磁轮周向上布置所述的活塞永磁体,活塞杆的另一端依次贯穿密闭缸体、复位弹簧后与活塞杆头连接。
  3. 如权利要求2所述的多重缓冲蓄能装置,其特征在于,所述能量传递装置包括磁动力输出轴、缸底永磁体和隔板,磁动力输出轴一端位于密闭缸体内并在其周向上布置所述的缸底永磁体,磁动力输出轴另一端穿出密闭缸体,隔板设置在密闭缸体内且位于能量传递装置与弹性移动装置之间,缸底永磁体与活塞永磁体相对侧的极性相同。
  4. 如权利要求3所述的多重缓冲蓄能装置,其特征在于,所述活塞永磁体在磁轮周向上成倾斜夹角设置,所述缸底永磁体在磁动力输出轴周向上成倾斜夹角设置,活塞永磁体与缸底永磁体的倾斜夹角相同。
  5. 如权利要求1所述的多重缓冲蓄能装置,其特征在于,所述第一涡簧机构与差动行星齿轮系之间通过齿轮系、链轮机构或带轮机构连接。
  6. 如权利要求3所述的多重缓冲蓄能装置,其特征在于,所述第一涡簧机构和第二涡簧机构均包括涡簧、棘齿轮、棘爪和液压缸,所述液压缸的活塞杆与棘爪铰接,棘爪与棘齿轮相配合,棘齿轮与涡簧通过轴连接。
  7. 如权利要求1所述的多重缓冲蓄能装置,其特征在于,所述多重缓冲蓄能装置还包括飞轮,差动行星齿轮系通过飞轮与发电机连接。
  8. 如权利要求6所述的多重缓冲蓄能装置,其特征在于,所述密闭缸体上设置有进 油口和出油口,进油口和出油口位于隔板与弹性移动装置之间,进油口通过油路与油箱连接,出油口通过两个分支油路分别与液压马达、液压缸连接。
  9. 如权利要求8所述的多重缓冲蓄能装置,其特征在于,所述进油口与油箱连接的油路上设置有进油单向阀,所述出油口与液压马达连接的分支油路上设置有出油单向阀。
  10. 一种如权利要求1-9任一项所述的多重缓冲蓄能装置的工作方法,包括以下步骤,当冲击物体接触到活塞杆头时,活塞杆移动并带动活塞随之运动,活塞挤压液压油使液压油产生压力,同时复位弹簧被压缩;具有压力的液压油通过出油口的一个分支油路控制第一涡簧机构和第二涡簧机构的液压缸,使第一涡簧机构和第二涡簧机构的液压缸活塞杆缩回,液压缸活塞杆缩回的同时带动棘爪转动,使棘爪卡住棘齿轮;
    活塞上的活塞永磁体逐渐靠近缸底永磁体后,在磁力同性相斥的作用下,磁动力输出轴转动并带动第一涡簧机构开始蓄能;液压油被活塞压缩通过出油口流入液压马达,带动液压马达旋转,液压马达带动第二涡簧机构开始蓄能;
    当活塞杆头的冲击消失后,第一涡簧机构和第二涡簧机构的液压缸没有液压油作用,液压缸的活塞杆伸出,使棘爪转动释放棘齿轮,第一涡簧机构和第二涡簧机构的涡簧释放储存的能量,第一涡簧机构和第二涡簧机构通过差动行星齿轮系将能量输出到飞轮,最终经过飞轮将能量输出到发电机。
PCT/CN2017/110365 2017-01-22 2017-11-10 一种多重缓冲蓄能装置及其应用 WO2018133508A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019513105A JP6712361B2 (ja) 2017-01-22 2017-11-10 マルチバッファのエネルギー蓄積装置及びその使用
US16/345,673 US10801475B2 (en) 2017-01-22 2017-11-10 Multi-buffering energy storage device and application thereof
AU2017344368A AU2017344368B2 (en) 2017-01-22 2017-11-10 Multi-buffer energy accumulation apparatus and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710047706.7A CN106762474B (zh) 2017-01-22 2017-01-22 一种多重缓冲蓄能装置及其应用
CN2017100477067 2017-01-22

Publications (1)

Publication Number Publication Date
WO2018133508A1 true WO2018133508A1 (zh) 2018-07-26

Family

ID=58941381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110365 WO2018133508A1 (zh) 2017-01-22 2017-11-10 一种多重缓冲蓄能装置及其应用

Country Status (5)

Country Link
US (1) US10801475B2 (zh)
JP (1) JP6712361B2 (zh)
CN (1) CN106762474B (zh)
AU (1) AU2017344368B2 (zh)
WO (1) WO2018133508A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201603065D0 (en) * 2016-02-23 2016-04-06 Ngps Innovations Ltd Energy storage apparatus
CN106762474B (zh) * 2017-01-22 2018-10-09 山东科技大学 一种多重缓冲蓄能装置及其应用
CN107387341B (zh) * 2017-07-31 2023-07-28 西南交通大学 涡卷弹簧式重力势能回收装置
CN110022028A (zh) * 2018-01-09 2019-07-16 中国石油大学(华东) 一种抽油机电机无用功输出装置
CN108915968B (zh) * 2018-08-16 2023-06-27 刘刚 动力转化装置
CN109374336B (zh) * 2018-11-12 2020-09-25 浙江大学 深渊沉积物无扰动保压取样装置
US10797564B1 (en) * 2018-12-08 2020-10-06 Cornelius I. Griggs Above ground energy resource device that utilizes a vehicle's spinning tire, and is made serviceable by utilizing magnets, pins and brakes
CN109630482B (zh) * 2018-12-14 2020-01-10 中国航空工业集团公司金城南京机电液压工程研究中心 一种弹簧活塞式带单向阀的蓄压器
CN109488536B (zh) * 2019-01-16 2024-04-19 清研(洛阳)先进制造产业研究院 一种风力发电机自适应混合助力启动装置
CN110667364B (zh) * 2019-09-18 2024-05-14 阿尔特汽车技术股份有限公司 具有能量回收装置的悬置系统
CO2019014395A1 (es) * 2019-12-19 2020-06-19 Global Energy G E S A S Máquina para la generación de energía
CN111572306B (zh) * 2020-04-20 2022-09-16 江苏大学 一种基于扭转式机电惯容的横向稳定装置
CN111963902B (zh) * 2020-08-06 2022-06-03 中国石油天然气集团有限公司 一种压力脉动控制系统及方法
CN112158042B (zh) * 2020-10-15 2022-04-01 孙栋 一种电动汽车用多重缓冲装置
CN114438937B (zh) * 2022-01-19 2023-08-04 山东冠县恒良交通设施有限公司 一种安全性强的道路防护栏
CN114622620A (zh) * 2022-03-16 2022-06-14 徐州工业职业技术学院 一种机械式动臂势能回收与再利用系统
CN114768656A (zh) * 2022-06-02 2022-07-22 河北万岁药业有限公司 一种骨科用外敷药剂混合设备
CN115367036B (zh) * 2022-09-15 2024-02-23 重庆荣爵科技有限公司 摩托车车架

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037559A2 (en) * 2007-09-19 2009-03-26 Lorenzo Callegari Vehicular hump for electric energy production
CN102182651A (zh) * 2011-04-28 2011-09-14 同济大学 一种基于压力的新型发电方法
CN203082078U (zh) * 2013-01-23 2013-07-24 蒋鹏 一种模块化制动储能及利用装置
CN103423114A (zh) * 2013-08-29 2013-12-04 哈尔滨工程大学 一种减速带油压发电装置
CN105134520A (zh) * 2015-09-08 2015-12-09 江苏大学 一种公路减速带的发电装置
CN205365963U (zh) * 2016-03-04 2016-07-06 周继春 一种涡簧储能动力装置
CN106224185A (zh) * 2016-08-31 2016-12-14 王怡科 一种蓄能装置
CN106762474A (zh) * 2017-01-22 2017-05-31 山东科技大学 一种多重缓冲蓄能装置及其应用
CN206503679U (zh) * 2017-01-22 2017-09-19 山东科技大学 一种多重缓冲蓄能装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2524005A (en) * 1948-05-27 1950-09-26 Specialties Inc Spring powered electric generator
US3732949A (en) * 1971-06-22 1973-05-15 C Williams Spring drive apparatus and method
US4020923A (en) * 1974-06-19 1977-05-03 Taylor Robert N Energy storage apparatus
US4287428A (en) * 1979-07-27 1981-09-01 James Smith Automatic spring powered battery charging device
JPH03123981U (zh) * 1990-03-30 1991-12-17
JPH06312629A (ja) * 1993-04-28 1994-11-08 Washi Kosan Kk 車輌の再発進あるいは再加速する場合における補助駆動装置
US5590741A (en) * 1995-04-14 1997-01-07 Storms; Wayne W. Spring motor assembly
US5909784A (en) * 1997-11-10 1999-06-08 Best; Theodore O. Spring motor
US6199664B1 (en) * 1998-11-16 2001-03-13 General Electric Company Spring motor for generating constant torque
US20030042807A1 (en) * 2001-08-28 2003-03-06 Alexander Blake System and device to drive generators or alternators to charge batteries in electrically powered vehicles
JP2004068798A (ja) * 2002-08-02 2004-03-04 Takashi Chihara エネルギー発生装置及び発電システム
JP2004112966A (ja) * 2002-09-20 2004-04-08 Sanii Gijutsu Kenkyusho:Kk バッテリ充電機
US7009350B1 (en) * 2004-02-13 2006-03-07 Great Systems, Inc. Energy collection and storage system
US7834471B2 (en) * 2007-12-14 2010-11-16 Criptonic Energy Solutions, Inc. Spring powered electric energy storage system
US8841789B2 (en) * 2011-10-28 2014-09-23 Juan Andujar Hybrid electro magnetic hydro kinetic high pressure propulsion generator
TW201621162A (zh) * 2014-12-09 2016-06-16 ren-li Liao 車用輪壓式發電裝置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037559A2 (en) * 2007-09-19 2009-03-26 Lorenzo Callegari Vehicular hump for electric energy production
CN102182651A (zh) * 2011-04-28 2011-09-14 同济大学 一种基于压力的新型发电方法
CN203082078U (zh) * 2013-01-23 2013-07-24 蒋鹏 一种模块化制动储能及利用装置
CN103423114A (zh) * 2013-08-29 2013-12-04 哈尔滨工程大学 一种减速带油压发电装置
CN105134520A (zh) * 2015-09-08 2015-12-09 江苏大学 一种公路减速带的发电装置
CN205365963U (zh) * 2016-03-04 2016-07-06 周继春 一种涡簧储能动力装置
CN106224185A (zh) * 2016-08-31 2016-12-14 王怡科 一种蓄能装置
CN106762474A (zh) * 2017-01-22 2017-05-31 山东科技大学 一种多重缓冲蓄能装置及其应用
CN206503679U (zh) * 2017-01-22 2017-09-19 山东科技大学 一种多重缓冲蓄能装置

Also Published As

Publication number Publication date
US20190242368A1 (en) 2019-08-08
CN106762474A (zh) 2017-05-31
CN106762474B (zh) 2018-10-09
JP2019518907A (ja) 2019-07-04
AU2017344368B2 (en) 2019-08-22
AU2017344368A1 (en) 2018-08-09
JP6712361B2 (ja) 2020-06-17
US10801475B2 (en) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2018133508A1 (zh) 一种多重缓冲蓄能装置及其应用
US7765804B2 (en) Hydraulic motor using buoyant and gravitational forces to generate kinetic energy
CN201288722Y (zh) 一种混合动力工程机械执行元件的能量回收系统
US20150266549A1 (en) Oscillating Piston-Type Wave Power Generation Method and System
CN206154233U (zh) 一种改进结构的新型打钉枪
WO2018113293A1 (zh) 蓄存和释放机械能的机构
CN102705145A (zh) 适应小波浪发电的波浪能发电系统
CN110118150A (zh) 一种浮力摆与振荡浮子组合式波能转换装置
CN108978773A (zh) 一种挖掘机用多元混合动力系统
CN109228799A (zh) 流体驱动式车胎能量回收组件
CN101463806B (zh) 节能电源装置
CN202954921U (zh) 靠岸式波浪发电装置
CN102518473B (zh) 一种基于涡旋式复合机的压缩空气储能系统
CN106837537A (zh) 水产品冷藏机构
CN206503679U (zh) 一种多重缓冲蓄能装置
CN109970228A (zh) 一种重金属废水处理装置
CN211230706U (zh) 液压式风力发电系统
CN202579021U (zh) 适应小波浪发电的波浪能发电系统
CN108488052A (zh) 能利用水力发电余水动能的泵
CN102290853A (zh) 电动车助力发电机
CN208690987U (zh) 具有振动能量回收功能的减震器
CN2575323Y (zh) 一种风力发电装置
KR20110079929A (ko) 주행하는 자동차의 프레임과 차축 사이에서 발생하는 무용한 운동에너지를 이용하여 발전하는 방법
CN102913416A (zh) 一种机械全桥式循环液气压缩部件及储能系统
CN104728051A (zh) 风车高能压缩物理储能发电系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017344368

Country of ref document: AU

Date of ref document: 20171110

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019513105

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893160

Country of ref document: EP

Kind code of ref document: A1