WO2018131776A1 - 배터리 팩 하우징 및 이를 포함하는 배터리 팩 - Google Patents

배터리 팩 하우징 및 이를 포함하는 배터리 팩 Download PDF

Info

Publication number
WO2018131776A1
WO2018131776A1 PCT/KR2017/011767 KR2017011767W WO2018131776A1 WO 2018131776 A1 WO2018131776 A1 WO 2018131776A1 KR 2017011767 W KR2017011767 W KR 2017011767W WO 2018131776 A1 WO2018131776 A1 WO 2018131776A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow
sidewall
side wall
bottom plate
hole
Prior art date
Application number
PCT/KR2017/011767
Other languages
English (en)
French (fr)
Inventor
안장근
이계연
Original Assignee
삼성에스디아이(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이(주) filed Critical 삼성에스디아이(주)
Priority to EP17891951.0A priority Critical patent/EP3570365A4/en
Priority to US16/475,604 priority patent/US20190312322A1/en
Priority to CN201780081088.6A priority patent/CN110114933B/zh
Publication of WO2018131776A1 publication Critical patent/WO2018131776A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • An embodiment of the present invention relates to a battery pack housing and a battery pack including the same.
  • an electronic device such as a laptop or an electric vehicle uses a battery pack in which a plurality of battery modules are connected in series and / or in parallel as a mobile power source.
  • a separate pipe through which cooling water for protecting the battery module from overheating may pass is formed.
  • An embodiment of the present invention provides a battery pack housing and a battery pack including the same is formed integrally with the cooling water passage.
  • the battery pack housing according to the embodiment of the present invention has a plate shape, the bottom plate is formed in the through-hole penetrating the inner side in a direction parallel to the plate surface, is coupled to one corner of the bottom plate to contact one end of the through hole, A first sidewall formed with a first hollow penetrating the interior along the longitudinal direction thereof and a through hole of the bottom plate and a first communication hole communicating with the first hollow; an opposite side of the bottom plate so as to contact the other end of the through hole; A second sidewall and a first sidewall of the first sidewall and a second sidewall, the second sidewall of which is coupled to an edge and penetrates the inside along the longitudinal direction thereof, and a second communication hole that communicates with the throughhole and the second sidewall; And a blocking member for closing both ends of the second hollow of the second sidewall, wherein coolant is injected into the first hollow or the second hollow.
  • Inlet for the outlet and the outlet for the cooling water may be formed to the outside
  • the plurality of through holes of the bottom plate may be arranged in parallel with each other.
  • the inlet and the outlet are formed on the first sidewall, are arranged spaced apart along the longitudinal direction of the first sidewall, for spatially separating between the inlet and the outlet on the first hollow of the first sidewall
  • the partition plate may be installed, and the inlet and the outlet may be arranged to communicate with some of the plurality of through holes, respectively.
  • the inlet is formed in the first side wall
  • the outlet is formed in the second side wall
  • the first dividing plate for spatially partitioning between any two through holes neighboring on the first hollow of the first side wall
  • a second dividing plate for spatially dividing between two other neighboring through holes on the second hollow of the second side wall, wherein the injection hole is based on one direction perpendicular to the direction in which the through holes are formed.
  • the first partition plate, the second partition plate and the outlet may be arranged in order.
  • some of the plurality of through holes of the bottom plate may be formed to have a different area or shape in cross section perpendicular to the other part and the formed direction thereof.
  • At least one of the bottom plate, the first sidewall and the second sidewall may be manufactured by extrusion molding.
  • it may further include a reinforcing band formed between the first side wall and the second side wall.
  • first side wall and the second side of the bottom plate may further include a third side wall coupled to the other edge is not coupled.
  • the battery pack according to an embodiment of the present invention is a battery module, a plate-shaped, the bottom plate which supports the lower portion of the battery module, penetrating through the inner side in a direction parallel to the plate surface, at one end of the through hole
  • a first hollow coupled to one edge of the bottom plate so as to be in contact, supporting a side surface of the battery module, and communicating first through the interior of the bottom plate and communicating with the through hole of the bottom plate and the first hollow
  • the plurality of through holes of the bottom plate may be arranged in parallel with each other.
  • the inlet and the outlet are formed on the first sidewall, are arranged spaced apart along the longitudinal direction of the first sidewall, for spatially separating between the inlet and the outlet on the first hollow of the first sidewall
  • the partition plate may be installed, and the inlet and the outlet may be arranged to communicate with some of the plurality of through holes, respectively.
  • the inlet is formed in the first side wall
  • the outlet is formed in the second side wall
  • the first dividing plate for spatially partitioning between any two through holes neighboring on the first hollow of the first side wall
  • a second dividing plate for spatially dividing between two other neighboring through holes on the second hollow of the second side wall, wherein the injection hole is based on one direction perpendicular to the direction in which the through holes are formed.
  • the first partition plate, the second partition plate and the outlet may be arranged in order.
  • some of the plurality of through holes of the bottom plate may be formed to have a different area or shape in cross section perpendicular to the other part and the formed direction thereof.
  • At least one of the bottom plate, the first sidewall and the second sidewall may be manufactured by extrusion molding.
  • it may further include a reinforcing band formed between the first side wall and the second side wall.
  • first sidewall and the second sidewall of the bottom plate may further include a third sidewall coupled to the other corner, which is not coupled to support the side surface of the battery module.
  • the embodiment of the present invention provides a battery pack housing in which each component is manufactured by, for example, extrusion molding, in which a cooling water flow path is integrally formed, thereby providing a simple structure and easy to manufacture.
  • FIG. 1 is a perspective view of a battery pack according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a battery pack housing according to an embodiment of the present invention.
  • FIG 3 is a perspective view of a bottom plate of a battery pack housing according to an embodiment of the present invention.
  • FIGS. 4 and 5 are perspective views of first sidewalls of a battery pack housing according to an embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional view taken along the A plane in FIG. 2.
  • FIG. 7 is a cross-sectional view taken along line B-B in FIG. 2.
  • FIG. 10 is a cross-sectional view of a bottom plate of a battery pack housing according to another embodiment of the present invention.
  • first, second, etc. are used herein to describe various members, parts, regions, layers, and / or parts, these members, parts, regions, layers, and / or parts are defined by these terms. It is obvious that not. These terms are only used to distinguish one member, part, region, layer or portion from another region, layer or portion. Accordingly, the first member, part, region, layer or portion, which will be described below, may refer to the second member, component, region, layer or portion without departing from the teachings of the present invention.
  • FIG. 1 is a perspective view of a battery pack P according to an embodiment of the present invention, the shape of the battery module (M) is only schematically represented.
  • 2 is a perspective view of the battery pack housing 100 according to an embodiment of the present invention
  • Figure 3 is a perspective view of the bottom plate 110 of the battery pack housing 100 according to an embodiment of the present invention.
  • 4 and 5 are perspective views of the first side wall 121 of the battery pack housing 100 according to an embodiment of the present invention, and are shown in different directions.
  • 6 is a partial cross-sectional view taken along the A plane in FIG. 2.
  • FIG. 7 is a cross-sectional view taken along the line B-B in FIG. 2, and only the bottom plate 110, the first sidewall 121, the second sidewall 122, and the divider plate 125 are shown.
  • the battery module M is installed on the battery pack housing 100, and the battery pack housing 100 includes a bottom plate 110, a side wall 120, and a closure member 130. And reinforcement stand 140.
  • the bottom plate 110 is formed in a substantially plate shape to support a lower portion of the battery module M.
  • the bottom plate 110 is formed in a substantially rectangular shape. May be formed of circles or other polygons.
  • the case in which the bottom plate 110 is formed as a quadrangle as illustrated in FIG. 3 will be described as an example.
  • the bottom plate 110 is formed with a through hole 110a penetrating through the inner side in a direction parallel to the plate surface from one edge to the opposite edge thereof.
  • the through holes 110a may be formed in plural and arranged in parallel with each other.
  • the through hole 110a may not only serve as a flow path for passing the coolant as described below, but also reduce the overall weight by removing unnecessary portions of the bottom plate 110.
  • the bottom plate 110 may be manufactured by extrusion molding to have the above structure.
  • the through hole 110a is formed along the direction in which the mandrel passes during extrusion.
  • the through-hole 110a may be naturally formed by the mandrel during the extrusion process without having to separately process the hole in the bottom plate 110, thereby reducing manufacturing time or cost.
  • the length of the bottom plate 110 can be easily adjusted by cutting the long extruded object to the required length. Further, by adding the cut objects in a direction perpendicular to the extruded direction, the bottom plate 110 of various widths may be obtained.
  • the side wall 120 is coupled to the edge of the bottom plate 110 to support the side of the battery module (M). If the bottom plate 110 is formed in a quadrangle as described above, four side walls 120 may be provided in total, and may be coupled to each corner of the quadrangle.
  • each sidewall 120 is referred to as a first sidewall 121, a second sidewall 122, a third sidewall 123, and a fourth sidewall 124.
  • the first sidewall 121 is formed with a first hollow 121a penetrating therein along the length direction.
  • the first hollow 121a may not only serve as a flow path for passing the cooling water, but also reduce weight as a whole by removing unnecessary portions of the bottom plate 110.
  • the first side wall 121 has a double wall structure, which prevents a phenomenon in which the inner wall is also deformed when the outer wall is deformed due to an impact from the outside.
  • the battery module M can be protected more effectively.
  • the first side wall 121 may also be manufactured by extrusion molding to have the above structure.
  • the first hollow 121a may be formed along the direction in which the mandrel passes during extrusion.
  • the first side wall 121 is coupled to one edge of the bottom plate 110, and is coupled to contact one end of the through hole 110a of the bottom plate 110.
  • a first communication hole 121b communicating with the through hole 110a and the first hollow 121a is formed in the first side wall 121.
  • a plurality of first communication holes 121b may also be formed to be disposed at each point where the plurality of through holes 110a are positioned, and a plurality of through holes 110a may be provided. It may be placed only at the point where some of them are located.
  • all the through holes 110a communicate with the first hollow 121a to serve as a coolant flow path.
  • only a part of the through hole 110a communicates with the first hollow 121a to serve as a coolant flow path, and one end of the remaining through hole 110a is blocked by the first side wall 121. This will only serve as a lightweight.
  • a coupling guide 121c may be formed on the first sidewall 121 to increase the assemblability by defining a point at which the bottom plate 110 is coupled.
  • the second sidewall 122 is manufactured by extrusion molding, and thus has a structure in which a second hollow 122a penetrating the inside is formed along the longitudinal direction.
  • the second side wall 122 is coupled to the opposite edge of the bottom plate 110 so as to contact the other end of the through hole 110a of the bottom plate 110, and connects the through hole 110a and the second hollow 122a to each other.
  • a second communication hole 122b is formed in communication.
  • both ends of the first hollow 121a of the first sidewall 121 and the second hollow 122a of the second sidewall 122 are closed.
  • This may be achieved by combining a separate blocking member 130 as shown in Figure 2, it may be made by welding both ends.
  • the third sidewall 123 and the fourth sidewall 124 may be coupled to block both ends of the first hollow 121a and the second hollow 122a, respectively. That is, the first sidewall 121 and the second sidewall 122 are disposed between the third sidewall 123 and the fourth sidewall 124, respectively, so that both ends of the first hollow 121a and the second hollow 122a are disposed. It may be coupled to contact the third side wall 123 and the fourth side wall 124, respectively. In this case, the third sidewall 123 and the fourth sidewall 124 may take the role of the blocking member 130.
  • an inlet I for injecting coolant from the outside into the first hollow 121a or the second hollow 122a and an outlet for discharging the coolant to the outside on the first sidewall 121 or the second sidewall 122. (O) is formed.
  • FIG. 7 illustrates a case in which both the injection hole I and the discharge hole O are formed in the first side wall 121.
  • the inlet I and the outlet O are spaced apart along the longitudinal direction of the first sidewall 121.
  • a splitter plate 125 may be installed on the first hollow 121a of the first sidewall 121 to spatially separate the inlet I and the outlet O.
  • the cooling plate is injected through the injection hole I to circulate on the first hollow 121a, the through hole 110a, and the second hollow 122a, and then discharged through the discharge hole O.
  • the partition plate 125 May be arranged such that the inlet I and the outlet O can communicate with some of the plurality of through holes 110a, respectively.
  • the coolant flows from the region of the injection hole I side of the first hollow 121a divided by the splitter plate 125 to the second hollow 122a along a part of the through hole 110a communicating therewith. It flows again to the area of the discharge port O side of the two areas of the first hollow 121a along the remaining through hole 110a, and finally discharged through the discharge port O.
  • the partition plate 125 by changing only the number and position of the partition plate 125, it is also possible to easily modify the form in which the coolant flows as illustrated in FIG.
  • two split plates 125 are installed on the first hollow 121a, and one split plate is installed on the second hollow 122a, but one direction perpendicular to the direction in which the through holes 110a are formed.
  • the dividing plate 125 on the second hollow 122a is disposed between the two dividing plates 125 on the first hollow 121a.
  • the flow path of the coolant may be said to be approximately M-shaped.
  • the injection hole I is formed in the first side wall 121
  • the discharge hole O is formed in the second side wall 122, so that the partition plate 125 is formed in the first hollow 121 a. It may be installed on the and second hollow 122a, respectively.
  • the outlets O are arranged in order. However, since the cooling water is injected through the inlet I and circulates on the first hollow 121a, the through hole 110a, and the second hollow 122a, the first hollow may be discharged through the outlet O.
  • the split plate 125 on 121a must be disposed between any two neighboring through holes 110a, and the split plate 125 on the second hollow 122a must be disposed between two other neighboring through holes 110a. something to do. Then, as shown by the arrows in Fig. 9, the flow path of the coolant is approximately N-shaped.
  • the shape of the cooling water flow can be variously defined, and further examples will be omitted.
  • the third sidewall 123 and the fourth sidewall 124 are respectively coupled to the remaining corners of the bottom plate 110 where the first sidewall 121 and the second sidewall 122 are not coupled. . Since the third side wall 123 and the fourth side wall 124 are also manufactured by extrusion molding, and having a double wall structure, as described above, the battery module M may be effectively protected.
  • first sidewall 121, the second sidewall 122, the third sidewall 123, and the fourth sidewall 124 may be manufactured by cutting each length into a predetermined length from one long extruded object. That is, if only the first communication hole 121b and the second communication hole 122b are further processed to the cut object, the first side wall 121 and the second side wall 122 can be used, respectively. It may be used as the third side wall 123 and the fourth side wall 124, respectively.
  • the reinforcement stand 140 is formed between the side walls 120 to reinforce its structural strength.
  • the reinforcing stand 140 is formed in FIG. 2 between the first sidewall 121 and the second sidewall 122 and between the third sidewall 123 and the fourth sidewall 124, the battery module Depending on the aspect in which M is disposed, it may be formed, for example, between the first sidewall 121 and the third sidewall 123.
  • FIG. 10 is a cross-sectional view of a bottom plate 210 of a battery pack housing according to another embodiment of the present invention.
  • the plurality of through holes 210a of the bottom plate 210 are formed in different areas or shapes.
  • the through-hole 210a is formed to exchange heat over a larger area toward the downstream side. M) can be cooled to a more uniform level.
  • the area and shape of the through hole 210a can also be easily formed by differently applying the area or shape of the mandrel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명의 실시예는 배터리 팩 하우징 및 이를 포함하는 배터리 팩에 관한 것으로, 해결하고자 하는 기술적 과제는 냉각수용 유로가 일체로 형성되는 배터리 팩 하우징 및 이를 포함하는 배터리 팩을 제공하는 데 있다. 이를 위해 본 발명은 판 형상으로, 판면에 나란한 방향을 따라 내부를 관통하는 관통 홀이 형성되는 바닥 판, 상기 관통 홀의 일단에 접하도록 상기 바닥 판의 일 모서리에 결합되며, 그 길이 방향을 따라 내부를 관통하는 제1 중공 및 상기 바닥 판의 관통 홀과 상기 제1 중공을 연통하는 제1 연통 홀이 형성되는 제1 측벽, 상기 관통 홀의 타단에 접하도록 상기 바닥 판의 반대쪽 모서리에 결합되며, 그 길이 방향을 따라 내부를 관통하는 제2 중공 및 상기 관통 홀과 상기 제2 중공을 연통하는 제2 연통 홀이 형성되는 제2 측벽 및 상기 제1 측벽의 제1 중공 및 상기 제2 측벽의 제2 중공의 양단을 각각 폐색하기 위한 폐색 부재를 포함하며, 상기 제1 측벽 또는 상기 제2 측벽에는 상기 제1 중공 또는 상기 제2 중공으로 냉각수가 주입되기 위한 주입구 및 상기 냉각수가 외부로 배출되기 위한 배출구가 형성되는 배터리 팩 하우징을 개시한다.

Description

배터리 팩 하우징 및 이를 포함하는 배터리 팩
본 발명의 실시예는 배터리 팩 하우징 및 이를 포함하는 배터리 팩에 관한 것이다.
일반적으로 랩탑이나 전기 자동차 등과 같은 전자 장치는 이동식 전원으로 다수 개의 배터리 모듈이 직렬 및/또는 병렬로 연결된 배터리 팩을 이용한다. 이러한 배터리 팩의 하우징에는 과열로부터 배터리 모듈을 보호하기 위한 냉각수가 지나갈 수 있는 별도의 파이프가 매립되어 형성되고 있다.
이러한 발명의 배경이 되는 기술에 개시된 상술한 정보는 본 발명의 배경에 대한 이해도를 향상시키기 위한 것뿐이며, 따라서 종래 기술을 구성하지 않는 정보를 포함할 수도 있다.
본 발명의 실시예는 냉각수용 유로가 일체로 형성되는 배터리 팩 하우징 및 이를 포함하는 배터리 팩을 제공한다.
본 발명의 실시예에 따른 배터리 팩 하우징은 판 형상으로, 판면에 나란한 방향을 따라 내부를 관통하는 관통 홀이 형성되는 바닥 판, 상기 관통 홀의 일단에 접하도록 상기 바닥 판의 일 모서리에 결합되며, 그 길이 방향을 따라 내부를 관통하는 제1 중공 및 상기 바닥 판의 관통 홀과 상기 제1 중공을 연통하는 제1 연통 홀이 형성되는 제1 측벽, 상기 관통 홀의 타단에 접하도록 상기 바닥 판의 반대쪽 모서리에 결합되며, 그 길이 방향을 따라 내부를 관통하는 제2 중공 및 상기 관통 홀과 상기 제2 중공을 연통하는 제2 연통 홀이 형성되는 제2 측벽 및 상기 제1 측벽의 제1 중공 및 상기 제2 측벽의 제2 중공의 양단을 각각 폐색하기 위한 폐색 부재를 포함하며, 상기 제1 측벽 또는 상기 제2 측벽에는 상기 제1 중공 또는 상기 제2 중공으로 냉각수가 주입되기 위한 주입구 및 상기 냉각수가 외부로 배출되기 위한 배출구가 형성될 수 있다
또한 상기 바닥 판의 관통 홀은 복수 개로 형성되어, 서로 나란하게 배열될 수 있다.
또한 상기 주입구 및 상기 배출구는 상기 제1 측벽에 형성되어, 상기 제1 측벽의 길이 방향을 따라 이격되게 배열되고, 상기 제1 측벽의 제1 중공 상에서 상기 주입구와 상기 배출구 사이를 공간적으로 분리하기 위한 분할 판이 설치되되, 상기 주입구 및 상기 배출구가 상기 복수 개의 관통 홀 중 일부와 각각 연통하도록 배치될 수 있다.
또한 상기 주입구는 상기 제1 측벽에 형성되고, 상기 배출구는 상기 제2 측벽에 형성되며, 상기 제1 측벽의 제1 중공 상에서 이웃하는 임의의 두 관통 홀 사이를 공간적으로 분할하기 위한 제1 분할 판 및 상기 제2 측벽의 제2 중공 상에서 이웃하는 다른 두 관통 홀 사이를 공간적으로 분할하기 위한 제2 분할 판이 설치되되, 상기 관통 홀이 형성된 방향에 수직인 일 방향을 기준으로 할 때, 상기 주입구, 상기 제1 분할 판, 상기 제2 분할 판 및 상기 배출구 순서대로 배열될 수 있다.
또한 상기 바닥 판의 복수 개의 관통 홀 중 일부는 다른 일부와 그 형성된 방향에 수직인 단면의 면적 또는 형상이 다르게 형성될 수 있다.
또한 상기 바닥 판, 상기 제1 측벽 및 상기 제2 측벽 중 적어도 어느 하나는 압출 성형으로 제작될 수 있다.
또한 상기 제1 측벽과 상기 제2 측벽 사이에 걸쳐 형성되는 보강 대를 더 포함할 수 있다.
또한 상기 바닥 판 중 상기 제1 측벽과 상기 제2 측벽이 결합되지 않은 나머지 모서리에 결합되는 제3 측벽을 더 포함할 수 있다.
한편 본 발명의 실시예에 따른 배터리 팩은 배터리 모듈, 판 형상으로, 상기 배터리 모듈의 하부를 받치며, 판면에 나란한 방향을 따라 내부를 관통하는 관통 홀이 형성되는 바닥 판, 상기 관통 홀의 일단에 접하도록 상기 바닥 판의 일 모서리에 결합되어, 상기 배터리 모듈의 측면을 지지하며, 그 길이 방향을 따라 내부를 관통하는 제1 중공 및 상기 바닥 판의 관통 홀과 상기 제1 중공을 연통하는 제1 연통 홀이 형성되는 제1 측벽, 상기 관통 홀의 타단에 접하도록 상기 바닥 판의 반대쪽 모서리에 결합되어, 상기 배터리 모듈의 측면을 지지하며, 그 길이 방향을 따라 내부를 관통하는 제2 중공 및 상기 관통 홀과 상기 제2 중공을 연통하는 제2 연통 홀이 형성되는 제2 측벽 및 상기 제1 측벽의 제1 중공 및 상기 제2 측벽의 제2 중공의 양단을 각각 폐색하기 위한 폐색 부재를 포함하며, 상기 제1 측벽 또는 상기 제2 측벽에는 상기 제1 중공 또는 상기 제2 중공으로 냉각수가 주입되기 위한 주입구 및 상기 냉각수가 외부로 배출되기 위한 배출구가 형성될 수 있다.
또한 상기 바닥 판의 관통 홀은 복수 개로 형성되어, 서로 나란하게 배열될 수 있다.
또한 상기 주입구 및 상기 배출구는 상기 제1 측벽에 형성되어, 상기 제1 측벽의 길이 방향을 따라 이격되게 배열되고, 상기 제1 측벽의 제1 중공 상에서 상기 주입구와 상기 배출구 사이를 공간적으로 분리하기 위한 분할 판이 설치되되, 상기 주입구 및 상기 배출구가 상기 복수 개의 관통 홀 중 일부와 각각 연통하도록 배치될 수 있다.
또한 상기 주입구는 상기 제1 측벽에 형성되고, 상기 배출구는 상기 제2 측벽에 형성되며, 상기 제1 측벽의 제1 중공 상에서 이웃하는 임의의 두 관통 홀 사이를 공간적으로 분할하기 위한 제1 분할 판 및 상기 제2 측벽의 제2 중공 상에서 이웃하는 다른 두 관통 홀 사이를 공간적으로 분할하기 위한 제2 분할 판이 설치되되, 상기 관통 홀이 형성된 방향에 수직인 일 방향을 기준으로 할 때, 상기 주입구, 상기 제1 분할 판, 상기 제2 분할 판 및 상기 배출구 순서대로 배열될 수 있다.
또한 상기 바닥 판의 복수 개의 관통 홀 중 일부는 다른 일부와 그 형성된 방향에 수직인 단면의 면적 또는 형상이 다르게 형성될 수 있다.
또한 상기 바닥 판, 상기 제1 측벽 및 상기 제2 측벽 중 적어도 어느 하나는 압출 성형으로 제작될 수 있다.
또한 상기 제1 측벽과 상기 제2 측벽 사이에 걸쳐 형성되는 보강 대를 더 포함할 수 있다.
또한 상기 바닥 판 중 상기 제1 측벽과 상기 제2 측벽이 결합되지 않은 나머지 모서리에 결합되어, 상기 배터리 모듈의 측면을 함께 지지하는 제3 측벽을 더 포함할 수 있다.
본 발명의 실시예는 각 구성 요소가 예컨대 압출 성형으로 제작됨으로써 그 내부에 냉각수용 유로가 일체로 형성되어 구조가 단순하고 제조도 용이한 배터리 팩 하우징을 제공한다.
또한 그 유로 상에 분할 판을 설치함으로써 다양한 형태의 유로를 구현할 수 있다.
또한 그 유로의 단면을 서로 다르게 형성함으로써 전체적으로 보다 균일한 냉각 효과를 얻을 수도 있다.
도 1은 본 발명의 일 실시예에 따른 배터리 팩의 사시도이다.
도 2는 본 발명의 일 실시예에 따른 배터리 팩 하우징의 사시도이다.
도 3은 본 발명의 일 실시예에 따른 배터리 팩 하우징의 바닥 판의 사시도이다.
도 4와 5는 본 발명의 일 실시예에 따른 배터리 팩 하우징의 제1 측벽의 사시도이다.
도 6은 도 2에서 A 평면에 의한 부분 단면도이다.
도 7은 도 2에서 B-B 선에 의한 단면도이다.
도 8과 9는 변형된 냉각수의 유로에 대한 예시이다.
도 10은 본 발명의 다른 실시예에 따른 배터리 팩 하우징의 바닥 판의 단면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.
또한, 이하의 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다. 또한, 본 명세서에서 "연결된다"라는 의미는 A 부재와 B 부재가 직접 연결되는 경우뿐만 아니라, A 부재와 B 부재의 사이에 C 부재가 개재되어 A 부재와 B 부재가 간접 연결되는 경우도 의미한다.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise, include)" 및/또는 "포함하는(comprising, including)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및 /또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
본 명세서에서 제1, 제2 등의 용어가 다양한 부재, 부품, 영역, 층들 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들 및/또는 부분들은 이들 용어에 의해 한정되어서는 안 됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역, 층 또는 부분을 다른 영역, 층 또는 부분과 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제1부재, 부품, 영역, 층 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제2부재, 부품, 영역, 층 또는 부분을 지칭할 수 있다.
"하부(beneath)", "아래(below)", "낮은(lower)", "상부(above)", "위(upper)"와 같은 공간에 관련된 용어가 도면에 도시된 한 요소 또는 특징과 다른 요소 또는 특징의 용이한 이해를 위해 이용될 수 있다. 이러한 공간에 관련된 용어는 본 발명의 다양한 공정 상태 또는 사용 상태에 따라 본 발명의 용이한 이해를 위한 것이며, 본 발명을 한정하기 위한 것은 아니다. 예를 들어, 도면의 요소 또는 특징이 뒤집어지면, "하부" 또는 "아래"로 설명된 요소 또는 특징은 "상부" 또는 "위에"로 된다. 따라서, "아래"는 "상부" 또는 "아래"를 포괄하는 개념이다.
도 1은 본 발명의 일 실시예에 따른 배터리 팩(P)의 사시도로서, 배터리 모듈(M)의 형상은 개략적으로만 표현되어 있다. 또한 도 2는 본 발명의 일 실시예에 따른 배터리 팩 하우징(100)의 사시도이고, 도 3은 본 발명의 일 실시예에 따른 배터리 팩 하우징(100)의 바닥 판(110)의 사시도이다. 또한 도 4와 5는 본 발명의 일 실시예에 따른 배터리 팩 하우징(100)의 제1 측벽(121)의 사시도로서, 서로 다른 방향에서 바라본 상태로 나타나 있다. 또한 도 6은 도 2에서 A 평면에 의한 부분 단면도이다. 또한 도 7은 도 2에서 B-B 선에 의한 단면도로서, 바닥 판(110), 제1 측벽(121), 제2 측벽(122) 및 분할 판(125)만 도시되어 있다.
단 도면에서 각 구성 요소들은 이해의 편의상 그 크기나 비율이 일부 과장되게 나타나 있으며, 통상의 기술자라면 개별적인 실시 조건에 따라 적절한 크기나 비율로 변형할 수 있음이 자명할 것이다.
먼저 도 1과 2를 참조하면, 배터리 모듈(M)은 배터리 팩 하우징(100) 상에 설치되는데, 패터리 팩 하우징(100)은 바닥 판(110), 측벽(120), 폐색 부재(130) 및 보강 대(140)를 포함한다.
보다 구체적으로 도 3을 참조하면, 바닥 판(110)은 대략 판 형상으로 형성되어, 배터리 모듈(M)의 하부를 받친다. 배터리 모듈(M)이 바닥 판(110) 상에 배치되는 일반적인 양상이나 배터리 팩(P)의 전체적인 공간적 활용도 등을 고려할 때, 바닥 판(110)이 실질적인 사각형으로 형성되는 것이 바람직하겠지만, 필요에 따라서는 원형이나 그밖에 다른 다각형으로 형성될 수도 있을 것이다. 단 이하에서는 바닥 판(110)이 도 3에 도시된 바와 같이 사각형으로 형성되는 경우를 예로 들어 설명하기로 한다.
바닥 판(110)에는 일 모서리에서부터 그 반대쪽 모서리까지 판면에 나란한 방향을 따라 내부를 관통하는 관통 홀(110a)이 형성된다. 관통 홀(110a)은 복수 개로 형성되어, 서로 평행하게 배열될 수 있다. 이러한 관통 홀(110a)은 후술할 바와 같이 냉각수가 지나가기 위한 유로의 역할을 할 수 있을 뿐만 아니라, 바닥 판(110) 중 불필요한 부분을 제거함으로써, 전체적으로 경량화하는 역할도 할 수 있다.
특히 바닥 판(110)은 위와 같은 구조를 갖기 위해 압출 성형으로 제작될 수 있다. 이 경우 압출 성형 시 맨드릴이 지나간 자리에 그 압출되는 방향을 따라 관통 홀(110a)이 형성될 것이다.
이에 의하면 바닥 판(110)에 별도로 홀을 가공할 필요 없이, 압출되는 과정에서 상기 맨드릴에 의해 자연적으로 관통 홀(110a)이 형성될 수 있으므로, 제작 시간이나 비용 등이 절감된다. 또한 길게 압출된 대상을 필요한 길이로 절단해 나감으로써, 바닥 판(110)의 길이를 용이하게 조절할 수 있다. 나아가 그 절단된 대상들을 압출된 방향에 수직인 방향으로 덧붙여 나감으로써, 다양한 너비의 바닥 판(110)을 얻을 수도 있다.
측벽(120)은 바닥 판(110)의 모서리에 결합되어, 배터리 모듈(M)의 측면을 지지한다. 만약 바닥 판(110)이 앞서 언급한 바와 같이 사각형으로 형성된다면, 측벽(120)은 총 네 개로 구비되어, 그 사각형의 모서리마다 각각 결합될 수 있다. 이하에서는 편의상 각 측벽(120)들을 제1 측벽(121), 제2 측벽(122), 제3 측벽(123) 및 제4 측벽(124)이라 한다.
보다 구체적으로 도 4 내지 6을 참조하면, 제1 측벽(121)에는 길이 방향을 따라 내부를 관통하는 제1 중공(121a)이 형성된다. 이러한 제1 중공(121a)도 후술할 바와 같이 냉각수가 지나가기 위한 유로의 역할을 할 수 있을 뿐만 아니라, 바닥 판(110) 중 불필요한 부분을 제거함으로써, 전체적으로 경량화하는 역할도 할 수 있다. 나아가 이처럼 중공이 형성된 결과로서, 제1 측벽(121)은 이중벽의 구조를 갖게 되는데, 이는 외부로부터 충격을 받아 그 외측의 벽이 변형될 때, 내측의 벽도 함께 변형되는 현상을 일정 부분 방지함으로써, 배터리 모듈(M)을 보다 효과적으로 보호할 수 있다.
제1 측벽(121) 역시 위와 같은 구조를 갖기 위해 압출 성형으로 제작될 수 있다. 이 경우 압출 성형 시 맨드릴이 지나간 자리에 그 압출되는 방향을 따라 제1 중공(121a)이 형성될 것이다.
제1 측벽(121)은 바닥 판(110)의 일 모서리에 결합되는데, 바닥 판(110)의 관통 홀(110a)의 일단에 접하도록 결합된다. 이때 제1 측벽(121)에는 관통 홀(110a)과 제1 중공(121a)을 연통하는 제1 연통 홀(121b)이 형성된다. 관통 홀(110a)이 복수 개로 형성될 경우, 제1 연통 홀(121b)도 복수 개로 형성되어, 복수 개의 관통 홀(110a)이 위치하는 각 지점마다 배치될 수도 있고, 복수 개의 관통 홀(110a) 중 일부가 위치하는 지점에만 배치될 수도 있다. 전자의 경우에는 모든 관통 홀(110a)이 제1 중공(121a)과 연통하여, 냉각수의 유로로 역할을 하게 될 것이다. 반면 후자의 경우에는 그 일부 관통 홀(110a)만 제1 중공(121a)과 연통하여 냉각수의 유로로 역할을 하고, 나머지 관통 홀(110a)은 제1 측벽(121)에 의해 일단이 폐색되어 있기 때문에 단지 경량화의 역할을 하게 될 것이다.
또한 제1 측벽(121)에는 바닥 판(110)이 결합되는 지점을 한정함으로써, 조립성을 높이기 위한 결합 가이드(121c)가 형성될 수 있다.
제2 측벽(122)에도 제1 측벽(121)과 마찬가지로 압출 성형으로 제작됨으로써, 길이 방향을 따라 내부를 관통하는 제2 중공(122a)이 형성되는 구조를 갖는다. 또한 제2 측벽(122)은 바닥 판(110)의 관통 홀(110a)의 타단에 접하도록, 바닥 판(110)의 반대쪽 모서리에 결합되며, 관통 홀(110a)과 제2 중공(122a)을 연통하는 제2 연통 홀(122b)이 형성된다. 그밖에 사항은 앞서 제1 측벽(121)을 통해 설명한 바와 실질적으로 동일하므로, 중복되는 설명은 생략하기로 한다.
한편 제1 측벽(121)의 제1 중공(121a)과 제2 측벽(122)의 제2 중공(122a)의 양단은 각각 폐색된다. 이는 도 2에 도시된 바와 같이 별도의 폐색 부재(130)가 결합됨으로써 이루어질 수도 있고, 그 양단이 용접됨으로써 이루어질 수도 있다. 또는 제3 측벽(123)과 제4 측벽(124)이 제1 중공(121a)과 제2 중공(122a)의 양단을 각각 막도록 결합됨으로써 이루어질 수도 있다. 즉 제1 측벽(121)과 제2 측벽(122)이 제3 측벽(123)과 제4 측벽(124) 사이에 각각 배치되어, 제1 중공(121a)과 제2 중공(122a)의 양단이 제3 측벽(123)과 제4 측벽(124)에 각각 접하도록 결합될 수 있다. 이 경우에는 제3 측벽(123)과 제4 측벽(124)이 폐색 부재(130)의 역할을 대신하게 될 것이다.
또한 제1 측벽(121)이나 제2 측벽(122)에는 외부로부터 제1 중공(121a)이나 제2 중공(122a)으로 냉각수를 주입하기 위한 주입구(I)와 그 냉각수를 외부로 배출하기 위한 배출구(O)가 형성된다.
먼저 도 7에는 주입구(I)와 배출구(O) 모두 제1 측벽(121)에 형성된 경우가 예시되어 있다. 도 7을 참조하면, 주입구(I)와 배출구(O)는 제1 측벽(121)의 길이 방향을 따라 이격되게 배열된다. 이때 제1 측벽(121)의 제1 중공(121a) 상에는 그 주입구(I)와 배출구(O) 사이를 공간적으로 분리하는 분할 판(125)이 설치될 수 있다. 단 냉각수가 주입구(I)를 통해 주입되어 제1 중공(121a), 관통 홀(110a) 및 제2 중공(122a) 상을 순환한 후 배출구(O)를 통해 배출될 수 있도록, 분할 판(125)은 주입구(I)와 배출구(O)가 복수 개의 관통 홀(110a) 중 일부와 각각 연통할 수 있도록 배치되어야 할 것이다.
이 경우 냉각수는 분할 판(125)에 의해 분할된 제1 중공(121a)의 두 영역 중 주입구(I) 측의 영역으로부터 그와 연통하는 일부 관통 홀(110a)을 따라 제2 중공(122a)으로 흐르고, 다시 그 나머지 관통 홀(110a)을 따라 제1 중공(121a)의 두 영역 중 배출구(O) 측의 영역으로 흘러, 최종적으로 배출구(O)를 통해 배출된다.
여기서 분할 판(125)의 개수와 위치만 변경함으로써, 도 8에 예시된 바와 같이 냉각수가 유동하는 형태를 용이하게 변형할 수도 있다. 도 8에서는 제1 중공(121a) 상에 두 개의 분할 판(125)이 설치되고, 제2 중공(122a) 상에 한 개의 분할 판이 설치되되, 관통 홀(110a)이 형성된 방향에 수직인 일 방향을 기준으로 볼 때, 제2 중공(122a) 상의 분할 판(125)이 제1 중공(121a) 상의 두 개의 분할 판(125) 사이에 배치되어 있다. 앞서 도 7을 참조하여 설명한 경우에서 냉각수의 유로가 대략 U자 형으로 구현되었다면, 본 경우에서는 냉각수의 유로가 대략 M자 형으로 구현된다고 말할 수 있다.
물론 도 9에 예시된 바와 같이 주입구(I)는 제1 측벽(121)에 형성되고, 배출구(O)는 제2 측벽(122)에 형성되어, 분할 판(125)이 제1 중공(121a)과 제2 중공(122a) 상에 각각 설치될 수도 있다. 이 경우 관통 홀(110a)이 형성된 방향에 수직인 일 방향을 기준으로 볼 때, 주입구(I), 제1 중공(121a) 상의 분할 판(125), 제2 중공(122a) 상의 분할 판(125), 배출구(O)가 순서대로 배열된다. 단 냉각수가 주입구(I)를 통해 주입되어 제1 중공(121a), 관통 홀(110a) 및 제2 중공(122a) 상을 순환한 후 배출구(O)를 통해 배출될 수 있도록, 제1 중공(121a) 상의 분할 판(125)은 이웃하는 임의의 두 관통 홀(110a) 사이에 배치되고, 제2 중공(122a) 상의 분할 판(125)은 이웃하는 다른 두 관통 홀(110a) 사이에 배치되어야 할 것이다. 그러면 이제는 도 9에서 화살표로 표시한 바와 같이 냉각수의 유로가 대략 N자 형으로 구현된다.
그밖에도 분할 판(125)의 개수와 위치만 더 변경함으로써, 냉각수가 유동하는 형태를 얼마든지 다양하게 정의할 수 있으며, 더 이상의 예시는 생략하기로 한다.
다시 도 2를 참조하면 제3 측벽(123)과 제4 측벽(124)은 바닥 판(110) 중 제1 측벽(121)과 제2 측벽(122)이 결합되어 있지 않은 나머지 모서리에 각각 결합된다. 제3 측벽(123)과 제4 측벽(124)도 압출 성형으로 제작되어, 이중벽의 구조를 가짐으로써, 앞서 언급한 바와 같이 배터리 모듈(M)을 효과적으로 보호할 수 있다.
특히 제1 측벽(121), 제2 측벽(122), 제3 측벽(123) 및 제4 측벽(124)은 하나의 길게 압출된 대상으로부터 정해진 길이로 각각 절단됨으로써 제작될 수 있다. 즉 그 절단된 대상에 제1 연통 홀(121b)과 제2 연통 홀(122b)만 더 가공하면 제1 측벽(121)과 제2 측벽(122)으로 각각 사용할 수 있고, 다른 홀을 가공하지 않으면 제3 측벽(123)과 제4 측벽(124)으로 각각 사용할 수 있을 것이다.
한편 보강 대(140)는 측벽(120)들 사이에 걸쳐 형성되어, 그 구조적인 강도를 보강하는 역할을 한다. 비록 도 2에는 보강 대(140)가 제1 측벽(121)과 제2 측벽(122) 사이에 걸쳐, 그리고 제3 측벽(123)과 제4 측벽(124) 사이에 걸쳐 형성되어 있으나, 배터리 모듈(M)이 배치되는 양상에 따라, 예컨대 제1 측벽(121)과 제3 측벽(123) 사이에 걸쳐 형성될 수도 있을 것이다.
도 10은 본 발명의 다른 실시예에 따른 배터리 팩 하우징의 바닥 판(210)의 단면도이다.
도 10을 참조하면 바닥 판(210)의 복수 개의 관통 홀(210a)은 각기 다른 면적이나 형상으로 형성된다. 일반적으로 냉각수는 하류 측으로 갈수록 배터리 모듈(M)로부터 전달받은 열에 의해 그 온도가 높아지므로, 하류 측으로 갈수록 관통 홀(210a)이 더 넓은 면적에 걸쳐 열을 교환할 수 있도록 형성된다면, 전체적인 배터리 모듈(M)을 보다 균일한 수준으로 냉각할 수 있게 된다.
이러한 관통 홀(210a)의 면적이나 형상도 바닥 판을 압출 성형으로 제작할 경우, 그 맨드릴의 면적이나 형상을 각기 다르게 적용함으로써, 용이하게 형성할 수 있다.
그밖에 구성은 본 발명의 일 실시예에 따른 배터리 팩 하우징(100)과 동일하므로, 추가적인 설명은 생략하기로 한다.
이상에서 설명한 것은 본 발명에 따른 이차전지를 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.

Claims (16)

  1. 판 형상으로, 판면에 나란한 방향을 따라 내부를 관통하는 관통 홀이 형성되는 바닥 판,
    상기 관통 홀의 일단에 접하도록 상기 바닥 판의 일 모서리에 결합되며, 그 길이 방향을 따라 내부를 관통하는 제1 중공 및 상기 바닥 판의 관통 홀과 상기 제1 중공을 연통하는 제1 연통 홀이 형성되는 제1 측벽,
    상기 관통 홀의 타단에 접하도록 상기 바닥 판의 반대쪽 모서리에 결합되며, 그 길이 방향을 따라 내부를 관통하는 제2 중공 및 상기 관통 홀과 상기 제2 중공을 연통하는 제2 연통 홀이 형성되는 제2 측벽 및
    상기 제1 측벽의 제1 중공 및 상기 제2 측벽의 제2 중공의 양단을 각각 폐색하기 위한 폐색 부재를 포함하며,
    상기 제1 측벽 또는 상기 제2 측벽에는 상기 제1 중공 또는 상기 제2 중공으로 냉각수가 주입되기 위한 주입구 및 상기 냉각수가 외부로 배출되기 위한 배출구가 형성되는 배터리 팩 하우징.
  2. 제1항에 있어서,
    상기 바닥 판의 관통 홀은 복수 개로 형성되어, 서로 나란하게 배열되는 배터리 팩 하우징.
  3. 제2항에 있어서,
    상기 주입구 및 상기 배출구는 상기 제1 측벽에 형성되어, 상기 제1 측벽의 길이 방향을 따라 이격되게 배열되고,
    상기 제1 측벽의 제1 중공 상에서 상기 주입구와 상기 배출구 사이를 공간적으로 분리하기 위한 분할 판이 설치되되, 상기 주입구 및 상기 배출구가 상기 복수 개의 관통 홀 중 일부와 각각 연통하도록 배치되는 배터리 팩 하우징.
  4. 제2항에 있어서,
    상기 주입구는 상기 제1 측벽에 형성되고, 상기 배출구는 상기 제2 측벽에 형성되며,
    상기 제1 측벽의 제1 중공 상에서 이웃하는 임의의 두 관통 홀 사이를 공간적으로 분할하기 위한 제1 분할 판 및 상기 제2 측벽의 제2 중공 상에서 이웃하는 다른 두 관통 홀 사이를 공간적으로 분할하기 위한 제2 분할 판이 설치되되,
    상기 관통 홀이 형성된 방향에 수직인 일 방향을 기준으로 할 때, 상기 주입구, 상기 제1 분할 판, 상기 제2 분할 판 및 상기 배출구 순서대로 배열되는 배터리 팩 하우징.
  5. 제2항에 있어서,
    상기 바닥 판의 복수 개의 관통 홀 중 일부는 다른 일부와 그 형성된 방향에 수직인 단면의 면적 또는 형상이 다르게 형성되는 배터리 팩 하우징.
  6. 제1항에 있어서,
    상기 바닥 판, 상기 제1 측벽 및 상기 제2 측벽 중 적어도 어느 하나는 압출 성형으로 제작되는 배터리 팩 하우징.
  7. 제1항에 있어서,
    상기 제1 측벽과 상기 제2 측벽 사이에 걸쳐 형성되는 보강 대를 더 포함하는 배터리 팩 하우징.
  8. 제1항에 있어서,
    상기 바닥 판 중 상기 제1 측벽과 상기 제2 측벽이 결합되지 않은 나머지 모서리에 결합되는 제3 측벽을 더 포함하는 배터리 팩 하우징.
  9. 배터리 모듈,
    판 형상으로, 상기 배터리 모듈의 하부를 받치며, 판면에 나란한 방향을 따라 내부를 관통하는 관통 홀이 형성되는 바닥 판,
    상기 관통 홀의 일단에 접하도록 상기 바닥 판의 일 모서리에 결합되어, 상기 배터리 모듈의 측면을 지지하며, 그 길이 방향을 따라 내부를 관통하는 제1 중공 및 상기 바닥 판의 관통 홀과 상기 제1 중공을 연통하는 제1 연통 홀이 형성되는 제1 측벽,
    상기 관통 홀의 타단에 접하도록 상기 바닥 판의 반대쪽 모서리에 결합되어, 상기 배터리 모듈의 측면을 지지하며, 그 길이 방향을 따라 내부를 관통하는 제2 중공 및 상기 관통 홀과 상기 제2 중공을 연통하는 제2 연통 홀이 형성되는 제2 측벽 및
    상기 제1 측벽의 제1 중공 및 상기 제2 측벽의 제2 중공의 양단을 각각 폐색하기 위한 폐색 부재를 포함하며,
    상기 제1 측벽 또는 상기 제2 측벽에는 상기 제1 중공 또는 상기 제2 중공으로 냉각수가 주입되기 위한 주입구 및 상기 냉각수가 외부로 배출되기 위한 배출구가 형성되는 배터리 팩.
  10. 제9항에 있어서,
    상기 바닥 판의 관통 홀은 복수 개로 형성되어, 서로 나란하게 배열되는 배터리 팩.
  11. 제10항에 있어서,
    상기 주입구 및 상기 배출구는 상기 제1 측벽에 형성되어, 상기 제1 측벽의 길이 방향을 따라 이격되게 배열되고,
    상기 제1 측벽의 제1 중공 상에서 상기 주입구와 상기 배출구 사이를 공간적으로 분리하기 위한 분할 판이 설치되되, 상기 주입구 및 상기 배출구가 상기 복수 개의 관통 홀 중 일부와 각각 연통하도록 배치되는 배터리 팩.
  12. 제10항에 있어서,
    상기 주입구는 상기 제1 측벽에 형성되고, 상기 배출구는 상기 제2 측벽에 형성되며,
    상기 제1 측벽의 제1 중공 상에서 이웃하는 임의의 두 관통 홀 사이를 공간적으로 분할하기 위한 제1 분할 판 및 상기 제2 측벽의 제2 중공 상에서 이웃하는 다른 두 관통 홀 사이를 공간적으로 분할하기 위한 제2 분할 판이 설치되되,
    상기 관통 홀이 형성된 방향에 수직인 일 방향을 기준으로 할 때, 상기 주입구, 상기 제1 분할 판, 상기 제2 분할 판 및 상기 배출구 순서대로 배열되는 배터리 팩.
  13. 제10항에 있어서,
    상기 바닥 판의 복수 개의 관통 홀 중 일부는 다른 일부와 그 형성된 방향에 수직인 단면의 면적 또는 형상이 다르게 형성되는 배터리 팩.
  14. 제9항에 있어서,
    상기 바닥 판, 상기 제1 측벽 및 상기 제2 측벽 중 적어도 어느 하나는 압출 성형으로 제작되는 배터리 팩.
  15. 제9항에 있어서,
    상기 제1 측벽과 상기 제2 측벽 사이에 걸쳐 형성되는 보강 대를 더 포함하는 배터리 팩.
  16. 제9항에 있어서,
    상기 바닥 판 중 상기 제1 측벽과 상기 제2 측벽이 결합되지 않은 나머지 모서리에 결합되어, 상기 배터리 모듈의 측면을 함께 지지하는 제3 측벽을 더 포함하는 배터리 팩.
PCT/KR2017/011767 2017-01-12 2017-10-24 배터리 팩 하우징 및 이를 포함하는 배터리 팩 WO2018131776A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17891951.0A EP3570365A4 (en) 2017-01-12 2017-10-24 BATTERY PACK AND BATTERY PACK INCLUDING IT
US16/475,604 US20190312322A1 (en) 2017-01-12 2017-10-24 Battery pack housing and battery pack comprising same
CN201780081088.6A CN110114933B (zh) 2017-01-12 2017-10-24 电池组壳体和包括其的电池组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0005282 2017-01-12
KR1020170005282A KR20180083140A (ko) 2017-01-12 2017-01-12 배터리 팩 하우징 및 이를 포함하는 배터리 팩

Publications (1)

Publication Number Publication Date
WO2018131776A1 true WO2018131776A1 (ko) 2018-07-19

Family

ID=62840116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011767 WO2018131776A1 (ko) 2017-01-12 2017-10-24 배터리 팩 하우징 및 이를 포함하는 배터리 팩

Country Status (5)

Country Link
US (1) US20190312322A1 (ko)
EP (1) EP3570365A4 (ko)
KR (1) KR20180083140A (ko)
CN (1) CN110114933B (ko)
WO (1) WO2018131776A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273640A (zh) * 2018-11-15 2019-01-25 桑顿新能源科技有限公司 电池包铝箱体及轻量化软包电池包
EP3748723A1 (en) * 2019-05-27 2020-12-09 SK Innovation Co., Ltd. Battery module
US20220348068A1 (en) * 2020-04-29 2022-11-03 Lg Energy Solution, Ltd. Battery pack with efficient cooling path structure and improved safety and vehicle including the same
EP4037070A4 (en) * 2020-04-29 2022-12-14 LG Energy Solution, Ltd. BATTERY PACK, ELECTRONIC DEVICE CONTAINING IT AND VEHICLE

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3085469B1 (fr) * 2018-08-31 2022-12-16 Hutchinson Structure de gestion thermique a canaux integres
US11431066B2 (en) * 2018-11-13 2022-08-30 Rivian Ip Holdings, Llc Battery pack water drain system
KR102683482B1 (ko) 2018-12-14 2024-07-09 주식회사 엘지에너지솔루션 전지 팩
CN109980318B (zh) * 2019-03-22 2024-02-13 苏州安靠电源有限公司 吹胀式均温板和配置该均温板的电池包
CN111987248B (zh) * 2019-05-21 2022-05-13 比亚迪股份有限公司 动力电池包和车辆
US11888131B1 (en) * 2020-03-03 2024-01-30 Board Of Trustees Of The University Of Alabama For And On Behalf Of The University Of Alabama In Huntsville Systems and methods for storing batteries
KR20220070837A (ko) * 2020-11-23 2022-05-31 주식회사 엘지에너지솔루션 열확산 억제 구조를 포함하는 전지팩
KR20220072887A (ko) * 2020-11-23 2022-06-03 주식회사 엘지에너지솔루션 열확산 억제 구조를 포함하는 전지팩
KR20220070838A (ko) * 2020-11-23 2022-05-31 주식회사 엘지에너지솔루션 열확산 억제 구조를 포함하는 전지팩
KR20220070834A (ko) * 2020-11-23 2022-05-31 주식회사 엘지에너지솔루션 열확산 억제 구조를 포함하는 전지팩
CN114614178A (zh) * 2020-12-09 2022-06-10 华为数字能源技术有限公司 一种电池模组、电池包及车辆
WO2023232047A1 (zh) * 2022-05-31 2023-12-07 瑞浦兰钧能源股份有限公司 电池包液冷板及电池包
KR20240003509A (ko) 2022-07-01 2024-01-09 주식회사 엘지에너지솔루션 배터리 팩
WO2024010364A1 (ko) * 2022-07-06 2024-01-11 주식회사 엘지에너지솔루션 배터리 팩 및 배터리 팩의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120009456A1 (en) * 2010-07-06 2012-01-12 Kwon Sohn Air-cooled battery pack
EP2426780A2 (en) * 2009-04-30 2012-03-07 LG Chem, Ltd. Cooling manifold and production method therefor
JP2012138205A (ja) * 2010-12-24 2012-07-19 Aisin Keikinzoku Co Ltd 自動車用バッテリフレーム構造
KR20160051407A (ko) * 2014-11-03 2016-05-11 현대모비스 주식회사 전력변환장치용 냉각유로모듈 및 이를 구비한 전력변화장치
KR20160076121A (ko) * 2014-12-22 2016-06-30 두산인프라코어 주식회사 에너지 저장 유닛의 냉각 모듈

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102511091B (zh) * 2009-06-18 2014-09-24 江森自控帅福得先进能源动力系统有限责任公司 具有带有热管理部件的电池单元托盘的电池模块
US8852780B2 (en) * 2011-03-22 2014-10-07 Enerdel, Inc. Battery pack support with thermal control
US8999547B2 (en) * 2011-12-22 2015-04-07 Samsung Sdi Co., Ltd. Battery module
EP2851991B1 (en) * 2012-05-17 2018-11-21 Hitachi Automotive Systems, Ltd. Battery module
KR101589935B1 (ko) * 2014-01-06 2016-01-29 희성정밀 주식회사 전기 자동차용 배터리 냉각장치 및 그 제조 방법
KR101619449B1 (ko) * 2014-10-24 2016-05-10 주식회사 고산 배터리용 압출타입 열교환기
JP6526961B2 (ja) * 2014-11-25 2019-06-05 アイシン軽金属株式会社 バッテリー搭載フレーム構造体
US20160190664A1 (en) * 2014-11-30 2016-06-30 Arcimoto, Inc. Battery system
KR101947887B1 (ko) * 2017-01-03 2019-02-13 삼성에스디아이 주식회사 배터리 팩 하우징

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2426780A2 (en) * 2009-04-30 2012-03-07 LG Chem, Ltd. Cooling manifold and production method therefor
US20120009456A1 (en) * 2010-07-06 2012-01-12 Kwon Sohn Air-cooled battery pack
JP2012138205A (ja) * 2010-12-24 2012-07-19 Aisin Keikinzoku Co Ltd 自動車用バッテリフレーム構造
KR20160051407A (ko) * 2014-11-03 2016-05-11 현대모비스 주식회사 전력변환장치용 냉각유로모듈 및 이를 구비한 전력변화장치
KR20160076121A (ko) * 2014-12-22 2016-06-30 두산인프라코어 주식회사 에너지 저장 유닛의 냉각 모듈

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3570365A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273640A (zh) * 2018-11-15 2019-01-25 桑顿新能源科技有限公司 电池包铝箱体及轻量化软包电池包
CN109273640B (zh) * 2018-11-15 2024-02-06 余姚市海泰贸易有限公司 电池包铝箱体及轻量化软包电池包
EP3748723A1 (en) * 2019-05-27 2020-12-09 SK Innovation Co., Ltd. Battery module
US20220348068A1 (en) * 2020-04-29 2022-11-03 Lg Energy Solution, Ltd. Battery pack with efficient cooling path structure and improved safety and vehicle including the same
EP4037070A4 (en) * 2020-04-29 2022-12-14 LG Energy Solution, Ltd. BATTERY PACK, ELECTRONIC DEVICE CONTAINING IT AND VEHICLE

Also Published As

Publication number Publication date
CN110114933A (zh) 2019-08-09
US20190312322A1 (en) 2019-10-10
EP3570365A1 (en) 2019-11-20
CN110114933B (zh) 2022-10-21
EP3570365A4 (en) 2020-09-16
KR20180083140A (ko) 2018-07-20

Similar Documents

Publication Publication Date Title
WO2018131776A1 (ko) 배터리 팩 하우징 및 이를 포함하는 배터리 팩
WO2016089030A1 (ko) 전지팩
WO2012067359A2 (ko) 냉매의 분배 균일성이 향상된 전지팩
WO2020189965A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2017018721A1 (ko) 전지팩
WO2012165781A2 (ko) 배터리 냉각 시스템 및 이에 적용되는 배터리 랙
WO2021080217A1 (en) High performance uniform temperature cold plate
WO2012064160A2 (ko) 배터리 모듈 케이스
CN106973542B (zh) 一种导风柜及通讯系统
WO2010140833A2 (ko) 열교환장치 및 이를 적용한 자동차용 수냉식 인터쿨러
WO2013103254A1 (ko) 배터리 모듈
WO2021215660A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021215662A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022103229A1 (ko) 절연유를 이용한 냉각 구조를 갖는 배터리 모듈, 그리고 이를 포함하는 배터리 팩 및 자동차
EP2366202A2 (en) Battery module having cooling means, and middle or large-sized battery pack containing the same
WO2022030905A1 (ko) 개선된 가스 벤팅 구조를 갖는 전지 모듈 및 이를 포함하는 전지 팩
WO2018110896A1 (ko) 조립 구조가 개선된 공냉식 배터리 팩
JP2001283940A (ja) 組電池
WO2022103131A1 (ko) 절연유를 이용한 냉각 구조를 갖는 배터리 모듈, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2018080182A1 (ko) 전지 모듈
WO2019017573A1 (ko) 배터리 냉각용 열교환기
WO2021206325A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021206283A1 (ko) 전지 모듈 및 그 제조 방법
WO2021261702A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2018182162A1 (ko) 배터리 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017891951

Country of ref document: EP

Effective date: 20190812