WO2021206283A1 - 전지 모듈 및 그 제조 방법 - Google Patents

전지 모듈 및 그 제조 방법 Download PDF

Info

Publication number
WO2021206283A1
WO2021206283A1 PCT/KR2021/001480 KR2021001480W WO2021206283A1 WO 2021206283 A1 WO2021206283 A1 WO 2021206283A1 KR 2021001480 W KR2021001480 W KR 2021001480W WO 2021206283 A1 WO2021206283 A1 WO 2021206283A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
frame
bar frame
battery
battery cell
Prior art date
Application number
PCT/KR2021/001480
Other languages
English (en)
French (fr)
Inventor
이창훈
성준엽
박명기
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21783707.9A priority Critical patent/EP4020685A4/en
Priority to US17/766,921 priority patent/US20230216149A1/en
Priority to CN202180005585.4A priority patent/CN114450848A/zh
Priority to JP2022515071A priority patent/JP7374306B2/ja
Publication of WO2021206283A1 publication Critical patent/WO2021206283A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module and a method for manufacturing the same, and more particularly, to a battery module for improving the quality of a busbar frame and a method for manufacturing the same.
  • Secondary batteries are receiving a lot of attention as an energy source in various product groups such as mobile devices and electric vehicles.
  • Such a secondary battery is a powerful energy resource that can replace the use of conventional products using fossil fuels, and is in the spotlight as an eco-friendly energy source because no by-products are generated due to energy use.
  • a battery module including at least one battery cell is configured, and other components are added using the at least one battery module to form a battery pack.
  • Such a battery module includes a battery cell stack in which a plurality of battery cells are stacked, a module frame accommodating the battery cell stack, and a bus bar frame covering front and rear surfaces of the battery cell stack.
  • 1 is a view showing a conventional battery module in which a bus bar frame is formed.
  • 2 is a view showing a bending phenomenon during injection molding of a conventional bus bar frame.
  • a conventional battery module includes a battery cell stack 10 in which a plurality of battery cells are stacked, a lower frame 21 accommodating the battery cell stack 10, and a battery cell stack.
  • the upper plate 22 covering the upper surface of the sieve, the end plate 23 covering the front and rear surfaces of the battery cell stack, and a heat sink formed on the lower surface of the lower frame 21 to cool the battery cell stack 10 .
  • 30 and a bus bar frame 40 formed between the end plate 23 and the front and rear surfaces of the battery cell stack 10 .
  • the bus bar frame has to be manufactured to have a longer width.
  • the bus bar frame can be manufactured by injection molding. In this case, it becomes difficult to control the mold, and as shown in FIG. 2 , pressure in opposite directions is applied to the center and both sides of the bus bar frame 40 , so that there is a problem in that the manufactured bus bar frame is bent.
  • An object of the present invention is to provide a battery module in which a busbar frame is formed having a structure that minimizes the bending phenomenon of the busbar frame.
  • a battery module for realizing the above object includes: a battery cell stack in which a plurality of battery cells are stacked; a module frame for accommodating the battery cell stack; and a bus bar frame covering the front and rear surfaces of the battery cell stack, wherein the bus bar frame includes a first bus bar frame and a second bus bar frame coupled along a stacking direction of the battery cell stack and a protrusion is formed on one side of the first bus bar frame, a groove portion is formed on one side of the second bus bar frame, and the protrusion is coupled to the groove portion, whereby the first bus bar frame and the second bus bar are formed. frames are connected.
  • the manufacturing method of the battery module according to an embodiment of the present invention for realizing the above object, accommodating the battery cell stack in a module frame; assembling the first busbar frame and the second busbar frame to form a busbar frame; and assembling the bus bar frame to the front and rear surfaces of the battery cell stack.
  • the protrusion of the first bus bar frame may include a first portion having a first width and a second portion having a second width, and the second width may be greater than the first width.
  • the groove portion of the second bus bar frame includes a first area having a first interval and a second area having a second interval, the second interval is wider than the first interval, and the first portion is It may be inserted into the first region, and the second portion may be inserted into the second region.
  • the protrusion part of the first bus bar frame and the groove part of the second bus bar frame may be slidably coupled to each other.
  • the protrusion formed on one side of the first bus bar frame may be slidably coupled to the groove formed on one side of the second bus bar frame.
  • a battery pack according to another embodiment of the present invention includes the battery module.
  • the bus bar frame in a manner of assembling the first and second bus bar frames, it is possible to reduce mold cost, improve the quality of the bus bar frame, and reduce the defect rate of the battery module. provides an effect.
  • FIG. 1 is a view showing a conventional battery module in which a bus bar frame is formed.
  • FIG. 2 is a view showing a bending phenomenon during injection molding of a conventional bus bar frame.
  • FIG. 3 is an exploded perspective view of a battery module according to an embodiment of the present invention.
  • FIG. 4 is a view showing a structure in which first and second bus bar frames are assembled as part A-A of FIG. 3 .
  • FIG. 5 is an exploded view illustrating an assembly structure of the first and second bus bar frames of FIG. 4 .
  • FIG. 6 is a view showing a state in which a module frame and a heat sink are assembled in a battery cell stack according to an embodiment of the present invention.
  • FIG. 7 is a view illustrating a state in which first and second bus bar frames are slidably coupled according to an embodiment of the present invention.
  • FIG 8 is a view showing a state in which the assembled bus bar frame according to an embodiment of the present invention is assembled on the front surface of the battery cell stack.
  • the first and second terms used in the present application may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIGS. 3 to 5 a structure of a battery module including a bus bar frame according to an embodiment of the present invention will be described with reference to FIGS. 3 to 5 .
  • FIG. 3 is an exploded perspective view of a battery module according to an embodiment of the present invention.
  • FIG. 4 is a view showing a structure in which first and second bus bar frames are assembled along a portion A-A of FIG. 3 .
  • 5 is an exploded view illustrating an assembly structure of the first and second bus bar frames of FIG. 4 .
  • the battery module according to an embodiment of the present invention, a battery cell stack 100 in which a plurality of battery cells are stacked, a module frame for accommodating the battery cell stack 100 ( 200 ) and a bus bar frame 400 covering the front and rear surfaces of the battery cell stack 200 , wherein the bus bar frame 400 is coupled along the stacking direction of the battery cell stack 100 .
  • It includes a bus bar frame 410 and a second bus bar frame 420 , a protrusion 411 is formed on one side of the first bus bar frame 410 , and a groove portion on one side of the second bus bar frame 420 .
  • a 421 is formed, and the first bus bar frame 410 and the second bus bar frame 420 are connected by the protrusion 411 being coupled to the groove 421 .
  • the battery cell according to the present embodiment is a secondary battery, and may be configured as a pouch-type secondary battery.
  • the battery cells may be configured in plurality, and the plurality of battery cells may be stacked to each other so as to be electrically connected to each other to form the battery cell stack 100 .
  • Each of the plurality of battery cells may include an electrode assembly, a cell case, and an electrode lead protruding from the electrode assembly.
  • the module frame 200 accommodates the battery cell stack 100 .
  • the module frame 200 includes a lower frame 210 that covers the lower surface and both sides of the battery cell stack 100 , and an upper plate that covers the upper surface of the battery cell stack 100 ( 220) may be included.
  • the structure of the module frame 200 is not limited thereto, and may be in the form of a mono frame surrounding on four surfaces except for the front and rear surfaces of the battery cell stack 100 .
  • the battery module 200 may further include an end plate 230 covering the front and rear surfaces of the battery cell stack 100 . It is possible to physically protect the battery cell stack 100 accommodated therein through the module frame 200 described above.
  • the heat sink 300 may be formed on the bottom of the module frame 200 .
  • the heat sink 300 includes a lower plate 310 that forms a skeleton of the heat sink and contacts the bottom of the module frame 200, and an inlet ( 320, the outlet 330 formed on one side of the heat sink so that the refrigerant flowing inside the heat sink flows out to the outside of the heat sink, and the inlet 320 and the outlet 330 are connected and the flow path part 340 through which the refrigerant flows ) may be included.
  • the lower plate 310 in contact with the lower surface of the lower frame 210 corresponding to the bottom of the module frame 200 may be recessed downwardly.
  • the upper side of the flow path part 340 is opened to form a flow path between the flow path part 340 and the lower surface of the module frame 200 , and a refrigerant may flow through the flow path.
  • the battery module according to the present embodiment may have a cooling integrated structure in which the heat sink 300 is integrally formed at the bottom of the module frame 200 .
  • the bus bar frame 400 may cover the front and rear surfaces of the battery cell stack 100 .
  • the bus bar frame 400 according to an embodiment of the present invention includes a first bus bar frame 410 and a second bus bar frame 420 coupled along the stacking direction of the battery cell stack 100 . .
  • the bus bar frame may have a longer length along the stacking direction of the battery cell stack.
  • the length of the busbar frame increases, mold control becomes difficult during injection molding of the busbar frame, and as a result, a problem in which the manufactured busbar frame is bent may occur.
  • the bus bar frame is bent, it may be difficult to assemble the bus bar frame and a problem may occur in which the quality of the overall battery module is deteriorated.
  • the first and second bus bar frames after separately manufacturing the first and second bus bar frames 410 and 420 arranged along the stacking direction of the battery cell stack 100 , the first and second bus bar frames ( By assembling the 410 and 420 with each other and mounting them on the battery cell stack 100, the bending phenomenon of the bus bar frame during injection molding can be minimized, and the mold cost for molding the lengthened bus bar frame can be reduced, The quality of the battery module can be secured and the defect rate can be reduced.
  • a protrusion 411 is formed on one side of the first bus bar frame 410
  • a groove portion 421 is formed on one side of the second bus bar frame 420
  • the protrusion portion The first bus bar frame 410 and the second bus bar frame 420 are connected by the 411 being coupled to the groove portion 421 .
  • the protrusion 411 of the first bus bar frame 410 and the groove 421 of the second bus bar frame 420 may be slidably coupled to each other.
  • the rigidity of the portion between the first bus bar frame 410 and the second bus bar frame 420 can be improved through the protrusion-groove coupling structure between the first bus bar frame 410 and the second bus bar frame 420 .
  • the protrusion 411 of the first bus bar frame 410 includes a first portion 411a having a first width w1 and a second portion 411b having a second width w2, and a second The width w2 may be greater than the first width w1.
  • the groove portion 421 of the second bus bar frame 420 includes a first area 421a having a first interval d1 and a second area 421b having a second interval d2, and The gap d2 may be wider than the first gap d1 , the first portion 411a may be inserted into the first area 421a , and the second portion 411b may be inserted into the second area 421b . .
  • FIG. 6 is a view showing a state in which a module frame and a heat sink are assembled in a battery cell stack according to an embodiment of the present invention.
  • 7 is a view illustrating a state in which first and second bus bar frames are slidably coupled according to an embodiment of the present invention.
  • 8 is a view showing a state in which the assembled bus bar frame according to an embodiment of the present invention is assembled on the front surface of the battery cell stack.
  • the battery cell stack 100 is accommodated in the lower frame 210 forming the module frame 200, and the battery cell stack 100 ) can be assembled to cover the upper plate 220 on the upper surface of the module frame 200 to accommodate the battery cell stack 100 .
  • the protrusion 411 formed on one side of the first bus bar frame 410 is one side of the second bus bar frame 420 . It can be slidably coupled to the groove portion 421 formed in the . Through the sliding coupling, a coupling is formed in the entire section where the sliding first bus bar frame 410 and the second bus bar frame 420 meet, so that the first bus bar frame 410 and the second bus bar frame 420 . This can be more firmly fastened.
  • the bus bar frame 400 formed through the coupling of the first and second bus bar frames 410 and 420 may be assembled to the front and rear surfaces of the battery cell stack 100 .
  • FIG. 8 shows the assembly of the battery cell stack 100 to the front side, the bus bar frame 400 may be assembled to the rear surface of the battery cell stack 100 in the same manner.
  • the end plate 230 shown in FIG. 3 is attached to the outside of the battery cell stack 100 reference bus bar frame 400 .
  • the heat sink 300 shown in FIG. 3 may be mounted on the lower side of the lower frame 210 .
  • the battery module described above may be included in the battery pack.
  • the battery pack may have a structure in which one or more battery modules according to the present embodiment are collected and a battery management system (BMS) that manages the temperature or voltage of the battery and a cooling device are added and packed.
  • BMS battery management system
  • the battery pack may be applied to various devices.
  • a device may be applied to transportation means such as an electric bicycle, an electric vehicle, and a hybrid vehicle, but the present invention is not limited thereto and is applicable to various devices that can use a battery module, which also falls within the scope of the present invention .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명은 버스바 프레임의 품질을 향샹시키는 전지 모듈 및 그 제조 방법에 관한 것으로, 본 발명의 일 실시예에 따른 전지 모듈은, 복수의 전지셀이 적층되어 있는 전지셀 적층체; 상기 전지셀 적층체를 수용하는 모듈 프레임; 및 상기 전지셀 적층체의 전후면을 커버하는 버스바 프레임을 포함하고, 상기 버스바 프레임은, 상기 전지셀 적층체의 적층 방향을 따라 결합된 제1 버스바 프레임과 제2 버스바 프레임을 포함하고, 상기 제1 버스바 프레임의 일측에 돌기부가 형성되고, 상기 제2 버스바 프레임의 일측에 홈부가 형성되며, 상기 돌기부가 상기 홈부에 결합됨으로써 상기 제1 버스바 프레임과 상기 제2 버스바 프레임이 연결된다.

Description

전지 모듈 및 그 제조 방법
관련 출원(들)과의 상호 인용
본 출원은 2020년 04월 09일자 한국 특허 출원 제10-2020-0043245호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지 모듈 및 그 제조 방법에 관한 것으로서, 보다 상세하게는 버스바 프레임의 품질을 향상시키는 전지 모듈 및 그 제조 방법에 관한 것이다.
이차 전지는 모바일 기기 및 전기 자동차 등의 다양한 제품군에서 에너지원으로 많은 관심을 받고 있다. 이러한 이차 전지는 화석 연료를 사용하는 기존 제품의 사용을 대체할 수 있는 유력한 에너지 자원으로서, 에너지 사용에 따른 부산물이 발생하지 않아 친환경 에너지원으로서 각광받고 있다.
최근 이차 전지의 에너지 저장원으로서의 활용을 비롯하여 대용량 이차 전지 구조에 대한 필요성이 높아지면서, 다수의 이차 전지가 직렬/병렬로 연결된 전지 모듈을 집합시킨 멀티 모듈 구조의 전지팩에 대한 수요가 증가하고 있다.
한편, 복수개의 전지셀을 직렬/병렬로 연결하여 전지팩을 구성하는 경우, 적어도 하나의 전지셀로 이루어지는 전지 모듈을 구성하고, 이러한 적어도 하나의 전지 모듈을 이용하여 기타 구성 요소를 추가하여 전지팩을 구성하는 방법이 일반적이다.
이러한 전지 모듈은 복수의 전지셀이 적층되어 있는 전지셀 적층체, 전지셀 적층체를 수용하는 모듈 프레임 및 전지셀 적층체의 전후면을 커버하는 버스바 프레임을 포함한다.
도 1은 종래 버스바 프레임이 형성된 전지 모듈을 나타낸 도면이다. 도 2는 종래 버스바 프레임의 사출 성형시 휨 현상을 나타낸 도면이다.
도 1 및 도 2를 참조하면, 종래의 전지 모듈은, 복수의 전지셀이 적층되어 있는 전지셀 적층체(10), 전지셀 적층체(10)를 수용하는 하부 프레임(21), 전지셀 적층체의 상면을 커버하는 상부 플레이트(22), 전지셀 적층체의 전후면을 커버하는 엔드 플레이트(23), 하부 프레임(21)의 하면에 형성되어 전지셀 적층체(10)를 냉각시키는 히트 싱크(30) 및 엔드 플레이트(23)와 전지셀 적층체(10)의 전후면 사이에 형성된 버스바 프레임(40)을 포함할 수 있다.
종래에는, 도 1과 같이 적층되는 전지셀의 갯수가 증가함에 따라 버스바 프레임의 폭이 길어지도록 제작할 수 밖에 없는데, 버스바 프레임의 폭방향 길이가 길어짐에 따라 사출 성형으로 버스바 프레임을 제조할 경우 금형 컨트롤이 어려워져 도 2에 도시된 바와 같이 버스바 프레임(40)의 가운데 및 양쪽에 반대 방향의 압력이 작용하여 제조된 버스바 프레임의 휨 현상이 발생하는 문제가 있었다.
본 발명의 해결하고자 하는 과제는, 버스바 프레임의 휨 현상을 최소화 시키는 구조를 가진 버스바 프레임이 형성된 전지 모듈을 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 실현하기 위한 본 발명의 일 실시예에 따른 전지 모듈은, 복수의 전지셀이 적층되어 있는 전지셀 적층체; 상기 전지셀 적층체를 수용하는 모듈 프레임; 및 상기 전지셀 적층체의 전후면을 커버하는 버스바 프레임을 포함하고, 상기 버스바 프레임은, 상기 전지셀 적층체의 적층 방향을 따라 결합된 제1 버스바 프레임과 제2 버스바 프레임을 포함하고, 상기 제1 버스바 프레임의 일측에 돌기부가 형성되고, 상기 제2 버스바 프레임의 일측에 홈부가 형성되며, 상기 돌기부가 상기 홈부에 결합됨으로써 상기 제1 버스바 프레임과 상기 제2 버스바 프레임이 연결된다.
또한 상기 과제를 실현하기 위한 본 발명의 일 실시예에 따른 전지 모듈의 제조 방법은, 모듈 프레임에 상기 전지셀 적층체를 수용하는 단계; 제1 버스바 프레임과 제2 버스바 프레임을 조립하여 버스바 프레임을 형성하는 단계; 및, 상기 버스바 프레임을 상기 전지셀 적층체의 전후면에 조립하는 단계를 포함한다.
상기 제1 버스바 프레임의 돌기부는 제1 폭을 갖는 제1 부분과, 제2 폭을 갖는 제2 부분을 포함하고, 상기 제2 폭은 상기 제1 폭보다 클 수 있다.
상기 제2 버스바 프레임의 홈부는 제1 간격을 갖는 제1 영역과, 제2 간격을 갖는 제2 영역을 포함하고, 상기 제2 간격은 상기 제1 간격보다 넓으며, 상기 제1 부분은 상기 제1 영역에 삽입되고, 상기 제2 부분은 상기 제2 영역에 삽입될 수 있다.
상기 제1 버스바 프레임의 상기 돌기부와 상기 제2 버스바 프레임의 상기 홈부는 서로 슬라이딩 결합할 수 있다.
상기 제1 버스바 프레임과 상기 제2 버스바 프레임을 조립하는 단계에서, 상기 제1 버스바 프레임의 일측에 형성된 돌기부는 상기 제2 버스바 프레임의 일측에 형성된 홈부에 슬라이딩 결합할 수 있다.
본 발명의 다른 일 실시예에 따른 전지 팩은 상기 전지 모듈을 포함한다.
실시예들에 따르면, 제1,2 버스바 프레임을 조립하는 방식으로 버스바 프레임을 형성함으로써, 금형 비용을 절감하고, 버스바 프레임의 품질을 향상시킬 수 있으며, 전지 모듈의 불량률을 감소시킬 수 있는 효과를 제공한다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래 버스바 프레임이 형성된 전지 모듈을 나타낸 도면이다.
도 2는 종래 버스바 프레임의 사출 성형시 휨 현상을 나타낸 도면이다.
도 3은 본 발명의 일 실시예에 따른 전지 모듈의 분해 사시도이다.
도 4는 도 3의 A-A 부분으로, 제1, 2 버스바 프레임이 조립된 구조를 나타낸 도면이다.
도 5는 도 4의 제1, 2 버스바 프레임의 조립 구조를 설명하기 위한 분해도이다.
도 6은 본 발명의 일 실시예에 따른 전지셀 적층체에 모듈 프레임 및 히트 싱크가 조립되는 모습을 나타낸 도면이다.
도 7은 본 발명의 일 실시예에 따른 제1,2 버스바 프레임이 슬라이딩 결합하는 모습을 나타낸 도면이다.
도 8은 본 발명의 일 실시예에 따른 조립된 버스바 프레임이 전지셀 적층체의 전면에 조립되는 모습을 나타낸 도면이다.
이하에서 설명되는 실시 예는 발명의 이해를 돕기 위하여 예시적으로 나타낸 것이며, 본 발명은 여기서 설명되는 실시 예와 다르게 다양하게 변형되어 실시될 수 있음이 이해되어야 할 것이다. 다만, 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성요소에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명 및 구체적인 도시를 생략한다. 또한, 첨부된 도면은 발명의 이해를 돕기 위하여 실제 축척대로 도시된 것이 아니라 일부 구성요소의 치수가 과장되게 도시될 수 있다.
본 출원에서 사용되는 제1, 제2 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
또한, 본 출원에서 사용되는 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 권리범위를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서 "포함하다", "이루어진다" 또는 "구성되다" 등의 용어는 명세서상 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들의 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들의 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 도 3 내지 도 5를 참조하여, 본 발명의 일 실시예에 따른 버스바 프레임을 포함하는 전지 모듈의 구조에 대해 설명한다.
도 3은 본 발명의 일 실시예에 따른 전지 모듈의 분해 사시도이다. 도 4는 도 3의 A-A 부분으로, 제1,2 버스바 프레임이 조립된 구조를 나타낸 도면이다. 도 5는 도 4의 제1,2 버스바 프레임의 조립 구조를 설명하기 위한 분해도이다.
도 3 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 전지 모듈은, 복수의 전지셀이 적층되어 있는 전지셀 적층체(100), 전지셀 적층체(100)를 수용하는 모듈 프레임(200) 및 전지셀 적층체(200)의 전후면을 커버하는 버스바 프레임(400)을 포함하고, 버스바 프레임(400)은, 전지셀 적층체(100)의 적층 방향을 따라 결합된 제1 버스바 프레임(410)과 제2 버스바 프레임(420)을 포함하고, 제1 버스바 프레임(410)의 일측에 돌기부(411)가 형성되고, 제2 버스바 프레임(420)의 일측에 홈부(421)가 형성되며, 돌기부(411)가 홈부(421)에 결합됨으로써 제1 버스바 프레임(410)과 제2 버스바 프레임(420)이 연결된다.
본 실시예에 따른 전지셀은 이차 전지로서, 파우치형 이차 전지로 구성될 수 있다. 이러한 전지셀은 복수개로 구성될 수 있으며, 복수개의 전지셀은 상호 전기적으로 연결될 수 있도록 상호 적층되어 전지셀 적층체(100)를 형성할 수 있다. 복수개의 전지셀은 각각 전극 조립체, 셀 케이스 및 전극 조립체로부터 돌출된 전극 리드를 포함할 수 있다.
모듈 프레임(200)은 전지셀 적층체(100)를 수용한다. 본 발명의 일 실시예에 따르면, 모듈 프레임(200)은 전지셀 적층체(100)의 하면 및 양측면을 커버하는 하부 프레임(210), 전지셀 적층체(100)의 상면을 커버하는 상부 플레이트(220)를 포함할 수 있다. 다만, 모듈 프레임(200) 구조는 이에 제한되지 않고, 전지셀 적층체(100)의 전후면을 제외하고 4면에서 둘러싸는 모노 프레임 형태일 수도 있다.
본 실시예에 따른 전지 모듈(200)은, 전지셀 적층체(100)의 전후면을 커버하는 엔드 플레이트(230)를 더 포함할 수 있다. 앞에서 설명한 모듈 프레임(200)을 통해 내부에 수용된 전지셀 적층체(100)를 물리적으로 보호할 수 있다.
히트 싱크(300)는 모듈 프레임(200)의 바닥부 상에 형성될 수 있다. 히트 싱크(300)는, 히트 싱크의 골격을 형성하고 모듈 프레임(200)의 바닥부와 접촉하는 하부 플레이트(310), 히트 싱크의 일측에 형성되어 외부로부터 히트 싱크 내부로 냉매를 공급하는 인렛(320), 히트 싱크의 일측에 형성되어 히트 싱크 내부에서 유동된 냉매가 히트 싱크 외부로 유출되도록 하는 아웃렛(330), 인렛(320)과 아웃렛(330)을 연결하고 냉매가 유동하는 유로부(340)를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 유로부(340)는 모듈 프레임(200)의 바닥부에 해당하는 하부 프레임(210)의 하면과 접촉하는 하부 플레이트(310)가 하측으로 함몰 형성될 수 있다. 유로부(340)의 상측은 개방됨으로써 유로부(340)와 모듈 프레임(200) 하면 사이에 유로가 형성되며, 상기 유로를 통해 냉매가 유동할 수 있다. 즉, 본 실시예에 따른 전지 모듈은, 히트 싱크(300)가 모듈 프레임(200)의 바닥부에 일체로 형성된 냉각 일체형 구조를 가질 수 있다.
종래에는 모듈 프레임 하측에 냉매가 흐르는 구조가 별도로 형성되어 있어 모듈 프레임을 간접적으로 냉각할 수 밖에 없으므로 냉각 효율이 저하되고 별도의 냉매 유동 구조가 형성되어 있어 전지 모듈 및 전지 모듈이 장착된 전지 팩 상의 공간 활용률이 낮아지는 문제가 있었다. 그러나 본 발명의 일 실시예에 따르면 모듈 프레임(200)의 하면에 히트 싱크(300)를 일체화 시킨 구조를 채용하여, 냉매가 유로부(340)와 모듈 프레임(200)의 하면 사이로 직접 유동할 수 있게 됨으로써, 직접 냉각에 따른 냉각 효율이 상승하고, 히트 싱크(300)가 모듈 프레임(200)의 하면과 일체화된 구조를 통해 전지 모듈 및 전지 모듈이 장착된 전지 팩 상의 공간 활용률을 보다 향상시킬 수 있다.
버스바 프레임(400)은 전지셀 적층체(100)의 전후면을 커버할 수 있다. 본 발명의 일 실시예에 따른 버스바 프레임(400)은, 전지셀 적층체(100)의 적층 방향을 따라 결합된 제1 버스바 프레임(410)과 제2 버스바 프레임(420)을 포함한다.
적층되는 전지셀의 개수가 종래 대비 많이 늘어나는 대면적 전지 모듈의 경우, 버스바 프레임은 전지셀 적층체의 적층 방향을 따라 길이가 길어질 수 있다. 버스바 프레임의 길이가 길어짐에 따라, 버스바 프레임의 사출 성형시 금형 컨트롤이 어려워지고, 결과적으로 제조된 버스바 프레임이 휘어지는 문제가 발생할 수 있다. 버스바 프레임이 휘어질 경우, 버스바 프레임의 조립이 어려워지며 전반적인 전지 모듈의 품질이 저하되는 문제가 발생할 수 있다.
이에 본 발명의 일 실시예에 따르면, 전지셀 적층체(100)의 적층 방향을 따라 배치된 제1,2 버스바 프레임(410, 420)을 별도로 제작한 후, 제1,2 버스바 프레임(410, 420)을 서로 조립하여 전지셀 적층체(100)에 장착함으로써, 사출 성형시 버스바 프레임의 휨 현상을 최소화하고, 길이가 길어진 버스바 프레임의 성형을 위한 금형 비용이 절감될 수 있으며, 전지 모듈의 품질이 확보되고 불량률이 감소될 수 있다.
도 4 및 도 5에 도시된 바에 따르면, 제1 버스바 프레임(410)의 일측에는 돌기부(411)가 형성되고, 제2 버스바 프레임(420)의 일측에는 홈부(421)가 형성되며, 돌기부(411)가 홈부(421)에 결합됨으로써 제1 버스바 프레임(410)과 제2 버스바 프레임(420)이 연결된다. 제1 버스바 프레임(410)의 돌기부(411)와 제2 버스바 프레임(420)의 홈부(421)는 서로 슬라이딩 결합 할 수 있다. 이와 같이 제1 버스바 프레임(410)과 제2 버스바 프레임(420) 사이의 돌기부-홈부 결합 구조를 통해 제1 버스바 프레임(410)과 제2 버스바 프레임(420) 사이 부분의 강성을 확보할 수 있다.
제1 버스바 프레임(410)의 돌기부(411)는 제1 폭(w1)을 갖는 제1 부분(411a)과, 제2 폭(w2)을 갖는 제2 부분(411b)을 포함하고, 제2 폭(w2)은 제1 폭(w1)보다 클 수 있다. 제2 버스바 프레임(420)의 홈부(421)는 제1 간격(d1)을 갖는 제1 영역(421a)과, 제2 간격(d2)를 갖는 제2 영역(421b)을 포함하고, 제2 간격(d2)은 제1 간격(d1)보다 넓으며, 제1 부분(411a)은 제1 영역(421a)에 삽입되고, 제2 부분(411b)은 제2 영역(421b)에 삽입될 수 있다.
이하, 도 6 내지 도 8을 참조하여 본 발명의 일 실시예에 따른 버스바 프레임을 포함한 전지 모듈의 제조 방법에 대해 설명한다.
도 6은 본 발명의 일 실시예에 따른 전지셀 적층체에 모듈 프레임 및 히트 싱크가 조립되는 모습을 나타낸 도면이다. 도 7은 본 발명의 일 실시예에 따른 제1,2 버스바 프레임이 슬라이딩 결합하는 모습을 나타낸 도면이다. 도 8은 본 발명의 일 실시예에 따른 조립된 버스바 프레임이 전지셀 적층체의 전면에 조립되는 모습을 나타낸 도면이다.
도 6 내지 도 8을 참조하면, 본 발명의 일 실시예에 따른 전지 모듈의 제조 방법은, 모듈 프레임(200)에 전지셀 적층체(100)를 수용하는 단계(도 6), 제1 버스바 프레임(410)과 제2 버스바 프레임(420)을 조립하여 버스바 프레임(400)을 형성하는 단계(도 7) 및 버스바 프레임(400)을 전지셀 적층체(100)의 전후면에 조립하는 단계(도 8)을 포함한다.
모듈 프레임(200)에 전지셀 적층체(100)를 수용하는 단계에서, 모듈 프레임(200)을 형성하는 하부 프레임(210)에 전지셀 적층체(100)를 수납하고, 전지셀 적층체(100)의 상면에 상부 플레이트(220)를 커버하도록 조립하여 모듈 프레임(200)에 전지셀 적층체(100)를 수용할 수 있다.
제1 버스바 프레임(410)과 제2 버스바 프레임(420)을 조립하는 단계에서, 제1 버스바 프레임(410)의 일측에 형성된 돌기부(411)는 제2 버스바 프레임(420)의 일측에 형성된 홈부(421)에 슬라이딩 결합할 수 있다. 슬라이딩 결합을 통해, 슬라이딩 되는 제1 버스바 프레임(410)과 제2 버스바 프레임(420)이 만나는 전 구간에서 결합이 형성되어 제1 버스바 프레임(410)과 제2 버스바 프레임(420)이 보다 견고하게 체결될 수 있다.
제1,2 버스바 프레임(410, 420)의 결합을 통해 형성된 버스바 프레임(400)은 전지셀 적층체(100)의 전후면에 조립될 수 있다. 도 8에는 전지셀 적층체(100)의 전면으로 조립되는 모습이 도시되어 있으나, 버스바 프레임(400)은 전지셀 적층체(100)의 후면으로도 마찬가지로 조립될 수 있다.
버스바 프레임(400)이 전지셀 적층체(100)의 전후면에 조립하는 단계 후, 도 3에 도시된 엔드 프레이트(230)를 전지셀 적층체(100) 기준 버스바 프레임(400)의 외곽에 조립할 수 있다. 또한 도 3에 도시된 히트 싱크(300)를 하부 프레임(210)의 하면 하측에 장착할 수 있다.
앞에서 설명한 전지 모듈은 전지팩에 포함될 수 있다. 전지팩은, 본 실시예에 따른 전지 모듈을 하나 이상 모아서 전지의 온도나 전압 등을 관리해 주는 전지 관리시스템(Battery Management System; BMS)과 냉각 장치 등을 추가하여 패킹한 구조일 수 있다.
상기 전지팩은 다양한 디바이스에 적용될 수 있다. 이러한 디바이스에는, 전기 자전거, 전기 자동차, 하이브리드 자동차 등의 운송 수단에 적용될 수 있으나, 본 발명은 이에 제한되지 않고 전지 모듈을 사용할 수 있는 다양한 디바이스에 적용 가능하며, 이 또한 본 발명의 권리범위에 속한다.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.
부호의 설명
100: 전지셀 적층체
200: 모듈 프레임
210: 하부 프레임
220: 상부 플레이트
230: 엔드 플레이트
300: 히트 싱크
400: 버스바 프레임
410: 제1 버스바 프레임
411: 돌기부
411a: 제1 부분
w1: 제1 폭
411b: 제2 부분
w2: 제2 폭
420: 제2 버스바 프레임
421: 홈부
421a: 제1 영역
d1: 제1 간격
421b: 제2 영역
d2: 제2 간격

Claims (7)

  1. 복수의 전지셀이 적층되어 있는 전지셀 적층체;
    상기 전지셀 적층체를 수용하는 모듈 프레임; 및
    상기 전지셀 적층체의 전후면을 커버하는 버스바 프레임을 포함하고,
    상기 버스바 프레임은, 상기 전지셀 적층체의 적층 방향을 따라 결합된 제1 버스바 프레임과 제2 버스바 프레임을 포함하고,
    상기 제1 버스바 프레임의 일측에 돌기부가 형성되고, 상기 제2 버스바 프레임의 일측에 홈부가 형성되며, 상기 돌기부가 상기 홈부에 결합됨으로써 상기 제1 버스바 프레임과 상기 제2 버스바 프레임이 연결되는 전지 모듈.
  2. 제1항에서,
    상기 제1 버스바 프레임의 돌기부는 제1 폭을 갖는 제1 부분과, 제2 폭을 갖는 제2 부분을 포함하고, 상기 제2 폭은 상기 제1 폭보다 큰 전지 모듈.
  3. 제2항에서,
    상기 제2 버스바 프레임의 홈부는 제1 간격을 갖는 제1 영역과, 제2 간격을 갖는 제2 영역을 포함하고, 상기 제2 간격은 상기 제1 간격보다 넓으며,
    상기 제1 부분은 상기 제1 영역에 삽입되고, 상기 제2 부분은 상기 제2 영역에 삽입되는 전지 모듈.
  4. 제1항에서,
    상기 제1 버스바 프레임의 상기 돌기부와 상기 제2 버스바 프레임의 상기 홈부는 서로 슬라이딩 결합하는 전지 모듈.
  5. 모듈 프레임에 상기 전지셀 적층체를 수용하는 단계;
    제1 버스바 프레임과 제2 버스바 프레임을 조립하여 버스바 프레임을 형성하는 단계; 및,
    상기 버스바 프레임을 상기 전지셀 적층체의 전후면에 조립하는 단계를 포함하는 전지 모듈의 제조 방법.
  6. 제5항에서,
    상기 제1 버스바 프레임과 상기 제2 버스바 프레임을 조립하는 단계에서, 상기 제1 버스바 프레임의 일측에 형성된 돌기부는 상기 제2 버스바 프레임의 일측에 형성된 홈부에 슬라이딩 결합하는 전지 모듈의 제조 방법.
  7. 제1항에 따른 전지 모듈을 포함하는 전지 팩.
PCT/KR2021/001480 2020-04-09 2021-02-04 전지 모듈 및 그 제조 방법 WO2021206283A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21783707.9A EP4020685A4 (en) 2020-04-09 2021-02-04 BATTERY MODULE AND METHOD OF MANUFACTURE THEREOF
US17/766,921 US20230216149A1 (en) 2020-04-09 2021-02-04 Battery Module and Manufacturing Method Thereof
CN202180005585.4A CN114450848A (zh) 2020-04-09 2021-02-04 电池模块及其制造方法
JP2022515071A JP7374306B2 (ja) 2020-04-09 2021-02-04 電池モジュールおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0043245 2020-04-09
KR1020200043245A KR20210125723A (ko) 2020-04-09 2020-04-09 전지 모듈 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2021206283A1 true WO2021206283A1 (ko) 2021-10-14

Family

ID=78022581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001480 WO2021206283A1 (ko) 2020-04-09 2021-02-04 전지 모듈 및 그 제조 방법

Country Status (6)

Country Link
US (1) US20230216149A1 (ko)
EP (1) EP4020685A4 (ko)
JP (1) JP7374306B2 (ko)
KR (1) KR20210125723A (ko)
CN (1) CN114450848A (ko)
WO (1) WO2021206283A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116960579B (zh) * 2023-09-18 2024-01-26 厦门海辰储能科技股份有限公司 一种电池模组及用电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150086830A1 (en) * 2013-09-25 2015-03-26 Uer Technology Corporation Battery module having thermally conductive holding frame
KR101918691B1 (ko) * 2014-09-30 2018-11-15 비와이디 컴퍼니 리미티드 복수 삽입연결 어셈블리의 결합을 통해 배터리를 수용하는 배터리 수용 장치 및 이를 구비한 배터리 모듈
KR102018719B1 (ko) * 2016-02-12 2019-09-04 주식회사 엘지화학 배터리 셀 냉각용 버스바 및 이를 이용한 배터리 모듈
KR101990524B1 (ko) * 2017-08-08 2019-09-30 안협 캡 채널 및 그 제작방법
KR20200008624A (ko) * 2017-10-30 2020-01-28 주식회사 엘지화학 배터리 모듈 및 배터리 모듈을 조립하는 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6158500B2 (ja) 2012-11-28 2017-07-05 矢崎総業株式会社 バスバモジュール構造体
US9780350B2 (en) * 2014-03-05 2017-10-03 Lear Corporation Modular battery connector assembly
KR101810660B1 (ko) * 2014-05-16 2017-12-19 주식회사 엘지화학 전극단자 지지부가 형성되어 있는 전지모듈
US9590405B1 (en) * 2016-01-07 2017-03-07 General Electric Company Busway joint coupling having an adjustable assembly for joining two busway sections
KR102378539B1 (ko) 2017-12-06 2022-03-23 주식회사 엘지에너지솔루션 셀 에지 직접 냉각 방식의 배터리 모듈 및 이를 포함하는 배터리 팩
US20190198952A1 (en) * 2017-12-26 2019-06-27 Sk Innovation Co., Ltd. Battery module and manufacturing method thereof
KR102514123B1 (ko) * 2018-04-19 2023-03-23 주식회사 엘지에너지솔루션 용접을 용이하게 할 수 있는 버스바 프레임 구조를 구비하는 단위 모듈 및 이를 포함하는 배터리 모듈
KR102328730B1 (ko) 2018-04-20 2021-11-17 주식회사 엘지에너지솔루션 직/병렬 연결을 용이하게 하는 구조를 갖는 배터리 모듈 및 이를 포함하는 배터리 팩

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150086830A1 (en) * 2013-09-25 2015-03-26 Uer Technology Corporation Battery module having thermally conductive holding frame
KR101918691B1 (ko) * 2014-09-30 2018-11-15 비와이디 컴퍼니 리미티드 복수 삽입연결 어셈블리의 결합을 통해 배터리를 수용하는 배터리 수용 장치 및 이를 구비한 배터리 모듈
KR102018719B1 (ko) * 2016-02-12 2019-09-04 주식회사 엘지화학 배터리 셀 냉각용 버스바 및 이를 이용한 배터리 모듈
KR101990524B1 (ko) * 2017-08-08 2019-09-30 안협 캡 채널 및 그 제작방법
KR20200008624A (ko) * 2017-10-30 2020-01-28 주식회사 엘지화학 배터리 모듈 및 배터리 모듈을 조립하는 방법

Also Published As

Publication number Publication date
US20230216149A1 (en) 2023-07-06
EP4020685A1 (en) 2022-06-29
EP4020685A4 (en) 2023-04-19
JP7374306B2 (ja) 2023-11-06
CN114450848A (zh) 2022-05-06
JP2022547145A (ja) 2022-11-10
KR20210125723A (ko) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2022065650A1 (ko) 전지 모듈, 전지팩 및 이를 포함하는 자동차
WO2021177607A1 (ko) 전지 모듈 및 그 제조 방법
WO2021107395A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022014966A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2021080115A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2020262852A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2020251143A1 (ko) 전지 모듈 및 그 제조 방법
WO2021215660A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022154311A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021206278A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021215662A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021071052A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021206283A1 (ko) 전지 모듈 및 그 제조 방법
WO2021177618A1 (ko) 전지 모듈 및 그 제조 방법
WO2021080124A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021206325A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021071053A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022019653A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022065673A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022065672A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021210787A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2022065666A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022045594A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021256661A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021015425A1 (ko) 전지 모듈 및 이를 포함하는 전지팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21783707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515071

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021783707

Country of ref document: EP

Effective date: 20220321

NENP Non-entry into the national phase

Ref country code: DE