WO2021080124A1 - 전지 모듈 및 이를 포함하는 전지 팩 - Google Patents

전지 모듈 및 이를 포함하는 전지 팩 Download PDF

Info

Publication number
WO2021080124A1
WO2021080124A1 PCT/KR2020/009089 KR2020009089W WO2021080124A1 WO 2021080124 A1 WO2021080124 A1 WO 2021080124A1 KR 2020009089 W KR2020009089 W KR 2020009089W WO 2021080124 A1 WO2021080124 A1 WO 2021080124A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
battery
battery cell
cell stack
end plate
Prior art date
Application number
PCT/KR2020/009089
Other languages
English (en)
French (fr)
Inventor
최종화
성준엽
박명기
백승률
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200082995A external-priority patent/KR102477607B1/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2021544392A priority Critical patent/JP7337407B2/ja
Priority to US17/440,423 priority patent/US20220158290A1/en
Priority to CN202080031684.5A priority patent/CN113748564B/zh
Priority to EP20878274.8A priority patent/EP3926736A4/en
Publication of WO2021080124A1 publication Critical patent/WO2021080124A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module and a battery pack including the same, and more particularly, to a battery module and a battery pack having a novel structure for preventing battery cell swelling.
  • Rechargeable batteries having high ease of application according to product groups and having electrical characteristics such as high energy density are commonly applied to electric vehicles, hybrid vehicles, and power storage devices driven by electric drive sources as well as portable devices. These secondary batteries are attracting attention as a new energy source for eco-friendliness and energy efficiency improvement in that they do not generate any by-products from the use of energy as well as the primary advantage of being able to drastically reduce the use of fossil fuels.
  • Small mobile devices use one or two or three battery cells per device, whereas medium-sized devices such as automobiles require high power and large capacity. Therefore, a medium- to large-sized battery module in which a plurality of battery cells are electrically connected is used.
  • the medium and large-sized battery modules are preferably manufactured with a small size and weight as much as possible, prismatic batteries and pouch-type batteries that can be stacked with a high degree of integration and have a small weight to capacity are mainly used as battery cells of the medium and large battery modules.
  • the battery module may include a frame member that has front and rear surfaces open to accommodate the battery cell stack in an internal space.
  • FIG. 1 is a perspective view showing a battery module having a conventional module frame.
  • the battery module includes a battery cell stack 12 formed by stacking a plurality of battery cells 11, a mono frame 20 with open front and rear surfaces to cover the battery cell stack 12, and It may include end plates 60 covering the front and rear surfaces of the mono frame 20.
  • a battery cell stack 12 formed by stacking a plurality of battery cells 11, a mono frame 20 with open front and rear surfaces to cover the battery cell stack 12, and It may include end plates 60 covering the front and rear surfaces of the mono frame 20.
  • horizontal assembly is required so that the battery cell stack 12 is inserted into the open front or rear of the mono frame 20 along the X-axis direction as shown in the arrow shown in FIG. 1.
  • clearance refers to a gap generated by fitting or the like. If the free space is small, component damage may occur during the horizontal assembly process. Therefore, the height of the mono frame 20 should be designed to be large in consideration of the maximum height of the battery cell laminate 12 and the assembly tolerance during the insertion process. Therefore, there may be a space that is wasted unnecessarily.
  • the thickness of the frame member needs to be increased, and thus space utilization is poor.
  • the problem to be solved by the present invention is to provide a battery module and a battery pack having a novel structure for preventing battery cell swelling.
  • a battery module includes a battery cell stack in which a plurality of battery cells are stacked, a module frame having an open upper portion of the battery cell stack, and the battery cell stack in the upper portion of the module frame.
  • the module frame may include a bottom portion and two side portions facing each other, and the busbar frame may be positioned between the side portion and the battery cell stack.
  • the end plate may be positioned in a direction perpendicular to a direction in which the electrode lead of the battery cell protrudes.
  • the battery module may further include an insulating plate positioned between the bus bar frame and a side portion of the module frame.
  • First locking portions protruding downward may be formed on both sides of the upper plate.
  • the end plate may have a first stepped portion formed on an upper end thereof, and the first locking portion may be caught on the first stepped portion.
  • Second locking portions protruding upward may be formed on both sides of the bottom portion of the module frame.
  • a second step portion may be formed at a lower end of the end plate, and the second locking portion may be caught on the second step portion.
  • the first stepped portion and the second stepped portion may form a groove structure in each of the upper end and the lower end of the end plate.
  • the end plate may have module mounting portions formed on both outer sides of the first stepped portion.
  • a first cutout may be formed in the upper plate to correspond to the module mounting part, and an upper end of the module mounting part may be opened by the first cutout.
  • a second cutout may be formed at the bottom of the module frame to correspond to the module mounting part, and a lower end of the module mounting part may be opened by the second cutout.
  • the battery module may further include a compression pad positioned between the end plate and the battery cell stack.
  • the battery module may further include an insulating cover positioned between the end plate and the battery cell stack.
  • the width of the insulating cover in the Z-axis direction is greater than the width in the Z-axis direction of the end plate, and a first step is formed between the upper end of the insulating cover in the Z-axis direction and the upper end of the end plate, and the The first locking part may be caught on the first stepped part.
  • Second locking portions protruding upward may be formed on both sides of the bottom portion of the module frame.
  • a second step portion may be formed at a lower end portion of the insulating cover in a Z-axis direction and a lower end portion of the end plate, and the second locking portion may be caught on the second step portion.
  • the end plate may be formed of a metallic material.
  • a battery pack according to another embodiment of the present invention includes the battery module described above.
  • a battery module having a novel structure may be implemented to effectively control battery cell swelling and increase space utilization.
  • FIG. 1 is an exploded perspective view showing a battery module having a conventional module frame.
  • FIG. 2 is an exploded perspective view showing a battery module according to an embodiment of the present invention.
  • FIG. 3 is a perspective view showing a state in which the components of the battery module of FIG. 2 are combined.
  • FIG. 4 is a perspective view illustrating one battery cell included in the battery cell stack of FIG. 2.
  • FIG. 5 is an exploded perspective view of the module frame, upper plate, and end plate in the battery module of FIG. 3 as viewed obliquely from the top.
  • FIG. 6 is an exploded perspective view of the battery module of FIG. 3 as viewed obliquely from the bottom of the module frame and upper plate.
  • FIG. 7 is a perspective view illustrating a coupling relationship between an upper plate and an end plate in the battery module of FIG. 3.
  • FIG. 8 is a perspective view illustrating a coupling relationship between a module frame and an end plate in the battery module of FIG. 3.
  • FIG. 9 is an exploded perspective view showing a battery module according to another embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating a coupling relationship between an upper plate and an end plate in the battery module of FIG. 9.
  • FIG. 11 is a perspective view illustrating a coupling relationship between a module frame and an end plate in the battery module of FIG. 9.
  • a part such as a layer, film, region, plate, etc.
  • one part is “directly above” another part, it means that there is no other part in the middle.
  • the reference part means that it is located above or below the reference part, and means that it is located “above” or “on” in the direction opposite to the gravitational force. no.
  • FIG. 2 is an exploded perspective view showing a battery module according to an embodiment of the present invention.
  • 3 is a perspective view showing a state in which the components of the battery module of FIG. 2 are combined.
  • 4 is a perspective view illustrating one battery cell included in the battery cell stack of FIG. 2.
  • 5 is an exploded perspective view of the module frame, upper plate, and end plate in the battery module of FIG. 3 as viewed obliquely from the top.
  • 6 is an exploded perspective view of the battery module of FIG. 3 as viewed obliquely from the bottom of the module frame and the upper plate.
  • the battery module 100 includes a battery cell stack 120 formed by stacking a plurality of battery cells 110, and a module in which the battery cell stack 120 is accommodated.
  • the frame 300 may include an upper plate 400 covering the open upper portion of the module frame 300, and an end plate 150 covering the front and rear surfaces of the module frame 300.
  • the end plate 150 may be formed of a metal material such as aluminum.
  • the end plate 150 may include a front plate covering one side of the module frame 300 and a rear plate covering the other side of the module frame 300.
  • the module frame 300 may be a U-shaped frame, and when both open sides of the U-shaped frame are referred to as a first side and a second side, respectively, the module frame 300 is disposed on the first side and the second side. Among the remaining outer surfaces except for the surface of the corresponding battery cell stack 120, it has a plate-shaped structure that is bent so as to continuously surround the adjacent front surface, the lower surface, and the rear surface. The upper surface corresponding to the lower surface of the module frame 300 is open.
  • the module frame 300 has a structure in which the battery cell stack 120 is opened along the stacking direction of the battery cells 110 included in the battery cell stack 120. At this time, the end plates 150 cover the stacked surfaces of the battery cell stack 120 on both open sides of the module frame 300.
  • the battery module 100 further includes a bus bar frame 130 positioned between the side portion of the module frame 300 and the battery cell stack 120, and the bus bar frame 130 and the module frame
  • An insulating plate 135 positioned between the side portions of the 300 may be further included.
  • the insulating plate 135 has a function of allowing the electrode leads 111 and 112 and the bus bar 131 to be insulated from the module frame 300.
  • the insulating plate 135 may be formed of a plastic injection product.
  • the module frame 300 includes a bottom portion 300a and two side portions 300b facing each other.
  • thermoelectric power on the bottom portion 300a of the module frame 300 It further includes a thermally conductive resin layer 310 formed by applying a conductive resin and curing the thermally conductive resin.
  • the upper plate 400 includes first locking portions 400h protruding downward from both sides thereof. Both sides of the upper plate 400 on which the first locking portions 400h are formed correspond to both sides in the X-axis direction, which is a direction in which the battery cell stack 120 is stacked.
  • the module frame 300 according to the present embodiment further includes second locking portions 300c respectively formed on the first side and the second side of the module frame 300.
  • the second locking part 300c may be formed in a structure protruding upward from one end of the bottom part 300a of the module frame 300.
  • the first side and the second side of the module frame 300 correspond to both sides in the X-axis direction, which is a direction in which the battery cell stack 120 is stacked.
  • a first cutout AP1 is formed in the upper plate 400 according to the present embodiment.
  • the first cutout AP1 is formed adjacent to both ends of the first locking portion 400h and may be formed at four corners of the upper plate 400.
  • a second cutout AP2 is formed in the bottom portion 300a of the module frame 300 according to the present embodiment.
  • the second cutout AP2 is formed adjacent to both ends of the second locking portion 300c and may be formed at four corners of the bottom portion 300a of the module frame 300.
  • the upper plate 400 has a single plate-shaped structure that surrounds the rest of the upper surface except for the front, lower, and rear surfaces that are wrapped by the module frame 300.
  • the module frame 300 and the upper plate 400 may form a structure surrounding the battery cell stack 120 by being coupled by welding or the like in a state in which corner portions corresponding to each other are in contact with each other. That is, the module frame 300 and the upper plate 400 may have a coupling portion formed at a corner portion corresponding to each other by a coupling method such as welding.
  • the battery cell stack 120 includes a plurality of battery cells 110 stacked in one direction, and the plurality of battery cells 110 may be stacked in the X-axis direction as shown in FIG. 2.
  • the battery cell 110 is preferably a pouch-type battery cell.
  • two electrode leads 111 and 112 face each other, so that one end 114a of the battery body 113 and the other end 114b Each has a structure protruding from ).
  • the battery cell 110 is manufactured by bonding both ends 114a and 114b of the case 114 and both side surfaces 114c connecting them in a state in which the electrode assembly (not shown) is accommodated in the battery case 114. I can.
  • the battery cell 110 has a total of three sealing portions 114sa, 114sb, and 114sc, and the sealing portions 114sa, 114sb, 114sc are sealed by a method such as thermal fusion.
  • the other side portion may be formed of the connection portion 115.
  • the distance between both ends 114a and 114b of the battery case 114 is defined in the longitudinal direction of the battery cell 110, and a connection part with one side 114c connecting both ends 114a and 114b of the battery case 114 Between 115 may be defined in the width direction of the battery cell 110.
  • connection part 115 is an area extending long along one edge of the battery cell 110, and a protrusion 110p of the battery cell 110 may be formed at an end of the connection part 115.
  • the protrusion 110p may be formed on at least one of both ends of the connection part 115, and may protrude in a direction perpendicular to a direction in which the connection part 115 extends.
  • the protrusion 110p may be positioned between one of the sealing portions 114sa and 114sb of both ends 114a and 114b of the battery case 114 and the connection portion 115.
  • the battery case 114 is generally made of a laminate structure of a resin layer/metal thin film layer/resin layer.
  • a resin layer/metal thin film layer/resin layer For example, when the surface of the battery case is made of an O (oriented)-nylon layer, when a plurality of battery cells are stacked to form a medium or large-sized battery module, it tends to slide easily due to external impact. Therefore, in order to prevent this and maintain a stable stacked structure of battery cells, a battery cell stacked body by attaching an adhesive member such as a double-sided tape or a chemical adhesive bonded by a chemical reaction on the surface of the battery case. 120 can be formed.
  • the battery cell stack 120 is stacked in the X-axis direction, is accommodated in the module frame 300 in the Z-axis direction, and heat is transferred by the thermally conductive resin layer 310 to a cooling member adjacent to the battery module. Cooling can proceed by As a comparative example of this, there is a case in which the battery cells are formed of cartridge-shaped parts, and the fixing between the battery cells is made by assembling the battery module frame. In this comparative example, due to the presence of the cartridge-type component, there is little or no cooling action, or it may proceed in the direction of the surface of the battery cell, and cooling is not well performed in the height direction of the battery module.
  • the end plate 150 may be positioned in a direction perpendicular to a direction in which the electrode leads 111 and 112 of the battery cell 110 protrude.
  • FIG. 7 is a perspective view illustrating a coupling relationship between an upper plate and an end plate in the battery module of FIG. 3.
  • 8 is a perspective view illustrating a coupling relationship between a module frame and an end plate in the battery module of FIG. 3.
  • the first stepped portion 160 is formed on the upper end of the end plate 150 included in the battery module according to the present embodiment.
  • the first stepped portion 160 may be formed when the end plate 150 is processed and molded, and as shown in FIG. 7, the upper end of the end plate 150 on which the first stepped portion 160 is formed is in the Z-axis direction. It has a slightly protruding structure. At this time, the first locking portion 400h of the upper plate 400 may be caught on the first stepped portion 160.
  • the upper plate 400 and the end plate 150 may be coupled to each other by welding while the first locking portion 400h is engaged with the first stepped portion 160.
  • the end plate 150 further includes module mounting portions 154 formed on both outer edges of the first stepped portion 160.
  • the module mounting unit 154 may be a structure used to configure a battery pack by combining the battery module according to the present embodiment with a pack frame (not shown). For example, a mounting member (not shown) is inserted into the module mounting unit 154 to connect the pack frame (not shown) to the battery module.
  • the module mounting part 154 may correspond to the first cutout AP1 of the upper plate 400 described in FIG. 6, and the upper end of the module mounting part 154 is opened by the first cutout AP1 Can be.
  • a second stepped portion 170 is formed at the lower end of the end plate 150.
  • the second stepped portion 170 may be formed when processing the end plate 150, As shown in Fig. 8, the lower end of the end plate 150 on which the second stepped portion 170 is formed It has a structure slightly protruding in the Z-axis direction. In this case, the second locking portion 300c of the bottom portion 300a of the module frame 300 may be caught on the second stepped portion 170. In a state in which the second locking portion 300c is engaged with the second stepped portion 170, the bottom portion 300a of the module frame 300 and the end plate 150 may be coupled to each other by welding.
  • the module mounting part 154 may correspond to the second cutout AP2 of the bottom part 300a of the module frame 300 described in FIG. 6, and the module mounting part 154 may be provided by the second cutout AP2.
  • the lower end can be opened.
  • the end plate 150 is formed along the X-axis direction in which battery cell swelling occurs. . Accordingly, the end plate 150 allows direct control of battery cell swelling.
  • the end plate 150 and the upper plate 400 and the end plate 150 and the module frame 300 are fixed by the structure of the engaging portions 400h and 300c and the stepped portions 160 and 170, and the direction in which they are fixed is Since it coincides with the X-axis direction in which battery cell swelling occurs, it is possible to effectively control a problem caused by battery cell swelling.
  • the space utilization rate can be increased.
  • the first stepped portion 160 and the second stepped portion 170 described in FIGS. 7 and 8 may have grooves formed at the upper and lower ends of the end plate 150, respectively. Since the first and second locking portions 400h and 300c are fixed to the first and second stepped portions 160 and 170 of the end plate 150, the upper plate 400 and the bottom portion 300a of the module frame 300 are It is possible to prevent the end plate 150 from protruding from the outermost surface. In addition, the first and second stepped portions 160 and 170 may serve as a guide when the end plate 150 is assembled with the upper plate 400 and the bottom portion 300a of the module frame 300.
  • the battery module 100 may further include a compression pad 119 positioned between the insulating cover 140 and the battery cell stack 120. Since the compression pad 119 is formed of an elastic member such as urethane foam, it is possible to further reduce battery cell swelling problems. In addition, the compression pad 119 maintains insulation between the end plate 150 and the battery cell stack 120.
  • FIG. 9 is an exploded perspective view showing a battery module according to another embodiment of the present invention.
  • 10 is a perspective view illustrating a coupling relationship between an upper plate and an end plate in the battery module of FIG. 9.
  • 11 is a perspective view illustrating a coupling relationship between a module frame and an end plate in the battery module of FIG. 9.
  • the battery module according to the present embodiment further includes an insulating cover 140 positioned between the end plate 150 and the battery cell stack 120.
  • the insulating cover 140 may be formed of a plastic injection product. As shown in FIG. 10, the width of the insulating cover 140 in the Z-axis direction is larger than the width of the end plate 150 in the Z-axis direction. The insulating cover 140 extends above the top surface of the end plate 150. In this case, a first stepped portion 160 is formed between the upper end of the insulating cover 140 in the Z-axis direction and the upper end of the end plate 150, and the first stepped portion 160 1 The locking part 400h may be caught.
  • the insulating cover 140 formed inside the end plate 150 is retracted by the thickness of the end plate 150, and a portion of the insulating cover 140 protruding from the top surface of the end plate 150 in the Z-axis direction and A step is formed by the top surface of the end plate 150.
  • the upper plate 400 and the end plate 150 may be coupled to each other by welding in a state in which the first locking portion 400h is caught in such a step.
  • the insulating cover 140 extends below the bottom surface of the end plate 150.
  • a second stepped portion 170 is formed between the lower end of the insulating cover 140 in the Z-axis direction and the lower end of the end plate 150, and the bottom portion of the module frame 300 in the second stepped portion 170
  • the second locking part 300c of 300a may be caught.
  • the insulating cover 140 formed inside the end plate 150 is retracted by the thickness of the end plate 150, and a portion of the insulating cover 140 protruding from the bottom surface of the end plate 150 in the Z-axis direction and A step is formed by the lower end of the end plate 150.
  • the bottom portion 300a of the module frame 300 and the end plate 150 may be coupled to each other by welding.
  • one or more of the battery modules may be packaged in a pack case to form a battery pack.
  • the battery module described above and the battery pack including the same can be applied to various devices.
  • a device may be applied to a vehicle such as an electric bicycle, an electric vehicle, or a hybrid vehicle, but the present invention is not limited thereto, and the present invention is applicable to various devices capable of using a battery module and a battery pack including the same. It belongs to the scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명의 일 실시예에 따른 전지 모듈은 복수의 전지 셀이 적층되어 있는 전지 셀 적층체, 상기 전지 셀 적층체를 수용하고 상부가 개방된 모듈 프레임, 상기 개방된 모듈 프레임 상부에서 상기 전지 셀 적층체를 덮는 상부 플레이트, 상기 전지 셀 적층체와 연결되는 버스바 프레임, 및 상기 전지 셀 적층체의 양측에 위치하는 엔드 플레이트를 포함하고, 상기 모듈 프레임은 상기 전지 셀 적층체에 포함된 상기 전지 셀의 적층 방향을 따라 상기 전지 셀 적층체를 개방하는 구조를 갖고, 상기 모듈 프레임의 개방된 양측에서 상기 엔드 플레이트가 상기 전지 셀 적층체의 적층면을 덮고 있다.

Description

전지 모듈 및 이를 포함하는 전지 팩
관련 출원(들)과의 상호 인용
본 출원은 2019년 10월 24일자 한국 특허 출원 제10-2019-0133054호 및 2020년 7월 6일자 한국 특허 출원 제10-2020-0082995호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지 모듈 및 이를 포함하는 전지 팩에 관한 것으로서, 보다 구체적으로 전지 셀 스웰링 방지를 위한 신규 구조를 갖는 전지 모듈 및 전지 팩에 관한 것이다.
제품군에 따른 적용 용이성이 높고, 높은 에너지 밀도 등의 전기적 특성을 가지는 이차 전지는 휴대용 기기뿐만 아니라 전기적 구동원에 의해 구동하는 전기 자동차 또는 하이브리드 자동차, 전력 저장 장치 등에 보편적으로 응용되고 있다. 이러한 이차 전지는 화석 연료의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 점에서 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목 받고 있다.
소형 모바일 기기들에는 디바이스 1대당 하나 또는 두서너 개의 전지 셀들이 사용됨에 반해, 자동차 등과 같이 중대형 디바이스들에는 고출력 대용량이 필요하다. 따라서, 다수의 전지 셀을 전기적으로 연결한 중대형 전지 모듈이 사용된다.
중대형 전지 모듈은 가능하면 작은 크기와 중량으로 제조되는 것이 바람직하므로, 높은 집적도로 적층될 수 있고 용량 대비 중량이 작은 각형 전지, 파우치형 전지 등이 중대형 전지 모듈의 전지 셀로서 주로 사용되고 있다. 한편, 전지 모듈은, 전지 셀 적층체를 외부 충격, 열 또는 진동으로부터 보호하기 위해, 전면과 후면이 개방되어 전지 셀 적층체를 내부 공간에 수납하는 프레임 부재를 포함할 수 있다.
도 1은 종래의 모듈 프레임을 갖는 전지 모듈을 나타내는 사시도이다.
도 1을 참고하면, 전지 모듈은 복수의 전지 셀(11)이 적층되어 형성된 전지 셀 적층체(12), 전지 셀 적층체(12)를 덮도록 전면과 후면이 개방된 모노 프레임(20) 및 모노 프레임(20)의 전면과 후면을 덮는 엔드 플레이트(60)를 포함할 수 있다. 이러한 전지 모듈을 형성하기 위해, 도 1에 도시한 화살표와 같이 X축 방향을 따라 모노 프레임(20)의 개방된 전면 또는 후면으로 전지 셀 적층체(12)가 삽입되도록 수평 조립이 필요하다. 다만, 이러한 수평 조립이 안정적으로 될 수 있도록 전지 셀 적층체(12)와 모노 프레임(20) 사이에 충분한 여유 공간(clearance)을 확보해야 한다. 여기서, 여유 공간(clearance)이란 끼워 맞춤 등에 의해 발생하는 틈을 말한다. 여유 공간이 작은 경우에 수평 조립 과정에서 부품 손상이 일어날 수 있다. 따라서, 모노 프레임(20)의 높이는 전지 셀 적층제(12)의 최대 높이와 삽입 과정에서의 조립 공차(tolerance) 등을 고려해 크게 설계되어야 한다. 따라서, 그로 인해 불필요하게 낭비되는 공간이 발생할 수 있다.
이뿐만 아니라, 전지 셀 스웰링을 제어하기 위해 프레임 부재의 두께가 두꺼워질 필요가 있어 공간 활용성이 떨어지는 문제가 있다.
본 발명이 해결하고자 하는 과제는, 전지 셀 스웰링 방지를 위한 신규 구조를 갖는 전지 모듈 및 전지 팩을 제공하기 위한 것이다.
그러나, 본 발명의 실시예들이 해결하고자 하는 과제는 상술한 과제에 한정되지 않고 본 발명에 포함된 기술적 사상의 범위에서 다양하게 확장될 수 있다.
본 발명의 일 실시예에 따른 전지 모듈은 복수의 전지 셀이 적층되어 있는 전지 셀 적층체, 상기 전지 셀 적층체를 수용하고 상부가 개방된 모듈 프레임, 상기 모듈 프레임 상부에서 상기 전지 셀 적층체를 덮는 상부 플레이트, 상기 전지 셀 적층체와 연결되는 버스바 프레임, 및 상기 전지 셀 적층체의 양측에 위치하는 엔드 플레이트를 포함하고, 상기 모듈 프레임은 상기 전지 셀 적층체에 포함된 상기 전지 셀의 적층 방향을 따라 상기 전지 셀 적층체를 개방하는 구조를 갖고, 상기 모듈 프레임의 개방된 양측에서 상기 엔드 플레이트가 상기 전지 셀 적층체의 적층면을 덮고 있다.
상기 모듈 프레임은 바닥부 및 서로 마주보는 2개의 측면부를 포함하고, 상기 측면부와 상기 전지 셀 적층체 사이에 상기 버스바 프레임이 위치할 수 있다.
상기 엔드 플레이트는 상기 전지 셀의 전극 리드가 돌출된 방향에 수직한 방향에 위치할 수 있다.
상기 전지 모듈은 상기 버스바 프레임과 상기 모듈 프레임의 측면부 사이에 위치하는 절연 플레이트를 더 포함할 수 있다.
상기 상부 플레이트의 양측에는 하부로 돌출된 제1 걸림부가 형성될 수 있다.
상기 엔드 플레이트는 상단부에 제1 단차부가 형성되고, 상기 제1 단차부에 상기 제1 걸림부가 걸릴 수 있다.
상기 모듈 프레임의 바닥부 양측에는 상부로 돌출된 제2 걸림부가 형성될 수 있다.
상기 엔드 플레이트의 하단부에 제2 단차부가 형성되고, 상기 제2 단차부에 상기 제2 걸림부가 걸릴 수 있다.
상기 제1 단차부 및 상기 제2 단차부는, 상기 엔드 플레이트 상단부와 하단부 각각에 홈 구조(Groove)를 형성할 수 있다.
상기 엔드 플레이트는 상기 제1 단차부의 양 외곽에 형성된 모듈 마운팅부를 가질 수 있다.
상기 모듈 마운팅부에 대응하도록 상기 상부 플레이트에는 제1 절개부가 형성되고, 상기 제1 절개부에 의해 상기 모듈 마운팅부 상단부가 개방될 수 있다.
상기 모듈 마운팅부에 대응하도록 상기 모듈 프레임의 바닥부에는 제2 절개부가 형성되고, 상기 제2 절개부에 의해 상기 모듈 마운팅부의 하단부가 개방될 수 있다.
상기 전지 모듈은 상기 엔드 플레이트와 상기 전지 셀 적층체 사이에 위치하는 압축 패드를 더 포함할 수 있다.
상기 전지 모듈은 상기 엔드 플레이트와 상기 전지 셀 적층체 사이에 위치하는 절연 커버를 더 포함할 수 있다.
상기 절연 커버의 Z축 방향으로의 너비는 상기 엔드 플레이트의 Z축 방향으로의 너비보다 크고, 상기 절연 커버의 Z축 방향으로의 상단부와 상기 엔드 플레이트의 상단부 사이에는 제1 단차부가 형성되며, 상기 제1 단차부에 상기 제1 걸림부가 걸릴 수 있다.
상기 모듈 프레임의 바닥부 양측에는 상부로 돌출된 제2 걸림부가 형성될 수 있다.
상기 절연 커버의 Z축 방향으로의 하단부와 상기 엔드 플레이트의 하단부에 제2 단차부가 형성되고, 상기 제2 단차부에 상기 제2 걸림부가 걸릴 수 있다.
상기 엔드 플레이트는 금속 물질로 형성될 수 있다.
본 발명의 다른 일 실시예에 따른 전지 팩은 상기에서 설명한 전지 모듈을 포함한다.
실시예들에 따르면, 신규한 구조의 전지 모듈을 구현하여 전지 셀 스웰링을 효과적으로 제어하면서, 공간 활용률을 높일 수 있다.
도 1은 종래의 모듈 프레임을 갖는 전지 모듈을 나타내는 분해 사시도이다.
도 2는 본 발명의 일 실시예에 따른 전지 모듈을 나타내는 분해 사시도이다.
도 3은 도 2의 전지 모듈의 구성 요소들이 결합한 상태를 나타내는 사시도이다.
도 4는 도 2의 전지 셀 적층체에 포함된 하나의 전지 셀을 나타내는 사시도이다.
도 5는 도 3의 전지 모듈에서 모듈 프레임, 상부 플레이트 및 엔드 플레이트를 상부에서 비스듬히 바라본 분해 사시도이다.
도 6은 도 3의 전지 모듈에서 모듈 프레임과 상부 플레이트를 하부에서 비스듬히 바라본 분해 사시도이다.
도 7은 도 3의 전지 모듈에서 상부 플레이트와 엔드 플레이트의 결합 관계를 나타내기 위한 사시도이다.
도 8은 도 3의 전지 모듈에서 모듈 프레임과 엔드 플레이트의 결합 관계를 나타내기 위한 사시도이다.
도 9는 본 발명의 다른 일 실시예에 따른 전지 모듈을 나타내는 분해 사시도이다.
도 10은 도 9의 전지 모듈에서 상부 플레이트와 엔드 플레이트의 결합 관계를 나타내기 위한 사시도이다.
도 11은 도 9의 전지 모듈에서 모듈 프레임과 엔드 플레이트의 결합 관계를 나타내기 위한 사시도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 "상에" 있다고 하는 것은 기준이 되는 부분의 위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향을 향하여 "위에" 또는 "상에" 위치하는 것을 의미하는 것은 아니다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
도 2는 본 발명의 일 실시예에 따른 전지 모듈을 나타내는 분해 사시도이다. 도 3은 도 2의 전지 모듈의 구성 요소들이 결합한 상태를 나타내는 사시도이다. 도 4는 도 2의 전지 셀 적층체에 포함된 하나의 전지 셀을 나타내는 사시도이다. 도 5는 도 3의 전지 모듈에서 모듈 프레임, 상부 플레이트 및 엔드 플레이트를 상부에서 비스듬히 바라본 분해 사시도이다. 도 6은 도 3의 전지 모듈에서 모듈 프레임과 상부 플레이트를 하부에서 비스듬히 바라본 분해 사시도이다.
도 2 및 도 3을 참고하면, 본 실시예에 따른 전지 모듈(100)은 복수의 전지 셀(110)이 적층되어 형성된 전지 셀 적층체(120), 전지 셀 적층체(120)가 수납되는 모듈 프레임(300), 모듈 프레임(300)의 개방된 상부를 덮는 상부 플레이트(400), 및 모듈 프레임(300)의 전면과 후면을 덮는 엔드 플레이트(150)를 포함할 수 있다. 엔드 플레이트(150)는 알루미늄과 같은 금속 물질로 형성될 수 있다. 엔드 플레이트(150)는 모듈 프레임(300)의 일측을 덮는 전면 플레이트와 모듈 프레임(300)의 다른 일측을 덮는 후면 플레이트를 포함할 수 있다.
모듈 프레임(300)은 U자형 프레임일 수 있고, 상기 U자형 프레임의 개방된 양측을 각각 제1 측과 제2 측이라고 할 때, 모듈 프레임(300)은 상기 제1 측과 상기 제2 측에 대응하는 전지 셀 적층체(120)의 면을 제외하고 나머지 외면들 중에서, 서로 인접한 전면, 하면 및 후면을 연속적으로 감싸도록 절곡된 판상형 구조로 이루어져 있다. 모듈 프레임(300)의 하면에 대응하는 상면은 개방되어 있다. 본 실시예에서 모듈 프레임(300)은 전지 셀 적층체(120)에 포함된 전지 셀(110)의 적층 방향을 따라 전지 셀 적층체(120)를 개방하는 구조를 갖는다. 이때, 모듈 프레임(300)의 개방된 양측에서 엔드 플레이트(150)가 전지 셀 적층체(120)의 적층면을 덮고 있는 구조이다.
본 실시예에 따른 전지 모듈(100)은 모듈 프레임(300)의 측면부와 전지 셀 적층체(120) 사이에 위치하는 버스바 프레임(130)을 더 포함하고, 버스바 프레임(130)과 모듈 프레임(300)의 측면부 사이에 위치하는 절연 플레이트(135)를 더 포함할 수 있다. 절연 플레이트(135)는, 전극 리드(111, 112) 및 버스바(131)가 모듈 프레임(300)과 절연될 수 있도록 하는 기능을 갖는다. 절연 플레이트(135)는 플라스틱 사출물로 형성될 수 있다.
도 2, 도 5 및 도 6을 참고하면, 본 실시예에 따른 모듈 프레임(300)은 바닥부(300a) 및 서로 마주보는 2개의 측면부(300b)를 포함한다. 또, 본 실시예에 따른 전지 모듈(100)은 전지 셀 적층체(120)가 모듈 프레임(300)의 바닥부(300a)에 장착되기 전에, 모듈 프레임(300)의 바닥부(300a)에 열전도성 수지를 도포하고, 열전도성 수지를 경화하여 형성된 열전도성 수지층(310)을 더 포함한다.
본 실시예에 따른 상부 플레이트(400)는, 그 양측에서 하부로 돌출된 제1 걸림부(400h)를 포함한다. 제1 걸림부(400h)가 형성된 상부 플레이트(400)의 양측은, 전지 셀 적층체(120)가 적층되는 방향인 X축 방향으로의 양측에 대응한다. 본 실시예에 따른 모듈 프레임(300)은, 모듈 프레임(300)의 상기 제1 측과 상기 제2 측에 각각 형성된 제2 걸림부(300c)를 더 포함한다. 제2 걸림부(300c)는 모듈 프레임(300)의 바닥부(300a)의 일단에서 상부로 돌출된 구조로 형성될 수 있다. 모듈 프레임(300)의 상기 제1 측과 상기 제2 측은 전지 셀 적층체(120)가 적층되는 방향인 X축 방향으로의 양측에 대응한다.
도 6에 도시한 바와 같이, 본 실시예에 따른 상부 플레이트(400)에는 제1 절개부(AP1)가 형성되어 있다. 제1 절개부(AP1)는 제1 걸림부(400h)의 양 단부에 인접하여 형성되며, 상부 플레이트(400)의 4개 모퉁이에 형성될 수 있다. 본 실시예에 따른 모듈 프레임(300)의 바닥부(300a)에는 제2 절개부(AP2)가 형성되어 있다. 제2 절개부(AP2)는 제2 걸림부(300c)의 양 단부에 인접하여 형성되며, 모듈 프레임(300)의 바닥부(300a)의 4개 모퉁이에 형성될 수 있다.
상부 플레이트(400)는 모듈 프레임(300)에 의해 감싸지는 전면, 하면 및 후면을 제외한 나머지 상면을 감싸는 하나의 판상형 구조로 이루어져 있다. 모듈 프레임(300)과 상부 플레이트(400)는 서로 대응하는 모서리 부위들이 접촉된 상태에서, 용접 등에 의해 결합됨으로써 전지 셀 적층체(120)를 감싸는 구조를 형성할 수 있다. 즉, 모듈 프레임(300)과 상부 플레이트(400)는 서로 대응하는 모서리 부위에 용접 등의 결합 방법으로 형성된 결합부가 형성될 수 있다.
전지 셀 적층체(120)는 일방향으로 적층된 복수의 전지 셀(110)을 포함하고, 복수의 전지 셀(110)은 도 2에 도시한 바와 같이 X축 방향으로 적층될 수 있다. 전지 셀(110)은 파우치형 전지 셀인 것이 바람직하다. 예를 들어, 도 4를 참고하면 본 실시예에 따른 전지 셀(110)은 두 개의 전극 리드(111, 112)가 서로 대향하여 전지 본체(113)의 일단부(114a)와 다른 일단부(114b)로부터 각각 돌출되어 있는 구조를 갖는다. 전지 셀(110)은, 전지 케이스(114)에 전극 조립체(미도시)를 수납한 상태로 케이스(114)의 양 단부(114a, 114b)와 이들을 연결하는 양 측면(114c)을 접착함으로써 제조될 수 있다. 다시 말해, 본 실시예에 따른 전지 셀(110)은 총 3군데의 실링부(114sa, 114sb, 114sc)를 갖고, 실링부(114sa, 114sb, 114sc)는 열융착 등의 방법으로 실링되는 구조이며, 나머지 다른 일측부는 연결부(115)로 이루어질 수 있다. 전지 케이스(114)의 양 단부(114a, 114b) 사이가 전지 셀(110)의 길이 방향으로 정의하고, 전지 케이스(114)의 양 단부(114a, 114b)를 연결하는 일측부(114c)와 연결부(115) 사이를 전지 셀(110)의 폭 방향으로 정의할 수 있다.
연결부(115)는 전지 셀(110)의 일 테두리를 따라 길게 뻗어 있는 영역이며, 연결부(115)의 단부에 전지 셀(110)의 돌출부(110p)가 형성될 수 있다. 돌출부(110p)는 연결부(115)의 양 단부 중 적어도 하나에 형성될 수 있고, 연결부(115)가 뻗는 방향에 수직한 방향으로 돌출될 수 있다. 돌출부(110p)는 전지 케이스(114)의 양 단부(114a, 114b)의 실링부(114sa, 114sb) 중 하나와 연결부(115) 사이에 위치할 수 있다.
전지 케이스(114)는 일반적으로 수지층/금속 박막층/수지층의 라미네이트 구조로 이루어져 있다. 예를 들어, 전지 케이스 표면이 O(oriented)-나일론 층으로 이루어져 있는 경우에는, 중대형 전지 모듈을 형성하기 위하여 다수의 전지 셀들을 적층할 때, 외부 충격에 의해 쉽게 미끄러지는 경향이 있다. 따라서, 이를 방지하고 전지 셀들의 안정적인 적층 구조를 유지하기 위해, 전지 케이스의 표면에 양면 테이프 등의 점착식 접착제 또는 접착시 화학 반응에 의해 결합되는 화학 접착제 등의 접착 부재를 부착하여 전지 셀 적층체(120)를 형성할 수 있다. 본 실시예에서 전지 셀 적층체(120)는 X축 방향으로 적층되고, Z축 방향으로 모듈 프레임(300) 내부에 수용되어 열전도성 수지층(310)에 의해 열 전달되어 전지 모듈에 인접한 냉각 부재에 의해 냉각이 진행될 수 있다. 이에 대한 비교예로서 전지 셀이 카트리지 형태의 부품으로 형성되어 전지 셀 간의 고정이 전지 모듈 프레임으로 조립으로 이루어지는 경우가 있다. 이러한 비교예에서는 카트리지 형태의 부품의 존재로 인해 냉각 작용이 거의 없거나 전지 셀의 면 방향으로 진행될 수 있고, 전지 모듈의 높이 방향으로는 냉각이 잘 되지 않는다.
도 2 및 도 4를 다시 참고하면, 엔드 플레이트(150)는 전지 셀(110)의 전극 리드(111, 112)가 돌출된 방향에 수직한 방향에 위치할 수 있다.
이하에서는 도 7 및 도 8을 참고하여 본 실시예에 따른 전지 모듈에서 전지 셀 스웰링을 방지하는 구조에 대해 상세히 설명하기로 한다.
도 7은 도 3의 전지 모듈에서 상부 플레이트와 엔드 플레이트의 결합 관계를 나타내기 위한 사시도이다. 도 8은 도 3의 전지 모듈에서 모듈 프레임과 엔드 플레이트의 결합 관계를 나타내기 위한 사시도이다.
도 2, 도 3 및 도 7을 참고하면, 본 실시예에 따른 전지 모듈에 포함된 엔드 플레이트(150) 상단부에 제1 단차부(160)가 형성된다. 제1 단차부(160)는 엔드 플레이트(150)를 가공 성형할 때 형성될 수 있으며, 도 7에 도시한 바와 같이, 제1 단차부(160)가 형성된 엔드 플레이트(150) 상단부는 Z축 방향으로 약간 돌출된 구조를 갖는다. 이때, 제1 단차부(160)에 상부 플레이트(400)의 제1 걸림부(400h)가 걸릴 수 있다. 제1 단차부(160)에 제1 걸림부(400h)가 걸린 상태에서 상부 플레이트(400)와 엔드 플레이트(150)가 서로 용접에 의해 결합될 수 있다.
본 실시예에 따른 엔드 플레이트(150)는 제1 단차부(160)의 양 외곽에 형성된 모듈 마운팅부(154)를 더 포함한다. 모듈 마운팅부(154)는 본 실시예에 따른 전지 모듈이 팩 프레임(미도시)과 결합하여 전지 팩을 구성하기 위해 이용되는 구조물일 수 있다. 가령, 모듈 마운팅부(154)에 마운팅 부재(미도시)가 삽입되어 팩 프레임(미도시)과 전지 모듈이 연결될 수 있다. 이때, 도 6에서 설명한 상부 플레이트(400)의 제1 절개부(AP1)에 모듈 마운팅부(154)가 대응될 수 있고, 제1 절개부(AP1)에 의해 모듈 마운팅부(154) 상단부가 개방될 수 있다.
도 2, 도 3 및 도 8을 참고하면, 엔드 플레이트(150) 하단부에 제2 단차부(170)가 형성된다. 제2 단차부(170)는 엔드 플레이트(150)를 가공 성형할 때 형성될 수 있으며, 도 8에 도시한 바와 같이, 제2 단차부(170)가 형성된 엔드 플레이트(150) 하단부는 Z축 방향으로 약간 돌출된 구조를 갖는다. 이때, 제2 단차부(170)에 모듈 프레임(300) 바닥부(300a)의 제2 걸림부(300c)가 걸릴 수 있다. 제2 단차부(170)에 제2 걸림부(300c)가 걸린 상태에서 모듈 프레임(300) 바닥부(300a)와 엔드 플레이트(150)가 서로 용접에 의해 결합될 수 있다.
도 6에서 설명한 모듈 프레임(300) 바닥부(300a)의 제2 절개부(AP2)에 모듈 마운팅부(154)가 대응될 수 있고, 제2 절개부(AP2)에 의해 모듈 마운팅부(154) 하단부가 개방될 수 있다.
이상에서 설명한 본 실시예에 따른 전지 모듈 구조에 의하면, 기존의 U자형 프레임 모듈 구조에서 모듈 프레임 위치를 90도 회전시킴으로써, 전지 셀 스웰링이 일어나는 X축 방향을 따라 엔드 플레이트(150)가 형성된다. 따라서, 엔드 플레이트(150)가 전지 셀 스웰링을 직접 제어할 수 있도록 한다. 걸림부(400h, 300c)와 단차부(160, 170) 구조에 의해, 엔드 플레이트(150)와 상부 플레이트(400) 및 엔드 플레이트(150)와 모듈 프레임(300)이 고정되고, 고정되는 방향이 전지 셀 스웰링이 발생하는 X축 방향과 일치하므로, 전지 셀 스웰링에 따른 문제를 효과적으로 제어할 수 있다. 뿐만 아니라, 전지 셀 스웰링 제어를 위해 엔드 플레이트(150) 두께와 모듈 프레임의 바닥면 두께를 늘릴 필요가 없게 되므로, 공간 활용률을 증가시킬 수 있다.
도 7 및 도 8에서 설명한 제1 단차부(160) 및 제2 단차부(170)는, 엔드 플레이트(150) 상단부와 하단부 각각에 홈 구조(Groove)를 형성할 수 있다. 엔드 플레이트(150)의 제1, 2 단차부(160, 170)에 제1, 2 걸림부(400h, 300c)가 고정되기 때문에 상부 플레이트(400)와 모듈 프레임(300) 바닥부(300a)가 엔드 플레이트(150) 최외곽면보다 돌출되는 것을 방지할 수 있다. 또, 제1, 2 단차부(160, 170)는 엔드 플레이트(150)가 상부 플레이트(400) 및 모듈 프레임(300) 바닥부(300a)와 조립 시 가이드 역할을 할 수 있다.
도 2를 다시 참고하면, 본 실시예에 따른 전지 모듈(100)은 절연 커버(140)와 전지 셀 적층체(120) 사이에 위치하는 압축 패드(119)를 더 포함할 수 있다. 압축 패드(119)는 우레탄 폼과 같은 탄성 부재로 형성되어, 전지 셀 스웰링 문제를 추가적으로 줄일 수 있다. 또한, 압축 패드(119)는 엔드 플레이트(150)와 전지셀 적층체(120) 사이에 절연을 유지한다.
이하에서는 도 9 내지 도 11을 참고하여, 본 발명의 변형 실시예에 대해 설명하기로 한다.
도 9는 본 발명의 다른 일 실시예에 따른 전지 모듈을 나타내는 분해 사시도이다. 도 10은 도 9의 전지 모듈에서 상부 플레이트와 엔드 플레이트의 결합 관계를 나타내기 위한 사시도이다. 도 11은 도 9의 전지 모듈에서 모듈 프레임과 엔드 플레이트의 결합 관계를 나타내기 위한 사시도이다.
도 9 및 도 10을 참고하면, 본 실시예에 따른 전지 모듈은, 엔드 플레이트(150)와 전지 셀 적층체(120) 사이에 위치하는 절연 커버(140)를 더 포함한다. 절연 커버(140)는 플라스틱 사출물로 형성될 수 있다. 도 10에 도시한 바와 같이, 절연 커버(140)의 Z축 방향으로의 너비는 엔드 플레이트(150)의 Z축 방향으로의 너비보다 크다. 절연 커버(140)는 엔드 플레이트(150)의 상단면보다 위로 연장되어 있다. 이때, 절연 커버(140)의 Z축 방향으로의 상단부와 엔드 플레이트(150)의 상단부 사이에 제1 단차부(160)가 형성되며, 제1 단차부(160)에 상부 플레이트(400)의 제1 걸림부(400h)가 걸릴 수 있다. 구체적으로, 엔드 플레이트(150) 안쪽에 형성되는 절연 커버(140)가 엔드 플레이트(150) 두께만큼 물러나 있고, Z축 방향으로 엔드 플레이트(150)의 상단면으로부터 돌출된 절연 커버(140) 부분과 엔드 플레이트(150)의 상단면에 의해 단차가 형성된다. 이러한 단차에 제1 걸림부(400h)가 걸린 상태에서 상부 플레이트(400)와 엔드 플레이트(150)가 서로 용접에 의해 결합될 수 있다.
도 9 및 도 11을 참고하면, 절연 커버(140)는 엔드 플레이트(150)의 하단면보다 아래로 연장되어 있다. 이때, 절연 커버(140)의 Z축 방향으로의 하단부와 엔드 플레이트(150)의 하단부 사이에 제2 단차부(170)가 형성되며, 제2 단차부(170)에 모듈 프레임(300) 바닥부(300a)의 제2 걸림부(300c)가 걸릴 수 있다. 구체적으로, 엔드 플레이트(150) 안쪽에 형성되는 절연 커버(140)가 엔드 플레이트(150) 두께만큼 물러나 있고, Z축 방향으로 엔드 플레이트(150)의 하단면으로부터 돌출된 절연 커버(140) 부분과 엔드 플레이트(150)의 하단면에 의해 단차가 형성된다. 이러한 단차에 제2 걸림부(300c)가 걸린 상태에서 모듈 프레임(300) 바닥부(300a)와 엔드 플레이트(150)가 서로 용접에 의해 결합될 수 있다.
한편, 본 발명의 실시예에 따른 전지 모듈은 하나 또는 그 이상이 팩 케이스 내에 패키징되어 전지 팩을 형성할 수 있다.
앞에서 설명한 전지 모듈 및 이를 포함하는 전지 팩은 다양한 디바이스에 적용될 수 있다. 이러한 디바이스에는, 전기 자전거, 전기 자동차, 하이브리드 자동차 등의 운송 수단에 적용될 수 있으나, 본 발명은 이에 제한되지 않고 전지 모듈 및 이를 포함하는 전지 팩을 사용할 수 있는 다양한 디바이스에 적용 가능하며, 이 또한 본 발명의 권리범위에 속한다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
부호의 설명
100: 전지 모듈
140: 절연 커버
150: 엔드 플레이트
154: 모듈 마운팅부
160: 제1 단차부
170: 제2 단차부
300: 모듈 프레임
400: 상부 플레이트
400h: 제1 걸림부
300c: 제2 걸림부

Claims (19)

  1. 복수의 전지 셀이 적층되어 있는 전지 셀 적층체,
    상기 전지 셀 적층체를 수용하고 상부가 개방된 모듈 프레임,
    상기 모듈 프레임 상부에서 상기 전지 셀 적층체를 덮는 상부 플레이트,
    상기 전지 셀 적층체와 연결되는 버스바 프레임, 및
    상기 전지 셀 적층체의 양측에 위치하는 엔드 플레이트를 포함하고,
    상기 모듈 프레임은 상기 전지 셀 적층체에 포함된 상기 전지 셀의 적층 방향을 따라 상기 전지 셀 적층체를 개방하는 구조를 갖고,
    상기 모듈 프레임의 개방된 양측에서 상기 엔드 플레이트가 상기 전지 셀 적층체의 적층면을 덮고 있는 전지 모듈.
  2. 제1항에서,
    상기 모듈 프레임은 바닥부 및 서로 마주보는 2개의 측면부를 포함하고,
    상기 측면부와 상기 전지 셀 적층체 사이에 상기 버스바 프레임이 위치하는 전지 모듈.
  3. 제2항에서,
    상기 엔드 플레이트는 상기 전지 셀의 전극 리드가 돌출된 방향에 수직한 방향에 위치하는 전지 모듈.
  4. 제2항에서,
    상기 버스바 프레임과 상기 모듈 프레임의 측면부 사이에 위치하는 절연 플레이트를 더 포함하는 전지 모듈.
  5. 제1항에서,
    상기 상부 플레이트의 양측에는 하부로 돌출된 제1 걸림부가 형성되어 있는 전지 모듈.
  6. 제5항에서,
    상기 엔드 플레이트는 상단부에 제1 단차부가 형성되고, 상기 제1 단차부에 상기 제1 걸림부가 걸려 있는 전지 모듈.
  7. 제6항에서,
    상기 모듈 프레임의 바닥부 양측에는 상부로 돌출된 제2 걸림부가 형성되어 있는 전지 모듈.
  8. 제7항에서,
    상기 엔드 플레이트의 하단부에 제2 단차부가 형성되고, 상기 제2 단차부에 상기 제2 걸림부가 걸려 있는 전지 모듈.
  9. 제8항에서,
    상기 제1 단차부 및 상기 제2 단차부는, 상기 엔드 플레이트 상단부와 하단부 각각에 홈 구조(Groove)를 형성하는 전지 모듈.
  10. 제8항에서,
    상기 엔드 플레이트는 상기 제1 단차부의 양 외곽에 형성된 모듈 마운팅부를 갖는 전지 모듈.
  11. 제10항에서,
    상기 모듈 마운팅부에 대응하도록 상기 상부 플레이트에는 제1 절개부가 형성되고, 상기 제1 절개부에 의해 상기 모듈 마운팅부 상단부가 개방되는 전지 모듈.
  12. 제11항에서,
    상기 모듈 마운팅부에 대응하도록 상기 모듈 프레임의 바닥부에는 제2 절개부가 형성되고, 상기 제2 절개부에 의해 상기 모듈 마운팅부의 하단부가 개방되는 전지 모듈.
  13. 제6항에서,
    상기 엔드 플레이트와 상기 전지 셀 적층체 사이에 위치하는 압축 패드를 더 포함하는 전지 모듈.
  14. 제6항에서,
    상기 엔드 플레이트와 상기 전지 셀 적층체 사이에 위치하는 절연 커버를 더 포함하는 전지 모듈.
  15. 제14항에서,
    상기 절연 커버의 Z축 방향으로의 너비는 상기 엔드 플레이트의 Z축 방향으로의 너비보다 크고, 상기 절연 커버의 Z축 방향으로의 상단부와 상기 엔드 플레이트의 상단부 사이에 제1 단차부가 형성되며, 상기 제1 단차부에 상기 제1 걸림부가 걸려 있는 전지 모듈.
  16. 제15항에서,
    상기 모듈 프레임의 바닥부 양측에는 상부로 돌출된 제2 걸림부가 형성되어 있는 전지 모듈.
  17. 제16항에서,
    상기 절연 커버의 Z축 방향으로의 하단부와 상기 엔드 플레이트의 하단부에 제2 단차부가 형성되고, 상기 제2 단차부에 상기 제2 걸림부가 걸려 있는 전지 모듈.
  18. 제1항에서,
    상기 엔드 플레이트는 금속 물질로 형성된 전지 모듈.
  19. 제1항에 따른 전지 모듈을 포함하는 전지 팩.
PCT/KR2020/009089 2019-10-24 2020-07-10 전지 모듈 및 이를 포함하는 전지 팩 WO2021080124A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021544392A JP7337407B2 (ja) 2019-10-24 2020-07-10 電池モジュールおよびこれを含む電池パック
US17/440,423 US20220158290A1 (en) 2019-10-24 2020-07-10 Battery Module and Battery Pack Including the Same
CN202080031684.5A CN113748564B (zh) 2019-10-24 2020-07-10 电池模块以及包括该电池模块的电池组
EP20878274.8A EP3926736A4 (en) 2019-10-24 2020-07-10 BATTERY MODULE AND BATTERY PACK COMPRISING THEM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0133054 2019-10-24
KR20190133054 2019-10-24
KR10-2020-0082995 2020-07-06
KR1020200082995A KR102477607B1 (ko) 2019-10-24 2020-07-06 전지 모듈 및 이를 포함하는 전지 팩

Publications (1)

Publication Number Publication Date
WO2021080124A1 true WO2021080124A1 (ko) 2021-04-29

Family

ID=75620166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/009089 WO2021080124A1 (ko) 2019-10-24 2020-07-10 전지 모듈 및 이를 포함하는 전지 팩

Country Status (4)

Country Link
US (1) US20220158290A1 (ko)
EP (1) EP3926736A4 (ko)
JP (1) JP7337407B2 (ko)
WO (1) WO2021080124A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220039301A (ko) * 2020-09-22 2022-03-29 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
US20230282931A1 (en) * 2022-03-04 2023-09-07 Sk On Co., Ltd. Battery pack
CN114865205A (zh) * 2022-06-02 2022-08-05 远景动力技术(江苏)有限公司 一种固态电池模组及电池包

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150044599A (ko) * 2013-10-17 2015-04-27 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩
KR20150057261A (ko) * 2013-11-19 2015-05-28 삼성에스디아이 주식회사 배터리 모듈
CN107706325A (zh) * 2017-06-30 2018-02-16 多氟多(焦作)新能源科技有限公司 电源模块及车辆
US20190131596A1 (en) * 2017-10-30 2019-05-02 Lg Chem, Ltd. Battery module and method of assembling the battery module
KR20190054709A (ko) * 2017-11-14 2019-05-22 주식회사 엘지화학 배터리 셀 가압형 엔드 플레이트와 확장형 센싱 하우징 구조가 적용된 배터리 모듈

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102388127B1 (ko) * 2018-01-31 2022-04-19 주식회사 엘지에너지솔루션 탑 커버, 이를 구비한 배터리 모듈, 그리고 이를 포함하는 배터리 팩 및 자동차
CN208955070U (zh) 2018-11-15 2019-06-07 宁德时代新能源科技股份有限公司 侧板及电池模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150044599A (ko) * 2013-10-17 2015-04-27 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩
KR20150057261A (ko) * 2013-11-19 2015-05-28 삼성에스디아이 주식회사 배터리 모듈
CN107706325A (zh) * 2017-06-30 2018-02-16 多氟多(焦作)新能源科技有限公司 电源模块及车辆
US20190131596A1 (en) * 2017-10-30 2019-05-02 Lg Chem, Ltd. Battery module and method of assembling the battery module
KR20190054709A (ko) * 2017-11-14 2019-05-22 주식회사 엘지화학 배터리 셀 가압형 엔드 플레이트와 확장형 센싱 하우징 구조가 적용된 배터리 모듈

Also Published As

Publication number Publication date
JP7337407B2 (ja) 2023-09-04
JP2022519234A (ja) 2022-03-22
EP3926736A1 (en) 2021-12-22
US20220158290A1 (en) 2022-05-19
EP3926736A4 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
WO2019177275A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2020251207A1 (ko) 전지 모듈, 이의 제조 방법 및 전지팩
WO2020251176A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2017052050A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2021010615A1 (ko) 전지 모듈, 이의 제조 방법 및 전지팩
WO2021080124A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021107395A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2020251159A1 (ko) 전지 모듈, 이의 제조 방법 및 전지팩
WO2020256271A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022014966A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2017065384A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2020251141A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022025483A1 (ko) 전지 팩 및 이의 제조 방법
WO2021221300A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021086070A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2020197208A1 (ko) 전지 모듈 및 그 제조 방법
WO2020262852A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022158954A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022154311A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
KR20210048976A (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022030785A1 (ko) 전지 모듈, 이를 포함하는 전지 팩 및 전지 모듈 제조 방법
WO2021071057A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021071052A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021015461A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022085997A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021544392

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 20878274.8

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020878274

Country of ref document: EP

Effective date: 20210914

NENP Non-entry into the national phase

Ref country code: DE