WO2018131122A1 - 膨張弁およびそれを備えた冷凍サイクル装置 - Google Patents

膨張弁およびそれを備えた冷凍サイクル装置 Download PDF

Info

Publication number
WO2018131122A1
WO2018131122A1 PCT/JP2017/000836 JP2017000836W WO2018131122A1 WO 2018131122 A1 WO2018131122 A1 WO 2018131122A1 JP 2017000836 W JP2017000836 W JP 2017000836W WO 2018131122 A1 WO2018131122 A1 WO 2018131122A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pipe
passage
expansion valve
flow path
Prior art date
Application number
PCT/JP2017/000836
Other languages
English (en)
French (fr)
Inventor
裕輔 島津
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018561160A priority Critical patent/JP6715958B2/ja
Priority to PCT/JP2017/000836 priority patent/WO2018131122A1/ja
Priority to EP17891207.7A priority patent/EP3569954A4/en
Publication of WO2018131122A1 publication Critical patent/WO2018131122A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Definitions

  • the present invention relates to an expansion valve and a refrigeration cycle apparatus including the expansion valve, and more particularly to an expansion valve including a rectifying plate and a refrigeration cycle apparatus including the expansion valve.
  • Refrigeration cycle apparatuses such as air conditioners include a refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected.
  • the expansion valve of the refrigeration cycle apparatus has a function of reducing the pressure of the high-pressure liquid refrigerant condensed in the condenser so that it can be easily evaporated in the evaporator, and adjusting the flow rate of the refrigerant.
  • the expansion valve includes an orifice and a valve body (needle), and the pressure and flow rate of the refrigerant are adjusted by changing the position of the valve body with respect to the orifice.
  • the refrigeration cycle apparatus various measures are taken in order to suppress refrigerant noise that occurs when a two-phase refrigerant flows into the expansion valve during operation.
  • the present invention has been made as part of countermeasures for the refrigerant noise, and one object is to provide an expansion valve in which the refrigerant noise is suppressed, and another object is to include such an expansion valve.
  • Another refrigeration cycle apparatus is provided.
  • the expansion valve according to the present invention includes a valve body, a valve body, a first flow path, a second flow path, and a current plate.
  • the valve body includes a valve seat and a valve seat having an opening communicating with the valve chamber. The valve body is inserted into the opening of the valve seat and adjusts the opening of the opening.
  • the first flow path communicates with the valve chamber.
  • the second flow path communicates with the opening of the valve seat.
  • the rectifying plate is disposed in a direction intersecting with a direction in which the refrigerant flows in a flow path in which the refrigerant flows toward the valve chamber among the first flow path and the second flow path.
  • the ratio of the liquid refrigerant in the weight ratio between the liquid refrigerant and the gas refrigerant is defined as the liquid ratio.
  • the rectifying plate has a high passage resistance from the first portion of the rectifying plate that is located in the region where the refrigerant having a low liquid ratio flows to the second portion that is located in the region where the refrigerant having a high liquid ratio flows. In this manner, a refrigerant passage through which the refrigerant passes is formed.
  • a refrigeration cycle apparatus is a refrigeration cycle apparatus provided with the above expansion valve.
  • the rectifying plate is located in a region where the refrigerant having a high liquid ratio flows from the first portion of the rectifying plate that is located in the region where the refrigerant having a low liquid ratio flows.
  • Refrigerant noise can be suppressed by forming the refrigerant passage through which the refrigerant passes in a manner in which the passage resistance increases toward the second portion.
  • the refrigerant noise of the refrigeration cycle apparatus can be suppressed by providing the expansion valve.
  • FIG. 5 is a cross-sectional view showing the relationship between the structure of the rectifying plate and the direction of centrifugal force at the cross-sectional line VV shown in FIG. 4 in the embodiment.
  • FIG. 6 is a perspective view showing a rectifying plate arranged in an expansion valve according to Embodiment 2.
  • FIG. 13 is a cross-sectional view showing the relationship between the structure of the rectifying plate and the direction of centrifugal force at the cross-sectional line XIII-XIII shown in FIG. 12 in the same embodiment.
  • FIG. 6 is a perspective view showing a current plate arranged in an expansion valve according to Embodiment 3.
  • FIG. 17 is a cross-sectional view showing the relationship between the structure of the rectifying plate and the direction of centrifugal force at the cross-sectional line XVII-XVII shown in FIG. 16 in the embodiment.
  • it is sectional drawing which shows typically a mode that the refrigerant
  • It is a side view including the partial cross section of the expansion valve which has a baffle plate based on Embodiment 4.
  • FIG. It is a side view including the partial cross section of the expansion valve which has a baffle plate based on Embodiment 5.
  • a refrigerant circuit in which a compressor 53, a condenser 55, an expansion valve 1 and an evaporator 57 are sequentially connected is formed.
  • the refrigerant compressed by the compressor 53 is discharged from the compressor 53 as a high-temperature and high-pressure gas refrigerant.
  • the discharged high-temperature and high-pressure gas refrigerant is sent to the condenser 55.
  • heat exchange is performed between the refrigerant flowing in and the air sent into the condenser 55. By the heat exchange, the high-temperature and high-pressure gas refrigerant is condensed and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant sent out from the condenser 55 becomes a two-phase refrigerant consisting of a low-pressure gas refrigerant and a liquid refrigerant by the expansion valve 1.
  • the two-phase refrigerant flows into the evaporator 57.
  • heat exchange is performed between the flowing two-phase refrigerant and the air fed into the evaporator 57.
  • the liquid refrigerant evaporates and becomes a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant sent out from the evaporator 57 flows into the compressor 53 and is compressed to become a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant is discharged again from the compressor 53 and sent to the condenser 55. Thereafter, this cycle is repeated.
  • Embodiment 1 FIG. (Construction)
  • the expansion valve 1 has a function of reducing the pressure of the high-pressure liquid refrigerant condensed in the condenser 55 (see FIG. 1) so that it can be easily evaporated in the evaporator 57 and adjusting the flow rate of the refrigerant.
  • the expansion valve 1 has a valve body 3.
  • a valve chamber 5 is provided in the valve body 3.
  • the valve body 3 is provided with a valve seat 9.
  • a valve body 7 is inserted through the valve seat 9.
  • a drive unit 11 is provided above the valve body 3.
  • the valve body 7 is moved in the vertical direction by the drive unit 11.
  • An annular throttle portion is formed by inserting the valve body 7 through the valve seat 9, and the valve body 7 moves in the vertical direction, so that the flow passage area of the throttle portion is adjusted.
  • the valve body 7 is formed integrally with a cylindrical portion and a conical portion.
  • the conical portion forms an annular throttling portion with the valve seat.
  • the columnar portion of the valve body 7 does not need to be in the form of a column itself due to the fixing method with the pressure loss body. Further, the conical portion of the valve body 7 does not have to be strictly conical, and may be tapered.
  • the valve body 3 is provided with a first pipe 13 (first flow path) and a second pipe 15 (second flow path) communicating with the valve chamber 5, respectively.
  • a rectifying plate 21 is disposed at a portion where the valve body 3 and the first pipe 13 are connected. Further, a rectifying plate 21 is disposed at a portion where the valve body and the second pipe 15 are connected. The structure of the current plate 21 will be described later.
  • a first connection pipe 17 is connected to the first pipe 13.
  • a second connection pipe 19 is connected to the second pipe 15.
  • the first connecting pipe 17 and the second connecting pipe 19 are bent pipes.
  • the position (circumferential position) of the rectifying plate 21 is determined by the direction of the first connecting pipe 17 (bent pipe). Further, the position of the rectifying plate 21 (circumferential position of the flow path) is determined by the direction of the second connection pipe 19 (bent pipe).
  • the rectifying plate 21 is provided with a refrigerant passage 23a and a refrigerant passage 23b having different passage areas through which the refrigerant passes.
  • the passage area of the refrigerant passage 23b is narrower than the passage area of the refrigerant passage 23a.
  • the rectifying plate 21 has a uniform thickness T.
  • the side on which the refrigerant passage 23a is disposed may be thin and the side on which the refrigerant passage 23b is disposed may be formed thick.
  • the thickness may change continuously, or the thickness may change discontinuously in two steps or more.
  • the throttle portion of the expansion valve When high-pressure two-phase refrigerant flows into the expansion valve, the throttle portion of the expansion valve has a discontinuous flow of gas refrigerant and liquid refrigerant, and refrigerant noise may occur discontinuously.
  • refrigerant sound an harsh sound (refrigerant sound) is generated, for example, a refrigerant sound having a specific frequency or a refrigerant sound having a discontinuous frequency is randomly generated.
  • the refrigerant flowing into the expansion valve is a two-phase refrigerant, the dryness is low. Moreover, although the volume of a gas refrigerant is large, the ratio (liquid ratio) of a liquid refrigerant is high. Furthermore, the flow velocity flowing into the expansion valve is relatively small. Therefore, in the case where a bent pipe is arranged as a pipe that guides the refrigerant to the expansion valve, the distribution of the liquid refrigerant and the gas refrigerant in the flow path cross section becomes non-uniform. Further, it is assumed that the distribution of the liquid refrigerant and the gas refrigerant in the cross section of the flow path becomes non-uniform due to gravity.
  • the ratio of the liquid refrigerant in the weight ratio of the liquid refrigerant to the gas refrigerant is defined as the liquid ratio.
  • the refrigerant passage 23a having a large passage area is formed in a portion (first portion) of the rectifying plate 21 through which a refrigerant having a low liquid ratio flows.
  • the refrigerant passage 23b having a small passage area is formed in a portion (second portion) of the rectifying plate 21 through which a refrigerant having a high liquid ratio flows.
  • the first connecting pipe 17 is connected to the first pipe 13 as a bent pipe. Further, a second connection pipe 19 is connected to the second pipe 15 as a bent pipe.
  • a case is assumed where the refrigerant flows from the first connection pipe 17 into the valve chamber 5 of the expansion valve 1 through the first pipe 13.
  • a refrigerant having a higher liquid ratio flows on the outer peripheral side in the first connection pipe 17 due to centrifugal force than on the inner peripheral side.
  • in the 1st piping 13 a refrigerant
  • the refrigerant having a narrow passage area is provided in the portion (second portion) of the rectifying plate 21 that is positioned on the upper side in the first pipe 13.
  • the refrigerant passage 23a having a large passage area is located in the portion (first portion) of the rectifying plate 21 where the passage 23b is located and located on the lower side in the first pipe 13.
  • a refrigerant having a narrow passage area is provided in the portion (second portion) of the rectifying plate 21 that is located on the left side in the second pipe 15.
  • the refrigerant passage 23a having a large passage area is located in the portion (first portion) of the rectifying plate 21 where the passage 23b is located and located on the right side in the second pipe 15.
  • the rectifying plate 21 has a centrifugal force acting side (an arrow CFV side) in consideration of the direction of the centrifugal force acting on the refrigerant (arrow CFV).
  • a refrigerant passage 23b having a small passage area is located, and a refrigerant passage 23a having a large passage area is located on the side opposite to the side on which the centrifugal force acts.
  • the refrigerant having a high liquid ratio passes through the refrigerant passage 23b having a small passage area, so that the speed of the liquid refrigerant increases (see the dotted arrow).
  • the bubbles of the gas refrigerant are subdivided.
  • the subdivided gas refrigerant bubbles are agitated by the liquid refrigerant whose flow rate is increased.
  • the expansion valve 101 has a valve body 103.
  • a valve chamber 105 is provided in the valve body 103.
  • the valve body 103 is provided with a valve seat 109.
  • a valve body 107 (needle) is inserted through the valve seat 109. By inserting the valve body 107 into the valve seat 109, an annular throttle portion is formed between the valve seat 109 and the valve body 107.
  • the valve main body 103 is provided with a first pipe 113 and a second pipe 115 communicating with the valve chamber 105, respectively.
  • the rectifying plate 121 is disposed in a portion where the valve main body 103 and the second pipe 115 are connected.
  • FIG. 8 shows rectifying plates 121a, 121b, 121c, and 121d as variations of the rectifying plate 121.
  • FIG. A refrigerant passage 123 is formed in each of the rectifying plates 121a to 121d. As shown in FIG. 8, in each of the rectifying plates 121a to 121d, the refrigerant passage 123 is formed at a position that is line-symmetric or point-symmetric with the same opening diameter.
  • the refrigerant passage 123 is formed at a position that is line-symmetric or point-symmetric, so that the speed of the refrigerant having a high liquid ratio cannot be sufficiently increased. Further, the bubbles of the refrigerant having a low liquid ratio cannot be sufficiently subdivided. For this reason, the distribution of the liquid refrigerant and the gas refrigerant flowing into the expansion valve 101 cannot be made uniform.
  • the refrigerant having a high liquid ratio passes through the refrigerant passage 23b having a small passage area and high passage resistance, so that the speed of the liquid refrigerant is increased.
  • the pressure loss is relatively small.
  • the refrigerant having a low liquid ratio passes through the refrigerant passage 23a having a large passage area and low passage resistance, whereby the gas refrigerant bubbles are subdivided, but the pressure loss is relatively small.
  • FIG. 9 shows the relationship between refrigerant sound and passage resistance
  • FIG. 10 shows the relationship between pressure loss and passage resistance.
  • the horizontal axis represents passage resistance and the vertical axis represents refrigerant sound.
  • the passage resistance decreases, that is, as the passage area of the refrigerant passage increases, the refrigerant noise tends to increase.
  • the horizontal axis represents passage resistance
  • the vertical axis represents pressure loss.
  • the refrigerant passage 23b having a high passage resistance and the refrigerant passage 23a having a low passage resistance are arranged according to the liquid ratio of the refrigerant flowing into the expansion valve 1.
  • the refrigerant passages having the same passage area are arranged line-symmetrically or point-symmetrically.
  • the rectifying plate 21 of the expansion valve 1 according to Embodiment 1 when compared with the case where the average passage resistance is the same, the rectifying plate 21 of the expansion valve 1 according to Embodiment 1 is different from the rectifying plate 121 of the expansion valve 101 according to the comparative example. In comparison, the refrigerant sound can be lowered. Moreover, compared with the case where average passage resistance is the same, in the rectifying plate 21 of the expansion valve 1 according to Embodiment 1, the pressure loss increases compared to the rectifying plate 121 of the expansion valve 101 according to the comparative example. Can be suppressed.
  • the rectifying plates 21 are arranged on both the part where the first pipe 13 is connected to the expansion valve 1 and the part of the expansion valve 1 where the second pipe 15 is connected.
  • the refrigerant flowing toward the expansion valve 1 through the second pipe 15 flows toward the valve seat 9 or the valve body 7 after flowing through the second pipe 15.
  • the rectifying plate 21 it is desirable to arrange the rectifying plate 21 at least in a flow path (pipe) through which the refrigerant flows toward the valve seat 9 and the like.
  • the rectifying plate 21 arranged in the expansion valve 1 described above the case where the two refrigerant passages 23a and 23b are formed as the refrigerant passages having different passage areas has been described, but three or more different passage areas are provided.
  • a rectifying plate in which a refrigerant passage (not shown) is formed may be used. Also in this case, it is only necessary that the refrigerant passage is arranged in such a manner that the passage area gradually decreases along the direction in which the centrifugal force acts.
  • Embodiment 2 an example of the variation of the baffle plate 21 arrange
  • the structure of the expansion valve, the first pipe, the second pipe, the first connection pipe, and the second connection pipe, which are not shown, are the same as the arrangement structure shown in FIG. The description will not be repeated.
  • the rectifying plate 21 is provided with a plurality of refrigerant passages 23 b having a substantially uniform passage area through which the refrigerant passes.
  • the plurality of refrigerant passages 23b are arranged with a substantially uniform pitch.
  • the thickness on one end side in one diameter direction is the thickness T1.
  • the thickness on the other end side in the one diametric direction is set to a thickness T2 which is thinner than the thickness T1.
  • the portion having the thickness T1 is located on the side where the centrifugal force acts (the side on which the arrow CFV faces), and on the side opposite to the side where the centrifugal force acts,
  • the current plate 21 is arranged so that the portion having the thickness T2 is located.
  • the passage resistance of the refrigerant passage 23b formed in the portion where the rectifying plate 21 is relatively thick is higher than the passage resistance of the refrigerant passage 23b formed in the portion where the thickness is relatively thin. That is, the refrigerant passage 23b is arranged so that the passage resistance of the rectifying plate 21 increases toward the side on which the centrifugal force acts (the side on which the arrow CFV faces).
  • the refrigerant having a high liquid ratio passes through the refrigerant passage 23b having a high passage resistance, thereby increasing the speed of the liquid refrigerant (see the dotted arrow).
  • the refrigerant having a low liquid ratio passes through the refrigerant passage 23b having a low passage resistance, whereby the bubbles of the gas refrigerant are subdivided. The subdivided gas refrigerant bubbles are agitated by the liquid refrigerant whose flow rate is increased.
  • the refrigerant passages 23b can be easily processed by arranging the plurality of refrigerant passages 23b with a substantially uniform pitch. Furthermore, by making the pitch of the plurality of refrigerant passages 23b uniform, the distribution of the liquid refrigerant and the gas refrigerant is likely to be more uniform after flowing through the rectifying plate 21, which can contribute to further reduction in refrigerant noise. .
  • Embodiment 3 the other example of the variation of the baffle plate 21 arrange
  • the rectifying plate 21 is provided with a plurality of refrigerant passages 23c and refrigerant passages 23d having substantially uniform passage areas through which the refrigerant passes.
  • the plurality of refrigerant passages 23c and the plurality of refrigerant passages 23d are arranged with a substantially uniform pitch.
  • the thickness of the current plate 21 is a thickness T.
  • the refrigerant passage 23c is formed in a direction substantially orthogonal to the rectifying plate 21 along the direction in which the refrigerant flows.
  • the refrigerant passage 23d is formed so as to incline in a direction intersecting with the orthogonal direction so as to intersect with the direction in which the refrigerant flows.
  • the refrigerant passage 23d is located on the side on which the centrifugal force acts (the side on which the arrow CFV faces), and the refrigerant passage 23c is located on the opposite side to the side on which the centrifugal force acts.
  • the baffle plate 21 is arrange
  • the passage resistance of the refrigerant passage 23d formed in the rectifying plate 21 so as to intersect the refrigerant flow is higher than the passage resistance of the refrigerant passage 23c formed in the rectifying plate 21 along the refrigerant flow. That is, the refrigerant passage 23c and the refrigerant passage 23d are arranged so that the passage resistance of the rectifying plate 21 increases toward the side on which the centrifugal force acts (the side on which the arrow CFV faces).
  • the refrigerant having a high liquid ratio passes through the refrigerant passage 23d having a high passage resistance, thereby increasing the speed of the liquid refrigerant (see the dotted arrow).
  • the refrigerant having a low liquid ratio passes through the refrigerant passage 23c having a low passage resistance, so that the bubbles of the gas refrigerant are subdivided. The subdivided gas refrigerant bubbles are agitated by the liquid refrigerant whose flow rate is increased.
  • the rectifying plate 2 is provided with a refrigerant passage 23d that is uniformly inclined so as to intersect the refrigerant flow direction as a refrigerant passage having a relatively high passage resistance. explained.
  • the angle of inclination of the refrigerant passage with respect to the direction in which the refrigerant flows is not limited to one angle, and a refrigerant passage inclined at two or more different angles may be formed.
  • the refrigerant passage may be arranged so that the inclination angle gradually increases toward the side on which the centrifugal force acts (the side on which the arrow CFV is directed).
  • Embodiment 4 FIG. Here, an example of a variation of piping connected to the expansion valve 1 and a rectifying plate will be described.
  • the rectifying plate 21 disposed in the portion to which the first pipe 13 is connected is such that the refrigerant passage 23b having a high passage resistance is located on the lower side and the refrigerant passage 23a having a low passage resistance is located on the upper side. Arranged.
  • the refrigerant having a high liquid ratio that flows in the lower part of the first pipe 13 due to the action of gravity passes through the refrigerant passage 23d having a high passage resistance, thereby increasing the speed of the liquid refrigerant.
  • the refrigerant having a low liquid ratio flowing in the upper part of the first pipe 13 passes through the refrigerant passage 23c having a low passage resistance, so that the bubbles of the gas refrigerant are subdivided.
  • the subdivided gas refrigerant bubbles are agitated by the liquid refrigerant whose flow rate is increased.
  • the distribution of the liquid refrigerant and the gas refrigerant becomes relatively uniform, and the refrigerant in the two-phase state is expanded into the expansion valve 1. It will flow to the throttle part. As a result, the refrigerant noise can be reduced.
  • Embodiment 5 FIG. Here, an example of an expansion valve capable of easily confirming the arrangement relationship of the rectifying plates will be described.
  • the first pipe 13 connected to the expansion valve 1 is provided with a protrusion 14, and the second pipe 15 is provided with a protrusion 16.
  • the protrusion 14 is formed on the pipe wall portion on the side where the refrigerant having a high liquid ratio flows so as to protrude from the inside to the outside of the first pipe 13. Yes.
  • a projection 16 is formed on the pipe wall portion on the side where the refrigerant having a high liquid ratio flows so as to protrude from the inside to the outside of the second pipe 15. .
  • the rectifying plate 21 is arranged at a predetermined position (circumferential position) for reducing the refrigerant sound.
  • the bending direction of the second connecting pipe 19 is as follows. It can be easily confirmed whether or not the rectifying plate 21 is disposed at a predetermined position (circumferential position) that reduces the refrigerant sound.
  • the position of the rectifying plate 21 (circumferential position) in the expansion valve 1 is misaligned from a predetermined position where refrigerant noise is reduced. Can be suppressed.
  • the protrusion 14 confirms whether or not the rectifying plate 21 is disposed at a predetermined position (circumferential position) for reducing the refrigerant sound, in relation to the position of the bent pipe.
  • a predetermined position (circumferential position) for reducing the refrigerant sound
  • the expansion valve including the rectifying plate described in each embodiment can be variously combined as necessary.
  • the present invention is effectively used for an expansion valve used in a refrigeration cycle apparatus.
  • valve body 1 expansion valve
  • valve body 3 valve body, 5 valve chamber, 7 valve body, 9 valve seat, 11 drive unit, 13 first pipe, 14 protrusion, 15 second pipe, 16 protrusion, 17 first connection pipe, 19 second connection Tube, 21 straightening plate, 23a, 23b, 23c, 23d refrigerant passage, 31 liquid refrigerant, 33 gas refrigerant, CFV arrow, 51 refrigeration cycle device, 53 compressor, 55 condenser, 57 evaporator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

膨張弁(1)は、弁室(5)が設けられた弁本体(3)を有している。弁本体(3)には、弁座(9)が設けられ、弁体(7)が挿通されている。弁本体(3)には、弁室(5)にそれぞれ連通する第1配管(13)と第2配管(15)とが設けられている。弁本体(3)と第1配管(13)とが接続されている部分と、弁本体(3)と第2配管(15)とが接続されている部分とに、それぞれ整流板(21)が配置されている。整流板(21)には、冷媒が通過する通路面積が異なる冷媒通路(23a)と冷媒通路(23b)とが設けられている。冷媒通路(23b)の通路面積は、冷媒通路(23a)の通路面積よりも狭い。整流板(21)の厚さは、一様な厚さ(T)とされる。

Description

膨張弁およびそれを備えた冷凍サイクル装置
 本発明は、膨張弁およびそれを備えた冷凍サイクル装置に関し、特に、整流板を備えた膨張弁と、その膨張弁を備えた冷凍サイクル装置とに関するものである。
 空気調和装置等の冷凍サイクル装置においては、圧縮機、凝縮器、膨張弁および蒸発器が順次接続された冷媒回路を備えている。
 冷凍サイクル装置(空気調和装置)の膨張弁は、凝縮器において凝縮した高圧の液冷媒を、蒸発器において蒸発しやすい状態に減圧するとともに、冷媒の流量を調整する機能を有する。膨張弁は、オリフィスと弁体(ニードル)とを備えており、オリフィスに対する弁体の位置を変えることによって、冷媒の圧力と流量が調整される。
 一般的に、膨張弁の入り口へは、高圧の液冷媒が流れ込み、膨張弁の出口からは、減圧された二相状態の冷媒が送り出される。ところが、冷凍サイクル装置の運転状況によっては、膨張弁の入り口へ、高圧の液冷媒とガス冷媒とが流れ込むことがある。このとき、膨張弁では、液冷媒とガス冷媒との二相状態の冷媒が流れることに起因して、音(冷媒音)が発生することがある。このような冷媒音を抑制するために、従来、対策が講じられている(たとえば、特許文献1、特許文献2)。
特開2007-162851号公報 特開2014-238207号公報
 上述したように、冷凍サイクル装置では、運転時に、膨張弁に二相状態の冷媒が流れ込んだ場合に発生する冷媒音を抑制するために、種々の対策が講じられている。本発明は、その冷媒音の対策の一環としてなされたものであり、一の目的は、冷媒音が抑制される膨張弁を提供することであり、他の目的は、そのような膨張弁を備えた冷凍サイクル装置を提供することである。
 本発明に係る膨張弁は、弁本体と弁体と第1流路と第2流路と整流板とを備えている。弁本体は、弁室および弁室に連通する開口部を有する弁座を含む。弁体は、弁座の開口部に挿通されて、開口部の開度を調節する。第1流路は、弁室に連通する。第2流路は、弁座の開口部に連通する。整流板は、第1流路および第2流路のうち、弁室に向かって冷媒が流れ込む流路に、冷媒が流れる方向と交差する方向に配置されている。冷媒が液冷媒とガス冷媒とを含む場合において、液冷媒とガス冷媒との重量比における液冷媒の比率を液比率とする。整流板には、液比率の低い冷媒が流れる領域に位置することになる整流板の第1部分から液比率の高い冷媒が流れる領域に位置することになる第2部分へ向かって通路抵抗が高くなる態様で、冷媒を通過させる冷媒通路が形成されている。
 本発明に係る冷凍サイクル装置は、上記の膨張弁を備えた冷凍サイクル装置である。
 本発明に係る膨張弁によれば、整流板には、液比率の低い冷媒が流れる領域に位置することになる整流板の第1部分から液比率の高い冷媒が流れる領域に位置することになる第2部分へ向かって通路抵抗が高くなる態様で、冷媒を通過させる冷媒通路が形成されていることで、冷媒音を抑制することができる。
 本発明に係る冷凍サイクル装置によれば、上記膨張弁を備えていることで、冷凍サイクル装置の冷媒音を抑制することができる。
各実施の形態に係る冷凍サイクル装置の冷媒回路を示す図である。 実施の形態1に係る、整流板を有する膨張弁の一部断面を含む側面図である。 同実施の形態において、膨張弁に配置される整流板の斜視図である。 同実施の形態において、整流板の冷媒通路と遠心力の向きとの関係を示す平面図である。 同実施の形態において、図4に示す断面線V-Vにおける整流板の構造と遠心力の向きとの関係を示す断面図である。 同実施の形態において、第1配管内および第2配管内の冷媒が整流板を流れる様子を模式的に示す断面図である。 比較例に係る膨張弁を示す部分断面図である。 比較例に係る膨張弁に配置されている整流板を示す平面図である。 同実施の形態において、冷媒音と通路抵抗との関係を、比較例とともに示すグラフである。 同実施の形態において、圧力損失と通路抵抗との関係を、比較例とともに示すグラフである。 実施の形態2に係る膨張弁に配置される整流板を示す斜視図である。 同実施の形態において、整流板の冷媒通路と遠心力の向きとの関係を示す平面図である。 同実施の形態において、図12に示す断面線XIII-XIIIにおける整流板の構造と遠心力の向きとの関係を示す断面図である。 同実施の形態において、第1配管内および第2配管内の冷媒が整流板を流れる様子を模式的に示す断面図である。 実施の形態3に係る膨張弁に配置される整流板を示す斜視図である。 同実施の形態において、整流板の冷媒通路と遠心力の向きとの関係を示す平面図である。 同実施の形態において、図16に示す断面線XVII-XVIIにおける整流板の構造と遠心力の向きとの関係を示す断面図である。 同実施の形態において、第1配管内および第2配管内の冷媒が整流板を流れる様子を模式的に示す断面図である。 実施の形態4に係る、整流板を有する膨張弁の一部断面を含む側面図である。 実施の形態5に係る、整流板を有する膨張弁の一部断面を含む側面図である。
 はじめに、各実施の形態に係る膨張弁が適用されている冷凍サイクル装置の一例について、具体的に説明する。
 図1に示すように、空気調和装置等の冷凍サイクル装置51では、圧縮機53、凝縮器55、膨張弁1および蒸発器57が順次接続された冷媒回路が形成されている。圧縮機53によって圧縮された冷媒は、高温高圧のガス冷媒となって圧縮機53から吐出する。吐出した高温高圧のガス冷媒は凝縮器55へ送られる。凝縮器55では、流れ込んだ冷媒と凝縮器55内に送り込まれた空気との間で熱交換が行われる。熱交換により、高温高圧のガス冷媒は凝縮し、高圧の液冷媒になる。
 凝縮器55から送り出された高圧の液冷媒は、膨張弁1によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、蒸発器57に流れ込む。蒸発器57では、流れ込んだ二相状態の冷媒と、蒸発器57内に送り込まれた空気との間で熱交換が行われる。熱交換により、液冷媒は蒸発し、低圧のガス冷媒になる。
 蒸発器57から送り出された低圧のガス冷媒は圧縮機53に流れ込み、圧縮されて高温高圧のガス冷媒となる。高温高圧のガス冷媒は、再び圧縮機53から吐出して凝縮器55へ送られる。以下、このサイクルが繰り返されることになる。
 次に、冷凍サイクル装置51に使用されている膨張弁1について、各実施の形態において説明する。
 実施の形態1.
 (構造)
 膨張弁1は、凝縮器55(図1参照)において凝縮した高圧の液冷媒を、蒸発器57において蒸発しやすい状態に減圧するとともに、冷媒の流量を調整する機能を有する。
 図2に示すように、膨張弁1は、弁本体3を有している。弁本体3には弁室5が設けられている。また、弁本体3には、弁座9が設けられている。弁座9には、弁体7(ニードル)が挿通されている。弁本体3の上方には駆動部11が設けられている。
 弁体7は、駆動部11によって、上下方向に移動することになる。弁座9に弁体7を挿通させることによって円環状の絞り部が形成されて、弁体7が上下方向に移動することで、絞り部の流路面積が調整されることになる。
 弁体7は、円柱状部と円錐状部が一体的形成されている。円錐状部が、弁座との間に円環状の絞り部を形成する。弁体7の円柱状部は、圧損体との固定方法により、円柱そのもの形態をする必要はない。また、弁体7の円錐状部は、厳密に円錐形状である必要はなく、先細りする形状であればよい。
 弁本体3には、弁室5にそれぞれ連通する第1配管13(第1流路)と、第2配管15(第2流路)とが設けられている。弁本体3と第1配管13とが接続されている部分に、整流板21が配置されている。また、弁本体と第2配管15とが接続されている部分に、整流板21が配置されている。整流板21の構造については、後述する。
 第1配管13には、第1接続管17が接続されている。第2配管15には、第2接続管19が接続されている。第1接続管17および第2接続管19は、曲がり配管である。第1接続管17(曲がり配管)の向きによって、整流板21の位置(周方向位置)が定められる。また、第2接続管19(曲がり配管)の向きによって、整流板21の位置(流路の周方向位置)が定められる。
 次に、整流板21の構造について説明する。図3に示すように、整流板21には、冷媒が通過する通路面積が異なる冷媒通路23aと冷媒通路23bとが設けられている。冷媒通路23bの通路面積は、冷媒通路23aの通路面積よりも狭い。整流板21の厚さは、一様な厚さTとされる。
 なお、整流板21の厚さとしては、一様な厚さTの他に、冷媒通路23aが配置されている側が薄く、冷媒通路23bが配置されている側が厚く形成されていてもよい。たとえば、後述する図13に示される態様で、厚さが連続的に変化してもよいし、厚さが2段階あるいはそれ以上に不連続に変化していてもよい。
 (作用と効果)
 上述したように、一般的に、膨張弁では、高圧の液冷媒が流入し、減圧された液冷媒とガス冷媒との二相状態の冷媒が流出する。しかしながら、冷凍サイクル装置の起動時あるいは特定の条件下においては、膨張弁に、高圧の液冷媒(単相)ではなく、高圧の液冷媒とガス冷媒との二相状態の冷媒が流入することがある。
 高圧の二相状態の冷媒が膨張弁に流入する場合、膨張弁における絞り部では、ガス冷媒と液冷媒との不連続な流れとなり、冷媒音が不連続に発生することがある。特に、特定の周波数の冷媒音あるいは不連続な周波数の冷媒音がランダムに発生するなど、耳障りな音(冷媒音)が発生することになる。
 膨張弁へ流入する冷媒が二相状態の冷媒であっても、乾き度は低い。また、ガス冷媒の体積が大きいとはいっても、液冷媒の割合(液比率)が高い。さらに、膨張弁に流入する流速が比較的小さい。そのため、膨張弁まで冷媒を導く配管等として曲がり配管が配置されているような場合には、流路断面における液冷媒とガス冷媒との分布が不均一になる。また、重力により、流路断面における液冷媒とガス冷媒との分布が不均一になることも想定される。
 ここで、冷媒が液冷媒とガス冷媒とを含む場合において、液冷媒とガス冷媒との重量比における液冷媒の比率を液比率とする。通路面積が広い冷媒通路23aは、液比率の低い冷媒が流れることになる整流板21の部分(第1部分)に形成されている。通路面積が狭い冷媒通路23bは、液比率の高い冷媒が流れることになる整流板21の部分(第2部分)に形成されている。
 第1配管13には、第1接続管17が曲がり配管として接続されている。また、第2配管15には、第2接続管19が曲がり配管として接続されている。ここで、冷凍サイクル装置51(図1参照)の運転モードとして、冷媒が、第1接続管17から第1配管13を経て膨張弁1の弁室5に流れ込む場合を想定する。この場合には、冷媒が第1接続管17内を流れる間に、第1接続管17内における外周側では、遠心力によって内周側よりも液比率の高い冷媒が流れる。このため、第1配管13内では、紙面に向かって上側の領域に液比率の高い冷媒が流れ、下側の領域に液比率の低い冷媒が流れることになる。
 一方、冷凍サイクル装置51(図1参照)の運転モードとして、冷媒が、第2接続管19から第2配管15を経て膨張弁1の弁室5に流れ込む場合を想定する。この場合には、冷媒が第2接続管19内を流れる間に、第2接続管19内における外周側では、遠心力によって内周側よりも液比率の高い冷媒が流れる。このため、第2配管15内では、紙面に向かって左側の領域に液比率の高い冷媒が流れ、右側の領域に液比率の低い冷媒が流れることになる。
 したがって、第1配管13が接続される部分に配置される整流板21では、第1配管13内の上側に位置することになる整流板21の部分(第2部分)に、通路面積が狭い冷媒通路23bが位置し、第1配管13内の下側に位置することになる整流板21の部分(第1部分)に、通路面積が広い冷媒通路23aが位置する。
 一方、第2配管15が接続される部分に配置される整流板21では、第2配管15内の左側に位置することになる整流板21の部分(第2部分)に、通路面積が狭い冷媒通路23bが位置し、第2配管15内の右側に位置することになる整流板21の部分(第1部分)に、通路面積が広い冷媒通路23aが位置する。
 すなわち、図4および図5に示すように、整流板21には、冷媒に作用する遠心力の向き(矢印CFV)を考慮して、遠心力が作用する側(矢印CFVが向いている側)に、通路面積が狭い冷媒通路23bが位置し、遠心力が作用する側とは反対側に、通路面積が広い冷媒通路23aが位置する。
 図6に示すように、液比率の高い冷媒が、通路面積が狭い冷媒通路23bを通過することで、液冷媒の速度が増加する(点線矢印参照)。液比率の低い冷媒が、通路面積が広い冷媒通路23aを通過することで、ガス冷媒の気泡が細分化される。細分化されたガス冷媒の気泡は、流速が増加した液冷媒によって撹拌される。
 これにより、整流板23を通過した後では、液冷媒とガス冷媒との分布が比較的均一な状態となり、その二相状態の冷媒が膨張弁1の絞り部に流れることになる。その結果、膨張弁1を流れる冷媒の冷媒音を低減させることができる。このことについて、比較例に係る膨張弁と比べて説明する。
 図7に示すように、比較例に係る膨張弁101は、弁本体103を有している。弁本体103には弁室105が設けられている。また、弁本体103には、弁座109が設けられている。弁座109には、弁体107(ニードル)が挿通されている。弁座109に、弁体107が挿通されることで、弁座109と弁体107との間に円環状の絞り部が形成される。
 弁本体103には、弁室105にそれぞれ連通する第1配管113と、第2配管115とが設けられている。ここでは、たとえば、弁本体103と第2配管115とが接続されている部分に、整流板121が配置されている。
 比較例に係る膨張弁101の整流板121には、冷媒を通過させる冷媒通路が形成されている。図8に、整流板121のバリエーションとして、整流板121a、121b、121c、121dを示す。整流板121a~121dのそれぞれには、冷媒通路123がそれぞれ形成されている。図8に示されるように、整流板121a~121dのそれぞれでは、冷媒通路123は、同一の開口径をもって、線対称または点対称となる位置に形成されている。
 ここで、膨張弁の第2配管115に、高圧の液冷媒とガス冷媒との二相状態の冷媒が流入する場合に、図示されていない接続管を流れる冷媒に作用する遠心力によって、第2配管115内において、紙面に向かって左側の領域に液比率の高い冷媒が流れ、右側の領域に液比率の低い冷媒が流れる場合を想定する。
 この場合には、整流板121a~121dのそれぞれでは、冷媒通路123が、線対称または点対称となる位置に形成されているために、液比率の高い冷媒の速度を十分に上げることができない。また、液比率の低い冷媒の気泡を十分に細分化することができない。このため、膨張弁101に流入する液冷媒とガス冷媒との分布を均一にすることができない。
 比較例に係る膨張弁101に対して、実施の形態に係る膨張弁1では、液比率の高い冷媒が、通路面積が狭く、通路抵抗が高い冷媒通路23bを通過することで、液冷媒の速度が増加することになるが、圧力損失は比較的小さい。一方、液比率の低い冷媒が、通路面積が広く、通路抵抗が低い冷媒通路23aを通過することで、ガス冷媒の気泡が細分化されるが、圧力損失は比較的小さい。
 これにより、整流板21を通過した後では、細分化されたガス冷媒の気泡が、流速が増加した液冷媒によって撹拌されて、圧力損失を抑えながら液冷媒とガス冷媒との分布を比較的均一な状態(整流化)になり、冷媒音を低減することができる。これを示す結果として、冷媒音と通路抵抗との関係を図9に示し、圧力損失と通路抵抗との関係を図10に示す。
 図9に示されるグラフでは、横軸は通路抵抗であり、縦軸は冷媒音である。通路抵抗が低くなるにしたがって、つまり、冷媒通路の通路面積が広くなるにしたがって、冷媒音は高くなる傾向にある。
 また、図10に示されるグラフでは、横軸は通路抵抗であり、縦軸は圧力損失である。通路抵抗が低くなるにしたがって、つまり、冷媒通路の通路面積が広くなるにしたがって、圧力損失は小さくなる傾向にある。
 実施の形態1に係る膨張弁1の整流板21では、通路抵抗が高い冷媒通路23bと通路抵抗が低い冷媒通路23aとが、膨張弁1に流入する冷媒の液比率に応じて配置されている。これに対して、比較例に係る膨張弁101の整流板121では、同じ通路面積を有する冷媒通路が線対称または点対称に配置されている。
 これにより、図9に示されるように、平均的な通路抵抗が同じ場合で比べると、実施の形態1に係る膨張弁1の整流板21では、比較例に係る膨張弁101の整流板121に比べて、冷媒音を下げることができる。また、平均的な通路抵抗が同じ場合で比べると、実施の形態1に係る膨張弁1の整流板21では、比較例に係る膨張弁101の整流板121に比べて、圧力損失が増大するのを抑えることができる。
 なお、上述した膨張弁1では、第1配管13が膨張弁1に接続されている部分と、第2配管15が接続されている膨張弁1の部分との双方に、整流板21を配置させた場合について説明した。特に、第2配管15を膨張弁1へ向かって流れる冷媒は、第2配管15を流れた後、弁座9あるいは弁体7に向かって流れることになる。このとき、液冷媒とガス冷媒との分布が不均一であると、その分布の不均一さが、冷媒音の発生に影響を及ぼすことになる。このため、整流板21は、少なくとも、弁座9等に向かって冷媒が流れる流路(配管)に配置させることが望ましい。
 また、上述した膨張弁1に配置されている整流板21では、通路面積の異なる冷媒通路として、2つの冷媒通路23a、23bが形成された場合について説明したが、通路面積のそれぞれ異なる3つ以上の冷媒通路(図示せず)が形成された整流板であってもよい。この場合にも、遠心力が作用している向きに沿って、通路面積が徐々に小さくなる態様で、冷媒通路が配置されていればよい。
 実施の形態2.
 ここでは、膨張弁1(図2参照)に配置される整流板21のバリエーションの一例について説明する。なお、図示されていない、膨張弁の構造、第1配管、第2配管、第1接続管および第2接続管の配置構造は、図2に示す配置構造と同じなので、必要である場合を除き、その説明を繰り返さないこととする。
 図11に示すように、整流板21には、冷媒が通過する通路面積がほぼ一様な複数の冷媒通路23bが設けられている。複数の冷媒通路23bは、ほぼ一様なピッチをもって配置されている。整流板21では、一の直径方向の一端側の厚さは厚さT1とされる。その一の直径方向の他端側の厚さは、厚さT1よりも薄い厚さT2とされる。
 図12および図13に示すように、遠心力が作用する側(矢印CFVが向いている側)に、厚さT1を有す部分が位置し、遠心力が作用する側とは反対側に、厚さT2を有する部分が位置するように、整流板21が配置される。
 整流板21の厚さが相対的に厚い部分に形成された冷媒通路23bの通路抵抗は、厚さが相対的に薄い部分に形成された冷媒通路23bの通路抵抗よりも高くなる。すなわち、遠心力が作用する側(矢印CFVが向いている側)に向かって、整流板21の通路抵抗が高くなるように冷媒通路23bが配置されることになる。
 上述した膨張弁1の整流板21では、図14に示すように、液比率の高い冷媒が、通路抵抗の高い冷媒通路23bを通過することで、液冷媒の速度が増加する(点線矢印参照)。液比率の低い冷媒が、通路抵抗の低い冷媒通路23bを通過することで、ガス冷媒の気泡が細分化される。細分化されたガス冷媒の気泡は、流速が増加した液冷媒によって撹拌される。
 これにより、実施の形態1において説明した整流板21と同様に、整流板23を通過した後では、液冷媒とガス冷媒との分布が比較的均一な状態となり、その二相状態の冷媒が膨張弁1の絞り部に流れることになる。その結果、冷媒音を低減させることができる。
 また、上述した整流板21では、複数の冷媒通路23bを、ほぼ一様なピッチをもって配置させることで、冷媒通路23bの加工が容易になる。さらに、複数の冷媒通路23bのピッチを一様にすることで、整流板21を流れた後に液冷媒とガス冷媒との分布がより均一になりやすく、さらなる冷媒音の低減に寄与することができる。
 実施の形態3.
 ここでは、膨張弁1(図2参照)に配置される整流板21のバリエーションの他の例について説明する。なお、図示されていない、膨張弁の構造、第1配管、第2配管、第1接続管および第2接続管の配置構造は、図2に示す配置構造と同じなので、必要である場合を除き、その説明を繰り返さないこととする。
 図15に示すように、整流板21には、冷媒が通過する通路面積がほぼ一様な冷媒通路23cと冷媒通路23dとが複数設けられている。複数の冷媒通路23cと複数の冷媒通路23dとは、ほぼ一様なピッチをもって配置されている。整流板21の厚さは、厚さTとされる。冷媒通路23cは、冷媒の流れる方向に沿って、整流板21とほぼ直交する方向に形成されている。一方、冷媒通路23dは、冷媒の流れる方向と交差するように、その直交する方向と交差する方向に傾くように形成されている。
 図16および図17に示すように、遠心力が作用する側(矢印CFVが向いている側)に、冷媒通路23dが位置し、遠心力が作用する側とは反対側に、冷媒通路23cが位置するように、整流板21が配置される。
 冷媒の流れと交差するように整流板21に形成された冷媒通路23dの通路抵抗は、冷媒の流れに沿って整流板21に形成された冷媒通路23cの通路抵抗よりも高くなる。すなわち、遠心力が作用する側(矢印CFVが向いている側)に向かって、整流板21の通路抵抗が高くなるように冷媒通路23cと冷媒通路23dとが配置されることになる。
 上述した膨張弁1の整流板21では、図18に示すように、液比率の高い冷媒が、通路抵抗の高い冷媒通路23dを通過することで、液冷媒の速度が増加する(点線矢印参照)。液比率の低い冷媒が、通路抵抗の低い冷媒通路23cを通過することで、ガス冷媒の気泡が細分化される。細分化されたガス冷媒の気泡は、流速が増加した液冷媒によって撹拌される。
 これにより、実施の形態1において説明した整流板21と同様に、整流板23を通過した後では、液冷媒とガス冷媒との分布が比較的均一な状態となり、その二相状態の冷媒が膨張弁1の絞り部に流れることになる。その結果、冷媒音を低減させることができる。
 なお、上述した膨張弁1の整流板21では、通路抵抗が相対的に高い冷媒通路として、冷媒の流れる方向と交差するように一様に傾けられた冷媒通路23dが形成された整流板2ついて説明した。
 冷媒の流れる方向に対する冷媒通路の傾きの角度としては、一つの角度に限られず、2つ以上の異なる角度をもって傾けた冷媒通路を形成してもよい。その場合には、遠心力が作用する側(矢印CFVが向いている側)に向かって、傾きの角度が徐々に大きくなるように冷媒通路を配置すればよい。
 実施の形態4.
 ここでは、膨張弁1に接続される配管のバリエーションの一例と、整流板とについて説明する。
 前述した各実施の形態では、直管としての第1配管13に、曲げ配管として第1接続管17が接続された場合について説明した。直管としての第1配管13の長さが比較的短い場合には、第1配管13内を流れる冷媒は、遠心力の影響を受けた状態で流れる。しかしながら、第1配管13の長さが長くなると、第1配管13内を流れる冷媒は、徐々に遠心力よりも重力の影響を受けやすくなる。
 図19に示すように、膨張弁1に接続される第1配管13の長さLが、第1配管13の内径の5倍以上の長さに相当する場合には、第1配管13内を流れる冷媒は、徐々に重力の影響が支配的になる。このため、第1配管13内では、液比率の高い冷媒が第1配管13内の下部を流れ、液比率の低い冷媒が、第1配管13内の上部を流れることになる。
 この場合には、第1配管13が接続される部分に配置される整流板21は、通路抵抗が高い冷媒通路23bが下側に位置し、通路抵抗が低い冷媒通路23aが上側に位置するように、配置される。
 重力の作用によって第1配管13内の下部を流れる液比率の高い冷媒は、通路抵抗の高い冷媒通路23dを通過することで、液冷媒の速度が増加する。一方、第1配管13内の上部を流れる液比率の低い冷媒は、通路抵抗の低い冷媒通路23cを通過することで、ガス冷媒の気泡が細分化される。細分化されたガス冷媒の気泡は、流速が増加した液冷媒によって撹拌される。
 これにより、実施の形態1において説明したのと同様に、整流板23を通過した後では、液冷媒とガス冷媒との分布が比較的均一な状態となり、その二相状態の冷媒が膨張弁1の絞り部に流れることになる。その結果、冷媒音を低減させることができる。
 実施の形態5.
 ここでは、整流板の配置関係を容易に確認することができる膨張弁の一例について説明する。
 図20に示すように、膨張弁1に接続されている第1配管13には、突起14が設けられ、第2配管15には、突起16が設けられている。この場合、第1配管13内において、液比率の高い冷媒が流れている側の配管壁部の部分に、第1配管13の内側から外側へ向かって突出する態様で、突起14が形成されている。また、第2配管15内において、液比率の高い冷媒が流れている側の配管壁部の部分に、第2配管15の内側から外側へ向かって突出する態様で、突起16が形成されている。
 上述した膨張弁では、第1配管13に設けられている突起14の位置により、曲げ配管としての第1接続管17を第1配管13に接続する際に、第1接続管17の曲げの方向に対して、整流板21が、冷媒音を低減させる所定の位置(周方向位置)に配置されているか否かを容易に確認することができる。
 また、第2配管15に設けられている突起16の位置により、曲げ配管としての第2接続管19を第2配管15に接続する際に、第2接続管19の曲げの方向に対して、整流板21が、冷媒音を低減させる所定の位置(周方向位置)に配置されているか否かを容易に確認することができる。
 これにより、冷凍サイクル装置51(図1参照)を組み立てる際に、膨張弁1における整流板21の位置(周方向位置)が、冷媒音を低減させる所定の位置からずれてしまうような誤った組立を抑制することができる。
 なお、上述した膨張弁1では、曲げ配管の位置との関係で、整流板21が、冷媒音を低減させる所定の位置(周方向位置)に配置されているか否かを、突起14によって確認する場合について説明したが、冷媒音を低減させる所定の位置(周方向位置)を確認することができる目印であれば、突起14に限られるものではない。
 各実施の形態において説明した、整流板を含む膨張弁については、必要に応じて種々組み合わせることが可能である。
 今回開示された実施の形態は例示であってこれに制限されるものではない。本発明は上記で説明した範囲ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
 本発明は、冷凍サイクル装置に使用される膨張弁に有効に利用される。
 1 膨張弁、3 弁本体、5 弁室、7 弁体、9 弁座、11 駆動部、13 第1配管、14 突起、15 第2配管、16 突起、17 第1接続管、19 第2接続管、21 整流板、23a、23b、23c、23d 冷媒通路、31 液冷媒、33 ガス冷媒、CFV 矢印、51 冷凍サイクル装置、53 圧縮機、55 凝縮器、57 蒸発器。

Claims (10)

  1.  弁室および前記弁室に連通する開口部を有する弁座を含む弁本体と、
     前記弁座の前記開口部に挿通されて、前記開口部の開度を調節する弁体と、
     前記弁室に連通する第1流路と、
     前記弁座の前記開口部に連通する第2流路と、
     前記第1流路および前記第2流路のうち、前記弁室に向かって冷媒が流れ込む流路に、前記冷媒が流れる方向と交差する方向に配置された整流板と
    を備え、
     前記冷媒が液冷媒とガス冷媒とを含む場合において、前記液冷媒と前記ガス冷媒との重量比における前記液冷媒の比率を液比率とすると、
     前記整流板には、前記液比率の低い冷媒が流れる領域に位置することになる前記整流板の第1部分から前記液比率の高い冷媒が流れる領域に位置することになる第2部分へ向かって通路抵抗が高くなる態様で、前記冷媒を通過させる冷媒通路が形成された、膨張弁。
  2.  前記整流板は、第1厚さを有し、
     前記整流板では、
     前記第1部分には、前記冷媒通路として第1通路断面積を有する第1冷媒通路が形成され、
     前記第2部分には、前記冷媒通路として第2通路断面積を有する第2冷媒通路が形成され、
     前記第2通路断面積は、前記第1通路断面積よりも小さい、請求項1記載の膨張弁。
  3.  前記整流板では、
     前記第1部分は第1厚さを有し、
     前記第2部分は、前記第1厚さよりも厚い第2厚さを有し、
     前記第1部分には、前記冷媒通路として第1通路断面積を有する第1冷媒通路が形成され、
     前記第2部分には、前記冷媒通路として第2通路断面積を有する第2冷媒通路が形成され、
     前記第1通路断面積と前記第2通路断面積とは、同じに設定された、請求項1記載の膨張弁。
  4.  前記整流板は、第1厚さを有し、
     前記整流板では、
     前記第1部分には、前記冷媒通路として第1通路断面積を有する第1冷媒通路が形成され、
     前記第2部分には、前記冷媒通路として第2通路断面積を有する第2冷媒通路が形成され、
     前記第1通路断面積と前記第2通路断面積とは、同じに設定され、
     前記第2冷媒通路は、前記第1冷媒通路を流れた前記冷媒に向かって、前記第2冷媒通路を流れた前記冷媒が近づく態様で、前記第1冷媒通路を前記冷媒が流れる方向に対して傾けられた、請求項1記載の膨張弁。
  5.  前記第1流路となる第1配管と、
     前記第2流路となる第2配管と
    を含み、
     前記第1配管および前記第2配管のうち、水平に配置されて、前記弁室に向かって前記冷媒が流れる配管には、直管が接続され、
     前記直管の長さは、前記直管の開口径の5倍以上の長さを有する、請求項1記載の膨張弁。
  6.  前記第1流路となる第1配管と、
     前記第2流路となる第2配管と
    を含み、
     前記第1配管および前記第2配管のうち、前記弁室に向かって前記冷媒が流れる配管には、前記整流板の前記第2部分が位置する前記配管の周方向位置に目印が設けられた、請求項1記載の膨張弁。
  7.  前記目印は、前記配管の内側から外側へ向かって突出した突起を含む、請求項6記載の膨張弁。
  8.  前記第1流路となる第1配管と、
     前記第2流路となる第2配管と
    を含み、
     前記第1配管および前記第2配管のうち、前記弁室に向かって前記冷媒が流れる配管には、曲げ配管が接続され、
     前記整流板は、前記曲げ配管の外周側を流れた前記冷媒が、前記整流板の前記第2部分に形成された前記冷媒通路を流れるように配置された、請求項1~4のいずれか1項に記載の膨張弁。
  9.  前記整流板は、前記弁座の前記開口部に連通する前記第2流路に配置された、請求項1~8のいずれか1項に記載の膨張弁。
  10.  請求項1~9のいずれか1項に記載の膨張弁を備えた、冷凍サイクル装置。
PCT/JP2017/000836 2017-01-12 2017-01-12 膨張弁およびそれを備えた冷凍サイクル装置 WO2018131122A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018561160A JP6715958B2 (ja) 2017-01-12 2017-01-12 膨張弁およびそれを備えた冷凍サイクル装置
PCT/JP2017/000836 WO2018131122A1 (ja) 2017-01-12 2017-01-12 膨張弁およびそれを備えた冷凍サイクル装置
EP17891207.7A EP3569954A4 (en) 2017-01-12 2017-01-12 EXPANSION VALVE AND REFRIGERATION CIRCUIT THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/000836 WO2018131122A1 (ja) 2017-01-12 2017-01-12 膨張弁およびそれを備えた冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2018131122A1 true WO2018131122A1 (ja) 2018-07-19

Family

ID=62840573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000836 WO2018131122A1 (ja) 2017-01-12 2017-01-12 膨張弁およびそれを備えた冷凍サイクル装置

Country Status (3)

Country Link
EP (1) EP3569954A4 (ja)
JP (1) JP6715958B2 (ja)
WO (1) WO2018131122A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020248932A1 (zh) * 2019-06-13 2020-12-17 浙江盾安人工环境股份有限公司 阀门消音器及其电子膨胀阀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5083820A (ja) * 1973-11-21 1975-07-07
JP2004076957A (ja) * 2002-08-09 2004-03-11 Daikin Ind Ltd 二相冷媒流用整流装置及び冷凍装置
JP2006275452A (ja) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp 膨張弁
JP2007162851A (ja) 2005-12-14 2007-06-28 Fuji Koki Corp 電動弁
JP2014238207A (ja) 2013-06-07 2014-12-18 株式会社不二工機 膨張弁
WO2016002022A1 (ja) * 2014-07-02 2016-01-07 三菱電機株式会社 膨張弁、及び、冷凍サイクル装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325655A (ja) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd 消音器および空気調和機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5083820A (ja) * 1973-11-21 1975-07-07
JP2004076957A (ja) * 2002-08-09 2004-03-11 Daikin Ind Ltd 二相冷媒流用整流装置及び冷凍装置
JP2006275452A (ja) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp 膨張弁
JP2007162851A (ja) 2005-12-14 2007-06-28 Fuji Koki Corp 電動弁
JP2014238207A (ja) 2013-06-07 2014-12-18 株式会社不二工機 膨張弁
WO2016002022A1 (ja) * 2014-07-02 2016-01-07 三菱電機株式会社 膨張弁、及び、冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3569954A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020248932A1 (zh) * 2019-06-13 2020-12-17 浙江盾安人工环境股份有限公司 阀门消音器及其电子膨胀阀
KR20220002470A (ko) * 2019-06-13 2022-01-06 제지앙 둔안 아트피셜 인바이런먼트 컴퍼니 리미티드 밸브 소음기 및 이의 전자 팽창 밸브
JP2022535640A (ja) * 2019-06-13 2022-08-10 浙江盾安人工環境股▲ふん▼有限公司 弁消音器及びその電子膨張弁
KR102630724B1 (ko) * 2019-06-13 2024-01-29 제지앙 둔안 아트피셜 인바이런먼트 컴퍼니 리미티드 밸브 소음기 및 이의 전자 팽창 밸브
JP7429707B2 (ja) 2019-06-13 2024-02-08 浙江盾安人工環境股▲ふん▼有限公司 弁消音器及びその電子膨張弁

Also Published As

Publication number Publication date
EP3569954A1 (en) 2019-11-20
EP3569954A4 (en) 2020-02-12
JP6715958B2 (ja) 2020-07-01
JPWO2018131122A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
US10914525B2 (en) Side mounted refrigerant distributor in a flooded evaporator and side mounted inlet pipe to the distributor
JP3376534B2 (ja) 冷媒分配器
US10190807B2 (en) Expansion valve
JP2006275452A (ja) 膨張弁
JP5826437B1 (ja) 膨張弁、及び、冷凍サイクル装置
KR20080009104A (ko) 냉매 분류기
JP6188926B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP7170841B2 (ja) 熱交換器および冷凍サイクル装置
JP5535098B2 (ja) 冷凍サイクル装置
WO2018131122A1 (ja) 膨張弁およびそれを備えた冷凍サイクル装置
JP2007032980A (ja) 膨張弁
JP6091515B2 (ja) 絞り装置、および冷凍サイクル装置
JP5100818B2 (ja) 冷媒分配器、熱交換器及び冷凍サイクル装置
US20080041097A1 (en) Refrigerant Distribution Device
JP2022535640A (ja) 弁消音器及びその電子膨張弁
JP2008107054A (ja) 減圧装置および冷凍サイクル装置
JP3712355B2 (ja) 冷凍サイクル装置
JP6667070B2 (ja) 冷媒分流器およびそれを用いた冷凍システム
WO2014061385A1 (ja) 絞り装置、および冷凍サイクル装置
WO2023238234A1 (ja) 熱交換器
JP3016304B2 (ja) 冷媒分配器
JP5881845B2 (ja) 絞り装置、および冷凍サイクル装置
JP7214042B1 (ja) 熱交換器及び空気調和装置
WO2015063876A1 (ja) 膨張弁及びそれを搭載した冷凍サイクル装置
JP5189386B2 (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017891207

Country of ref document: EP

Effective date: 20190812