WO2018129883A1 - Matériau composite de phosphate de fer lithié/carbone et son procédé de préparation - Google Patents

Matériau composite de phosphate de fer lithié/carbone et son procédé de préparation Download PDF

Info

Publication number
WO2018129883A1
WO2018129883A1 PCT/CN2017/092314 CN2017092314W WO2018129883A1 WO 2018129883 A1 WO2018129883 A1 WO 2018129883A1 CN 2017092314 W CN2017092314 W CN 2017092314W WO 2018129883 A1 WO2018129883 A1 WO 2018129883A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron phosphate
lithium
carbon composite
lithium iron
composite material
Prior art date
Application number
PCT/CN2017/092314
Other languages
English (en)
Chinese (zh)
Inventor
陈立鹏
汪龙
柳娜
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2018129883A1 publication Critical patent/WO2018129883A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of lithium ion batteries, and more particularly to a lithium iron phosphate/carbon composite material and a preparation method thereof.
  • lithium iron phosphate material As a positive electrode material for lithium ion batteries, lithium iron phosphate material has the advantages of abundant raw material source, low price, green environmental protection, high theoretical specific capacity (about 170 mAh/g), long life, good safety and thermal stability, and is currently commercialized.
  • the preparation of lithium iron phosphate material mainly uses high energy wet grinding equipment to grind and pulverize iron orthophosphate and lithium salt to realize nanocrystallization of lithium iron phosphate material.
  • the production cost of this preparation method is high, which limits its development.
  • the specific performances are as follows: 1) raw materials belong to specific fields of fine processing products, non-chemical application fields are bulk products, and raw material costs are high; 2) existing wet grinding
  • the preparation of lithium iron phosphate material has higher energy consumption, but the production capacity is relatively low. 3)
  • the equipment and auxiliary materials of the existing wet grinding process belong to wearing parts and consumables, and the production investment is large.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a lithium iron phosphate/carbon composite material which is low in cost, ideal in performance, and suitable for industrial production, and a preparation method thereof.
  • the present invention provides a method for preparing a lithium iron phosphate/carbon composite material, which comprises the following steps:
  • the iron fine powder has a particle size of 5 to 30 ⁇ m
  • the phosphoric acid is a concentrated phosphoric acid having a concentration of 70 to 85%.
  • the molar ratio of the Fe fine powder to the Fe and P elements in the concentrated phosphoric acid is 1:1.
  • the acidification additive is at least one of oxalic acid, citric acid, tartaric acid and oxalic acid, and the content thereof is iron fine powder. 5 to 15% of the mass.
  • step 1) a doping metal compound is further added, and the molar ratio of the doping metal element M to the P element in the doped metal compound is 0.005 ⁇ 0.03:1.
  • the doping metal compound is a manganese-containing compound, a titanium-containing compound, a cobalt-containing compound, an iron-containing compound, a magnesium-containing compound, an aluminum-containing compound, and the like.
  • a chromium compound and a cerium-containing compound the doping metal compound is one or more of an oxide, a hydroxide, a nitrate, and an organic acid salt containing a doping element, and the organic acid salt is preferably vinegar. Acid salt, oxalate.
  • the acidification temperature is 50 to 150 ° C, and the acidification time is 4 to 8 hours.
  • the molar ratio of the Li to the P element is 1.02:1.
  • the lithium-containing compound comprises lithium carbonate, lithium hydroxide monohydrate, lithium acetate, lithium nitrate, lithium citrate, preferably one. Lithium hydroxide in water.
  • the organic carbon source is one or more of maltose, glucose, sucrose, fructose, starch, phenolic resin, The amount added is 5 to 15% of the mass of the iron fine powder.
  • the sintering temperature is 650 to 750 ° C, and the sintering time is 4 to 8 hours.
  • the present invention also provides a lithium iron phosphate/carbon composite material which is produced according to the method for producing lithium iron phosphate/carbon composite material of the present invention.
  • the preparation method of the lithium iron phosphate/carbon composite material of the invention directly adopts the iron acid powder and phosphoric acid for acidification and reflux reaction, and then mixes the lithium salt and the carbon source, and is dried to obtain an organic carbon source composite lithium iron phosphate precursor.
  • the sintered lithium iron phosphate/carbon composite material has the following advantages: 1) a wide range of raw materials and low cost, the raw materials involved are low-cost bulk chemical products; 2) the product has good crystal structure and less impurities.
  • Fig. 1 is an XRD chart of a lithium iron phosphate/carbon composite material obtained in Example 1 of the present invention.
  • Example 2 is an SEM image of a lithium iron phosphate/carbon composite material obtained in Example 1 of the present invention.
  • Fig. 3 is a graph showing the first discharge specific capacity of the lithium iron phosphate/carbon composite material obtained in Example 1 and Comparative Example 1 of the present invention.
  • the three-necked bottle was placed in an oil bath, heated to 50 ° C, and acidified and refluxed at this temperature for 4 hours;
  • the collected precursors were sintered at 650 ° C for 4 hours, and pulverized and sieved to obtain a low-cost lithium iron phosphate/carbon composite material.
  • Example 1 is an X-ray diffraction (XRD) pattern of a lithium iron phosphate/carbon composite material according to Example 1 of the present invention, and the XRD pattern shows that the lithium iron phosphate/carbon composite material obtained in Example 1 has good crystallinity and high purity, and is not There is an impurity peak.
  • 2 is an SEM image of a lithium iron phosphate/carbon composite material according to Embodiment 1 of the present invention. As can be seen from FIG. 2, the lithium iron phosphate/carbon composite material prepared in Example 1 of the present invention is a nano particle, and the particle size thereof. evenly distributed.
  • the lithium iron phosphate/carbon composite material prepared in Example 1 was mixed with a conductive agent carbon black (Super P) and a binder PVDF at a mass ratio of 90:5:5 to form a slurry, uniformly coated on an aluminum foil current collector.
  • the positive electrode membrane is made up, the lithium metal sheet is used as the negative electrode, the polypropylene microporous membrane is used as the separator, and the lithium hexafluorophosphate is used as the electrolyte.
  • the half-cell is assembled in the argon-protected glove box, and the prepared half-cell is subjected to charge and discharge test. .
  • Example 3 is a graph of the first discharge specific capacity of the lithium iron phosphate/carbon composite material obtained in Example 1 of the present invention, As can be seen from Fig. 3, the half-cell 0.1C first discharge specific capacity is 150 mAh/g, and the 1C first discharge specific capacity is 140 mAh/g.
  • the steps of the examples 2 to 5 are basically the same as those of the first embodiment, wherein the quality of the iron fine powder and lithium hydroxide monohydrate is the same as that of the first embodiment, and the use amount and preparation process parameters of the respective materials different from the first embodiment are different. See Tables 1-3 for the results of the first discharge specific capacity test of each of the examples.
  • Figure 3 is a broken line diagram of the first discharge specific capacity of the lithium iron phosphate/carbon composite prepared in Comparative Example 1. As can be seen from Figure 3, Comparative Example 1 0.1C and 1C of lithium iron phosphate/carbon composite. The first discharge specific capacity was 137 mAh/g and 118 mAh/g, respectively.
  • Example 1 and Comparative Example 1 According to the first discharge specific capacity results of Example 1 and Comparative Example 1, it can be seen that although the raw materials involved in the two methods are the same, the final results are different because different processes are employed.
  • the acidizing reflow technique employed in the first to fifth embodiments of the present invention is superior to the comparative example 1 in the high energy wet ball milling technique, and the first discharge specific capacities of 0.1C and 1C of Examples 1 to 5 are higher than that of Comparative Example 1, which is better.
  • the conductivity is also low during the preparation process using the acidified reflux technology of Examples 1 to 5.
  • the acid reflow technology is not only simple in process, but also has better performance of the prepared lithium iron phosphate/carbon composite material, and has a good market application prospect.
  • the preparation method of the lithium iron phosphate/carbon composite material of the present invention is to directly carry out an acid reflux reaction using iron fine powder and phosphoric acid, and then mix the lithium salt and The carbon source, the organic iron source composite lithium iron phosphate precursor is dried, and finally the lithium iron phosphate/carbon composite material is sintered, which has the following advantages: 1) the raw material source is wide, the cost is low, and the raw materials involved are low-cost.
  • the product has good crystal structure, less impurities, uniform particle size and excellent electrochemical performance; 3)
  • the preparation process is simple and practical, and the acid precipitation reaction process is used to react the iron powder with phosphoric acid to prepare nanoparticles. It replaces the traditional high-energy wet grinding and pulverization nano-fabrication process; 4)
  • the equipment has low operating cost, and only needs to support the atmospheric pressure reflux reaction device, avoiding the use of high-value, difficult-to-maintain wet-grinding equipment and auxiliary materials, and easy to realize large-scale industrial production. .
  • the acidified refluxed slurry is not a complete single substance solution form, but a nanoparticle emulsion of the mixture.
  • the acidification reaction does not require all the reactions, and only the large particle iron powder is partially acidified, so that the large particle skeleton structure is loose and pulverized into small particles, that is, the ferrous iron and the acid in the iron powder react with each other to make the large particle powder.
  • the components of the small particles are ferrous oxide, Fe 3 O 4 , ferrous phosphate, iron phosphate and the like.
  • the acidifying additive is only exemplified by oxalic acid, citric acid or oxalic acid, according to other embodiments of the present invention, the acidifying additive may also be tartaric acid or A combination of the foregoing acidifying additives.
  • the organic carbon source has been described by taking only maltose, glucose, sucrose, and fructose as an example in the embodiment of the present invention, the organic carbon source may be starch, phenol resin or the like according to other embodiments of the present invention. A combination of organic carbon sources.
  • the compound doped with the metal element M is described by way of example only in the examples of the present invention, manganese dioxide, magnesium oxide, titanium dioxide, and cobalt trioxide, the doping metal according to other embodiments of the present invention.
  • the compound may also be an iron-containing compound, an aluminum-containing compound, a chromium-containing compound, a cerium-containing compound or a combination of the foregoing doped metal compounds;
  • the doping metal compound is an oxide containing a doping element, hydrogen Oxide, nitrate, organic acid salt or a combination thereof.
  • the lithium-containing compound is exemplified by lithium hydroxide monohydrate as an example in the embodiment of the present invention
  • the lithium-containing compound may also be lithium carbonate, lithium acetate or lithium nitrate. , lithium citrate or a combination of the foregoing lithium-containing compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne un procédé de préparation d'un matériau composite de phosphate de fer lithié/carbone, comprenant les étapes suivantes consistant : 1) à peser de la poudre de fer, de l'acide phosphorique et un additif acidifiant, et à les disperser dans de l'eau désionisée ; 2) à chauffer pour effectuer une réaction de reflux d'acidification ; 3) après que la réaction de reflux d'acidification s'est achevée, à ajouter un composé contenant du lithium et une source de carbone organique pour effectuer le mélange et la dispersion ; 4) à agiter et à sécher par évaporation le mélange pour obtenir un précurseur de phosphate de fer lithié qui est composé de la source de carbone organique ; et 5) à fritter le précurseur collecté, à pulvériser et à cribler, puis à obtenir le matériau composite de phosphate de fer lithié/carbone. Par rapport à la technologie existante, ledit procédé de préparation du matériau composite de phosphate de fer lithié/carbone présente les avantages suivants : 1) les matières premières sont abondantes et peu coûteuses ; 2) le produit présente une bonne structure cristalline, peu d'impuretés, et même une granularité, et a des propriétés électrochimiques idéales ; 3) le procédé de préparation est simple et pratique, les coûts d'exploitation d'équipement sont faibles, et une production industrielle à grande échelle est facilement obtenue.
PCT/CN2017/092314 2017-01-11 2017-07-09 Matériau composite de phosphate de fer lithié/carbone et son procédé de préparation WO2018129883A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710017311.2A CN108305991A (zh) 2017-01-11 2017-01-11 磷酸铁锂/碳复合材料及其制备方法
CN201710017311.2 2017-01-11

Publications (1)

Publication Number Publication Date
WO2018129883A1 true WO2018129883A1 (fr) 2018-07-19

Family

ID=62839124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092314 WO2018129883A1 (fr) 2017-01-11 2017-07-09 Matériau composite de phosphate de fer lithié/carbone et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN108305991A (fr)
WO (1) WO2018129883A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276693A (zh) * 2020-01-22 2020-06-12 上海华谊(集团)公司 磷酸铁锰锂的改性方法、改性的磷酸铁锰锂及其用途
CN113830774A (zh) * 2021-10-18 2021-12-24 浙江长兴中俄新能源材料技术研究院有限公司 一种基于溶胶-凝胶法的利用钛铁矿制备碳复合硅酸亚铁锂的方法
CN114084879A (zh) * 2021-11-22 2022-02-25 青岛九环新越新能源科技股份有限公司 磷酸铁锂及其生产方法和应用
CN114927684A (zh) * 2022-06-23 2022-08-19 蜂巢能源科技股份有限公司 一种磷酸铁锂正极材料及其制备方法、锂离子电池
CN116216686A (zh) * 2023-03-28 2023-06-06 陕西创普斯新能源科技有限公司 一种磷酸铁锂正极材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1706057A (zh) * 2002-10-18 2005-12-07 国立九州大学 二次电池用阴极材料的制备方法和二次电池
CN1958440A (zh) * 2006-11-24 2007-05-09 中南大学 一种合成纳米级磷酸铁锂粉体的方法
CN101355158A (zh) * 2008-09-17 2009-01-28 长沙矿冶研究院 锂离子电池正极材料LiFePO4的制备方法
CN101800315A (zh) * 2010-04-09 2010-08-11 曲阜毅威能源股份有限公司 一种多元素掺杂磷酸铁锂正极材料及其制备方法
CN103208614A (zh) * 2013-04-15 2013-07-17 上海应用技术学院 一种锂离子电池用磷酸铁锂正极材料的合成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901810B2 (en) * 2003-06-03 2011-03-08 Valence Technology, Inc. Battery active materials and methods for synthesis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1706057A (zh) * 2002-10-18 2005-12-07 国立九州大学 二次电池用阴极材料的制备方法和二次电池
CN1958440A (zh) * 2006-11-24 2007-05-09 中南大学 一种合成纳米级磷酸铁锂粉体的方法
CN101355158A (zh) * 2008-09-17 2009-01-28 长沙矿冶研究院 锂离子电池正极材料LiFePO4的制备方法
CN101800315A (zh) * 2010-04-09 2010-08-11 曲阜毅威能源股份有限公司 一种多元素掺杂磷酸铁锂正极材料及其制备方法
CN103208614A (zh) * 2013-04-15 2013-07-17 上海应用技术学院 一种锂离子电池用磷酸铁锂正极材料的合成方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276693A (zh) * 2020-01-22 2020-06-12 上海华谊(集团)公司 磷酸铁锰锂的改性方法、改性的磷酸铁锰锂及其用途
CN111276693B (zh) * 2020-01-22 2022-09-20 上海华谊(集团)公司 磷酸铁锰锂的改性方法、改性的磷酸铁锰锂及其用途
CN113830774A (zh) * 2021-10-18 2021-12-24 浙江长兴中俄新能源材料技术研究院有限公司 一种基于溶胶-凝胶法的利用钛铁矿制备碳复合硅酸亚铁锂的方法
CN114084879A (zh) * 2021-11-22 2022-02-25 青岛九环新越新能源科技股份有限公司 磷酸铁锂及其生产方法和应用
CN114084879B (zh) * 2021-11-22 2023-09-12 青岛九环新越新能源科技股份有限公司 磷酸铁锂及其生产方法和应用
CN114927684A (zh) * 2022-06-23 2022-08-19 蜂巢能源科技股份有限公司 一种磷酸铁锂正极材料及其制备方法、锂离子电池
CN114927684B (zh) * 2022-06-23 2024-06-07 蜂巢能源科技股份有限公司 一种磷酸铁锂正极材料及其制备方法、锂离子电池
CN116216686A (zh) * 2023-03-28 2023-06-06 陕西创普斯新能源科技有限公司 一种磷酸铁锂正极材料的制备方法
CN116216686B (zh) * 2023-03-28 2024-04-19 陕西创普斯新能源科技有限公司 一种磷酸铁锂正极材料的制备方法

Also Published As

Publication number Publication date
CN108305991A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
WO2018129883A1 (fr) Matériau composite de phosphate de fer lithié/carbone et son procédé de préparation
WO2022214052A1 (fr) Matériau composite de carbone-phosphate-ferromanganèse-lithium dopé et son procédé de préparation
CN112479267B (zh) 一种三元正极材料及其制备方法和应用
CN102522546B (zh) 纳米锂离子电池级正极材料磷酸亚铁锂的制备方法
JP2018045998A (ja) 球形又は類球形リチウムイオン電池の正極材料、製造方法及び応用
JP2012012279A (ja) リン酸第二鉄含水物粒子粉末及びその製造法、オリビン型リン酸鉄リチウム粒子粉末及びその製造法、並びに非水電解質二次電池。
CN103560246B (zh) 一种锂离子电池正极材料磷酸铁锂的制备方法
EP2352701A1 (fr) Matériau composite à base de titanate de lithium, son procédé de préparation, substance active négative et batterie secondaire lithium-ion la contenant
CN110391417B (zh) 一种类单晶富锂锰基正极材料的制备方法
Fu et al. Controlled synthesis of lithium-rich layered Li1. 2Mn0. 56Ni0. 12Co0. 12O2 oxide with tunable morphology and structure as cathode material for lithium-ion batteries by solvo/hydrothermal methods
WO2022242184A1 (fr) Phosphate de fer dopé, son procédé de préparation et son application
Jiang et al. Syntheses of spherical LiMn2O4 with Mn3O4 and its electrochemistry performance
CN103708434A (zh) 磷酸铁锂材料及其制备方法
CN110957478B (zh) 一种磷酸钛钇锂修饰的高镍正极复合材料及其制备方法
CN114772572A (zh) 一种纳米金属离子包覆磷酸铁锂正极材料及其制备方法
CN108448113A (zh) 一种掺杂改性的磷酸铁锂正级材料的制备方法
Zhan et al. Dual‐phase structure design of Mn‐site nickel doping Li2MnSiO4@ C cathode material for improved electrochemical lithium storage performance
CN102208624A (zh) 一种低温固相法制备碳包覆磷酸亚铁锂正极材料的方法
CN102502562B (zh) 磷酸铁锂的制备方法、锂离子电池及其正极材料和正极
Lee et al. Highly crystalline lithium–manganese spinel prepared by a hydrothermal process with co-solvent
Hong et al. Continuous supercritical hydrothermal synthesis: lithium secondary ion battery applications
CN112938952A (zh) 二维结构三氧化钨包覆石墨烯的负极材料的制备与应用
Hong et al. Effect of boric acid on the properties of Li2MnO3· LiNi0. 5Mn0. 5O2 composite cathode powders prepared by large-scale spray pyrolysis with droplet classifier
Guo et al. Synthesis of high-purity LiMn 2 O 4 with enhanced electrical properties from electrolytic manganese dioxide treated by sulfuric acid-assisted hydrothermal method
CN102556998B (zh) 一种磷酸铁锂材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891562

Country of ref document: EP

Kind code of ref document: A1