WO2018128037A1 - プリント配線板の製造方法 - Google Patents

プリント配線板の製造方法 Download PDF

Info

Publication number
WO2018128037A1
WO2018128037A1 PCT/JP2017/043443 JP2017043443W WO2018128037A1 WO 2018128037 A1 WO2018128037 A1 WO 2018128037A1 JP 2017043443 W JP2017043443 W JP 2017043443W WO 2018128037 A1 WO2018128037 A1 WO 2018128037A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist pattern
outer edge
wiring board
printed wiring
resist
Prior art date
Application number
PCT/JP2017/043443
Other languages
English (en)
French (fr)
Inventor
航 野口
上田 宏
Original Assignee
住友電工プリントサーキット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工プリントサーキット株式会社 filed Critical 住友電工プリントサーキット株式会社
Priority to US16/474,705 priority Critical patent/US11641716B2/en
Priority to CN201780082375.9A priority patent/CN110169214A/zh
Priority to JP2018560341A priority patent/JP6973703B2/ja
Publication of WO2018128037A1 publication Critical patent/WO2018128037A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0073Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/108Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by semi-additive methods; masks therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/07Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process being removed electrolytically
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09272Layout details of angles or corners
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material

Definitions

  • the present invention relates to a method for manufacturing a printed wiring board.
  • This application claims priority based on Japanese Patent Application No. 2017-000617 filed on Jan. 5, 2017, and incorporates all the description content described in the above Japanese application.
  • the conductive pattern of a printed wiring board is often formed by a subtractive method or a semi-additive method for forming a resist pattern (see Japanese Patent Application Laid-Open No. 2010-272837).
  • a photosensitive resist layer is laminated on the surface of a base plate for a printed circuit board having a base layer and a metal layer, and the resist layer is exposed and developed to form a conductive pattern to be formed.
  • a resist pattern having a corresponding planar shape is formed.
  • a conductive pattern having a planar shape substantially equal to the resist pattern can be formed.
  • the printed wiring board in which the conductive pattern is formed on the base material layer is obtained by dissolving and removing the resist pattern.
  • a thin seed layer is formed on the surface of the base material layer by electroless plating or the like.
  • a photosensitive resist layer is laminated on the surface of the seed layer, and a resist pattern having a planar shape corresponding to a portion other than the conductive pattern to be formed is formed by exposing and developing the resist layer.
  • a metal is laminated in the opening of the resist pattern by plating using the resist pattern as a mask and the seed layer as an adherend.
  • the printed wiring board with which the conductive pattern was formed on the base material layer is obtained by removing the seed layer of the part which the resist pattern existed further by etching.
  • a printed wiring board manufacturing method includes a step of forming a resist pattern and a step of forming a conductive pattern by selectively plating or etching using the resist pattern. It is a manufacturing method.
  • the resist pattern includes an acute angle portion where the outer edge of the resist is bent to form an acute angle in plan view. In the corner portion of the acute angle portion, the outer outer edge of the resist has a roundness, and the radius of curvature of the outer outer edge is a distance from the outer outer edge to another outer edge adjacent in a direction away from the center of curvature of the outer outer edge. That's it.
  • a printed wiring board manufacturing method includes a step of forming a resist pattern and a step of forming a conductive pattern by selective plating or etching using the resist pattern. It is a manufacturing method of a board.
  • the resist pattern includes three or more linear openings and an annular opening, and the three or more linear openings are connected via the annular opening.
  • FIG. 1 is a flowchart showing a procedure of a method for manufacturing a printed wiring board according to an embodiment of the present invention.
  • FIG. 2A is a schematic cross-sectional view showing a step of the method for manufacturing the printed wiring board of FIG. 2B is a schematic cross-sectional view showing a step subsequent to FIG. 2A of the printed wiring board manufacturing method of FIG. 1.
  • 2C is a schematic cross-sectional view showing a step subsequent to FIG. 2B of the printed wiring board manufacturing method of FIG. 1.
  • 2D is a schematic cross-sectional view showing a step subsequent to FIG. 2C of the method for manufacturing the printed wiring board of FIG. 1.
  • FIG. 2E is a schematic cross-sectional view showing a step subsequent to FIG.
  • FIG. 2D of the printed wiring board manufacturing method of FIG. 1.
  • FIG. 2F is a schematic cross-sectional view showing a step subsequent to FIG. 2E of the printed wiring board manufacturing method of FIG. 1.
  • FIG. 3 is a schematic partially enlarged plan view showing details of the resist pattern of FIG. 2C.
  • 4 is a schematic partial enlarged plan view showing details of a portion different from FIG. 3 of the resist pattern of FIG. 2C.
  • FIG. 5 is a flowchart showing a procedure of a method of manufacturing a printed wiring board according to an embodiment different from FIG.
  • FIG. 6A is a schematic cross-sectional view showing a step of the method for manufacturing the printed wiring board of FIG. 6B is a schematic cross-sectional view showing a step subsequent to FIG.
  • FIG. 7 is a schematic partially enlarged plan view showing details of the resist pattern of FIG. 6B.
  • the planar shape of the resist pattern has a portion with a small width.
  • the method for manufacturing a printed wiring board according to one embodiment of the present invention can prevent peeling of the resist pattern.
  • a method for manufacturing a printed wiring board according to one embodiment of the present invention includes a step of forming a resist pattern and a step of forming a conductive pattern by selectively plating or etching using the resist pattern. It is a manufacturing method of a printed wiring board.
  • the resist pattern includes an acute angle portion where the outer edge of the resist is bent to form an acute angle in plan view.
  • the outer outer edge of the resist is rounded at the corner of the acute angle portion, and the radius of curvature of the outer outer edge is from the outer outer edge to the outer edge of another resist adjacent to the direction away from the center of curvature of the outer outer edge. It is more than the distance.
  • the outer outer edge of the resist is referred to as an “outer outer edge”, the radius of curvature of the outer outer edge at the corner is referred to as “the radius of curvature of the outer outer edge”, and the other edge adjacent to the corner in the direction away from the center of curvature of the outer outer edge.
  • the outer edge of the resist may be referred to as “other outer edge”.
  • the outer outer edge of the resist means an outer outer edge with the acute angle side of the acute angle portion as the inner side. Further, the distance from the outer outer edge to the other outer edge is a distance “along the radius of curvature of the outer outer edge” from the outer outer edge to the other outer edge.
  • the resist In the manufacturing method of the printed wiring board, the resist until it hits the end face of the resist of various liquids (etching solution, plating solution, etc.) when the radius of curvature of the outer outer edge is not less than the distance from the outer outer edge to another outer edge.
  • the running distance in the plane direction of the pattern is relatively small.
  • the kinetic energy of various liquids that collide with the end face of the resist becomes relatively small, so that the resist pattern can be prevented from peeling off.
  • the outer outer edge may be bent to form an acute angle.
  • the other outer edge may be bent to form an acute angle. In the corner of the acute angle portion, the outer outer edge and the other outer edge may be similar.
  • the radius of curvature of the outer outer edge may be equal to or greater than the distance from the outer outer edge to another outer edge, but in all of the rounded portions of the outer outer edge, the radius of curvature of the outer outer edge is It is good that it is more than the distance from an outer side outer edge to another outer edge.
  • the resist pattern may include a linear opening, and a maximum width of the linear opening of the resist pattern may be 1.2 times or less of an average width of the wiring of the conductive pattern.
  • the maximum width of the linear opening is not more than the above upper limit, it is possible to prevent the resist pattern from peeling while increasing the wiring density.
  • the resist pattern may include three or more linear openings and an annular opening, and the three or more linear openings may be connected via the annular opening.
  • the width of the resist having the outer outer edge in the direction of the radius of curvature may be greater than or equal to the distance from the outer outer edge to the other outer edge.
  • the width may be equal to or greater than the distance from the outer outer edge to the other outer edge, but in all the rounded portions of the outer outer edge, the width is from the outer outer edge to the other outer edge. It is good if it is more than the distance.
  • a method for manufacturing a printed wiring board according to another aspect of the present invention includes a step of forming a resist pattern and a step of forming a conductive pattern by selectively plating or etching using the resist pattern. It is a manufacturing method of the printed wiring board provided.
  • the resist pattern includes three or more linear openings and an annular opening, and the three or more linear openings are connected via the annular opening.
  • the printed wiring board manufacturing method can prevent the formation of an acute angle in the planar shape of the resist pattern by connecting three or more linear openings through an annular opening (the outer edge of the resist is bent and has an acute angle). Can be prevented). Thereby, even if various liquids flowing along the linear openings of the resist pattern collide with the corners of the opening of the resist pattern, the resist pattern is hardly peeled off. Therefore, the printed wiring board manufacturing method can prevent the resist pattern from peeling off.
  • the resist pattern may be formed using a dry film photoresist.
  • a dry film photoresist By using a dry film photoresist, the thickness of the photoresist can be made uniform and small, so that the resist pattern can be easily densified.
  • the adhesiveness becomes small.
  • the method for manufacturing a printed wiring board even if a resist pattern is formed using a dry film photoresist, peeling of the resist pattern is prevented by reducing the kinetic energy of various liquids that hit the end face of the resist. Therefore, the printed wiring board can be manufactured at a relatively low cost by improving the yield.
  • FIG. 1 the procedure of the manufacturing method of the printed wiring board which concerns on one Embodiment of this invention is shown. Note that the printed wiring board manufacturing method of the present embodiment is a method classified as a so-called semi-additive method.
  • Step S1 Seed layer forming step 2 and a step of laminating the photoresist 3 on the surface of the seed layer 2 as shown in FIG. 2B
  • Step S2 Photoresist laminating step>, and exposing and developing the photoresist 3 as shown in FIG. 2C.
  • Step S4 Conductive pattern forming step> and step of removing resist pattern 4 with a stripper as shown in FIG.
  • Step S5 Resist It includes a seed layer removing step>: a turn removing step>, as shown in FIG. 2F, the step of removing the seed layer 2 of the portion where the conductive pattern 5 is not formed by etching ⁇ Step S6.
  • Step S1 Seed layer forming step>
  • the seed layer 2 is formed on the surface of the base material 1 by, for example, electroless plating, application and firing of a metal fine particle dispersion, or the like.
  • Examples of the material of the substrate 1 include flexible resins such as polyimide, liquid crystal polymer, fluororesin, polyethylene terephthalate, and polyethylene naphthalate, paper phenol, paper epoxy, glass composite, glass epoxy, polytetrafluoroethylene, A rigid material such as a glass substrate, a rigid flexible material in which a hard material and a soft material are combined, and the like can be used.
  • the seed layer 2 is used as an adherend (cathode) for electroplating in a conductive pattern forming process in step S5 described later.
  • the lower limit of the average thickness of the seed layer 2 is preferably 50 nm, and more preferably 100 nm.
  • the upper limit of the average thickness of the seed layer 2 is preferably 2 ⁇ m, and more preferably 1.5 ⁇ m.
  • the average thickness of the seed layer 2 is less than the lower limit, the continuity of the seed layer 2 cannot be ensured, so that the conductive pattern 5 may not be formed with a uniform thickness.
  • the manufacturing cost of the printed wiring board may increase unnecessarily.
  • the material of the seed layer 2 for example, nickel, copper, cobalt, gold, silver, tin, or an alloy thereof can be used.
  • nickel, copper, or cobalt that can be increased in thickness relatively easily by autocatalysis is preferably used.
  • the metal fine particle dispersion preferably includes a dispersion medium of the metal fine particles and a dispersant that uniformly disperses the metal fine particles in the dispersion medium. Is done.
  • the metal fine particles can be uniformly attached to the surface of the substrate 1, and a uniform seed layer 2 can be formed on the surface of the substrate 1. .
  • main component of the metal fine particles examples include copper, nickel, gold, and silver. Among these, copper which is relatively inexpensive and excellent in conductivity is preferably used.
  • the “main component” means a component having the largest mass content.
  • the metal fine particles contained in the metal fine particle dispersion can be produced by a high temperature treatment method, a liquid phase reduction method, a gas phase method, etc. It is preferable to use the fine metal particles produced.
  • the dispersant contained in the metal fine particle dispersion is not particularly limited, but a polymer dispersant having a molecular weight of 2,000 to 300,000 is preferably used.
  • a polymer dispersant having a molecular weight in the above range the metal fine particles can be favorably dispersed in the dispersion medium, and the film quality of the resulting seed layer 2 can be made dense and defect-free.
  • the molecular weight of the dispersant is less than the above lower limit, there is a possibility that the effect of preventing the aggregation of the metal fine particles and maintaining the dispersion may not be sufficiently obtained. As a result, the seed layer 2 laminated on the substrate 1 is densely formed. There is a possibility that it cannot be made with few defects.
  • the bulk of the dispersant is too large, and there is a possibility that voids are generated by inhibiting the sintering of the metal fine particles during heating after the application of the metal fine particle dispersion.
  • the bulk of the dispersant is too large, the denseness of the film quality of the seed layer 2 may be reduced, and the conductivity may be reduced due to the decomposition residue of the dispersant.
  • the dispersant preferably contains no sulfur, phosphorus, boron, halogen and alkali from the viewpoint of preventing the deterioration of the parts.
  • Preferred dispersants are those having a molecular weight in the above range, amine-based polymer dispersants such as polyethyleneimine and polyvinylpyrrolidone, and hydrocarbon-based hydrocarbons having a carboxylic acid group in the molecule such as polyacrylic acid and carboxymethylcellulose.
  • It has a polar group such as a polymer dispersant, poval (polyvinyl alcohol), styrene-maleic acid copolymer, olefin-maleic acid copolymer, and a copolymer having a polyethyleneimine part and a polyethylene oxide part in one molecule.
  • a polymer dispersant such as poval (polyvinyl alcohol), styrene-maleic acid copolymer, olefin-maleic acid copolymer, and a copolymer having a polyethyleneimine part and a polyethylene oxide part in one molecule.
  • poval polyvinyl alcohol
  • styrene-maleic acid copolymer styrene-maleic acid copolymer
  • olefin-maleic acid copolymer olefin-maleic acid copolymer
  • a copolymer having a polyethyleneimine part and a polyethylene oxide part in one molecule
  • the dispersant can also be added to the reaction system in the form of a solution dissolved in water or a water-soluble organic solvent.
  • a content rate of a dispersing agent 1 to 60 mass parts is preferable per 100 mass parts of metal microparticles.
  • the dispersing agent surrounds the metal fine particles to prevent the metal fine particles from aggregating, and the metal fine particles are well dispersed.
  • the content ratio of the dispersant is less than the lower limit, the aggregation preventing effect may be insufficient.
  • the content ratio of the dispersant exceeds the above upper limit, in the heating step after the application of the metal fine particle dispersion, excessive dispersant may inhibit the sintering of the metal fine particles and generate voids. There is a possibility that the decomposition residue of the dispersant remains as an impurity in the seed layer 2 and the conductivity is lowered.
  • the content ratio of water serving as a dispersion medium in the metal fine particle dispersion is preferably 20 parts by mass or more and 1900 parts by mass or less per 100 parts by mass of the metal fine particles.
  • the water of the dispersion medium sufficiently swells the dispersing agent to disperse the metal fine particles surrounded by the dispersing agent well, but when the water content is less than the above lower limit, the swelling effect of the dispersing agent by water is not good. May be sufficient.
  • the metal fine particle ratio in the metal fine particle dispersion is reduced, and there is a possibility that a good seed layer 2 having the necessary thickness and density cannot be formed on the surface of the substrate 1.
  • organic solvents that are water-soluble can be used as the organic solvent blended into the metal fine particle dispersion as necessary.
  • specific examples thereof include alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol and tert-butyl alcohol, ketones such as acetone and methyl ethyl ketone,
  • polyhydric alcohols such as ethylene glycol and glycerin and other esters
  • glycol ethers such as ethylene glycol monoethyl ether and diethylene glycol monobutyl ether.
  • the content ratio of the water-soluble organic solvent in the metal fine particle dispersion is preferably 30 parts by mass or more and 900 parts by mass or less per 100 parts by mass of the metal fine particles.
  • the content ratio of the water-soluble organic solvent is less than the above lower limit, the effects of adjusting the viscosity and vapor pressure of the dispersion with the organic solvent may not be sufficiently obtained.
  • the content ratio of the water-soluble organic solvent exceeds the above upper limit, the swelling effect of the dispersant due to water becomes insufficient, and the metal fine particles may be aggregated in the metal fine particle dispersion.
  • Examples of the method for applying the metal fine particle dispersion on the substrate 1 include conventionally known coating methods such as spin coating, spray coating, bar coating, die coating, slit coating, roll coating, and dip coating. Can be used.
  • the solvent dispersant of the metal fine particle dispersion evaporates or pyrolyzes, and the remaining metal fine particles are sintered and fixed to the surface of the substrate 1.
  • the seed layer 2 is obtained.
  • the lower limit of the oxygen concentration in the atmosphere during sintering is preferably 1 volume ppm, and more preferably 10 volume ppm.
  • As an upper limit of oxygen concentration 10,000 volume ppm is preferable and 1,000 volume ppm is more preferable. If the oxygen concentration is less than the lower limit, the printed wiring board manufacturing cost may increase unnecessarily.
  • the oxygen concentration exceeds the above upper limit, the metal fine particles are excessively oxidized, the conductivity of the seed layer 2 becomes insufficient, and it may be difficult to uniformly form the conductive pattern 5 in the conductive pattern forming step.
  • the lower limit of the sintering temperature is preferably 150 ° C, more preferably 200 ° C.
  • 500 degreeC is preferable and 400 degreeC is more preferable.
  • the sintering temperature is less than the lower limit, the connection between the metal fine particles becomes insufficient, and the seed layer 2 may collapse. If the sintering temperature exceeds the above upper limit, the substrate 1 may be deformed.
  • Step S2 Photoresist Lamination Process>
  • a photosensitive photoresist 3 is laminated on the surface of the seed layer 2 as shown in FIG. 2B.
  • the photoresist 3 is a negative resist composition in which the polymer bond is strengthened by exposure to light and the solubility in the developer is lowered, or the polymer bond is weakened by exposure to have a solubility in the developer. Formed by increasing positive resist composition.
  • the photoresist 3 may be formed on the seed layer 2 by coating and drying a liquid resist composition, but it is preferable to laminate a dry film photoresist that does not have fluidity at room temperature by thermocompression bonding.
  • a dry film photoresist as the photoresist 3, the thickness of the photoresist 3 can be made uniform and small, so that the resist pattern 4 can be easily densified.
  • the resist pattern 4 can be prevented from being peeled off. Therefore, even when a dry film photoresist is used as the photoresist 3, the conductive pattern 5 can be accurately formed. Can be formed. Therefore, even when using a dry film photoresist, the manufacturing cost can be suppressed without deteriorating the quality of the printed wiring board.
  • dry film photoresists used as the photoresist 3 include “Sunfort (trademark)” by Asahi Kasei E-materials, “Photec (trademark)” by Hitachi Chemical, and “ALPHA TM (trademark)” by Nichigo Morton. Commercially available acrylic dry film photoresists such as can be used.
  • the average thickness of the photoresist 3 is selected so that the photoresist 3 can be formed uniformly.
  • the lower limit of the average thickness of the photoresist 3 is preferably 10 ⁇ m and more preferably 15 ⁇ m.
  • the upper limit of the average thickness of the photoresist 3 is preferably 100 ⁇ m, and more preferably 80 ⁇ m.
  • the average thickness of the photoresist 3 is less than the lower limit, the dry film resist may not be easily handled. If the average thickness of the photoresist 3 exceeds the above upper limit, the accuracy of the shape of the resist pattern 4 may be lowered.
  • Step S3 Resist Pattern Formation Step>
  • the photoresist 3 is selectively exposed using a photomask or the like, thereby forming a portion that dissolves in the developer 3 and a portion that does not dissolve in the photoresist 3.
  • the resist pattern 4 is obtained by washing away the highly soluble portion of the photoresist 3 using a developer.
  • a portion corresponding to the conductive pattern 5 to be formed is an opening 6.
  • Examples of the developer used in the development step include an aqueous sodium carbonate solution.
  • concentration of sodium carbonate it can be 0.5 mass% or more and 2 mass% or less, for example.
  • the resist pattern 4 has openings 6 that define a conductive pattern 5.
  • the opening 6 includes a linear opening 6 a that defines the wiring of the conductive pattern 5.
  • the openings 6 of the resist pattern 4 are hatched for easy understanding.
  • the resist pattern 4 includes an acute angle portion where the outer edge of the resist is bent to form an acute angle in plan view. At the corner of this acute angle portion, the outer outer edge 4a of the resist is rounded. In this corner, the radius of curvature R of the outer outer edge 4a is from the outer outer edge 4a in the direction of the radius of curvature R (the direction substantially perpendicular to the outer outer edge 4a) with the center of curvature at the corner of the outer outer edge 4a.
  • the distance D is equal to or greater than the distance D to the adjacent other outer edge 4b.
  • a specific method for setting the radius of curvature R of the outer outer edge 4a of the resist pattern 4 to be equal to or larger than the distance D from the outer outer edge 4a to the other outer edge 4b is, for example, conductive Examples thereof include a method of reducing the wiring width of the pattern 5 and a method of increasing the radius of curvature of the bent portion of the wiring of the conductive pattern 5.
  • the resist pattern 4 there is an acute angle portion where the resist shape is bent, and when the radius of curvature of the corner portion of the acute angle portion is small, a developing solution used in the resist pattern forming step or a plating solution used in the wiring pattern forming step is used.
  • the running distance until the resist pattern 4 hits the end face of the resist is increased. That is, if the radius of curvature of the corner portion of the resist pattern 4 is small, the resist around the corner portion is easily peeled off. Therefore, if the radius of curvature R of the outer outer edge 4a is greater than or equal to the distance D from the outer outer edge 4a to the other outer edge 4b, the liquid (developer or plating solution) is a resist pattern as exemplified by the arrow F in FIG.
  • the upper limit of the maximum width of the linear opening 6 a that defines the wiring of the conductive pattern 5 is preferably 1.2 times the average width of the wiring of the conductive pattern 5, and more preferably 1.1 times. .
  • the design maximum value of the wiring width of the conductive pattern 5 is 1.2 times or less, preferably 1.1 times or less of the average value.
  • the lower limit of the width U in the direction of the radius of curvature R of the resist having the outer outer edge 4a is preferably 1 times the distance D from the outer outer edge 4a to the other outer edge 4b, more preferably 1.2 times.
  • the width U is less than the lower limit, the resist pattern 4 is likely to be peeled off, which may cause a short circuit between the wirings of the conductive pattern 5.
  • the upper limit of the width U is not particularly limited, but is limited by the size of the substrate 1 and the number of linear openings 6 a formed in parallel with the resist pattern 4.
  • the three or more linear openings 6a are connected in the resist pattern 4, as shown in FIG. 4, it is preferable that the three or more linear openings 6a are connected via an annular opening 6b.
  • the fluid flowing along the linear openings 6a in the openings 6 of the resist pattern 4 tends to hit the corners of the resist pattern 4 formed at the intersections of the linear openings 6a.
  • the outer edge of the resist pattern 4 is prevented from becoming an acute angle at the connection portion of the opening 6, and the resist pattern 4 can be made difficult to peel off.
  • Step S4 Conductive Pattern Formation Step>
  • a conductive pattern 5 is formed as shown in FIG. 2D by laminating a metal on the seed layer 2 exposed in the opening of the resist pattern 4 by electroplating.
  • a laminate of the base material 1, the seed layer 2 and the resist pattern 4 and an electrode facing the laminate are arranged in the electrolytic solution, and the negative electrode of the DC power source is used as the seed layer 2.
  • the positive electrode By connecting and connecting the positive electrode to the counter electrode, the metal in the electrolytic solution is deposited on the surface of the seed layer 2.
  • the metal laminated by electroplating that is, the metal constituting the conductive pattern 5, for example, copper, nickel, gold, silver, platinum or the like can be used.
  • copper that is relatively inexpensive and excellent in conductivity and relatively inexpensive Nickel having excellent corrosion resistance is preferably used.
  • the average thickness of the conductive pattern 5 formed by electroplating is set according to the allowable current of the printed wiring board, etc., but in general, as the lower limit of the average thickness of the conductive pattern 5, 1 ⁇ m is preferable and 2 ⁇ m is more preferable.
  • the upper limit of the average thickness of the conductive pattern 5 is preferably 100 ⁇ m, and more preferably 50 ⁇ m. When the average thickness of the conductive pattern 5 is less than the lower limit, the conductive pattern 5 may be easily disconnected. When the average thickness of the conductive pattern 5 exceeds the upper limit, the printed wiring board may be unnecessarily thick, or the flexibility for the printed wiring board may be insufficient.
  • Step S5 Resist Pattern Removal Step>
  • the resist pattern 4 is removed with a stripping solution as shown in FIG. 2E.
  • the stripping solution used in the resist pattern removing step is selected according to the material of the resist pattern 4, and for example, a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution having a pH of 11 to 13 can be used.
  • the concentration of sodium hydroxide or potassium hydroxide is, for example, 1% by mass or more and 5% by mass or less.
  • Step S6 Seed Layer Removal Step>
  • the portion covered with the resist pattern 4 of the seed layer 2 is removed by etching, and the wiring of the conductive pattern 5 is electrically separated.
  • the surface of the conductive pattern 5 can also be removed by etching, the removal of the surface of the conductive pattern 5 (removal of the metal of the conductive pattern 5) need not be considered by appropriately selecting the etching conditions. (Negligible).
  • the curvature radius R of the outer outer edge 4 a is equal to or greater than the distance D from the outer outer edge 4 a to the other outer edge 4 b, so that various liquids are resist patterns 4.
  • the run-up distance until the end surface is hit can be shortened to prevent the resist pattern 4 from peeling off.
  • the outer edge of the resist of the resist pattern 4 is prevented from having an acute angle by connecting three or more linear openings 6a of the resist pattern 4 via the annular opening 6b. Therefore, the resist pattern 4 can be prevented from peeling off.
  • the printed wiring board manufactured by the method for manufacturing a printed wiring board has a relatively large yield and excellent reliability because the short circuit of the conductive pattern 5 is suppressed.
  • FIG. 5 the procedure of the manufacturing method of the printed wiring board which concerns on one Embodiment of this invention is shown.
  • the manufacturing method of the printed wiring board of this embodiment is a method classified into what is called a subtractive method.
  • the method for manufacturing the printed wiring board of FIG. 5 includes a photoresist on the surface of the metal layer 7 of the printed wiring board original plate 8 having the insulating sheet-like base material 1 and the metal layer 7. 3, a step of forming a resist pattern 9 by exposing and developing the photoresist 3 as shown in FIG. 6B, and a step of forming a resist pattern 9 as shown in FIG. 6B.
  • the process of forming the conductive pattern 10 including the wiring by selectively etching the metal layer 7 using the resist pattern 9 ⁇ Step S13: conductive pattern formation process>, and shown in FIG. 6D
  • resist pattern removal process> of removing the resist pattern 9 with a stripping solution.
  • Step S11 Photoresist Lamination Process>
  • a photoresist 3 having photosensitivity is laminated on the surface of the metal layer 7 of the printed wiring board original plate 8.
  • the same material as the base material 1 in FIG. 2A can be used.
  • the configuration and lamination method of the photoresist 3 in FIG. 6A can be the same as the configuration and lamination method of the photoresist 3 in FIG. 2B.
  • Metal layer 7 examples of the material of the metal layer 7 include copper, nickel, gold, silver, platinum, iron, and aluminum. Among them, copper that is relatively inexpensive and excellent in conductivity is preferably used.
  • the lower limit of the average thickness of the metal layer 7 is preferably 2 ⁇ m and more preferably 5 ⁇ m.
  • the conductivity may be insufficient.
  • the average thickness of the metal layer 7 exceeds the upper limit, the printed wiring board 1 may be unnecessarily thick.
  • Step S12 resist pattern forming step>
  • the photoresist 3 is selectively exposed using a photomask or the like, thereby forming a portion that dissolves in the developer 3 and a portion that does not dissolve in the photoresist 3.
  • a highly soluble portion of the photoresist 3 is washed away using a developing solution to obtain a resist pattern 9 having an opening corresponding to a portion other than the conductive pattern 10 to be formed, as shown in FIG. 6B. . That is, the resist pattern 9 has a planar shape substantially equal to the conductive pattern 10 to be formed.
  • the radius of curvature R of the outer outer edge 9a is not less than the distance D from the outer outer edge 9a to the other outer edge 9b. It is preferable that another wiring forming portion 11 is disposed close to a portion where the wiring forming portion 11 corresponding to the wiring of the conductive pattern 10 is bent at an acute angle.
  • the dummy forming portion 12 may be arranged outside the acute angle portion of the outermost wiring forming portion 11. The dummy forming portion 12 corresponds to a dummy wiring portion that is not connected to a circuit in the finally obtained printed wiring board.
  • the running distance until the developing solution used in the resist pattern forming step or the etching solution used in the wiring pattern forming step hits the resist end surface of the resist pattern 9 is shortened.
  • the speed at the time of hitting the end face of the resist 9 is suppressed. For this reason, in the manufacturing method of the said printed wiring board using the resist pattern 9, peeling of the resist pattern 9 by these liquids colliding can be suppressed, and the disconnection of the conductive pattern 10 formed by extension can be prevented.
  • the upper limit of the maximum width of the linear openings corresponding to the portions other than the wiring of the conductive pattern 10 in the resist pattern 9, that is, the linear openings that define the space between the wirings, is 1 2 times is preferable, and 1.1 times is more preferable. That is, the maximum value of the wiring interval (space distance between wirings) of the conductive pattern 10 is 1.2 times or less, preferably 1.1 times or less of the average value of the wiring width.
  • the lower limit of the wiring width of the conductive pattern 10 can be the minimum developable width of the photoresist 3.
  • the width in the direction of the curvature radius R of the resist having the outer outer edge 9a is 1 of the distance from the outer outer edge 9a to the other outer edge 9b. Double is preferable, and 1.2 times is more preferable. When this width is less than the lower limit, the resist pattern 9 is likely to be peeled off, which may cause disconnection of the wiring of the conductive pattern 10.
  • the upper limit of the width is not particularly limited, but is limited by the size of the substrate 1, the number of wiring forming portions 11 and dummy forming portions 12 formed in parallel in the resist pattern 9, and the like.
  • Step S13 Conductive Pattern Formation Step>
  • the conductive pattern 10 is formed as shown in FIG. 6C by removing the portion of the metal layer 7 exposed in the opening of the resist pattern 9 by etching.
  • an acidic solution generally used for removing a metal layer can be used.
  • the acidic solution include a copper chloride solution, hydrochloric acid, sulfuric acid, aqua regia and the like.
  • Step S5 Resist Pattern Removal Step>
  • the resist pattern 9 is removed with a stripping solution as shown in FIG. 6D.
  • the stripping solution used in the resist pattern removing step is selected according to the material of the resist pattern 9, and for example, an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution having a pH of 11 to 13 can be used.
  • the concentration of sodium hydroxide or potassium hydroxide is, for example, 1% by mass or more and 5% by mass or less.
  • the radius of curvature R of the outer outer edge 9 a is equal to or greater than the distance D from the outer outer edge 9 a to the other outer edge 9 b, so that various liquids are resist patterns 9.
  • the run-up distance until it hits the end face can be shortened, and peeling of the resist pattern 9 can be prevented.
  • the printed wiring board manufactured by the method for manufacturing a printed wiring board is less likely to break the conductive pattern 10, has a relatively high yield, and is excellent in reliability.
  • the resist pattern formed in the printed wiring board manufacturing method has a configuration in which the radius of curvature of the outer outer edge is greater than or equal to the distance from the outer outer edge to another outer edge, and three or more linear openings are connected via an annular opening. It may have only one of the configured configurations.
  • the annular opening connecting three or more linear openings is not limited to an annular shape, and may be a polygonal annular shape.
  • annular opening connecting three or more linear openings may be any one as long as the outer edge of the resist does not form an acute angle at the connection portion with the linear openings.
  • an annular opening may be further provided inside the annular opening, and the inner annular opening and the outer annular opening may be connected at two or more locations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

本発明の一態様に係るプリント配線板の製造方法は、レジストパターンを形成する工程と、上記レジストパターンを用いて導電パターンを形成する工程とを備えるプリント配線板の製造方法である。上記レジストパターンは、平面視で、レジストの外縁が屈曲して鋭角をなしている鋭角部分を備える。上記鋭角部分の角部において、上記レジストの外側外縁は丸みを有し、上記外側外縁の曲率半径は、上記外側外縁から、上記外側外縁の曲率中心から離れる向きに隣接する他の外縁までの距離以上である。

Description

プリント配線板の製造方法
 本発明は、プリント配線板の製造方法に関する。
 本出願は、2017年1月5日出願の日本出願第2017-000617号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 プリント配線板の導電パターンは、一般に、レジストパターンを形成するサブトラクティブ法又はセミアディティブ法によって形成されることが多い(特開2010-272837号公報参照)。
 典型的なサブトラクティブ法では、まず、基材層及び金属層を有するプリント基板用原板の表面に感光性のレジスト層を積層し、レジスト層を露光及び現像することにより形成しようとする導電パターンに対応する平面形状を有するレジストパターンを形成する。続いて、レジストパターンをマスクとしてエッチングすることにより金属層の導電パターン以外の部分を除去することで、平面形状がレジストパターンと略等しい導電パターンを形成することができる。最後に、レジストパターンを溶解して除去することによって基材層上に導電パターンが形成されたプリント配線板が得られる。
 一方、典型的なセミアディティブ法では、まず、基材層の表面に無電解めっき等で薄いシード層を形成する。次に、シード層の表面に感光性のレジスト層を積層し、レジスト層を露光及び現像することにより形成しようとする導電パターン以外の部分に対応する平面形状を有するレジストパターンを形成する。続いて、レジストパターンをマスクとし、シード層を被着体とするめっきにより、レジストパターンの開口内に金属を積層する。そして、レジストパターンを溶解して除去した後、さらにレジストパターンが存在していた部分のシード層をエッチングにより除去することで、基材層上に導電パターンが形成されたプリント配線板が得られる。
特開2010-272837号公報
 本発明の一態様に係るプリント配線板の製造方法は、レジストパターンを形成する工程と、上記レジストパターンを用いて選択的にめっき又はエッチングすることにより導電パターンを形成する工程とを備えるプリント配線板の製造方法である。上記レジストパターンは、平面視で、レジストの外縁が屈曲して鋭角をなしている鋭角部分を備える。上記鋭角部分の角部において、上記レジストの外側外縁は丸みを有し、上記外側外縁の曲率半径は、上記外側外縁から、上記外側外縁の曲率中心から離れる向きに隣接する他の外縁までの距離以上である。
 本発明の別の態様に係るプリント配線板の製造方法は、レジストパターンを形成する工程と、上記レジストパターンを用いて選択的にめっき又はエッチングすることにより導電パターンを形成する工程とを備えるプリント配線板の製造方法である。上記レジストパターンは、3本以上の線状開口と、環状開口を備え、上記3本以上の線状開口は、上記環状開口を介して接続されている。
図1は、本発明の一実施形態のプリント配線板の製造方法の手順を示す流れ図である。 図2Aは、図1のプリント配線板製造方法の一工程を示す模式的断面図である。 図2Bは、図1のプリント配線板製造方法の図2Aの次の工程を示す模式的断面図である。 図2Cは、図1のプリント配線板製造方法の図2Bの次の工程を示す模式的断面図である。 図2Dは、図1のプリント配線板製造方法の図2Cの次の工程を示す模式的断面図である。 図2Eは、図1のプリント配線板製造方法の図2Dの次の工程を示す模式的断面図である。 図2Fは、図1のプリント配線板製造方法の図2Eの次の工程を示す模式的断面図である。 図3は、図2Cのレジストパターンの詳細を示す模式的部分拡大平面図である。 図4は、図2Cのレジストパターンの図3とは異なる部分の詳細を示す模式的部分拡大平面図である。 図5は、図1とは異なる実施形態のプリント配線板の製造方法の手順を示す流れ図である。 図6Aは、図5のプリント配線板製造方法の一工程を示す模式的断面図である。 図6Bは、図5のプリント配線板製造方法の図2Aの次の工程を示す模式的断面図である。 図6Cは、図5のプリント配線板製造方法の図2Bの次の工程を示す模式的断面図である。 図6Dは、図5のプリント配線板製造方法の図2Cの次の工程を示す模式的断面図である。 図7は、図6Bのレジストパターンの詳細を示す模式的部分拡大平面図である。
[本開示が解決しようとする課題]
 レジストパターンを形成するプリント配線板の製造方法において、製造するプリント配線板の配線密度を大きくすると、レジストパターンの平面形状に幅が小さい部分が多くなる。このようなプリント配線板の高密度化に伴って、レジストパターンの現像時、サブトラクティブ法における金属層のエッチング時、又はセミアディティブ法におけるめっき時に、レジストパターンの幅が小さい部分が剥離して、導電パターンの短絡や断線が生じて歩留まりを低下させ得ることが確認されている。
 そこで、レジストパターンの剥離を防止できるプリント配線板の製造方法を提供することを課題とする。
[本開示の効果]
 本発明の一態様に係るプリント配線板の製造方法は、レジストパターンの剥離を防止することができる。
[本発明の実施形態の説明]
 (1)本発明の一態様に係るプリント配線板の製造方法は、レジストパターンを形成する工程と、上記レジストパターンを用いて選択的にめっき又はエッチングすることにより導電パターンを形成する工程とを備えるプリント配線板の製造方法である。上記レジストパターンは、平面視で、レジストの外縁が屈曲して鋭角をなしている鋭角部分を備える。上記鋭角部分の角部において、上記レジストの外側外縁は丸みを有し、上記外側外縁の曲率半径は、上記外側外縁から、上記外側外縁の曲率中心から離れる向きに隣接する他のレジストの外縁までの距離以上である。
 以降において、レジストの外側外縁を「外側外縁」と呼び、角部における外側外縁の曲率半径を「外側外縁の曲率半径」と呼び、角部において外側外縁の曲率中心から離れる向きに隣接する他のレジストの外縁を「他の外縁」と呼ぶことがある。
 なお、レジストの外側外縁とは、鋭角部分の鋭角側を内側として、外側の外縁を意味する。また、外側外縁から他の外縁までの距離とは、外側外縁から他の外縁までの「外側外縁の曲率半径方向に沿った」距離とする。
 当該プリント配線板の製造方法では、外側外縁の曲率半径が外側外縁から他の外縁までの距離以上であることによって、各種液体(エッチング液、めっき液、等)のレジストの端面にぶつかるまでのレジストパターンの平面方向の助走距離が、比較的小さくなる。これにより、当該プリント配線板の製造方法では、レジストの端面にぶつかる各種液体の運動エネルギーが比較的小さくなるので、レジストパターンの剥離を防止することができる。
 外側外縁は、屈曲して鋭角をなしているとよい。他の外縁は、屈曲して鋭角をなしているとよい。鋭角部分の角部において、外側外縁と他の外縁は相似であってもよい。
 また、外側外縁の丸み部分のうちの少なくとも一部分において、外側外縁の曲率半径が外側外縁から他の外縁まで距離以上であればよいが、外側外縁の丸み部分のすべてにおいて、外側外縁の曲率半径が外側外縁から他の外縁までの距離以上であるとよい。
 (2)上記レジストパターンは、線状開口を備え、上記レジストパターンの線状開口の最大幅は、上記導電パターンの配線の平均幅の1.2倍以下であるとよい。線状開口の最大幅が上記上限以下であることによって、配線密度を大きくしつつレジストパターンの剥離を防止することができる。
 (3)上記レジストパターンは、3本以上の線状開口と、環状開口を備え、上記3本以上の線状開口は、上記環状開口を介して接続されているとよい。レジストパターンの3本以上の線状開口が、環状開口を介して接続されていることによって、レジストパターンの平面形状において鋭角ができることを防止できる(レジストの外縁が屈曲して鋭角となることを防止できる)。これにより、レジストパターンの線状開口に沿って流れる各種液体がレジストパターンの開口の角にぶつかっても、レジストパターンが剥離しにくい。
 (4)上記鋭角部分の角部において、上記外側外縁を有するレジストの上記曲率半径の方向の幅が、上記外側外縁から上記他の外縁までの距離以上であるとよい。この幅が、外側外縁から他の外縁までの距離以上であることによって、レジストパターンの強度が大きくなり、レジストパターンがより剥離し難くなる。
 外側外縁の丸み部分のうちの少なくとも一部分において、この幅が外側外縁から他の外縁まで距離以上であればよいが、外側外縁の丸み部分のすべてにおいて、この幅が外側外縁から他の外縁までの距離以上であるとよい。
 (5)本発明の別の態様に係るプリント配線板の製造方法は、レジストパターンを形成する工程と、上記レジストパターンを用いて選択的にめっき又はエッチングすることにより導電パターンを形成する工程とを備えるプリント配線板の製造方法である。上記レジストパターンは、3本以上の線状開口と、環状開口を備え、上記3本以上の線状開口は、上記環状開口を介して接続されている。
 当該プリント配線板の製造方法は、3本以上の線状開口が環状開口を介して接続されていることによって、レジストパターンの平面形状において鋭角ができることを防止できる(レジストの外縁が屈曲して鋭角となることを防止できる)。これにより、レジストパターンの線状開口に沿って流れる各種液体がレジストパターンの開口の角にぶつかっても、レジストパターンが剥離しにくい。従って、当該プリント配線板の製造方法は、レジストパターンの剥離を防止することができる。
 (6)ドライフィルムフォトレジストを用いて上記レジストパターンを形成するとよい。ドライフィルムフォトレジストを用いることによって、フォトレジストの厚さを均一かつ小さくすることができるので、レジストパターンの細密化が容易となる。一方、ドライフィルムフォトレジストを用いてレジストパターンを形成すると、一般的には密着性が小さくなるおそれがある。しかし、当該プリント配線板の製造方法によれば、ドライフィルムフォトレジストを用いてレジストパターンを形成しても、レジストの端面にぶつかる各種液体の運動エネルギーを小さくすることでレジストパターンの剥離を防止することができ、歩留まりを向上させてプリント配線板を比較的安価に製造することができる。
[本発明の実施形態の詳細]
 以下、本発明に係るプリント配線板の製造方法の各実施形態について、図面を参照しつつ詳説する。
[第一実施形態]
 図1に、本発明の一実施形態に係るプリント配線板の製造方法の手順を示す。なお、本実施形態のプリント配線板の製造方法は、いわゆるセミアディティブ法に分類される方法である。
 図1のプリント配線板の製造方法は、図2Aに示すように、絶縁性を有するシート状の基材1の表面に導電性を有するシード層2を形成する工程<ステップS1:シード層形成工程>と、図2Bに示すように、シード層2の表面にフォトレジスト3を積層する工程<ステップS2:フォトレジスト積層工程>と、図2Cに示すように、フォトレジスト3を露光及び現像することによりレジストパターン4を形成する工程<ステップS3:レジストパターン形成工程>と、図2Dに示すように、レジストパターン4を用いて選択的にめっきすることにより配線を含む導電パターン5を形成する工程<ステップS4:導電パターン形成工程>と、図2Eに示すように、剥離液によりレジストパターン4を除去する工程<ステップS5:レジストパターン除去工程>と、図2Fに示すように、エッチングにより導電パターン5が形成されていない部分のシード層2を除去する工程<ステップS6:シード層除去工程>と備える。
<ステップS1:シード層形成工程>
 ステップS1のシード層形成工程では、例えば、無電解めっき、金属微粒子分散液の塗布及び焼成等によって、図2Aに示すように、基材1の表面にシード層2を形成する。
(基材)
 基材1の材質としては、例えば、ポリイミド、液晶ポリマー、フッ素樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等の可撓性を有する樹脂、紙フェノール、紙エポキシ、ガラスコンポジット、ガラスエポキシ、ポリテトラフルオロエチレン、ガラス基材等のリジッド材、硬質材料と軟質材料とを複合したリジッドフレキシブル材などを使用することができる。
(シード層)
 シード層2は、後述するステップS5の導電パターン形成工程における電気めっきの被着体(カソード)として用いられる。
 シード層2の平均厚さの下限としては、50nmが好ましく、100nmがより好ましい。シード層2の平均厚さの上限としては、2μmが好ましく、1.5μmがより好ましい。シード層2の平均厚さが上記下限に満たない場合、シード層2の連続性を担保できないことにより導電パターン5を均一な厚さで形成できないおそれがある。シード層2の平均厚さが上記上限を超える場合、プリント配線板の製造コストが不必要に増大するおそれがある。
 シード層2を無電解めっきにより形成する場合、シード層2の材質としては、例えば、ニッケル、銅、コバルト、金、銀、スズ等、又はこれらの合金を用いることができる。中でも、自己触媒作用により比較的容易に厚さを大きくできるニッケル、銅又はコバルトが好適に用いられる。
 金属微粒子分散液を用いてシード層2を形成する場合、金属微粒子分散液としては、金属微粒子の分散媒と、分散媒中に金属微粒子を均一に分散させる分散剤とを含むものが好適に使用される。均一に金属微粒子が分散する金属微粒子分散液を用いることで、基材1の表面に金属微粒子を均一に付着させることができ、基材1の表面に均一なシード層2を形成することができる。
 金属微粒子の主成分としては、例えば、銅、ニッケル、金、銀等を挙げることができる。この中でも、比較的安価で導電性に優れる銅が好適に用いられる。なお、「主成分」とは、最も質量含有量が大きい成分を意味する。
 金属微粒子分散液に含まれる金属微粒子は、高温処理法、液相還元法、気相法等で製造することができるが、粒子径が均一な粒子を比較的安価に製造できる液相還元法により製造される金属微粒子を使用することが好ましい。
 金属微粒子分散液に含まれる分散剤としては、特に限定されないが、分子量が2,000以上300,000以下の高分子分散剤を用いることが好ましい。分子量が上記範囲の高分子分散剤を用いることで、金属微粒子を分散媒中に良好に分散させることができ、得られるシード層2の膜質を緻密でかつ欠陥のないものにすることができる。分散剤の分子量が上記下限に満たない場合、金属微粒子の凝集を防止して分散を維持する効果が十分に得られないおそれがあり、その結果、基材1に積層されるシード層2を緻密で欠陥の少ないものにできないおそれがある。分散剤の分子量が上記上限を超える場合、分散剤の嵩が大き過ぎ、金属微粒子分散液の塗布後に行う加熱時に、金属微粒子同士の焼結を阻害してボイドを生じさせるおそれがある。また、分散剤の嵩が大き過ぎると、シード層2の膜質の緻密さが低下するおそれや、分散剤の分解残渣によって導電性が低下するおそれがある。
 分散剤は、部品の劣化防止の観点より、硫黄、リン、ホウ素、ハロゲン及びアルカリを含まないものが好ましい。好ましい分散剤としては、分子量が上記範囲にあるもので、ポリエチレンイミン、ポリビニルピロリドン等のアミン系の高分子分散剤、ポリアクリル酸、カルボキシメチルセルロース等の分子中にカルボン酸基を有する炭化水素系の高分子分散剤、ポバール(ポリビニルアルコール)、スチレン-マレイン酸共重合体、オレフィン-マレイン酸共重合体、1分子中にポリエチレンイミン部分とポリエチレンオキサイド部分とを有する共重合体等の極性基を有する高分子分散剤、等を挙げることができる。
 分散剤は、水又は水溶性有機溶媒に溶解した溶液の状態で反応系に添加することもできる。分散剤の含有割合としては、金属微粒子100質量部当たり1質量部以上60質量部以下が好ましい。分散剤が金属微粒子を取り囲むことで金属微粒子の凝集を防止し、金属微粒子は良好に分散する。しかし、分散剤の含有割合が上記下限に満たない場合、凝集防止効果が不十分となるおそれがある。分散剤の含有割合が上記上限を超える場合、金属微粒子分散液の塗布後の加熱工程において、過剰の分散剤が金属微粒子の焼結を阻害してボイドが発生するおそれがあり、また、高分子分散剤の分解残渣が不純物としてシード層2中に残存して導電性が低下するおそれがある。
 金属微粒子分散液における分散媒となる水の含有割合としては、金属微粒子100質量部当たり20質量部以上1900質量部以下が好ましい。分散媒の水は、分散剤を十分に膨潤させて分散剤で囲まれた金属微粒子を良好に分散させるが、水の含有割合が上記下限に満たない場合、水による分散剤の膨潤効果が不十分となるおそれがある。水の含有割合が上記上限を超える場合、金属微粒子分散液中の金属微粒子割合が少なくなり、基材1の表面に必要な厚さと密度とを有する良好なシード層2を形成できないおそれがある。
 金属微粒子分散液に必要に応じて配合する有機溶媒として、水溶性である種々の有機溶媒が使用可能である。その具体例としては、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、エチレングリコール、グリセリン等の多価アルコールやその他のエステル類、エチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等のグリコールエーテル類等を挙げることができる。
 金属微粒子分散液における水溶性の有機溶媒の含有割合としては、金属微粒子100質量部当たり30質量部以上900質量部以下が好ましい。水溶性の有機溶媒の含有割合が上記下限に満たない場合、有機溶媒による分散液の粘度調整及び蒸気圧調整の効果が十分に得られないおそれがある。水溶性の有機溶媒の含有割合が上記上限を超える場合、水による分散剤の膨潤効果が不十分となり、金属微粒子分散液中で金属微粒子の凝集が生じるおそれがある。
 基材1に金属微粒子分散液を塗布する方法としては、例えば、スピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法等の従来公知の塗布方法を用いることができる。
 基材1に塗布した金属微粒子分散液の塗膜を加熱することにより、金属微粒子分散液の溶媒分散剤が蒸発又は熱分解し、残る金属微粒子が焼結されて基材1の表面に固着されたシード層2が得られる。なお、加熱の前に金属微粒子分散液の塗膜を乾燥させることが好ましい。
 一定量の酸素が含まれる雰囲気下で、金属微粒子の焼結を行うことが好ましい。焼結時の雰囲気の酸素濃度の下限としては、1体積ppmが好ましく、10体積ppmがより好ましい。酸素濃度の上限としては、10,000体積ppmが好ましく、1,000体積ppmがより好ましい。酸素濃度が上記下限に満たない場合、プリント配線板の製造コストが不必要に増大するおそれがある。酸素濃度が上記上限を超える場合、金属微粒子が過剰に酸化してシード層2の導電性が不十分となり、導電パターン形成工程における導電パターン5の均一な形成が困難となるおそれがある。
 焼結温度の下限としては、150℃が好ましく、200℃がより好ましい。焼結温度の上限としては、500℃が好ましく、400℃がより好ましい。焼結温度が上記下限に満たない場合、金属微粒子間の接続が不十分となり、シード層2が崩壊するおそれがある。焼結温度が上記上限を超える場合、基材1が変形するおそれがある。
<ステップS2:フォトレジスト積層工程>
 ステップS2のフォトレジスト積層工程では、図2Bに示すように、シード層2の表面に感光性を有するフォトレジスト3を積層する。
(フォトレジスト)
 フォトレジスト3は、感光することにより高分子の結合が強化されて現像液に対する溶解性が低下するネガ型レジスト組成物、又は感光することにより高分子の結合が弱化されて現像液に対する溶解性が増大するポジ型レジスト組成物によって形成される。
 フォトレジスト3は、液状のレジスト組成物の塗工及び乾燥によってシード層2上に形成してもよいが、室温で流動性を有しないドライフィルムフォトレジストを熱圧着により積層することが好ましい。フォトレジスト3としてドライフィルムフォトレジストを用いることによって、フォトレジスト3の厚さを均一かつ小さくすることができるので、レジストパターン4の細密化が容易となる。また、後で詳しく説明するように、当該プリント配線板の製造方法では、レジストパターン4の剥離を防止できるので、フォトレジスト3としてドライフィルムフォトレジストを用いた場合にも、正確に導電パターン5を形成することができる。したがって、ドライフィルムフォトレジストを利用する場合でも、プリント配線板の品質を低下させることなく製造コストを抑制することができる。
 フォトレジスト3として用いるドライフィルムフォトレジストとしては、例えば、旭化成イーマテリアルズ社の「サンフォート(商標)」、日立化成社の「フォテック(商標)」、ニチゴー・モートン社の「ALPHOTM(商標)」等の市販のアクリル系ドライフィルムフォトレジストを用いることができる。
 フォトレジスト3の平均厚さは、フォトレジスト3を均一に形成できるよう選択される。フォトレジスト3としてドライフィルムフォトレジストを用いる場合、フォトレジスト3の平均厚さの下限としては、10μmが好ましく、15μmがより好ましい。フォトレジスト3の平均厚さの上限としては、100μmが好ましく、80μmがより好ましい。フォトレジスト3の平均厚さが上記下限に満たない場合、ドライフィルムレジストの取り扱いが容易でなくなるおそれがある。フォトレジスト3の平均厚さが上記上限を超える場合、レジストパターン4の形状の精度が低下するおそれがある。
<ステップS3:レジストパターン形成工程>
 ステップS3のレジストパターン形成工程では、まずフォトマスク等を用いてフォトレジスト3を選択的に露光することにより、フォトレジスト3に現像液で溶解する部分と溶解しない部分とを形成する。
 続いて、現像液を用いてフォトレジスト3の溶解性の高い部分を洗い流すことで、レジストパターン4を得る。レジストパターン4では、形成すべき導電パターン5に対応する部分が開口6になっている
 現像工程において使用される現像液としては、例えば炭酸ナトリウム水溶液等を挙げることができる。炭酸ナトリウムの濃度としては、例えば0.5質量%以上2質量%以下とすることができる。
(レジストパターン)
 レジストパターン4は、図3に示すように、導電パターン5を画定する開口6を有する。開口6は、導電パターン5の配線を画定する線状開口6aを含む。なお、図3では、分かりやすいようレジストパターン4の開口6をハッチングで示している。
 レジストパターン4は、平面視で、レジストの外縁が屈曲して鋭角をなしている鋭角部分を備える。この鋭角部分の角部において、レジストの外側外縁4aは丸みを有している。この角部において、外側外縁4aの曲率半径Rは、外側外縁4aから、曲率半径Rの方向(外側外縁4aに概ね垂直な方向)に開口6を挟んで(外側外縁4aの角部の曲率中心から離れる向きに)隣接する他の外縁4bまでの距離D以上である。
 セミアディティブ法により導電パターン5を形成する場合に、レジストパターン4の外側外縁4aの曲率半径Rを、外側外縁4aから他の外縁4bまでの距離D以上とする具体的方法としては、例えば、導電パターン5の配線幅を小さくする方法、導電パターン5の配線の屈曲部の曲率半径を大きくする方法等が挙げられる。
 レジストパターン4において、レジスト形状が屈曲している鋭角部分があり、その鋭角部分の角部の曲率半径が小さいと、レジストパターン形成工程で使用する現像液又は配線パターン形成工程で使用するめっき液が、レジストパターン4のレジストの端面にぶつかるまでの助走距離が大きくなる。つまり、レジストパターン4の角部の曲率半径が小さいと、その角部の周辺のレジストは剥がれ易くなる。
 そこで、外側外縁4aの曲率半径Rを外側外縁4aから他の外縁4bまでの距離D以上とすれば、例えば図2Cに矢印Fで例示するように、液体(現像液又はめっき液)がレジストパターン4の開口6の中に流れ込んでからシード層2に沿って流れる距離が短くなる。このため、液体のレジストパターン4のレジストの端面にぶつかる際の速度及び運動エネルギーが抑制されるので、液体の衝突によるレジストパターン4の剥離が抑制される。
 また、レジストパターン4において、導電パターン5の配線を画定する線状開口6aの最大幅の上限としては、導電パターン5の配線の平均幅の1.2倍が好ましく、1.1倍がより好ましい。つまり、導電パターン5の配線幅の設計上の最大値を平均値の1.2倍以下、好ましくは1.1倍以下とするとよい。レジストパターン4の線状開口6aの最大幅が上記上限を超える場合、線状開口6aの側壁にぶつかる液体の流速が大きくなることで、レジストパターン4の剥離による導電パターン5の配線間の短絡が生じるおそれがある。なお、線状開口6aの最大幅の下限は、理論上導電パターン5の配線の平均幅と等しい。
 また、外側外縁4aを有するレジストの曲率半径Rの方向の幅Uの下限としては、外側外縁4aから他の外縁4bまでの距離Dの1倍が好ましく、1.2倍がより好ましい。幅Uが上記下限に満たない場合、レジストパターン4が剥離しやすくなることで導電パターン5の配線間の短絡が生じるおそれがある。幅Uの上限は、特に限定されないが、基材1の寸法及びレジストパターン4に並列して形成される線状開口6aの数等によって制限される。
 また、レジストパターン4において、3本以上の線状開口6aを接続する場合、図4に示すように、3本以上の線状開口6aが環状開口6bを介して接続されているとよい。線状開口6aが交差する場合、レジストパターン4の開口6内を線状開口6aに沿って流れる流体が線状開口6aの交差部に形成されるレジストパターン4の角にぶつかりやすい。しかしながら、レジストパターン4の3本以上の線状開口6aが環状開口6bを介して接続されていることによって、開口6の接続部においてレジストパターン4の外縁が鋭角になることを防止し、レジストパターン4を剥がれにくくすることができる。
<ステップS4:導電パターン形成工程>
 ステップS4の導電パターン形成工程では、レジストパターン4の開口内に露出するシード層2に電気めっきによって金属を積層することで、図2Dに示すように、導電パターン5を形成する。
 具体的には、導電パターン形成工程では、基材1、シード層2及びレジストパターン4の積層体と積層体に対向する電極とを電解液中に配置し、直流電源の負極をシード層2に接続し、正極を対向電極に接続することで、電解液中の金属をシード層2表面に析出させる。
 電気めっきにより積層する金属、つまり導電パターン5を構成する金属としては、例えば、銅、ニッケル、金、銀、白金等を用いることができ、中でも比較的安価で導電性に優れる銅や比較的安価で耐食性に優れるニッケルが好適に用いられる。
(導電パターン)
 電気めっきにより形成される導電パターン5の平均厚さは、プリント配線板の許容電流等に応じて設定されるものであるが、一般的には、導電パターン5の平均厚さの下限としては、1μmが好ましく、2μmがより好ましい。導電パターン5の平均厚さの上限としては、100μmが好ましく、50μmがより好ましい。導電パターン5の平均厚さが上記下限に満たない場合、導電パターン5が断線し易くなるおそれがある。導電パターン5の平均厚さが上記上限を超える場合、プリント配線板が不必要に厚くなるおそれや、プリント配線板用の可撓性が不十分となるおそれがある。
<ステップS5:レジストパターン除去工程>
 ステップS5のレジストパターン除去工程では、剥離液によって、図2Eに示すように、レジストパターン4を除去する。
 レジストパターン除去工程で用いる剥離液としては、レジストパターン4の材質に応じて選択されるが、例えばpH11以上13以下の水酸化ナトリウム水溶液又は水酸化カリウム水溶液を使用することができる。水酸化ナトリウム又は水酸化カリウムの濃度としては、例えば1質量%以上5質量%以下とされる。
<ステップS6:シード層除去工程>
 ステップS6のシード層除去工程では、エッチングによって、図2Fに示すように、シード層2のレジストパターン4に覆われていた部分を除去して、導電パターン5の配線間を電気的に分離する。なお、導電パターン5の表面もエッチングにより除去され得るが、エッチングの条件を適切に選択することで、導電パターン5の表面の除去(導電パターン5の金属の除去)は考慮しなくてもよい程度(無視できる程度)となる。
<利点>
 当該プリント配線板の製造方法では、レジストパターン4において、外側外縁4aの曲率半径Rが、外側外縁4aから他の外縁4bまでの距離D以上であることによって、各種液体がレジストパターン4のレジストの端面にぶつかるまでの助走距離を短くして、レジストパターン4の剥離を防止することができる。
 また、当該プリント配線板の製造方法では、レジストパターン4の3本以上の線状開口6aが環状開口6bを介して接続されていることによって、レジストパターン4のレジストの外縁が鋭角にならないようにできるので、レジストパターン4の剥がれを防止することができる。
 このため、当該プリント配線板の製造方法によって製造されるプリント配線板は、導電パターン5の短絡が抑制されるので、比較的歩留まりが大きく信頼性に優れる。
[第二実施形態]
 図5に、本発明の一実施形態に係るプリント配線板の製造方法の手順を示す。なお、本実施形態のプリント配線板の製造方法は、いわゆるサブトラクティブ法に分類される方法である。
 図5のプリント配線板の製造方法は、図6Aに示すように、絶縁性を有するシート状の基材1と金属層7とを有するプリント配線板用原板8の金属層7の表面にフォトレジスト3を積層する工程<ステップS11:フォトレジスト積層工程>と、図6Bに示すように、フォトレジスト3を露光及び現像することによりレジストパターン9を形成する工程<ステップS12:レジストパターン形成工程>と、図6Cに示すように、レジストパターン9を用いて金属層7を選択的にエッチングすることにより配線を含む導電パターン10を形成する工程<ステップS13:導電パターン形成工程>と、図6Dに示すように、剥離液によりレジストパターン9を除去する工程<ステップS14:レジストパターン除去工程>と備える。
<ステップS11:フォトレジスト積層工程>
 ステップS11のフォトレジスト積層工程では、図6Aに示すように、プリント配線板用原板8の金属層7の表面に感光性を有するフォトレジスト3を積層する。
 図6Aのプリント配線板用原板8の基材1としては、図2Aの基材1と同様のものを用いることができる。また、図6Aのフォトレジスト3の構成及び積層方法としては、図2Bのフォトレジスト3の構成及び積層方法と同様とすることができる。
(金属層)
 金属層7の材質としては、例えば、銅、ニッケル、金、銀、白金、鉄、アルミニウム等を挙げることができ、中でも比較的安価で導電性に優れる銅が好適に用いられる。
 金属層7の平均厚さの下限としては、2μmが好ましく、5μmがより好ましい。金属層7の平均厚さの上限としては、500μmが好ましく、200μmがより好ましい。金属層7の平均厚さが上記下限に満たない場合、導通性が不十分となるおそれがある。金属層7の平均厚さが上記上限を超える場合、当該プリント配線板1が不要に厚くなるおそれがある。
<ステップS12:レジストパターン形成工程>
 ステップS12のレジストパターン形成工程では、まずフォトマスク等を用いてフォトレジスト3を選択的に露光することにより、フォトレジスト3に現像液で溶解する部分と溶解しない部分とを形成する。続いて、現像液を用いてフォトレジスト3の溶解性の高い部分を洗い流すことで、図6Bに示すように、形成すべき導電パターン10以外の部分に対応する部分が開口するレジストパターン9を得る。つまり、レジストパターン9は、形成しようとする導電パターン10と略等しい平面形状を有する。
(レジストパターン)
 図7に示すように、レジストパターン9では、外側外縁9aの曲率半径Rが、外側外縁9aから他の外縁9bまでの距離D以上である。導電パターン10の配線に対応する配線形成部11が鋭角に屈曲する部分には、近接して他の配線形成部11が配置されているとよい。また、最も外側の配線形成部11の鋭角部の外側には、ダミー形成部12を配置する構成とするとよい。ダミー形成部12は、最終的に得られるプリント配線板において回路に接続されないダミー配線部に対応する。
 このようにすれば、レジストパターン形成工程で使用する現像液又は配線パターン形成工程で使用するエッチング液がレジストパターン9のレジストの端面にぶつかるまでの助走距離が短くなるので、これらの液体のレジストパターン9のレジストの端面にぶつかる際の速度が抑制される。このため、レジストパターン9を用いる当該プリント配線板の製造方法では、これらの液体がぶつかることによるレジストパターン9の剥がれを抑制し、ひいては形成される導電パターン10の断線を防止することができる。
 また、レジストパターン9における導電パターン10の配線以外の部分に対応する線状開口、つまり配線間のスペースを画定する線状開口の最大幅の上限としては、導電パターン10の配線の平均幅の1.2倍が好ましく、1.1倍がより好ましい。つまり、導電パターン10の配線間隔(配線間のスペースの距離)の最大値を、配線幅の平均値の1.2倍以下、好ましくは1.1倍以下とするとよい。レジストパターン9の開口6の最大幅が上記上限を超える場合、レジストパターン9の開口の側壁にぶつかる液体の流速が大きくなることでレジストパターン9が剥離しやすくなり、導電パターン10の配線の断線が生じるおそれがある。なお、導電パターン10の配線幅の下限としては、フォトレジスト3の現像可能最小幅とすることができる。
 また、レジストパターン9において、外側外縁9aを有するレジストの曲率半径Rの方向の幅、つまり導電パターン10の屈曲部分における配線幅の下限としては、外側外縁9aから他の外縁9bまでの距離の1倍が好ましく、1.2倍がより好ましい。この幅が上記下限に満たない場合、レジストパターン9が剥離しやすくなることで導電パターン10の配線の断線が生じるおそれがある。なお、この幅の上限は、特に限定されないが、基材1寸法、レジストパターン9において並列して形成される配線形成部11とダミー形成部12の数、等によって制限される。
<ステップS13:導電パターン形成工程>
 ステップS13の導電パターン形成工程では、金属層7のレジストパターン9の開口内に露出する部分をエッチングによって除去することで、図6Cに示すように、導電パターン10を形成する。
 導電パターン形成工程で用いるエッチング液としては、一般的に金属層除去に用いられる酸性溶液を使用することができる。酸性溶液としては、例えば、塩化銅溶液、塩酸、硫酸、王水等が挙げられる。
<ステップS5:レジストパターン除去工程>
 ステップS5のレジストパターン除去工程では、剥離液によって、図6Dに示すように、レジストパターン9を除去する。
 レジストパターン除去工程で用いる剥離液としては、レジストパターン9の材質に応じて選択されるが、例えばpH11以上13以下の水酸化ナトリウム水溶液又は水酸化カリウム水溶液を使用することができる。水酸化ナトリウム又は水酸化カリウムの濃度としては、例えば1質量%以上5質量%以下とされる。
<利点>
 当該プリント配線板の製造方法では、レジストパターン9において、外側外縁9aの曲率半径Rが、外側外縁9aから他の外縁9bまでの距離D以上であることによって、各種液体がレジストパターン9のレジストの端面にぶつかるまでの助走距離を短くでき、レジストパターン9の剥離を防止することができる。このため、当該プリント配線板の製造方法によって製造されるプリント配線板は、導電パターン10が断線しにくく、比較的歩留まりが大きく信頼性に優れる。
[その他の実施形態]
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 当該プリント配線板の製造方法において形成されるレジストパターンは、外側外縁の曲率半径が外側外縁から他の外縁までの距離以上とする構成と、3本以上の線状開口が環状開口を介して接続されている構成のうちのいずれか一方だけを有するものであってもよい。
 また、当該プリント配線板の製造方法において形成されるレジストパターンにおいて、3本以上の線状開口を接続する環状開口は、円環状に限られず、多角形環状であってもよい。
 また、3本以上の線状開口を接続する環状開口は、線状開口との接続部分において、レジストの外縁が鋭角を形成しないものであればよい。
 また、環状開口の内部にさらに環状開口を設け、内側の環状開口と外側の環状開口が2か所以上で接続される構成としてもよい。3本以上の線状開口が導電パターンの配線を画定する場合、この構成により、互いに接続される3本以上の配線間の接続部分の電気抵抗を低減することができる。
1 基材
2 シード層
3 フォトレジスト
4 レジストパターン
4a 外側外縁
4b 他の外縁
5 導電パターン
6 開口
6a 線状開口
6b 環状開口
7 金属層
8 プリント配線板用原板
9 レジストパターン
9a 外側外縁
9b 他の外縁
10 導電パターン
11 配線形成部
12 ダミー形成部
D 距離
R 曲率半径
U 幅
S1 シード層形成工程
S2 フォトレジスト積層工程
S3 レジストパターン形成工程
S4 導電パターン形成工程
S5 レジストパターン除去工程
S6 シード層除去工程
S11 フォトレジスト積層工程
S12 レジストパターン形成工程
S13 導電パターン形成工程
S14 レジストパターン除去工程

Claims (6)

  1.  レジストパターンを形成する工程と、上記レジストパターンを用いて選択的にめっき又はエッチングすることにより導電パターンを形成する工程とを備えるプリント配線板の製造方法であって、
     上記レジストパターンは、平面視で、レジストの外縁が屈曲して鋭角をなしている鋭角部分を備え、
     上記鋭角部分の角部において、上記レジストの外側外縁は丸みを有し、上記外側外縁の曲率半径は、上記外側外縁から、上記外側外縁の曲率中心から離れる向きに隣接する他の外縁までの距離以上であるプリント配線板の製造方法。
  2.  上記レジストパターンは、線状開口を備え、
     上記線状開口の最大幅は、上記導電パターンの配線の平均幅の1.2倍以下である請求項1に記載のプリント配線板の製造方法。
  3.  上記レジストパターンは、3本以上の線状開口と、環状開口を備え、
     上記3本以上の線状開口は、上記環状開口を介して接続されている請求項1又は請求項2に記載のプリント配線板の製造方法。
  4.  上記鋭角部分の角部において、上記外側外縁を有するレジストの上記曲率半径方向の幅が、上記外側外縁から上記他の外縁までの距離以上である請求項1、請求項2又は請求項3に記載のプリント配線板の製造方法。
  5.  レジストパターンを形成する工程と、上記レジストパターンを用いて選択的にめっき又はエッチングすることにより導電パターンを形成する工程とを備えるプリント配線板の製造方法であって、
     上記レジストパターンは、3本以上の線状開口と、環状開口を備え、
     上記3本以上の線状開口は、上記環状開口を介して接続されているプリント配線板の製造方法。
  6.  ドライフィルムフォトレジストを用いて上記レジストパターンを形成する請求項1から請求項5のいずれか1項に記載のプリント配線板の製造方法。
PCT/JP2017/043443 2017-01-05 2017-12-04 プリント配線板の製造方法 WO2018128037A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/474,705 US11641716B2 (en) 2017-01-05 2017-12-04 Method for manufacturing printed circuit board
CN201780082375.9A CN110169214A (zh) 2017-01-05 2017-12-04 用于制造印刷电路板的方法
JP2018560341A JP6973703B2 (ja) 2017-01-05 2017-12-04 プリント配線板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-000617 2017-01-05
JP2017000617 2017-01-05

Publications (1)

Publication Number Publication Date
WO2018128037A1 true WO2018128037A1 (ja) 2018-07-12

Family

ID=62789460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043443 WO2018128037A1 (ja) 2017-01-05 2017-12-04 プリント配線板の製造方法

Country Status (4)

Country Link
US (1) US11641716B2 (ja)
JP (1) JP6973703B2 (ja)
CN (1) CN110169214A (ja)
WO (1) WO2018128037A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045237A1 (ja) * 2020-08-31 2022-03-03 Agc株式会社 液状組成物及び凸部付き基材
CN115996990B (zh) * 2020-08-31 2024-06-11 Agc株式会社 液状组合物及带凸部基材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03244181A (ja) * 1990-02-21 1991-10-30 Fujitsu Ltd プリント配線板の導体パターン形成方法
WO1999060831A1 (en) * 1998-05-19 1999-11-25 Ibiden Co., Ltd. Printed circuit board and method of production thereof
JP2007288079A (ja) * 2006-04-20 2007-11-01 Sumitomo Metal Mining Co Ltd 配線構造とこれを用いた高密度配線基板

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128551U (ja) * 1977-03-11 1978-10-12
US5414223A (en) * 1994-08-10 1995-05-09 Ast Research, Inc. Solder pad for printed circuit boards
JPH11150342A (ja) * 1997-11-19 1999-06-02 Nec Corp 回路基板およびこの回路基板を用いる電子機器
US5858591A (en) * 1998-02-02 1999-01-12 Taiwan Semiconductor Manufacturing Company Ltd. Optical proximity correction during wafer processing through subfile bias modification with subsequent subfile merging
JP2005079479A (ja) * 2003-09-02 2005-03-24 Asahi Kasei Electronics Co Ltd レジスト直描用レジストインク
JP4171032B2 (ja) * 2006-06-16 2008-10-22 株式会社東芝 半導体装置及びその製造方法
US20090189055A1 (en) * 2008-01-25 2009-07-30 Visera Technologies Company Limited Image sensor and fabrication method thereof
JP2010272837A (ja) 2009-04-24 2010-12-02 Sumitomo Electric Ind Ltd プリント配線板用基板、プリント配線板、及びプリント配線板用基板の製造方法
JP5640605B2 (ja) * 2010-09-27 2014-12-17 凸版印刷株式会社 多層配線基板
US20120111611A1 (en) * 2010-11-10 2012-05-10 Samsung Electro-Mechanics Co., Ltd. Printed circuit board and method of manufacturing the same
US8110484B1 (en) * 2010-11-19 2012-02-07 Sumitomo Electric Industries, Ltd. Conductive nitride semiconductor substrate and method for producing the same
JP5353943B2 (ja) * 2011-04-28 2013-11-27 信越化学工業株式会社 パターン形成方法
CN202815413U (zh) * 2012-08-10 2013-03-20 东莞市五株电子科技有限公司 一种干膜曝光对位装置
CN106163102B (zh) * 2015-04-02 2018-11-23 鹏鼎控股(深圳)股份有限公司 柔性电路板及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03244181A (ja) * 1990-02-21 1991-10-30 Fujitsu Ltd プリント配線板の導体パターン形成方法
WO1999060831A1 (en) * 1998-05-19 1999-11-25 Ibiden Co., Ltd. Printed circuit board and method of production thereof
JP2007288079A (ja) * 2006-04-20 2007-11-01 Sumitomo Metal Mining Co Ltd 配線構造とこれを用いた高密度配線基板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045237A1 (ja) * 2020-08-31 2022-03-03 Agc株式会社 液状組成物及び凸部付き基材
CN115996990A (zh) * 2020-08-31 2023-04-21 Agc株式会社 液状组合物及带凸部基材
CN115996990B (zh) * 2020-08-31 2024-06-11 Agc株式会社 液状组合物及带凸部基材

Also Published As

Publication number Publication date
JPWO2018128037A1 (ja) 2019-11-07
US20210136921A1 (en) 2021-05-06
JP6973703B2 (ja) 2021-12-01
US11641716B2 (en) 2023-05-02
CN110169214A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2018211733A1 (ja) プリント配線板及びその製造方法
JP4388611B2 (ja) 銅被膜からなる配線を有するプリント配線板およびその製造方法、並びに銅被膜からなる回路を有する回路板
WO2018128037A1 (ja) プリント配線板の製造方法
JP2009176770A (ja) 銅配線絶縁フィルムの製造法、及びこれらから製造された銅配線絶縁フィルム
JP4986081B2 (ja) プリント配線基板の製造方法
TW200407057A (en) Method for the manufacture of printed circuit boards with integral plated resistors
CN102548231A (zh) 电路板制作方法
JP2009117721A (ja) 配線基板、回路基板、これらの製造方法
JP2013162007A (ja) 微細配線パターンの製造方法
JP3142511B2 (ja) 無電解メッキ用接着剤およびその製造方法
JP6236824B2 (ja) プリント配線基板の製造方法
JP2015046519A (ja) 回路基板の製造方法
JP2004240233A (ja) ソルダーレジスト組成物、回路基板及びその製造方法
JP2007288011A (ja) ポリイミド配線板の製造方法
JP4676376B2 (ja) 回路基板の製造方法
JP2014036064A (ja) プリント配線板の製造方法
JP2018029139A (ja) プリント配線板用基板及びプリント配線板用基板の製造方法
CN210042390U (zh) 一种导电银浆连接上下层的双面柔性线路板
JP4628993B2 (ja) 回路基板の製造方法
JP2016136595A (ja) プリント配線板用基板の製造方法、プリント配線板用基板及びプリント配線板
JP4986072B2 (ja) チップ搭載用基板の製造方法
TW200926926A (en) Method for manufacturing plated through hole in printed circuit board
JP2008016710A (ja) 回路基板の製造方法
JP2013206958A (ja) プリント配線板およびその製造方法
JPH1027953A (ja) 転写用部材の製造方法及び転写用部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018560341

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890461

Country of ref document: EP

Kind code of ref document: A1