WO2018127795A1 - 신규한 인덴계 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법 - Google Patents

신규한 인덴계 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법 Download PDF

Info

Publication number
WO2018127795A1
WO2018127795A1 PCT/IB2018/050008 IB2018050008W WO2018127795A1 WO 2018127795 A1 WO2018127795 A1 WO 2018127795A1 IB 2018050008 W IB2018050008 W IB 2018050008W WO 2018127795 A1 WO2018127795 A1 WO 2018127795A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
ethylene
transition metal
aryl
olefin
Prior art date
Application number
PCT/IB2018/050008
Other languages
English (en)
French (fr)
Inventor
한용규
오연옥
김명일
함형택
Original Assignee
사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170179356A external-priority patent/KR101980683B1/ko
Application filed by 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 filed Critical 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디
Publication of WO2018127795A1 publication Critical patent/WO2018127795A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention provides a novel indene-based transition metal compound, a transition metal catalyst composition having high catalytic activity for the production of an ethylene homopolymer or a copolymer of ethylene and at least one ⁇ -olefin, and an ethylene homopolymer or ethylene and a- A method for producing a copolymer of olefins.
  • Ziegler-Natta catalyst systems composed of a main catalyst component of a titanium or vanadium compound and a cocatalyst component of an alkylaluminum compound have been generally used for preparing a homopolymer of ethylene or a copolymer of? -Olefin.
  • the Ziegler-Natta catalyst system exhibits high activity against ethylene polymerization, but due to its heterogeneous catalytic activity, the molecular weight distribution of the resulting polymer is generally wide, and in particular, the composition distribution is not uniform in the copolymer of ethylene and ⁇ -olefin. There was this.
  • the metallocene catalyst system composed of a metallocene compound of Group 4 transition metal such as titanium, zirconium, and hafnium and methylaluminoxane as a promoter is a homogeneous catalyst having a single catalytic activity point.
  • polyethylene has narrower molecular weight distribution and uniform composition distribution.
  • a group 4 transition metal on the periodic table has a rigid planar structure and is rich in electrons and is widely delocalized.
  • Polymerization of ethylene and olefins with a transition metal compound having a structure linked by a derivative group; and a fluorenyl or carbazole-substituted phenoxy group which is easily introduced with a substituent to help improve solubility and performance. It was found that it exhibits excellent catalytic activity.
  • Another object of the present invention is to provide a method for economically preparing an ethylene homopolymer or a copolymer of ethylene and an -olefin using a catalyst composition comprising the transition metal compound from a commercial point of view.
  • Another object of the present invention is a simple synthesis route, which is very economical in terms of catalytic synthesis, and has a high activity in olefin polymerization, and an ethylene homopolymer or ethylene and ⁇ - having various physical properties.
  • An object of the present invention is to provide a polymerization method in which copolymers of olefins can be economically produced from a commercial point of view.
  • One aspect of the present invention for achieving the above object relates to an indene transition metal compound represented by the following formula (1). More specifically, indentation or a derivative group in which the Group 4 transition metal on the periodic table of the periodic table has a rigid planar structure and is rich in electrons and is widely delocalized; and a substituent which helps to improve solubility and performance. It relates to a transition metal compound having a structure connected by a phenoxy group substituted fluorenyl or carbazole is introduced.
  • M is a transition metal of Group 4 on the periodic table
  • R 1 to R 5 are each independently hydrogen, (C1-C20) alkyl, (C6-C20) aryl, (C3-C20) heteroaryl, -OR a1 , -SR a2 , -NR a3 R a4 or -PR a5 R a6 or R 1 to R 4 may be linked to (C 4 -C 7) alkylene or (C 4 -C 7) alkenylene with or without adjacent substituents and aromatic rings to form a fused ring;
  • R 6 and R 7 are each independently (C1-C20) alkyl, halo (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl, (C1-C20) alkyl (C6-C20) Aryl, (C6-C20) aryl (C1-C20) alkyl, (C3-C20) heteroaryl, -OR a1 , -SR a2 , -NR a3 R a4 or -PR a5 R a6, or R 6 and R 7 May be linked with (C 4 -C 7) alkylene to form a ring;
  • R 8 to R 10 are each independently hydrogen, (C1-C20) alkyl, halo (C1-C20) alkyl, halogen, (C6-C20) aryl, (C3-C20) heteroaryl, -OR a1 , -SR a2 , -NR a3 R a4 or -PR a5 R a6, or R 8 to R 10 can be linked to a (C4-C7) alkenylene with or without adjacent substituents and an aromatic ring to form a fused ring;
  • R a1 to R a6 are each independently (C1-C20) alkyl or (C6-C20) aryl;
  • R 11 and R 12 are each independently hydrogen, (C 1 -C 20) alkyl or (C 6 -C 20) aryl, or may be linked to each other to form an aromatic ring;
  • Ar 1 is fluorenyl or N-carbazole, wherein the fluorenyl or carbazole of Ar 1 may be further substituted with (C1-C20) alkyl;
  • X 1 and X 2 are each independently halogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl (C1-C20) alkyl, ((C1-C20) alkyl (C6-C20) ) Aryl) (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryloxy, (C1-C20) alkyl (C6-C20) aryloxy, (C1-C20) alkoxy (C6-C20) Aryloxy, -OSiR a R b R c , -SR d , -NR e R f , -PR g R h or (C 1 -C 20) alkylidene;
  • R a to R d independently of one another are (C1-C20) alkyl, (C6-C20) aryl, (C6-C20) ar (C1-C20) alkyl, (C1-C20) alkyl (C6-C20) aryl or ( C3-C20) cycloalkyl;
  • R e to R h are independently of each other (C1-C20) alkyl, (C6-C20) aryl, (C6-C20) ar (C1-C20) alkyl, (C1-C20) alkyl (C6-C20) aryl, ( C3-C20) cycloalkyl, tri (C1-C20) alkylsilyl or tri (C6-C20) arylsilyl;
  • the heteroaryl includes one or more hetero atoms selected from N, O and S.
  • Another aspect of the present invention for achieving the above object is a transition metal compound of Formula 1; And a cocatalyst selected from an aluminum compound, a boron compound, or a mixture thereof.
  • the present invention relates to a transition metal catalyst composition for preparing an ethylene homopolymer or a copolymer of ethylene and an ⁇ -olefin.
  • Another aspect of the present invention for achieving the above object relates to a method for producing an ethylene homopolymer or a copolymer of ethylene and ⁇ -olefin using the catalyst composition.
  • the transition metal compound or the catalyst composition comprising the transition metal compound according to the present invention can be easily produced by a simple method of high yield and economical method due to the simple synthesis process, and also has excellent thermal stability of the catalyst and high catalytic activity even at high temperature. While maintaining a good copolymerization reactivity with other olefins and can produce a high molecular weight polymer in high yield, it is commercially viable compared to the known metallocene and non-metallocene-based single-site catalyst. Therefore, the transition metal and the catalyst composition including the same according to the present invention can be usefully used for the preparation of ethylene homopolymer or copolymer with ⁇ -olefin having various physical properties.
  • the transition metal compound according to one embodiment of the present invention is a transition metal compound based on an indenyl group represented by Formula 1 below, and the group 4 transition metal on the periodic table has a rigid planar structure as a central metal.
  • the group 4 transition metal on the periodic table has a rigid planar structure as a central metal.
  • M is a transition metal of Group 4 on the periodic table
  • R 1 to R 5 are each independently hydrogen, (C1-C20) alkyl, (C6-C20) aryl, (C3-C20) heteroaryl, -OR a1 , -SR a2 , -NR a3 R a4 or -PR a5 R a6 or R 1 to R 4 may be linked to (C 4 -C 7) alkylene or (C 4 -C 7) alkenylene with or without adjacent substituents and aromatic rings to form a fused ring;
  • R 6 and R 7 are each independently (C1-C20) alkyl, halo (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl, (C1-C20) alkyl (C6-C20) Aryl, (C6-C20) aryl (C1-C20) alkyl, (C3-C20) heteroaryl, -OR a1 , -SR a2 , -NR a3 R a4 or -PR a5 R a6, or R 6 and R 7 May be linked with (C 4 -C 7) alkylene to form a ring;
  • R 8 to R 10 are each independently hydrogen, (C1-C20) alkyl, halo (C1-C20) alkyl, halogen, (C6-C20) aryl, (C3-C20) heteroaryl, -OR a1 , -SR a2 , -NR a3 R a4 or -PR a5 R a6, or R 8 to R 10 can be linked to a (C4-C7) alkenylene with or without adjacent substituents and an aromatic ring to form a fused ring;
  • R a1 to R a6 are each independently (C1-C20) alkyl or (C6-C20) aryl;
  • R 11 and R 12 are each independently hydrogen, (C 1 -C 20) alkyl or (C 6 -C 20) aryl, or may be linked to each other to form an aromatic ring;
  • Ar 1 is fluorenyl or N-carbazole, wherein the fluorenyl or carbazole of Ar 1 may be further substituted with (C1-C20) alkyl;
  • X 1 and X 2 are each independently halogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl (C1-C20) alkyl, ((C1-C20) alkyl (C6-C20) ) Aryl) (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryloxy, (C1-C20) alkyl (C6-C20) aryloxy, (C1-C20) alkoxy (C6-C20) Aryloxy, -OSiR a R b R c , -SR d , -NR e R f , -PR g R h or (C 1 -C 20) alkylidene;
  • R a to R d independently of one another are (C1-C20) alkyl, (C6-C20) aryl, (C6-C20) ar (C1-C20) alkyl, (C1-C20) alkyl (C6-C20) aryl or ( C3-C20) cycloalkyl;
  • R e to R h are independently of each other (C1-C20) alkyl, (C6-C20) aryl, (C6-C20) ar (C1-C20) alkyl, (C1-C20) alkyl (C6-C20) aryl, ( C3-C20) cycloalkyl, tri (C1-C20) alkylsilyl or tri (C6-C20) arylsilyl;
  • the heteroaryl includes one or more hetero atoms selected from N, O and S.
  • alkyl refers to a monovalent straight or branched saturated hydrocarbon radical consisting solely of carbon and hydrogen atoms, examples of which alkyl radicals are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl , Pentyl, hexyl, octyl, nonyl, and the like.
  • aryl refers to an organic radical derived from an aromatic hydrocarbon by one hydrogen removal, wherein a single or fused ring contains 4 to 7, preferably 5 or 6 ring atoms, as appropriate for each ring. It includes a system, including a form in which a plurality of aryl is connected by a single bond.
  • Fused ring systems can include aliphatic rings, such as saturated or partially saturated rings, and necessarily include one or more aromatic rings.
  • the aliphatic ring may include nitrogen, oxygen, sulfur, carbonyl, and the like in the ring.
  • aryl radical examples include phenyl, naphthyl, biphenyl, indenyl, fluorenyl, phenanthrenyl, anthracenyl, triphenylenyl, pyrenyl, chrysenyl, naphthacenyl, 9,10-dihydro Anthracenyl and the like.
  • heteroaryl refers to an aryl group containing 1 to 4 heteroatoms selected from N, O and S as the aromatic ring skeleton atom, and wherein the remaining aromatic ring skeleton atom is carbon.
  • heteroaryl in the present invention also includes a form in which one or more heteroaryl is connected by a single bond.
  • heteroaryl group examples include pyrrole, quinoline, isoquinoline, pyridine, pyrimidine, oxazole, thiazole, thiadiazole, triazole, imidazole, benzoimidazole, isoxazole, benzoisoxazole, thiophene, Benzothiophene, furan, benzofuran and the like.
  • cycloalkyl herein refers to a monovalent saturated carbocyclic radical composed of one or more rings.
  • examples of cycloalkyl radicals include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and the like.
  • halo or halogen refers to a fluorine, chlorine, bromine or iodine atom.
  • haloalkyl refers to alkyl substituted with one or more halogens, and examples thereof include trifluoromethyl and the like.
  • alkoxy and aryloxy refer to -O-alkyl radicals and -O-aryl radicals, where “alkyl” and “aryl” are as defined above.
  • the transition metal compound of Formula 1 may be a transition metal compound represented by the following Formula 2, 3, 4 or 5.
  • M, R 6 , R 7 , R 9 , R 10 , X 1 and X 2 are the same as defined in Formula 1;
  • R 1 to R 5 are each independently hydrogen, (C1-C20) alkyl, (C6-C20) aryl, (C3-C20) heteroaryl, -OR a1 , -SR a2 , -NR a3 R a4 or -PR a5 R a6 ;
  • R a1 to R a6 are each independently (C1-C20) alkyl or (C6-C20) aryl;
  • R 11 and R 12 are each independently hydrogen or may be linked to each other to form a benzene ring
  • R 13 and R 14 are each independently (C 1 -C 20) alkyl
  • R 15 , R 16 and R 17 are each independently hydrogen or (C 1 -C 20) alkyl.
  • M of the transition metal compound is a transition metal of Group 4 on the periodic table, preferably titanium (Ti), zirconium (Zr) or hafnium (Hf).
  • R 1 to R 5 are each independently hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec -butyl, tert -butyl, n-pentyl Neopentyl, amyl, n-hexyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-pentadecyl, phenyl, pyridyl, methoxy, ethoxy, butyl Methoxy, methylthio, ethylthio, dimethylamino, methylethylamino, diethylamino, diphenylamino, dimethylphosphine, diethylphosphine or diphenylphosphine, wherein R 1 to R 4
  • R 1 to R 4 may be hydrogen, R 5 may be methyl.
  • R 1 and R 2 are hydrogen, R 3 and R 4 is Connected to form a fused ring, R 5 may be methyl.
  • R 6 and R 7 are each independently methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec -butyl, tert -butyl, n-pentyl, neo Pentyl, amyl, n-hexyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-pentadecyl, fluoromethyl, trifluoromethyl, perfluoroethyl, Perfluoropropyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, phenyl, tolyl, xylyl, trimethylphenyl, tetramethyl
  • R 6 and R 7 are each independently (C 1 -C 20) alkyl, preferably (C 1 -C 10) alkyl, halo (C 1 -C 20) alkyl, preferably halo (C 1) -C10) alkyl or (C6-C20) aryl, preferably (C6-C12) aryl.
  • R 6 and R 7 may be each independently methyl, ethyl or phenyl.
  • R 8 to R 10 are each independently hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec -butyl, tert -butyl, n-pentyl , Neopentyl, amyl, n-hexyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-pentadecyl, fluoromethyl, trifluoromethyl, perfluoro Ethyl, perfluoropropyl, chloro, fluoro, bromo, phenyl, biphenyl, fluorenyl, triphenyl, naphthyl, anthracenyl, benzyl, naphthylmethyl, anthracenylmethyl, pyridyl,
  • R 8 to R 10 are each independently hydrogen, (C 1 -C 20) alkyl, preferably (C 1 -C 10) alkyl, halo (C 1 -C 20) alkyl, preferably halo May be (C1-C10) alkyl or halogen, wherein R 9 and R 10 are , , or Can be connected to form a fused ring.
  • R 8 to R 10 may be each independently hydrogen, methyl, ethyl, tert -butyl or fluoro.
  • R 8 is hydrogen
  • R 9 and R 10 are each independently hydrogen, (C 1 -C 20) alkyl, preferably (C 1 -C 10) alkyl, halo (C 1 -C 20) Alkyl, preferably halo (C1-C10) alkyl or halogen, wherein R 9 and R 10 are , , or Can be connected to form a fused ring.
  • R 8 and R 10 is hydrogen, R 9 is (C1-C10) alkyl or halogen, or R 9 and R 10 is Can be connected to form a fused ring.
  • R 8 and R 10 is hydrogen
  • R 9 may be methyl, ethyl, tert -butyl or fluoro
  • the R 9 and R 10 is Can be connected to form a fused ring.
  • R 11 and R 12 are each independently hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec -butyl, tert -butyl, n-pentyl Neopentyl, amyl, n-hexyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-pentadecyl, phenyl, biphenyl, fluorenyl, Triphenyl, naphthyl or anthracenyl, or R 11 and R 12 may be connected to each other to form a benzene ring.
  • R 13 and R 14 are each independently methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec -butyl, tert -butyl, n-pentyl, neo Pentyl, amyl, n-hexyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl or n-pentadedecyl;
  • R 15 , R 16 and R 17 are each independently hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec -butyl, tert -butyl, n-pentyl, neopentyl, amyl, n -Hexyl, n-oct
  • R 13 and R 14 is (C1-C20) alkyl
  • R 15 , R 16 and R 17 may be each independently hydrogen or (C1-C10) alkyl.
  • X 1 and X 2 are each independently fluoro, chloro, bromo, methyl, ethyl, isopropyl, amyl, cyclopropyl, cyclobutyl, cyclopentyl, cichlorohexyl, phenyl , Naphthyl, benzyl, methoxy, ethoxy, isopropoxy, tert -butoxy, phenoxy, 4-tert-butylphenoxy, trimethylsiloxy, tert -butyldimethylsiloxy, dimethylamino, diphenylamino, Dimethylphosphine, diethylphosphine, diphenylphosphine, ethylthio or isopropylthio.
  • X 1 and X 2 may be each independently (C 1 -C 20) alkyl, preferably (C 1 -C 10) alkyl or halogen, more preferably X 1 and X 2 May be (C1-C10) alkyl.
  • X 1 and X 2 may be each independently methyl or chloro, preferably methyl.
  • the transition metal compound may be selected from compounds having the following structure, but is not limited thereto.
  • the transition metal compound according to the present invention is preferably X 1 and X in the transition metal complex in order to be an active catalyst component used in the production of an ethylene polymer selected from ethylene homopolymers and copolymers of ethylene and ⁇ -olefins.
  • 2 Ligands can be catalyzed to the central metal and catalyze the counterion with weak binding ability, that is, an aluminum compound, a boron compound, or a mixture thereof, which can act as an anion, and act as a cocatalyst.
  • a catalyst composition comprising a is also within the scope of the present invention.
  • the aluminum compound which may be used as a promoter may be specifically an aluminoxane compound of Formula 6 or 7, an organoaluminum compound of Formula 8 or an organoaluminum oxide of Formula 9 or Formula 10 It may be one or two or more selected from compounds.
  • R 51 is (C1-C20) alkyl, preferably methyl or isobutyl, m and q are each an integer of 5 to 20; R 52 and R 53 are each (C1-C20) alkyl; E is hydrogen or halogen; r is an integer from 1 to 3; R 54 is (C1-C20) alkyl or (C6-C20) aryl.
  • the aluminum compound which may be used include methyl aluminoxane, improved methyl aluminoxane and tetraisobutyl aluminoxane;
  • organoaluminum compounds include trialkylaluminum, dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, including trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, trihexylaluminum and trioctylaluminum, Dialkylaluminum chloride, including diisobutylaluminum chloride, and dihexylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride, and alkylaluminum, including hexylaluminum dichloride Dialkylaluminum
  • the aluminum compound is preferably one or two or more mixtures selected from alkylaluminoxane compounds or trialkylaluminum, more preferably methylaluminoxanes, improved methylaluminoxanes, tetraisobutylalumina Or a mixture of two or more selected from noxic acid, trimethylaluminum, triethylaluminum, trioctylaluminum and triisobutylaluminum.
  • Boron compounds that can be used as cocatalysts in the present invention have been known in US Pat. No. 5,198,401, and may be selected from boron compounds represented by the following Chemical Formulas 11 to 13.
  • B is a boron atom
  • R 41 is phenyl, said phenyl being 3 to 5 substituents selected from fluoro, (C1-C20) alkyl unsubstituted or substituted with fluoro, and (C1-C20) alkoxy unsubstituted or substituted with fluoro; May be further substituted
  • R 42 represents a (C5-C7) aromatic radical or a (C1-C20) alkyl (C6-C20) aryl radical, a (C6-C20) aryl (C1-C20) alkyl radical, for example triphenylmethylium Radical
  • Z is nitrogen or phosphorus atom
  • R 43 is a (C1-C50) alkyl radical or an anninium radical substituted with two (C1-C10) alkyl with a nitrogen atom
  • p is an integer of 2 or 3.
  • Preferred examples of the boron-based cocatalysts include tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4,5-tetrafluoro Phenyl) borane, tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, tetrakis (Pentafluorophenyl) borate, tetrakis (2,3,5,6-tetrafluorophenyl) borate, tetrakis (2,3,4,5-tetrafluorophenyl) borate, tetrakis (3,4 , 5-tetrafluorophenyl) borate, tetrakis (2,2,4-trifluorophenyl) borate, phen
  • ferrocenium tetrakis (pentafluorophenyl) borate 1,1'- dimethyl ferrocenium tetrakis (pentafluorophenyl) borate, tetrakis (pentafluorophenyl) borate, and triphenyl Methylinium tetrakis (pentafluorophenyl) borate, triphenylmethyl tetrakis (3,5-bistrifluoromethylphenyl) borate, triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis ( Pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (3,5-bistri
  • the cocatalyst may serve as a scavenger to remove impurities that act as poisons to the catalyst in the reactants.
  • the preferred range of the ratio between the transition metal compound and the promoter of the present invention is based on the molar ratio ratio of the transition metal (M) to the aluminum atom (Al). 1: 10 to 5,000.
  • the preferred range of the ratio between the transition metal compound and the promoter of the present invention is a transition metal (M): boron atom on a molar ratio basis.
  • M transition metal
  • B The molar ratio of the aluminum atom (Al) may be in the range of 1: 0.1 to 100: 10 to 3,000, more preferably 1: 0.5 to 5: 100 to 30,00.
  • the ratio between the transition metal compound and the promoter of the present invention is out of the above range, the amount of the promoter is relatively small so that the activation of the transition metal compound may not be completed, and thus the catalytic activity of the transition metal compound may not be sufficient, or more than necessary.
  • the use of cocatalysts can lead to a significant increase in production costs. It shows excellent catalytic activity for producing ethylene homopolymer or copolymer of ethylene and ⁇ -olefin within the above range, and the range of the ratio will vary depending on the purity of the reaction.
  • a method for preparing an ethylene polymer using the transition metal catalyst composition may be carried out by contacting the transition metal catalyst, the promoter, and ethylene or, if necessary, an ⁇ -olefin comonomer in the presence of a suitable organic solvent.
  • the transition metal catalyst and the cocatalyst component may be separately introduced into the reactor, or each component may be previously mixed and introduced into the reactor, and mixing conditions such as the order of input, temperature or concentration are not particularly limited.
  • Preferred organic solvents that can be used in the preparation method are (C3-C20) hydrocarbons, specific examples of which are butane, isobutane, pentane, hexane, heptane, octane, isooctane, nonane, decane, dodecane, cyclohexane, methylcyclo Hexane, benzene, toluene, xylene, etc. are mentioned.
  • ethylene when preparing the ethylene homopolymer, ethylene is used alone as a monomer, wherein a suitable pressure of ethylene is 1 to 1000 atm and more preferably 10 to 150 atm. Moreover, it is effective that polymerization reaction temperature is performed at 25-200 degreeC, Preferably it is 50-180 degreeC, More preferably, it is 100-180 degreeC, More preferably, it is 110-150 degreeC.
  • At least one selected from C3 to C18 ⁇ -olefins, C5 to C20 cycloolefins, styrene and derivatives of styrene may be used as a comonomer together with ethylene.
  • Preferred examples of the ⁇ -olefin of ⁇ C18 include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-undecene, 1-dodecene, It may be selected from the group consisting of 1- tetradecene, 1- hexadecene and 1-octadecene, preferred examples of C5-C20 cycloolefins are cyclopentene, cyclohexene, norbonene and phenylnorbornene Styrene and its derivatives may be selected from styrene, alpha-methylstyrene, p-methylstyrene and 3-chloromethylstyrene.
  • ethylene may be polymerized alone or copolymerized with two or more kinds of olefins, and more preferably 1-butene, 1-hexene, 1-octene or 1-decene and ethylene may be copolymerized.
  • the preferred ethylene pressure and polymerization temperature may be the same as in the case of preparing the ethylene homopolymer, and the copolymer prepared according to the method of the present invention usually contains 30 wt% or more of ethylene, and preferably 60 wt%. It contains at least% ethylene, more preferably in the range of 60 to 99% by weight.
  • the catalyst of the present invention when used, it has a density of 0.850 g / cc to 0.960 g / cc and a melt flow rate of 0.001 to 15 dg / min using ethylene and a C-C18 ⁇ -olefin as a comonomer. It can be easily and economically produced from the elastomer having a high density polyethylene (HDPE) region.
  • HDPE high density polyethylene
  • hydrogen may be used as a molecular weight regulator to control the molecular weight in the preparation of the ethylene homopolymer or copolymer according to the present invention, and generally has a weight average molecular weight (Mw) in the range of 5,000 to 1,000,000 g / mol.
  • the catalyst composition presented in the present invention is present in a uniform form in the polymerization reactor, it is preferable to apply to the solution polymerization process carried out at a temperature above the melting point of the polymer.
  • it may be used in slurry polymerization or gas phase polymerization in the form of a heterogeneous catalyst composition obtained by supporting the transition metal catalyst and the promoter on a porous metal oxide support.
  • Cyclohexane a polymerization solvent
  • a polymerization solvent was used after passing through a tube filled with molecular sieve 5 ⁇ and activated alumina and bubbling with high purity nitrogen to sufficiently remove moisture, oxygen, and other catalyst poisons.
  • the polymerized polymer was analyzed by the method described below.
  • Freeslate Rapid GPC was used to measure the solvent at 1,2,3-trichlorobenzene at 135 ° C. at a rate of 1.0 mL / min, and molecular weight was corrected using PL polystyrene standards.
  • the Bruker Avance400 nuclear magnetic resonance spectrometer was used to measure 13 C-NMR mode at 120 ° C. using a 1,2,4-trichlorobenzene / C 6 D 6 (7/3 weight fraction) mixed solvent at 125 MHz. (Reference: Randal, JC JMS- Rev. Macromol . Chem . Phys . 1980 , C29 , 201)
  • the ratio of ethylene and ⁇ -olefin of the copolymer was quantified using an infrared spectrometer.
  • PolymerChar A-CEF was used to measure the AF (amorphous fraction) of the polymer by branching distribution analysis of the polymer.
  • the reaction was cooled to room temperature and the solvent removed in vacuo under a nitrogen atmosphere. After removal of the solvent, warm methylcyclohexane was added to separate the byproducts through a celite filter. The filtrate obtained from the filter was dried in vacuo and a mixed solvent of methylcyclohexane and hexane was added to give a dark green or green precipitate at ⁇ 30 ° C. to obtain the target compound C in solid form.
  • Transition Metal Catalyst Compound 5 Yield 91% Red Solid.
  • p-cresol (30.0 g, 277 mmol, 1 equiv) was dissolved in MeCN (3000 mL).
  • p-TSA p-Toluenesulfonic acid monohydrate
  • NIS N-iodosuccinimide
  • the formed product was extracted with ether (200 mL ⁇ 2), and the recovered organics were treated with aqueous Na 2 SO 3 solution and distilled water, and then dried over anhydrous Na 2 SO 4 to remove the solvent.
  • the resulting compound (2-iodo-4-methylphenol; 56.5 g, 87% yield) was used for the next reaction without further purification.
  • 2-iodo-4-methylphenol (56.5 g, 240 mmol, 1 equiv) was dissolved in anhydrous THF (250 mL) under a nitrogen atmosphere.
  • DIPEA N, N-Diisopropylethylamine
  • MOMCl Chloromethyl methyl ether
  • the organic layer was extracted with toluene (100 mL ⁇ 3), then treated with distilled water and anhydrous Na 2 SO 4 , and dried to obtain a crude product.
  • the crude product was purified by Kugelrohr distillation to give the target compound Compound E6 as a black oil (32.2g, 85% yield).
  • n- BuLi 2.5 M in hexanes, 91 mmol
  • compound G6 70 mmol
  • toluene 200 mL
  • dichlorodiethylsilane 210 mmol
  • the inorganic salts were removed through celite filtration, and after removing the solvent, excess dichlorodiethylsilane was removed in vacuo to obtain the target compound H6 (99% yield), which was used in the next reaction without further purification.
  • n- BuLi (2.5 M in hexanes, 31.6 mmol) was slowly added dropwise to a THF (112 mL) solution of 2- (2-metalinden-1-yl) isoindoline (30.1 mmol) at -78 ° C.
  • the reaction mixture was raised to room temperature and then stirred for 2 hours. After stirring was complete, the mixture was cooled to -78 ° C, and then a toluene (14 mL) solution of compound H6 (33.1 mmol) was added through a syringe.
  • the reaction mixture solution was raised to room temperature, stirred for 3 hours, and added to distilled water (200 mL) to terminate the reaction.
  • Comparative catalyst 1 was prepared by the method of Examples 1 to 5.
  • Comparative Catalyst 2 was prepared using the method of Examples 1 to 5.
  • the reaction solution was transferred to a pressure vessel, followed by Pd (dba) 2 (0.83 g, 1.00 mmol, 0.01 equiv), RuPhos [S. Buchwald, J. Am. Chem . Soc . , 2004 , 126 (40), 13028-13032] (1.92 g, 4.00 mmol, 0.04 equiv) and 2-bromo-1- (methoxymethoxy) -4-methylbenzene (23.7 g, 103 mmol, 1equiv) In turn.
  • the reaction solution was diluted with THF (50 mL) and NMP (100 mL). After stirring the reaction solution at 100 ° C.
  • the obtained white solid (23.1 g, 74.0 mmol) was dissolved in a mixed solution of methanol (220 mL) and THF (220 mL), and HCl (aq) (12M, 2.2 mL) was added thereto, followed by stirring at 60 ° C. for 12 hours. Distilled water (1000 mL) was added to terminate the reaction. After completion of the reaction, the product was extracted by treatment with ether (200 mL x 2), and then treated with distilled water, dried over anhydrous Na 2 SO 4 and the solvent was removed to give the compound a in the form of a white solid (19.3 g, 97% ).
  • Comparative Catalyst 3 was prepared in the same manner as Compound 6 of Example 6 (91% yield).
  • the ethylene / 1-hexene copolymerization process is as follows:
  • the polymerization was carried out in a temperature controlled continuous polymerization reactor equipped with a mechanical stirrer.
  • the temperature of the reactor was adjusted to the polymerization temperature (110 ° C.
  • the reactor temperature was cooled to room temperature and the ethylene pressure in the reactor was slowly evacuated.
  • the resulting polymer was then dried in vacuo.
  • Example 9 In Examples 9, 11, 12, 14, 17, 18, and 20 at a polymerization temperature of 150 ° C., it can be seen that the activity was increased compared to Comparative Examples 6, 7, 9, and 11. In particular, when the amount of the polymerization catalyst was the same, in Example 18, the polymerization activity was 63 to 67 times higher than that of Comparative Examples 6 and 7. In addition, in the case of the embodiment at the polymerization temperature 110 °C it was confirmed that the polymerization activity of the catalysts showed a polymerization property of 2.5 times higher than Comparative Examples 4, 5 and 8.
  • A-CEF is a numerical value representing the degree of amorphousness of the resulting polymer, and 100% means a completely amorphous polymer, and the more comonomers contained, the more amorphous the polymer becomes.
  • 400 ⁇ L of comonomer 1-hexene should be added to produce an amorphous polymer, whereas the catalysts of Examples 1 to 5 of the present invention were In Examples 7 to 18 and 20 used, it was found that a small amount of comonomer of 180 ⁇ L to 350 ⁇ L produced an amorphous polymer.
  • Example Catalyst 5 180 ⁇ L of 1-hexene was added as shown in Example 20. It can be seen that 100 wt% of the amorphous polymer can be prepared at 150 ° C. That is, when the catalysts of Examples 1 to 5 of the present invention are used as polymerization catalysts, the amount of comonomer introduced is about 12 to 38% lower than that of the catalyst of Comparative Example 1. It was found that the polymer can be produced. In addition, when the catalyst of Example 5 of the present invention is used as a polymerization catalyst, an amorphous polymer can be produced even by adding a comonomer at a level of about 10% lower than that of the catalyst of Comparative Example 2.
  • the catalyst of the present invention when used as a polymerization catalyst, it can be seen that a copolymer having a high comonomer content can be produced even if the amount of the comonomer is used less.
  • the catalysts of Examples 1 to 5 of the present invention are structurally more responsive to comonomers than the catalysts of Comparative Examples 1 to 3, and the products of lower density at lower concentrations of comonomers It means that it can be produced.
  • the molecular weight distribution of the polymer may be considered as a factor that may affect the polymer properties.
  • the transition metal compound or the catalyst composition comprising the transition metal compound according to the present invention can be easily produced by a simple method of high yield and economical method due to the simple synthesis process, and also has excellent thermal stability of the catalyst and high catalytic activity even at high temperature. While maintaining a good copolymerization reactivity with other olefins and can produce a high molecular weight polymer in high yield, it is commercially viable compared to the known metallocene and non-metallocene-based single-site catalyst. Therefore, the transition metal and the catalyst composition including the same according to the present invention can be usefully used for the preparation of ethylene homopolymer or copolymer with ⁇ -olefin having various physical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 신규한 인덴계 전이금속 화합물, 이를 포함하는 에틸렌 단독중합체 또는 에틸렌과 하나 이상의 α-올레핀의 공중합체 제조용으로 높은 촉매활성을 가진 전이금속 촉매 조성물 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법에 관한 것이다.

Description

신규한 인덴계 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
본 발명은 신규한 인덴계 전이금속 화합물, 이를 포함하는 에틸렌 단독중합체 또는 에틸렌과 하나 이상의 α-올레핀의 공중합체 제조용으로 높은 촉매활성을 가진 전이금속 촉매 조성물 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법에 관한 것이다.
종래에 에틸렌의 단독중합체 또는 α-올레핀과의 공중합체 제조에는 일반적으로 티타늄 또는 바나듐 화합물의 주촉매 성분과 알킬알루미늄 화합물의 조촉매 성분으로 구성되는 이른바 지글러-나타 촉매계가 사용되어 왔다. 그런데 지글러-나타 촉매계는 에틸렌 중합에 대하여 고활성을 나타내지만, 불균일한 촉매 활성점 때문에 일반적으로 생성 중합체의 분자량 분포가 넓고, 특히 에틸렌과 α-올레핀의 공중합체에 있어서는 조성분포가 균일하지 못한 단점이 있었다.
티타늄, 지르코늄, 하프늄 등 주기율표 4족 전이금속의 메탈로센 화합물과 조촉매인 메틸알루미녹산(methylaluminoxane)으로 구성되는 메탈로센 촉매계는 단일 종의 촉매활성점을 갖는 균일계 촉매이기 때문에 기존의 지글러-나타 촉매계에 비하여 분자량분포가 좁고 조성분포가 균일한 폴리에틸렌을 제조할 수 있는 특징을 가지고 있다. 예를 들면, 유럽공개특허 제 320,762호, 제 372,632호 또는 일본 특개소63-092621호, 일본 특개평02-84405호, 또는 특개평03-2347호에서는 Cp 2TiCl 2, Cp 2ZrCl 2, Cp 2ZrMeCl, Cp 2ZrMe 2, 에틸렌(IndH 4) 2ZrCl 2 등에서 메탈로센 화합물을 조촉매 메틸알루미녹산으로 활성화시킴으로써 에틸렌을 고활성으로 중합시켜 분자량분포(Mw/Mn)가 1.5~2.0 범위인 폴리에틸렌을 제조할 수 있음을 발표하였다. 그러나 상기 촉매계로는 고분자량의 중합체를 얻기가 어렵고, 특히 120℃ 이상의 고온에서 실시되는 용액중합법에 적용할 경우 중합활성이 급격히 감소하고 β-수소이탈반응이 우세하여 중량평균분자량(Mw)이 100,000 이상의 고분자량 중합체를 제조하기에는 적합하지 않은 것으로 알려져 있다.
한편, 용액중합 조건에서 에틸렌 단독중합 또는 에틸렌과 α-올레핀과의 공중합에서 높은 촉매활성과 고분자량의 중합체를 제조할 수 있는 촉매로서 전이금속을 고리형태로 연결시킨 소위 기하구속형 비메탈로센계 촉매 (일명 단일활성점 촉매)가 발표되었다. 유럽특허 제 0416815호와 동 특허 제 0420436 호에서는 하나의 시클로펜타디엔 리간드에 아미드기를 고리형태로 연결시킨 예를 제시하였고, 동특허 제 0842939호에서는 전자주게 화합물로서 페놀계 리간드를 시클로펜타디엔 리간드와 고리형태로 연결시킨 촉매의 예를 보여준다. 이러한 기하구속형 촉매의 경우 촉매 자체의 낮아진 입체 장애 효과로 인하여 고급 알파-올레핀과의 반응성이 현저히 개선되었으나, 상업적으로 이용하기에는 많은 어려움이 있다. 따라서 경제성을 바탕으로 한 상업화 촉매의 요구특성, 즉 우수한 고온활성, 우수한 고급 알파-올레핀과의 반응성, 및 높은 분자량의 중합체의 제조 능력 등을 보다 경쟁력있는 촉매계의 확보가 중요시되고 있다.
상기 종래 기술의 문제점을 극복하기 위하여 본 발명자들은 광범위한 연구를 수행한 결과, 중심금속으로서 주기율표 상의 4족 전이금속이 단단한(rigid) 평면구조를 가지면서 전자가 풍부하고 넓게 비편재화 되어 있는 인덴 또는 이의 유도체기;와 용해도 및 성능향상에 도움이 되는 치환체가 쉽게 도입 가능한 플루오레닐 또는 카바졸이 치환된 페녹시(phenoxy)기;에 의해 연결된 구조를 가지고 있는 전이금속 화합물이 에틸렌 및 올레핀류의 중합에 있어서 우수한 촉매 활성을 나타낸다는 것을 발견하였다. 이러한 사실에 착안하여 고온에서 실시되는 용액중합공정에서 고분자량의 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체를 높은 활성으로 제조할 수 있는 촉매를 개발하였고, 본 발명은 이에 기초하여 완성되었다.
따라서, 본 발명의 목적은 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조용 촉매로서 유용한 전이금속 화합물을 제공하고, 또한 이를 포함하는 촉매 조성물을 제공하는데 있다.
본 발명의 다른 목적은 상기 전이금속 화합물을 포함하는 촉매 조성물을 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체를 상업적인 관점에서 경제적으로 제조하는 방법을 제공하는데 있다.
본 발명의 또 다른 목적은 합성 경로가 단순하여 촉매합성이 매우 경제적일 뿐 아니라, 올레핀 중합에서 활성이 높은 단일활성점 촉매 및 이러한 촉매 성분을 이용하여 다양한 물성을 가지는 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체를 상업적인 관점에서 경제적으로 제조할 수 있는 중합방법을 제공하는데 있다.
상기 목적을 달성하기 위한 본 발명의 한 측면은 하기 화학식 1로 표시되는 인덴계 전이금속 화합물에 관한 것이다. 더욱 상세하게는 중심금속으로서 주기율표 상의 4족 전이금속이 단단한(rigid) 평면구조를 가지면서 전자가 풍부하고 넓게 비편재화 되어 있는 인덴 또는 이의 유도체기;와 용해도 및 성능향상에 도움이 되는 치환체가 쉽게 도입 가능한 플루오레닐 또는 카바졸이 치환된 페녹시(phenoxy)기;에 의해 연결된 구조를 가지고 있는 전이금속 화합물에 관한 것이다.
[화학식 1]
Figure PCT2017121-appb-img-000001
상기 화학식 1에서,
M은 주기율표 상 4 족의 전이금속이고;
R 1 내지 R 5는 각각 독립적으로 수소, (C1-C20)알킬, (C6-C20)아릴, (C3-C20)헤테로아릴, -OR a1, -SR a2, -NR a3R a4 또는 -PR a5R a6이거나, 상기 R 1 내지 R 4는 인접한 치환체와 방향족고리를 포함하거나 포함하지 않는 (C4-C7)알킬렌 또는 (C4-C7)알케닐렌으로 연결되어 융합고리를 형성할 수 있고;
R 6 및 R 7은 각각 독립적으로 (C1-C20)알킬, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴, (C1-C20)알킬(C6-C20)아릴, (C6-C20)아릴(C1-C20)알킬, (C3-C20)헤테로아릴, -OR a1, -SR a2, -NR a3R a4 또는 -PR a5R a6이거나, 상기 R 6와 R 7은 (C4-C7)알킬렌으로 연결되어 고리를 형성할 수 있고;
R 8 내지 R 10은 각각 독립적으로 수소, (C1-C20)알킬, 할로(C1-C20)알킬, 할로겐, (C6-C20)아릴, (C3-C20)헤테로아릴, -OR a1, -SR a2, -NR a3R a4 또는 -PR a5R a6이거나, R 8 내지 R 10는 인접한 치환체와 방향족고리를 포함하거나 포함하지 않는 (C4-C7)알케닐렌으로 연결되어 융합고리를 형성할 수 있고;
R a1 내지 R a6는 각각 독립적으로 (C1-C20)알킬 또는 (C6-C20)아릴이고;
R 11 및 R 12는 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이거나, 서로 연결되어 방향족 고리를 형성할 수 있고;
Ar 1은 플루오레닐 또는 N-카바졸이고, 상기 Ar 1의 플루오레닐 또는 카바졸은 (C1-C20)알킬로 더 치환될 수 있고;
X 1 및 X 2는 각각 독립적으로 할로겐, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴(C1-C20)알킬, ((C1-C20)알킬(C6-C20)아릴)(C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴옥시, (C1-C20)알킬(C6-C20)아릴옥시, (C1-C20)알콕시(C6-C20)아릴옥시, -OSiR aR bR c, -SR d, -NR eR f, -PR gR h 또는 (C1-C20)알킬리덴이고;
R a 내지 R d은 서로 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아르(C1-C20)알킬, (C1-C20)알킬(C6-C20)아릴 또는 (C3-C20)시클로알킬이고;
R e 내지 R h은 서로 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아르(C1-C20)알킬, (C1-C20)알킬(C6-C20)아릴, (C3-C20)시클로알킬, 트리(C1-C20)알킬실릴 또는 트리(C6-C20)아릴실릴이고;
단 X 1 또는 X 2 중 하나가 (C1-C50)알킬리덴인 경우 나머지 하나는 무시되고;
상기 헤테로아릴은 N, O 및 S로부터 선택되는 하나 이상의 헤테로 원자를 포함한다.
상기 목적을 달성하기 위한 본 발명의 다른 한 측면은 상기 화학식 1의 전이금속 화합물; 및 알루미늄 화합물, 붕소 화합물 또는 이들의 혼합물로부터 선택되는 조촉매;를 포함하는 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조용 전이금속 촉매 조성물에 관한 것이다.
상기 목적을 달성하기 위한 본 발명의 또 다른 한 측면은 상기 촉매 조성물을 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법에 관한 것이다.
본 발명에 따른 전이금속 화합물 또는 상기 전이금속 화합물을 포함하는 촉매 조성물은 합성 과정이 단순하여 수율이 높고 경제적인 방법으로 용이하게 제조할 수 있으며, 또한 촉매의 열적 안정성이 뛰어나 고온에서도 높은 촉매활성을 유지하면서 다른 올레핀류와의 공중합 반응성이 좋고 고분자량의 중합체를 높은 수율로 제조할 수 있기 때문에 이미 알려진 메탈로센 및 비메탈로센계 단일활성점 촉매에 비해 상업적인 실용성이 높다. 따라서 본 발명에 따른 전이금속 및 이를 포함하는 촉매 조성물은 다양한 물성을 갖는 에틸렌 단독중합체 또는 α-올레핀과의 공중합체의 제조에 유용하게 사용될 수 있다.
이하, 본 발명을 좀 더 구체적으로 설명한다. 이 때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
본 발명의 일 구현예에 의한 전이금속 화합물은 하기 화학식 1로 표시되는 인덴일(indenyl)기에 기초한 전이금속 화합물로, 중심금속으로서 주기율표 상의 4족 전이금속이 단단한(rigid) 평면구조를 가지면서 전자가 풍부하고 넓게 비편재화 되어 있는 인덴 또는 이의 유도체기;와 용해도 및 성능향상에 도움이 되는 치환체가 쉽게 도입 가능한 플루오레닐 또는 카바졸이 치환된 페녹시(phenoxy)기;에 의해 연결된 구조를 가지고 있어, 고효율 및 고분자량의 에틸렌계 중합체를 수득하는데 유리한 구조적 장점을 가지고 있다.
[화학식 1]
Figure PCT2017121-appb-img-000002
상기 화학식 1에서,
M은 주기율표 상 4 족의 전이금속이고;
R 1 내지 R 5는 각각 독립적으로 수소, (C1-C20)알킬, (C6-C20)아릴, (C3-C20)헤테로아릴, -OR a1, -SR a2, -NR a3R a4 또는 -PR a5R a6이거나, 상기 R 1 내지 R 4는 인접한 치환체와 방향족고리를 포함하거나 포함하지 않는 (C4-C7)알킬렌 또는 (C4-C7)알케닐렌으로 연결되어 융합고리를 형성할 수 있고;
R 6 및 R 7은 각각 독립적으로 (C1-C20)알킬, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴, (C1-C20)알킬(C6-C20)아릴, (C6-C20)아릴(C1-C20)알킬, (C3-C20)헤테로아릴, -OR a1, -SR a2, -NR a3R a4 또는 -PR a5R a6이거나, 상기 R 6와 R 7은 (C4-C7)알킬렌으로 연결되어 고리를 형성할 수 있고;
R 8 내지 R 10은 각각 독립적으로 수소, (C1-C20)알킬, 할로(C1-C20)알킬, 할로겐, (C6-C20)아릴, (C3-C20)헤테로아릴, -OR a1, -SR a2, -NR a3R a4 또는 -PR a5R a6이거나, R 8 내지 R 10는 인접한 치환체와 방향족고리를 포함하거나 포함하지 않는 (C4-C7)알케닐렌으로 연결되어 융합고리를 형성할 수 있고;
R a1 내지 R a6는 각각 독립적으로 (C1-C20)알킬 또는 (C6-C20)아릴이고;
R 11 및 R 12는 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이거나, 서로 연결되어 방향족 고리를 형성할 수 있고;
Ar 1은 플루오레닐 또는 N-카바졸이고, 상기 Ar 1의 플루오레닐 또는 카바졸은 (C1-C20)알킬로 더 치환될 수 있고;
X 1 및 X 2는 각각 독립적으로 할로겐, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴(C1-C20)알킬, ((C1-C20)알킬(C6-C20)아릴)(C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴옥시, (C1-C20)알킬(C6-C20)아릴옥시, (C1-C20)알콕시(C6-C20)아릴옥시, -OSiR aR bR c, -SR d, -NR eR f, -PR gR h 또는 (C1-C20)알킬리덴이고;
R a 내지 R d은 서로 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아르(C1-C20)알킬, (C1-C20)알킬(C6-C20)아릴 또는 (C3-C20)시클로알킬이고;
R e 내지 R h은 서로 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아르(C1-C20)알킬, (C1-C20)알킬(C6-C20)아릴, (C3-C20)시클로알킬, 트리(C1-C20)알킬실릴 또는 트리(C6-C20)아릴실릴이고;
단 X 1 또는 X 2 중 하나가 (C1-C50)알킬리덴인 경우 나머지 하나는 무시되고;
상기 헤테로아릴은 N, O 및 S로부터 선택되는 하나 이상의 헤테로 원자를 포함한다.
본 명세서의 용어 “알킬”은 탄소 및 수소 원자만으로 구성된 1가의 직쇄 또는 분쇄 포화 탄화수소 라디칼을 의미하는 것으로, 이러한 알킬 라디칼의 예는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 펜틸, 헥실, 옥틸, 노닐 등을 포함하지만 이에 한정되지는 않는다.
본 명세서의 용어 “아릴”은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 각 고리에 적절하게는 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함하며, 다수개의 아릴이 단일결합으로 연결되어 있는 형태까지 포함한다. 융합 고리계는 포화 또는 부분적으로 포화된 고리와 같은 지방족 고리를 포함할 수 있고, 반드시 하나 이상의 방향족 고리를 포함하고 있다. 또한 상기 지방족 고리는 질소, 산소, 황, 카보닐 등을 고리 내에 포함할 수도 있다. 상기 아릴 라디칼의 구체적인 예로서는 페닐, 나프틸, 비페닐, 인데닐(indenyl), 플루오레닐, 페난트레닐, 안트라세닐, 트라이페닐레닐, 파이레닐, 크라이세닐, 나프타세닐, 9,10-다이하이드로안트라세닐 등을 포함한다.
본 명세서의 용어 “헤테로아릴”은 방향족 고리 골격 원자로서 N, O 및 S로부터 선택되는 1 내지 4개의 헤테로원자를 포함하고, 나머지 방향족 고리 골격 원자가 탄소인 아릴 그룹을 의미하는 것으로, 5 내지 6원 단환 헤테로아릴, 및 하나 이상의 벤젠환과 축합된 다환식 헤테로아릴이며, 부분적으로 포화될 수도 있다. 또한, 본 발명에서의 헤테로아릴은 하나 이상의 헤테로아릴이 단일결합으로 연결된 형태도 포함한다. 상기 헤테로아릴기의 예는 피롤, 퀴놀린, 이소퀴놀린, 피리딘, 피리미딘, 옥사졸, 티아졸, 티아디아졸, 트리아졸, 이미다졸, 벤조이미다졸, 이소옥사졸, 벤조이소옥사졸, 티오펜, 벤조티오펜, 퓨란, 벤조퓨란 등을 포함하지만, 이에 한정되지는 않는다.
본 명세서의 용어 “사이클로알킬”은 하나 이상의 고리로 구성된 1가의 포화 카보사이클릭 라디칼을 의미한다. 사이클로알킬 라디칼의 예는 사이클로프로필, 사이클로부틸, 사이클로펜틸, 사이클로헥실, 사이클로헵틸 등을 포함하지만, 이에 한정되지는 않는다.
본 명세서의 용어 “할로” 또는 “할로겐”은 불소, 염소, 브롬 또는 요오드 원자를 의미한다.
본 명세서의 용어 “할로알킬”은 하나이상의 할로겐으로 치환된 알킬을 의미하며, 일례로 트리플루오로메틸 등을 들 수 있다.
본 명세서의 용어 “알콕시” 및 “아릴옥시”는 각각 -O-알킬 라디칼 및 -O-아릴 라디칼을 의미하는 것으로, 여기서 ‘알킬’ 및 '아릴'은 상기 정의한 바와 같다.
본 발명의 일 실시예에 있어서, 상기 화학식 1의 전이금속 화합물은 하기 화학식 2, 3, 4 또는 5로 표시되는 전이금속 화합물일 수 있다:
[화학식 2]
Figure PCT2017121-appb-img-000003
[화학식 3]
Figure PCT2017121-appb-img-000004
[화학식 4]
Figure PCT2017121-appb-img-000005
[화학식 5]
Figure PCT2017121-appb-img-000006
상기 화학식 2 내지 5에서, M, R 6, R 7, R 9, R 10, X 1 및 X 2는 상기 화학식 1에서의 정의와 동일하고;
R 1 내지 R 5는 각각 독립적으로 수소, (C1-C20)알킬, (C6-C20)아릴, (C3-C20)헤테로아릴, -OR a1, -SR a2, -NR a3R a4 또는 -PR a5R a6이고;
R a1 내지 R a6는 각각 독립적으로 (C1-C20)알킬 또는 (C6-C20)아릴이고;
R 11 및 R 12는 각각 독립적으로 수소이거나, 서로 연결되어 벤젠 고리를 형성할 수 있고;
R 13 및 R 14 는 각각 독립적으로 (C1-C20)알킬이고;
R 15, R 16 및 R 17은 각각 독립적으로 수소 또는 (C1-C20)알킬이다.
본 발명의 일 실시예에 있어서, 상기 전이금속 화합물의 M은 주기율표 상 4 족의 전이금속으로, 바람직하게는 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)일 수 있다.
본 발명의 일 실시예에 있어서, 상기 R 1 내지 R 5는 각각 독립적으로 수소, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸, n-펜틸, 네오펜틸, 아밀, n-헥실, n-옥틸, n-데실, n-도데실, n-테트라데실, n-헥사데실, n-펜타데실, 페닐, 피리딜, 메톡시, 에톡시, 부톡시, 메틸티오, 에틸티오, 디메틸아미노, 메틸에틸아미노, 디에틸아미노, 디페닐아미노, 디메틸포스핀, 디에틸포스핀 또는 디페닐포스핀일 수 있고, 상기 R 1 내지 R 4는 인접한 치환체와
Figure PCT2017121-appb-img-000007
,
Figure PCT2017121-appb-img-000008
,
Figure PCT2017121-appb-img-000009
또는
Figure PCT2017121-appb-img-000010
로 연결되어 융합고리를 형성할 수 있다.
본 발명의 일 실시예에 있어서, 상기 R 1 내지 R 4는 수소이거나, 상기 R 3과 R 4
Figure PCT2017121-appb-img-000011
,
Figure PCT2017121-appb-img-000012
또는
Figure PCT2017121-appb-img-000013
로 연결되어 융합고리를 형성할 수 있고, R 5는 (C1-C20)알킬, 바람직하게는 (C1-C10)알킬일 수 있다.
본 발명의 일 실시예에 있어서, 상기 R 1 내지 R 4는 수소이고, R 5는 메틸일 수 있다.
본 발명의 일 실시예에 있어서, 상기 R 1 및 R 2는 수소이고, R 3와 R 4
Figure PCT2017121-appb-img-000014
으로 연결되어 융합고리를 형성하고, R 5는 메틸일 수 있다.
본 발명의 일 실시예에 있어서, 상기 R 6 및 R 7은 각각 독립적으로 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸, n-펜틸, 네오펜틸, 아밀, n-헥실, n-옥틸, n-데실, n-도데실, n-테트라데실, n-헥사데실, n-펜타데실, 플루오로메틸, 트리플루오로메틸, 퍼플루오로에틸, 퍼플루오로프로필, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵틸, 시클로옥틸, 페닐, 톨릴, 크실릴, 트리메틸페닐, 테트라메틸페닐, 펜타메틸페닐, 에틸페닐, n-프로필페닐, 이소프로필페닐, n-부틸페닐, sec-부틸페닐, tert-부틸페닐, n-펜틸페닐, 네오펜틸페닐, n-헥실페닐, n-옥틸페닐, n-데실페닐, n-도데실페닐, 비페닐(biphenyl), 플루오레닐, 트리페닐, 나프틸, 안트라세닐, 벤질, 나프틸메틸, 안트라세닐메틸, 비페닐(biphenyl), 플루오레닐, 트리페닐, 나프틸, 안트라세닐, 벤질, 나프틸메틸, 안트라세닐메틸, 피리딜, 메톡시, 에톡시, 메틸티오, 에틸티오, 디메틸아미노, 메틸에틸아미노, 디에틸아미노, 디페닐아미노, 디메틸포스핀, 디에틸포스핀 또는 디페닐포스핀 이거나, 상기 R 6와 R 7은 부틸렌 또는 펜틸렌으로 연결되어 고리를 형성할 수 있다.
본 발명의 일 실시예에 있어서, 상기 R 6 및 R 7은 각각 독립적으로 (C1-C20)알킬, 바람직하게는 (C1-C10)알킬, 할로(C1-C20)알킬, 바람직하게는 할로(C1-C10)알킬 또는 (C6-C20)아릴, 바람직하게는 (C6-C12)아릴 일 수 있다.
본 발명의 일 실시예에 있어서, 상기 R 6 및 R 7은 각각 독립적으로 메틸, 에틸 또는 페닐일 수 있다.
본 발명의 일 실시예에 있어서, 상기 R 8 내지 R 10은 각각 독립적으로 수소, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸, n-펜틸, 네오펜틸, 아밀, n-헥실, n-옥틸, n-데실, n-도데실, n-테트라데실, n-헥사데실, n-펜타데실, 플루오로메틸, 트리플루오로메틸, 퍼플루오로에틸, 퍼플루오로프로필, 클로로, 플루오로, 브로모, 페닐, 비페닐(biphenyl), 플루오레닐, 트리페닐, 나프틸, 안트라세닐, 벤질, 나프틸메틸, 안트라세닐메틸, 피리딜, 메톡시, 에톡시, 메틸티오, 에틸티오, 디메틸아미노, 메틸에틸아미노, 디에틸아미노, 디페닐아미노, 디메틸포스핀, 디에틸포스핀 또는 디페닐포스핀이거나, 상기 R 9과 R 10
Figure PCT2017121-appb-img-000015
,
Figure PCT2017121-appb-img-000016
,
Figure PCT2017121-appb-img-000017
또는
Figure PCT2017121-appb-img-000018
로 연결되어 융합고리를 형성할 수 있다.
본 발명의 일 실시예에 있어서, 상기 R 8 내지 R 10은 각각 독립적으로 수소, (C1-C20)알킬, 바람직하게는 (C1-C10)알킬, 할로(C1-C20)알킬, 바람직하게는 할로(C1-C10)알킬 또는 할로겐일 수 있고, 상기 R 9과 R 10
Figure PCT2017121-appb-img-000019
,
Figure PCT2017121-appb-img-000020
,
Figure PCT2017121-appb-img-000021
또는
Figure PCT2017121-appb-img-000022
로 연결되어 융합고리를 형성할 수 있다.
본 발명의 일 실시예에 있어서, 상기 R 8 내지 R 10은 각각 독립적으로 수소, 메틸, 에틸, tert-부틸 또는 플루오로일 수 있다.
본 발명의 일 실시예에 있어서, 상기 R 8은 수소이고, R 9 및 R 10는 각각 독립적으로 수소, (C1-C20)알킬, 바람직하게는 (C1-C10)알킬, 할로(C1-C20)알킬, 바람직하게는 할로(C1-C10)알킬 또는 할로겐일 수 있고, 상기 R 9과 R 10
Figure PCT2017121-appb-img-000023
,
Figure PCT2017121-appb-img-000024
,
Figure PCT2017121-appb-img-000025
또는
Figure PCT2017121-appb-img-000026
로 연결되어 융합고리를 형성할 수 있다.
본 발명의 일 실시예에 있어서, 상기 R 8 및 R 10는 수소이고, R 9은 (C1-C10)알킬 또는 할로겐이거나, 상기 R 9과 R 10
Figure PCT2017121-appb-img-000027
로 연결되어 융합고리를 형성할 수 있다.
본 발명의 일 실시예에 있어서, 상기 R 8 및 R 10는 수소이고, R 9은 메틸, 에틸, tert-부틸 또는 플루오로일 수 있고, 상기 R 9과 R 10
Figure PCT2017121-appb-img-000028
로 연결되어 융합고리를 형성할 수 있다.
본 발명의 일 실시예에 있어서, 상기 R 11 및 R 12는 각각 독립적으로 수소, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸, n-펜틸, 네오펜틸, 아밀, n-헥실, n-옥틸, n-데실, n-도데실, n-테트라데실, n-헥사데실, n-펜타데실, 페닐, 비페닐(biphenyl), 플루오레닐, 트리페닐, 나프틸 또는 안트라세닐이거나, 상기 R 11과 R 12는 서로 연결되어 벤젠 고리를 형성할 수 있다.
본 발명의 일 실시예에 있어서, 상기 R 13 및 R 14는 각각 독립적으로 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸, n-펜틸, 네오펜틸, 아밀, n-헥실, n-옥틸, n-데실, n-도데실, n-테트라데실, n-헥사데실 또는 n-펜타데실이고; R 15, R 16 및 R 17은 각각 독립적으로 수소, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸, n-펜틸, 네오펜틸, 아밀, n-헥실, n-옥틸, n-데실, n-도데실, n-테트라데실, n-헥사데실 또는 n-펜타데실일 수 있다.
본 발명의 일 실시예에 있어서, 바람직하게 상기 R 13 및 R 14는 (C1-C20)알킬이고, R 15, R 16 및 R 17은 각각 독립적으로 수소 또는 (C1-C10)알킬일 수 있다.
본 발명의 일 실시예에 있어서, 상기 X 1 및 X 2는 각각 독립적으로 플루오로, 클로로, 브로모, 메틸, 에틸, 이소프로필, 아밀, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로로헥실, 페닐, 나프틸, 벤질, 메톡시, 에톡시, 이소프로폭시, tert-부톡시, 페녹시, 4-tert-부틸페녹시, 트리메틸실록시, tert-부틸디메틸실록시, 디메틸아미노, 디페닐아미노, 디메틸포스핀, 디에틸포스핀, 디페닐포스핀, 에틸티오 또는 이소프로필티오일 수 있다.
본 발명의 일 실시예에 있어서, 상기 X 1 및 X 2는 각각 독립적으로 (C1-C20)알킬, 바람직하게는 (C1-C10)알킬 또는 할로겐일 수 있으며, 더욱 바람직하게 상기 X 1 및 X 2는 (C1-C10)알킬일 수 있다.
본 발명의 일 실시예에 있어서, 상기 X 1 및 X 2는 각각 독립적으로 메틸 또는 클로로일 수 있으며, 바람직하게는 메틸일 수 있다.
본 발명의 일 실시예에 있어서, 상기 전이금속 화합물은 하기 구조의 화합물들로부터 선택될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCT2017121-appb-img-000029
Figure PCT2017121-appb-img-000030
Figure PCT2017121-appb-img-000031
Figure PCT2017121-appb-img-000032
Figure PCT2017121-appb-img-000033
Figure PCT2017121-appb-img-000034
Figure PCT2017121-appb-img-000035
Figure PCT2017121-appb-img-000036
Figure PCT2017121-appb-img-000037
Figure PCT2017121-appb-img-000038
Figure PCT2017121-appb-img-000039
Figure PCT2017121-appb-img-000040
Figure PCT2017121-appb-img-000041
Figure PCT2017121-appb-img-000042
Figure PCT2017121-appb-img-000043
Figure PCT2017121-appb-img-000044
Figure PCT2017121-appb-img-000045
Figure PCT2017121-appb-img-000046
Figure PCT2017121-appb-img-000047
Figure PCT2017121-appb-img-000048
Figure PCT2017121-appb-img-000049
Figure PCT2017121-appb-img-000050
Figure PCT2017121-appb-img-000051
Figure PCT2017121-appb-img-000052
(상기 M은 티타늄, 지르코늄 또는 하프늄이다.)
한편, 본 발명에 따른 전이금속 화합물은 에틸렌 단독중합체 및 에틸렌 및 α-올레핀의 공중합체로부터 선택되는 에틸렌계 중합체 제조에 사용되는 활성촉매 성분이 되기 위하여, 바람직하게는 전이금속 착체 중의 X 1 및 X 2 리간드를 추출하여 중심금속을 양이온화시키면서 약한 결합력을 가진 반대이온, 즉 음이온으로 작용할 수 있는 알루미늄 화합물, 붕소 화합물 또는 이들의 혼합물을 조촉매로서 함께 작용할 수 있으며, 상기한 전이금속 화합물과 조촉매를 포함하는 촉매 조성물 또한 본 발명의 범위 내이다.
본 발명의 일 실시예에 따른 촉매 조성물에 있어서, 조촉매로 사용될 수 있는 알루미늄 화합물은 구체적으로 하기 화학식 6 또는 7의 알루미녹산 화합물, 화학식 8의 유기알루미늄 화합물 또는 화학식 9 또는 화학식 10의 유기알루미늄 옥사이드 화합물로부터 선택되는 하나 또는 둘 이상일 수 있다.
[화학식 6]
(-Al(R 51)-O-) m
[화학식 7]
(R 51) 2Al-(-O(R 51)-) q-(R 51) 2
[화학식 8]
(R 52) rAl(E) 3 -r
[화학식 9]
(R 53) 2AlOR 54
[화학식 10]
R 53Al(OR 54) 2
[상기 화학식 6 내지 10에서, R 51은 (C1-C20)알킬로, 바람직하게는 메틸 또는 이소부틸이고, m과 q는 각각 5 내지 20의 정수이고; R 52 및 R 53 는 각각 (C1-C20)알킬이고; E는 수소 또는 할로겐이고; r은 1 내지 3의 정수이고; R 54은 (C1-C20)알킬 또는 (C6-C20)아릴이다.]
상기 알루미늄 화합물로 사용할 수 있는 구체적인 예로서, 알루미녹산 화합물로서 메틸알루미녹산, 개량메틸알루미녹산, 테트라이소부틸알루미녹산이 있고; 유기알루미늄 화합물의 예로서 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리이소부틸알루미늄, 트리헥실알루미늄 및 트리옥틸알루미늄을 포함하는 트리알킬알루미늄, 디메틸알루미늄클로라이드, 디에틸알루미늄클로라이드, 디프로필알루미늄 클로라이드, 디이소부틸알루미늄클로라이드, 및 디헥실알루미늄클로라이드를 포함하는 디알킬알루미늄클로라이드, 메틸알루미늄디클로라이드, 에틸알루미늄디클로라이드, 프로필알루미늄디클로라이드, 이소부틸알루미늄디클로라이드, 및 헥실알루미늄디클로라이드를 포함하는 알킬알루미늄디클로라이드, 디메틸알루미늄히드리드, 디에틸알루미늄히드리드, 디프로필알루미늄히드리드, 디이소부틸알루미늄히드리드 및 디헥실알루미늄히드리드를 포함하는 디알킬알루미늄히드라이드를 들 수 있다.
본 발명의 일 실시예에 있어서, 상기 알루미늄 화합물은 바람직하게는 알킬알루미녹산 화합물 또는 트리알킬알루미늄으로부터 선택되는 하나 또는 둘 이상의 혼합물, 보다 바람직하게는 메틸알루미녹산, 개량 메틸알루미녹산, 테트라이소부틸알루미녹산, 트리메틸알루미늄, 트리에틸알루미늄, 트리옥틸알루미늄 및 트리이소부틸알루미늄으로부터 선택되는 단독 또는 둘 이상의 혼합물일 수 있다.
본 발명에서 조촉매로 사용될 수 있는 붕소 화합물은 미국특허 제 5,198,401호에 공지된바 있으며, 하기 화학식 11 내지 13으로 표시되는 붕소 화합물 중에서 선택 될 수 있다.
[화학식 11]
B(R 41) 3
[화학식 12]
[R 42] +[B(R 41) 4] -
[화학식 13]
[(R 43) pZH] +[B(R 41) 4] -
상기 화학식 11 내지 13에서, B는 붕소원자이고; R 41는 페닐이며, 상기 페닐은 플루오로, 플루오로로 치환되거나 치환되지 않은 (C1-C20)알킬, 및 플루오로로 치환되거나 치환되지 않은 (C1-C20)알콕시로부터 선택된 3 내지 5 개의 치환기로 더 치환될 수 있으며; R 42은 (C5-C7)방향족 라디칼 또는 (C1-C20)알킬(C6-C20)아릴 라디칼, (C6-C20)아릴(C1-C20)알킬 라디칼, 예를 들면 트리페닐메틸리니움(triphenylmethylium) 라디칼이고; Z는 질소 또는 인 원자이며; R 43은 (C1-C50)알킬 라디칼 또는 질소원자와 함께 2개의 (C1-C10)알킬로 치환된 아닐리니움(Anilinium) 라디칼이고; 및 p는 2 또는 3의 정수이다.
상기 붕소계 조촉매의 바람직한 예로는 트리스(펜타플루오로페닐)보레인, 트리스(2,3,5,6-테트라플루오로페닐)보레인, 트리스(2,3,4,5-테트라플루오로페닐)보레인, 트리스(3,4,5-트리플루오로페닐)보레인, 트리스(2,3,4-트리플루오로페닐)보레인, 페닐비스(펜타플루오로페닐)보레인, 테트라키스(펜타플루오로페닐)보레이트, 테트라키스(2,3,5,6-테트라플루오로페닐)보레이트, 테트라키스(2,3,4,5-테트라플루오로페닐)보레이트, 테트라키스(3,4,5-테트라플루오로페닐)보레이트, 테트라키스(2,2,4-트리플루오로페닐)보레이트, 페닐비스(펜타플루오로페닐)보레이트 또는 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트를 들 수 있다. 또한 그것들의 특정 배합예로는 페로세늄 테트라키스(펜타플루오로페닐)보레이트, 1,1'-디메틸페로세늄 테트라키스(펜타플루오로페닐)보레이트, 테트라키스(펜타플루오로페닐)보레이트, 트리페닐메틸리니움 테트라키스(펜타플루오로페닐)보레이트, 트리페닐메틸 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, N,N-디메틸아닐리니움 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐리니움 테트라키스(펜타플루오로페닐)보레이트, N,N-2,4,6-펜타메틸아닐리니움 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리니움 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, 디이소프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 디시클로헥실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 트리(메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트, 또는 트리(디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트가 포함되고, 이 중 가장 바람직한 것은 N,N-디메틸아닐리니움 테트라키스(펜타플루오로페닐)보레이트, 트리페닐메틸리니움 테트라키스(펜타플루오로페닐)보레이트 또는 트리스(펜타플루오르페닐)보레인이다.
한편, 상기 조촉매는 반응물 중 촉매에 독으로 작용하는 불순물을 제거하는 스캐빈져(scavenger)의 역할을 할 수 있다.
본 발명에 따른 일 실시예에 있어서, 상기 알루미늄 화합물을 조촉매로 사용하는 경우 본 발명의 전이금속 화합물과 조촉매 간의 비율의 바람직한 범위는 전이금속(M): 알루미늄 원자(Al)의 비가 몰비 기준으로 1: 10 내지 5,000일 수 있다.
본 발명에 따른 일 실시예에 있어서, 상기 알루미늄 화합물 및 붕소 화합물을 동시에 조촉매로 사용하는 경우 본 발명의 전이금속 화합물과 조촉매 간의 비율의 바람직한 범위는 몰비 기준으로 전이금속(M): 붕소원자(B): 알루미늄원자(Al)의 몰비가 1 : 0.1 내지 100 : 10 내지 3,000의 범위일 수 있고, 보다 바람직하게는 1 : 0.5 내지 5 : 100 내지 30,00의 범위일 수 있다.
본 발명의 전이금속 화합물과 조촉매 간의 비율이 상기 범위를 벗어나는 경우 조촉매의 양이 상대적으로 적어서 전이금속 화합물의 활성화가 완전히 이루어지지 못해 전이금속 화합물의 촉매 활성도가 충분하지 못할 수 있거나, 필요 이상의 조촉매가 사용되어 생산 비용이 크게 증가하는 문제가 발생할 수 있다. 상기 범위 내에서 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체를 제조하기 위한 우수한 촉매활성을 나타내며, 반응의 순도에 따라 비율의 범위가 달라지게 된다.
본 발명의 다른 측면으로서 상기 전이금속 촉매 조성물을 이용한 에틸렌 중합체의 제조방법은 적절한 유기용매의 존재 하에 상기의 전이금속 촉매, 조촉매, 및 에틸렌 또는 필요시 α-올레핀 공단량체를 접촉시켜 진행될 수 있다. 이 때 전이금속 촉매와 조촉매 성분은 별도로 반응기 내에 투입하거나 또는 각 성분을 미리 혼합하여 반응기에 투입할 수 있으며, 투입 순서, 온도 또는 농도 등의 혼합조건은 별도의 제한이 없다.
상기 제조방법에 사용될 수 있는 바람직한 유기용매는 (C3-C20)탄화수소이며, 그 구체적인 예로는 부탄, 이소부탄, 펜탄, 헥산, 헵탄, 옥탄, 이소옥탄, 노난, 데칸, 도데칸, 시클로헥산, 메틸시클로헥산, 벤젠, 톨루엔, 크실렌 등을 들 수 있다.
구체적으로 에틸렌 단독중합체 제조시에는 단량체로서 에틸렌을 단독으로 사용하며, 이때 적합한 에틸렌의 압력은 1 내지 1000 기압이며 더욱 바람직하게는 10 내지 150 기압일 수 있다. 또한 중합반응 온도는 25 내지 200℃ 사이에서, 바람직하기로는 50 내지 180℃, 더욱 바람직하기로는 100 내지 180℃, 더욱 더 바람직하기로는 110 내지 150℃에서 행해지는 것이 효과적이다.
또한 에틸렌과 α-올레핀의 공중합체를 제조할 경우에는 에틸렌과 함께 공단량체로서 C3~C18의 α-올레핀, C5~C20의 시클로올레핀, 스티렌 및 스티렌의 유도체 중 선택된 하나 이상을 사용할 수 있으며, C3~C18의 α-올레핀의 바람직한 예로는 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센 및 1-옥타데센으로 이루어진 군으로부터 선택될 수 있으며, C5~C20의 시클로올레핀의 바람직한 예로는 시클로펜텐, 시클로헥센, 노르보넨(Norbonene) 및 페닐노르보넨으로 이루어진 군으로부터 선택될 수 있으며, 스티렌 및 그 유도체는 스티렌, 알파-메틸스티렌, p-메틸스티렌 및 3-클로로메틸스티렌 중에서 선택될 수 있다. 본 발명에서는 에틸렌에 상기한 올레핀을 단독 중합시키거나 2 종류 이상의 올레핀을 공중합시킬 수 있으며, 보다 바람직하게는 1-부텐, 1-헥센, 1-옥텐 또는 1-데센과 에틸렌을 공중합시킬 수 있다. 이 경우 바람직한 에틸렌의 압력 및 중합반응 온도는 상기 에틸렌 단독중합체 제조의 경우와 동일할 수 있으며, 본 발명의 방법에 따라 제조된 공중합체는 보통 에틸렌 30중량% 이상을 함유하며, 바람직하기로는 60 중량% 이상의 에틸렌을 함유하며, 더욱 바람직하기로는 60 내지 99중량%의 범위로 에틸렌을 함유한다.
상기한 바와 같이, 본 발명의 촉매를 사용하면 에틸렌과 공단량체로 C3~C18의 α-올레핀을 사용하여 0.850g/cc 내지 0.960 g/cc의 밀도를 가지고 0.001 내지 15 dg/분의 용융유량을 갖는 엘라스토머로부터 고밀도 폴리에틸렌(HDPE)영역까지 쉽게 경제적으로 제조할 수 있다.
또한 본 발명에 따른 에틸렌 단독중합체 또는 공중합체 제조시 분자량을 조절하기 위해 수소를 분자량조절제로 사용할 수 있으며, 통상 5,000 내지 1,000,000 g/mol 범위의 중량평균분자량(Mw)을 갖는다.
본 발명에서 제시된 촉매 조성물은 중합반응기 내에서 균일한 형태로 존재하기 때문에 해당 중합체의 용융점 이상의 온도에서 실시하는 용액중합공정에 적용하는 것이 바람직하다. 그러나 미국특허 제 4,752,597호에 개시된 바와 같이 다공성 금속옥사이드 지지체에 상기 전이금속 촉매 및 조촉매를 지지시켜 얻어지는 비균일 촉매 조성물의 형태로 슬러리 중합이나 기상 중합 공정에 이용될 수도 있다.
이하 실시예를 통하여 본 발명을 구체적으로 설명하지만, 하기의 실시예에 의하여 본 발명의 범주가 본 발명을 한정하는 것은 아니다.
별도로 언급되는 경우를 제외하고 모든 리간드 및 촉매 합성 실험은 질소 분위기 하에서 표준 슐렝크 (Schlenk) 또는 글로브박스 기술을 사용하여 수행되었으며 반응에 사용되는 유기용매는 나트륨금속과 벤조페논 하에서 환류시켜 수분을 제거하여 사용직전 증류하여 사용하였다. 합성된 리간드 및 촉매의 1H-NMR 분석은 상온에서 Bruker 500 MHz을 사용하여 수행하였다.
중합용매인 시클로헥산은 분자체 5Å와 활성알루미나가 충진된 관을 통과시키고 고순도의 질소로 버블링시켜 수분, 산소 및 기타 촉매독 물질을 충분히 제거시킨 후 사용하였다. 중합된 중합체는 아래에 설명된 방법에 의하여 분석되었다.
1. 분자량 및 분자량분포
Freeslate Rapid GPC를 이용하여 135℃에서 1.0mL/min의 속도로 1,2,3-트리클로로벤젠 용매 하에서 측정하였으며, PL 폴리스티렌 표준물질을 사용하여 분자량을 보정하였다.
2. 공중합체 중의 α-올레핀 함량 (mol%)
Bruker Avance400 핵자기공명분광기를 이용하여 125MHz에서 1,2,4-트리클로로벤젠/C 6D 6 (7/3 중량분율) 혼합용매를 사용하여 120℃에서 13C-NMR 모드로 측정하였다. (참고문헌: Randal, J. C. JMS -Rev. Macromol . Chem . Phys. 1980, C29, 201)
공중합체의 에틸렌과 α-올레핀의 비율은 적외선 분광기를 이용하여 정량화 하였다.
3. 중합체의 결정화도
PolymerChar A-CEF를 사용하여 중합체의 분지화 분포 분석으로 중합체의 AF(amorphous fraction)를 측정하였다.
[실시예 1 내지 4] 본 발명에 따른 전이금속 촉매 1 내지 4의 제조
Figure PCT2017121-appb-img-000053
화합물 B의 제조
THF (112 mL)에 1-pyrrolidinyl-2-methyl-1H-indene (30.08 mmol)을 가한 다음, -78℃에서 n-BuLi (2.5 M, 31.58 mmol)의 헥산용액을 천천히 가하였다. n-BuLi 투입이 완료된 후 온도를 천천히 실온으로 승온 후 2시간 동안 교반하였다. 교반이 완료되면, -78℃로 냉각시킨 다음, (2-(알릴옥시)-5-치환된-3-(9,9-디치환된-9H-플루오렌-7-일)페닐)클로로디메틸실란 (화합물 A, 33.09 mmol)의 톨루엔 (14 ml) 용액을 천천히 적가한 후 반응 혼합물을 실온으로 승온하였다. 실온에서 3시간 추가 교반 후, 반응 혼합물을 200 ml 증류수에 가하여 반응을 종결하였다. 유기층을 톨루엔 (2 x 50 ml)로 추출하여 Na 2SO 4로 수분을 제거하였으며, 진공 증류기로 용매를 제거하여 얻은 노란색의 오일 형태의 잔사를 실리카겔60(40-63 μm)이 충진된 컬럼을 이용하여 플래쉬 크로마토그래피(eluent: dichlroromethane/hexane (1:10 vol))로 정제하여 목적화합물인 화합물 B를 수득하였다.
화합물 B1 (R 9=Me, R 13=R 14=Me): 1-{1-[[2-(Allyloxy)-3-(9,9-dimethyl-9H-fluoren-2-yl)-5-methylphenyl](dimethyl)silyl]-2-methyl-1H-inden-3-yl}pyrrolidine. 정량적 수율. 1H NMR(CDCl 3): δ 7.80 (m, 1H), 7.77 (m, 2H), 7.58 (m, 1H), 7.46 (m, 1H), 7.44 (m, 1H), 7.32-7.37 (m, 3H), 7.18 (m, 1H), 7.04 (m, 2H), 7.00 (m, 1H), 5.77 (m, 1H), 5.27 (m, 1H), 5.08 (m, 1H), 4.06 (m, 2H), 3.92 (s, 1H), 3.44 (m, 2H), 3.29 (m, 2H), 2.37 (s, 3H), 2.00 (s, 3H), 1.93-1.99 (m, 4H), 1.53 (m, 6H), 0.14 (s, 3H), 0.12 (s, 3H).
화합물 B2 (R 9=Me, R 13=R 14=n-Bu): 1-{1-[[2-(Allyloxy)-3-(9,9-dibutyl-9H-fluoren-2-yl)-5-methylphenyl](dimethyl)silyl]-2-methyl-1H-inden-3-yl}pyrrolidine. 정량적 수율. 1H NMR(CDCl 3): δ 7.77 (m, 1H), 7.75 (m, 1H), 7.63 (m, 1H), 7.57 (m, 1H), 7.44 (m, 1H), 7.36 (m, 2H), 7.33 (m, 1H), 7.30 (m, 1H), 7.18 (m, 1H), 7.04 (m, 2H), 7.00 (m, 1H), 5.76 (m, 1H), 5.30 (m, 1H), 5.10 (m, 1H), 4.09 (m, 2H), 3.92 (s, 1H), 3.44 (m, 2H), 3.30 (m, 2H), 2.38 (s, 3H), 2.00 (s, 3H), 1.93-2.02 (m, 8H), 1.08 (m, 4H), 0.67 (m, 6H), 0.57-0.66 (m, 4H), 0.13 (s, 3H), 0.11 (s, 3H).
화합물 B3 (R 9=F, R 13=R 14=Me): 1-{1-[[2-(Allyloxy)-3-(9,9-dimethyl-9H-fluoren-2-yl)-5-fluorophenyl](dimethyl)silyl]-2-methyl-1H-inden-3-yl}pyrrolidine. 정량적 수율. 1H NMR(CDCl 3): δ 7.81 (m, 1H), 7.77-7.79 (m, 2H), 7.58 (m, 1H), 7.48 (m, 1H), 7.46 (m, 1H), 7.37 (m, 2H), 7.19-7.23 (m, 2H), 7.01-7.05 (m, 2H), 6.93 (m, 1H), 5.77 (m, 1H), 5.29 (m, 1H), 5.11 (m, 1H), 4.07 (m, 2H), 3.90 (s, 1H), 3.46 (m, 2H), 3.29 (m, 2H), 2.02 (s, 3H), 1.93-1.99 (m, 4H), 1.54 (s, 6H), 0.15 (s, 6H).
화합물 B4 (R 9=F, R 13=R 14=n-Bu): 1-{1-[[2-(Allyloxy)-3-(9,9-dibutyl-9H-fluoren-2-yl)-5-fluorophenyl](dimethyl)silyl]-2-methyl-1H-inden-3-yl}pyrrolidine. 정량적 수율. 1H NMR(CDCl 3): δ 7.78 (m, 1H), 7.75 (m, 1H), 7.62 (m, 1H), 7.57 (m, 1H), 7.44 (m, 1H), 7.33-7.38 (m, 3H), 7.18 (m, 2H), 7.03 (m, 2H), 6.93 (m, 1H), 5.75 (m, 1H), 5.30 (m, 1H), 5.11 (m, 1H), 4.08 (m, 2H), 3.89 (s, 1H), 3.44 (m, 2H), 3.30 (m, 2H), 2.00 (s, 3H), 1.91-2.02 (m, 8H), 1.08 (m, 4H), 0.67 (m, 6H), 0.57-0.70 (m, 4H), 0.13 (s, 3H), 0.12 (s, 3H).
화합물 C의 제조
화합물 B (10 mmol)과 Et 3N (45 mmol)이 녹아 있는 톨루엔 (70 mL)을 -78℃로 냉각한 후 n-BuLi (2.5 M, 22 mmol)의 헥산 용액을 가하였다. n-BuLi 투입이 완료된 후, 반응 혼합물을 실온으로 승온하였으며, 실온에서 20시간 교반하였다. 이 반응 혼합물을 다시 -78℃로 냉각 후, TiCl 4 (15 mmol)의 톨루엔 (22 mL) 용액을 천천히 적가하였다. TiCl 4 투입 완료 후, 반응 혼합물을 실온으로 천천히 승온하였으며, 추가로 90℃ 조건에서 반응 혼합물을 교반하였다. 반응물은 온도를 실온으로 냉각 후 용매를 질소 분위기 하에서 진공으로 제거하였다. 용매 제거 후 따뜻한 메틸시클로헥산을 가하여 셀라이트 필터를 통해 생성 부산물을 분리하였다. 필터로부터 얻은 여액을 진공으로 건조하였으며, 메틸시클로헥산과 헥산의 혼합용매를 가하여 -30℃에서 어두운 녹색 또는 녹색의 침전물로, 고체형태의 목적화합물 C를 수득하였다.
화합물 C1 (R 9=Me, R 13=R 14=Me) : Dimethylsilylene(2-methyl-1-(N-pyrrolidyl)inden-3-yl)(2-(9,9-dimethyl-9H-fluoren-2-yl)-4-methylphenoxy)titanium dichloride. 수율 28%, 어두운 녹색 고체. 1H NMR(CD 2Cl 2): δ 8.27 (m, 1H), 7.70-7.73 (m, 3H), 7.64 (m, 1H), 7.53 (m, 1H), 7.29-7.42 (m, 7H), 4.21 (m, 2H), 4.14 (m, 2H), 2.48 (s, 3H), 2.47 (s, 3H), 1.94-2.03 (m, 4H), 1.46 (s, 3H), 1.45 (s, 3H), 0.72 (s, 3H), 0.71 (s, 3H).
화합물 C2 (R 9=Me, R 13=R 14=n-Bu) : Dimethylsilylene(2-methyl-1-(N-pyrrolidyl)inden-3-yl)(2-(9,9-dibutyl-9H-fluoren-2-yl)-4-methylphenoxy)titanium dichloride. 수율 33%, 녹색 고체. 1H NMR(CD 2Cl 2): δ 8.29 (m, 1H), 7.70 (m, 2H), 7.64 (m, 2H), 7.57 (m, 1H), 7.37-7.40 (m, 3H), 7.27-7.34 (m, 4H), 4.21 (m, 2H), 4.17 (m, 2H), 2.49 (s, 3H), 2.48 (s, 3H), 1.91-2.10 (m, 8H), 0.99-1.09 (m, 4H), 0.73 (s, 3H), 0.72 (s, 3H), 0.61-0.65 (m, 6H), 0.44-0.58 (m, 4H).
화합물 C3 (R 9=F, R 13=R 14=Me): Dimethylsilylene(2-methyl-1-(N-pyrrolidyl)inden-3-yl)(2-(9,9-dimethyl-9H-fluoren-2-yl)-4-fluorophenoxy)titanium dichloride. 수율 28%, 어두운 녹색 고체. 1H NMR(CD 2Cl 2): δ 8.28 (m, 1H), 7.70-7.75 (m, 3H), 7.63 (m, 1H), 7.53 (m, 1H), 7.28-7.44 (m, 7H), 4.21 (m, 2H), 4.15 (m, 2H), 2.49 (s, 3H), 1.95-2.04 (m, 4H), 1.46 (s, 3H), 1.45 (s, 3H), 0.75 (s, 3H), 0.73 (s, 3H).
화합물 C4 (R 9=F, R 13=R 14=n-Bu): Dimethylsilylene(2-methyl-1-(N-pyrrolidyl)inden-3-yl)(2-(9,9-dibutyl-9H-fluoren-2-yl)-4-fluorophenoxy)titanium dichloride. 수율 48%, 녹색 고체. 1H NMR(CD 2Cl 2): δ 8.29 (m, 1H), 7.70 (m, 2H), 7.64 (m, 2H), 7.57 (m, 1H), 7.40 (m, 1H), 7.27-7.36 (m, 6H), 4.15-4.24 (m, 4H), 2.49 (s, 3H), 1.91-2.08 (m, 8H), 0.99-1.09 (m, 4H), 0.75 (s, 3H), 0.73 (s, 3H), 0.60-0.64 (m, 6H), 0.42-0.58 (m, 4H).
화합물 1 내지 4의 제조
화합물 C (10 mmol)를 디에틸에테르 (100 mL)에 녹인 다음, -30℃에서 MeMgBr (2.9 M in ether, 22 mmol) 용액을 천천히 가하였다. 반응 혼합물을 천천히 실온으로 승온 후 22시간 동안 교반하였으며, 이 후 질소 분위기 하에서 진공으로 용매를 제거하였다. 따뜻한 헥산을 가하여 셀라이트 필터한 후 얻어진 여액을 질소 분위기의 진공 하에서 용매를 제거하였다. 얻어진 고체는 헥산 (70 ml)에 녹인 후 다시 셀라이트 필터로 처리하고 얻어진 여액을 -30℃로 냉각하여 붉은색의 고체 형태의 목적화합물 1 내지 4를 수득하였다.
실시예 1. 전이금속 촉매 화합물 1 (R 9=Me, R 13=R 14=Me), 수율 47%, 붉은색 고체. 1H NMR(CD 2Cl 2): δ 8.02 (m, 1H), 7.96 (m, 1H), 7.76 (m, 2H), 7.62 (m, 1H), 7.45 (m, 1H), 7.25-7.35 (m, 4H), 7.23 (m, 1H), 7.13 (m, 1H), 6.93 (m, 1H), 3.84 (m, 2H), 3.62 (m, 2H), 2.42 (s, 3H), 2.07 (s, 3H), 1.94-2.06 (m, 4H), 1.54 (s, 6H), 0.62 (s, 3H), 0.59 (s, 3H), 0.54 (s, 3H), -0.34 (s, 3H). 13C NMR(CD 2Cl 2): δ 162.62, 154.42, 153.67, 140.11, 139.57, 139.04, 137.99, 134.30, 132.93, 131.93, 131.61, 131.08, 129.99, 129.05, 128.52, 127.39, 127.30, 126.79, 126.72, 125.57, 124.52, 124.38, 123.96, 122.97, 120.25, 119.74, 96.04, 57.25, 55.63, 52.33, 47.30, 27.57, 26.26, 20.96, 15.39, 0.82, 0.34.
실시예 2. 전이금속 촉매 화합물 2 (R 9=Me, R 13=R 14=n-Bu), 수율 87%, 붉은색 고체. 1H NMR(CD 2Cl 2): δ 8.05 (m, 1H), 7.88 (m, 1H), 7.81 (m, 1H), 7.77 (m, 1H), 7.72 (m, 1H), 7.30-7.43 (m, 6H), 7.18 (m, 1H), 6.98 (m, 1H), 3.87 (m, 2H), 3.64 (m, 2H), 2.47 (s, 3H), 2.12 (s, 3H), 1.96-2.11 (m, 8H), 1.07-1.14 (m, 4H), 0.72-0.82 (m, 2H), 0.69 (m, 6H), 0.68 (s, 3H), 0.65-0.71 (m, 2H), 0.65 (s, 3H), 0.61 (s, 3H), -0.26 (s, 3H). 13C NMR(CD 2Cl 2): δ 162.72, 151.43, 150.81, 141.69, 140.16, 140.10, 139.08, 134.26, 133.27, 131.57, 131.06, 130.26, 129.12, 128.85, 127.24, 127.15, 126.92, 125.75, 124.59, 124.55, 124.40, 124.08, 123.32, 119.96, 119.44, 95.71, 57.60, 55.89, 55.62, 52.39, 40.85, 26.60, 26.36, 23.57, 21.08, 15.48, 14.18, 1.00, 0.40.
실시예 3. 전이금속 촉매 화합물 3 (R 9=F, R 13=R 14=Me), 수율 67%, 붉은색 고체. 1H NMR(CD 2Cl 2): δ 8.03 (m, 1H), 7.98 (m, 1H), 7.79 (m, 1H), 7.76 (m, 1H), 7.63 (m, 1H), 7.45 (m, 1H), 7.33 (m, 2H), 7.19-7.24 (m, 2H), 7.12-7.17 (m, 2H), 6.95 (m, 1H), 3.85 (m, 2H), 3.62 (m, 2H), 2.08 (s, 3H), 1.94-2.04 (m, 4H), 1.54 (s, 6H), 0.64 (s, 3H), 0.61 (s, 3H), 0.57 (s, 3H), -0.30 (s, 3H). 13C NMR(CD 2Cl 2): δ 160.67, 159.34, 156.94, 154.46, 153.82, 140.38, 139.39, 138.58, 137.85, 133.25, 133.20, 130.45, 130.38, 130.16, 128.98, 127.61, 127.36, 126.67, 126.42, 125.75, 124.78, 124.34, 124.15, 123.02, 120.39, 119.90, 119.14, 118.24, 118.01, 95.55, 58.07, 56.37, 52.33, 47.35, 27.54, 26.29, 15.45, 0.54, 0.11.
실시예 4. 전이금속 촉매 화합물 4 (R 9=F, R 13=R 14=n-Bu), 수율 73% 붉은색 고체. 1H NMR(CD 2Cl 2): δ 8.04 (m, 1H), 7.80 (m, 1H), 7.78 (m, 1H), 7.73 (m, 1H), 7.70 (m, 1H), 7.38 (m, 1H), 7.30-7.34 (m, 2H), 7.25 (m, 1H), 7.20 (m, 1H), 7.14-7.17 (m, 2H), 6.96 (m, 1H), 3.87 (m, 2H), 3.62 (m, 2H), 2.08 (s, 3H), 1.94-2.07 (m, 8H), 1.05-1.09 (m, 4H), 0.94-1.03 (m, 4H), 0.65-0.72 (m, 2H), 0.65 (s, 3H), 0.64 (m, 6H), 0.62(s, 3H), 0.58 (s, 3H), 0.55-0.61 (m, 2H), -0.29 (s, 3H). 13C NMR(CD 2Cl 2): δ 160.72, 158.91, 157.31, 151.46, 150.98, 141.46, 140.62, 140.40, 137.87, 133.16, 133.14, 130.74, 130.69, 130.36, 129.04, 127.39, 127.15, 126.77, 126.73, 125.86, 124.79, 124.49, 124.24, 124.20, 123.35, 120.04, 119.50, 119.02, 118.88, 118.46, 118.30, 95.28, 58.30, 56.57, 55.64, 52.36, 40.76, 26.54, 26.33, 23.51, 23.50, 15.47, 14.10, 14.09, 0.61, 0.09.
[실시예 5] 본 발명에 따른 전이금속 촉매 5의 제조
Figure PCT2017121-appb-img-000054
상기 실시예 1 내지 4의 방법을 이용하여 화합물 B5, 화합물 C5 및 화합물 5를 제조하였다.
화합물 B5 : 정량적 수율. 1H NMR (400 MHz, CDCl 3): δ 7.74-7.79 (m, 2H), 7.57-7.61 (m, 2H), 7.25-7.39 (m, 9H), 7.14 (t, 2H, J = 7.9 Hz), 7.06 (d, 1H, J = 2.2 Hz), 7.02 (t, 1H, J = 7.4 Hz), 5.73-5.83 (m, 1H), 5.28 (dd, 1H, J1 = 17.4 Hz, J1 = 1.5 Hz), 5.09 (dd, 1H, J1 = 10.7 Hz, J2 = 1.2 Hz), 1.74-1.77 (m, 2H), 1.61-1.64 (m, 2H), 4.07-4.10 (m, 3H), 2.39 (s, 3H), 2.06 (s, 3H), 2.01 (t, 4H, J = 8.2 Hz), 0.55-1.33 (m, 24H).
화합물 C5 : 수율 62%, 녹색 고체. 1H NMR (400 MHz, CDCl 3): δ 8.40 (d, J = 8.8 Hz, 1H), 7.60-7.70 (m, 4H), 7.52 (m, 1H), 7.27-7.45 (m, 11H), 5.67 (d, J = 12.4 Hz, 2H), 5.61 (d, J = 12.4 Hz, 2H), 2.65 (s, 3H), 2.52 (s, 3H), 1.85-2.15 (m, 4H), 0.47-1.41 (m, 24H).
전이금속 촉매 화합물 5 : 수율 91% 붉은색 고체. 1H NMR (400 MHz, C 6D 6): δ 8.09 (m, 1H), 7.73-7.87 (m, 2H), 7.58 (m, 2H), 7.44 (m, 1H), 7.38 (m, 1H), 7.18-7.31 (m, 4H), 7.04-7.15 (m, 2H), 6.97 (m, 2H), 6.84 (m, 1H), 6.62 (m, 1H), 4.96 (d, J = 12.3 Hz, 2H), 4.66 (d, J = 12.0 Hz, 2H), 2.31 (s, 3H), 2.18 (s, 3H), 2.00-2.13 (m, 4H), 0.80-1.34 (m, 21H), 0.60 (m, 6H), 0.15 (s, 3H). 13C{ 1H} NMR (101 MHz, CD 2Cl 2): δ 163.2, 151.4, 150.8, 141.6, 140.0, 139.9, 139.0, 138.3, 135.0, 133.2, 132.3, 131.4, 130.4, 129.0, 128.9, 128.2, 127.4, 127.2, 127.1, 126.4, 125.1, 124.8, 124.3, 124.2, 123.3, 122.7, 119.9, 119.3, 96.2, 58.6, 58.4, 57.2, 55.5, 54.4, 54.1, 53.6, 53.3, 40.8, 40.7, 26.6, 26.5, 23.5, 23.5, 21.1, 15.3, 14.1, 7.9, 7.8, 5.7, 5.5.
[실시예 6] 본 발명에 따른 전이금속 촉매 6의 제조
Figure PCT2017121-appb-img-000055
화합물 D6의 제조
p-크레졸 (30.0 g, 277 mmol, 1 equiv)을 MeCN (3000 mL)에 녹였다. p-TSA(p-Toluenesulfonic acid monohydrate) (52.8 g, 277 mmol, 1 equiv)을 반응용액에 가한 후 15분간 교반한 후, NIS(N-iodosuccinimide) (62.0 g, 277 mmol, 1 equiv)을 30분에 걸쳐 천천히 가하였으며, 반응용액으로 12시간 교반하였다. 12시간 교반 후 같은 부피의 증류수를 가하였다. 형성된 생성물을 에테르 (200 mL x 2)로 추출하여 회수한 유기물을 Na 2SO 3 수용액 및 증류수로 처리한 후 무수 Na 2SO 4로 건조하여 용매를 제거하였다. 생성된 화합물(2-아이오도-4-메틸페놀; 56.5 g, 87% 수율) 은 추가의 정제 없이 다음 반응에 사용하였다.
2-아이오도-4-메틸페놀 (56.5 g, 240 mmol, 1 equiv)을 질소 분위기 하에서 무수 THF (250 mL)에 녹였다. DIPEA(N,N-Diisopropylethylamine) (62.7 mL, 360 mmol, 1.5 equiv)와 MOMCl(Chloromethyl methyl ether) (27.5 mL, 360 mmol, 1.5 equiv)을 차례로 반응용액에 가하였다. 반응용액을 60℃에서 12시간 교반한 후 증류수 (500 mL)에 가하여 반응을 종결하였다. 헥산 (200 mL x 2)으로 추출하였으며, 얻은 유기층을 증류수 및 무수 Na 2SO 4로 처리한 후 건조하여 조생성물을 얻었다. 조생성물을 실리카겔60(40-63 μm)이 충진된 컬럼을 이용하여 플래쉬 크로마토그래피(eluent: hexane)로 정제하여 목적화합물 D6을 노란색 오일 형태로 얻었다(65.9 g, 99%의 수율).
1H NMR (400 MHz, CDCl 3): δ 7.60 (s, 1H), 7.05-7.08 (m, 1H), 6.94 (d, J = 8.3 Hz, 1H), 5.19 (s, 2H), 3.50 (s, 3H), 2.25 (s, 3H).
화합물 E6의 제조
2,7-디- t-부틸-9 H-카바졸 (24.8g, 89.0mmol, 1equiv), 화합물 D6 (29.6g, 107mmol, 1.2 equiv), CuI (3.4 g, 18.0mmol, 0.2equiv), K 3PO 4 (57.0g, 267mmol, 3equiv), 그리고 N,N'-디메틸-1,2-에틸렌디아민 (2.35g, 26.7mmol, 0.3equiv)의 혼합물을 무수 톨루엔 (180mL)에 녹인 후 120℃에서 12시간 교반한 후 증류수 (500 mL)를 가하여 반응을 종결하였다. 유기층을 톨루엔 (100 mL x 3)으로 추출한 다음, 증류수, 무수 Na 2SO 4로 차례로 처리한 후 건조하여 조생성물을 얻었다. 조생성물을 Kugelrohr distillation로 정제하여 목적화합물인 화합물 E6를 검은색의 오일로 얻었다(32.2g, 85% 수율).
1H NMR (400 MHz, CDCl 3): δ 8.05 (d, J = 8.2 Hz, 2H), 7.29-7.41 (m, 7H), 4.98 (s, 2H), 3.24 (s, 3H), 2.45 (s, 3H), 1.42 (s, 18H).
화합물 F6의 제조
화합물 E6 (31.1 g, 72.0 mmol, 1 equiv)의 무수 에테르 용액 (850 mL)에 n-BuLi (58.0 mL, 145 mmol, 2 equiv)을 상온에서 천천히 가한 후 2시간동안 상온에서 교반하였다. 1,2-디브로모테트라플루오로에탄 (74.8 g, 288 mmol, 4 equiv)을 0℃에서 천천히 상기 반응용액에 가한 후, 12시간 교반한 다음, 증류수 (500 mL)에 가하여 반응을 종결하였다. 유기층을 회수한 후 무수 Na 2SO 4로 처리 및 건조하여 생성물(9-{3-브로모-5-메틸-2-(메톡시메톡시)페닐}-2,7-디- t-부틸-9 H-카바졸; 32.1 g, 88% 수율)을 얻었으며, 추가의 정제 없이 다음 반응에 사용하였다.
9-{3-브로모-5-메틸-2-(메톡시메톡시)페닐}-2,7-디- t-부틸-9 H-카바졸 (32.1 g, 75.0 mmol)을 메탄올 (220 mL)과 THF (220 mL)와 염산 (12 M, 2.5 mL)의 혼합용액에 가하고 60℃에서 12시간동안 교반시킨 다음, 증류수 (1000 mL)를 가하여 반응을 종결하였다. 에테르 (200 mL x 2)로 처리하여 얻은 유기층을 무수 Na 2SO 4로 처리 및 건조하여 조생성물을 얻었다. 조생성물을 실리카겔60(40-63 μm)이 충진된 컬럼을 이용하여 플래쉬 크로마토그래피(eluent: hexane/dichloromethane)로 정제하여 화합물 F6을 흰색 고체 형태로 얻었다(22.2 g, 64% 수율).
1H NMR (400 MHz, CDCl 3): δ 8.00 (dd, J 1 = 8.3 Hz, J 2 = 0.5 Hz, 2H), 7.51 (dd, J 1 = 2.1 Hz, J 2 = 0.6 Hz, 1H), 7.35 (dd, J 1 = 8.2 Hz, J 2 = 1.7 Hz, 2H), 7.15 (dd, J 1 = 2.1 Hz, J 2 = 0.7 Hz, 1H), 7.08 (d, J = 1.2 Hz, 2H), 5.42 (s, 1H), 2.37 (s, 3H), 1.36 (s, 18H).
화합물 G6의 제조
K 2CO 3 (30 mmol)와 알릴브로마이드 (30 mmol)를 무수 아세톤 (200 mL)과 페놀 (20 mmol)에 가하고 16시간동안 환류시킨 다음, 아세톤을 진공으로 제거하고 증류수를 가한 후 디클로로메탄 (50 mL x 3)으로 추출하였다. 유기층을 무수 Na 2SO 4로 처리 및 건조시킨 잔사를 실리카겔60(40-63 μm)이 충진된 컬럼을 이용하여 플래쉬 크로마토그래피(eluent: hexane)로 정제하여 표제화합물 G6을 얻었다(99%의 수율).
1H NMR (400 MHz, CDCl 3): δ 8.00 (d, J = 8.2 Hz, 2H), 7.57 (d, J = 1.9 Hz, 2H), 7.35 (dd, J 1 = 8.2 Hz, J 2 = 1.6 Hz, 2H), 7.25 (s, 1H), 7.20 (d, J = 1.3 Hz, 2H), 5.40-5.50 (m, 1H), 4.76-4.84 (m, 2H), 3.85 (d, J = 6.0 Hz, 2H), 2.41 (s, 3H), 1.40 (s, 18H).
화합물 H6의 제조
n-BuLi (2.5 M in hexanes, 91 mmol)을 화합물 G6 (70 mmol)의 톨루엔 (200 mL) 용액에 -78℃에서 천천히 가한 다음, -20℃까지 승온하였다. 반응용액을 다시 -78℃로 냉각 후, 디클로로디에틸실란 (210 mmol)을 빠르게 가하고, 실온으로 승온 후 5시간동안 교반하였다. 셀라이트 여과를 통해 무기염을 제거하였으며, 용매를 제거한 후 과량의 디클로로디에틸실란을 진공으로 제거하여 목적화합물 H6을 얻었으며(99% 수율), 추가의 정제 없이 다음 반응에 사용하였다.
1H NMR (400 MHz, CDCl 3): δ 7.99 (d, J = 8.0 Hz, 2H), 7.61 (s, 1H), 7.40 (s, 1H), 7.34 (d, J = 8.2 Hz, 2H), 7.28 (s, 2H), 5.29-5.39 (m, 1H), 4.80 (d, J = 10.5 Hz, 1H), 4.65 (d, J = 17.2 Hz, 1H), 3.59 (d, J = 5.7 Hz, 2H), 2.44 (s, 3H), 1.38 (s, 18H), 1.03-1.31 (m, 10H).
화합물 I6의 제조
n-BuLi (2.5 M in hexanes, 31.6 mmol)을 2-(2-메탈인덴-1-일)이소인돌린 (30.1 mmol)의 THF (112 mL) 용액에 -78℃에서 천천히 적가하였다. 반응 혼합물을 실온으로 승온 후, 2시간 더 교반하였다. 교반이 완료되면, -78℃로 냉각시킨 다음, 화합물 H6 (33.1 mmol)의 톨루엔 (14 mL) 용액을 주사기를 통해 투입하였다. 반응 혼합용액을 실온으로 승온 후 3시간 더 교반하고, 증류수 (200 mL)에 가하여 반응을 종결하였다. 유기층을 톨루엔 (2 x 50 mL)으로 추출한 후 Na 2SO 4로 수분을 제거하였으며, 진공 증류기로 용매를 제거하여 얻은 조생성물을 실리카겔60(40-63 μm)이 충진된 컬럼을 이용하여 플래쉬 크로마토그래피(eluent: hexane/dichloromethane, 10/1, vol)로 정제하여 목적화합물 I6를 수득하였다(75% 수율).
1H NMR (400 MHz, CDCl 3): δ. 7.99 (d, 2H), 7.61 (s, 1H), 7.40 (s, 1H), 7.34 (d, 2H), 7.28 (s, 2H), 7.15-7.06 (m, 6H), 6.13-6.09 (m, 2H), 5.48 (s, 1H), 5.29-5.39 (m, 1H), 4.80 (d, 1H), 4.65 (d, 1H), 4.62 (s, 4H), 3.59 (d, 2H), 2.44 (s, 3H), 2.29 (s, 3H), 1.38 (s, 18H), 1.03-1.31 (m, 10H)
화합물 J6의 제조
Et 3N (45 mmol)와 화합물 I6 (10 mmol)의 톨루엔 (70 mL)용액을 -78℃로 냉각한 후 n-BuLi (2.5 M in hexanes, 22 mmol)을 천천히 가하였다. 반응 혼합물을 실온으로 승온 후, 20시간 교반하고, 다시 -78℃로 냉각 후, TiCl 4 (15 mmol)의 톨루엔 (22 mL) 용액을 주사기를 통해 천천히 적가하였다. TiCl 4 투입 완료 후, 반응 혼합물을 상온으로 승온 후 90℃에서 16시간 교반하였다. 실온으로 냉각 후, 용매를 진공으로 제거하였다. 용매 제거 후 뜨거운 메틸시클로헥산을 가하여 녹지 않는 무기염을 셀라이트 필터를 통해 제거하였으며, 진공으로 여액의 용매를 농축 후 메틸시클로헥산과 헥산의 혼합용액로 재결정하여 목적화합물 J6을 수득하였다 (25% 수율).
1H NMR (400 MHz, CDCl 3): δ 7.99 (d, 2H), 7.61 (s, 1H), 7.40 (s, 1H), 7.34 (d, 2H), 7.28 (s, 2H), 7.23-7.06 (m, 6H), 6.43-6.20 (m, 2H), 4.62 (s, 4H), 2.44 (s, 3H), 2.29 (s, 3H), 1.38 (s, 18H), 1.03-1.31 (m, 10H)
화합물 6의 제조
화합물 J6 (10 mmol)를 디에틸에테르 (100 mL)에 녹인 다음, -30℃에서 MeMgBr (2.9 M in ether, 22 mmol) 용액을 천천히 가하였다. 반응 혼합물을 천천히 실온으로 승온 후 22시간 동안 교반하였으며, 이 후 진공으로 용매를 제거하였다. 반응물을 뜨거운 헥산을 가하여 녹지 않는 무기염을 셀라이트 필터를 통해 제거하였다. 여액을 진공으로 건조 후, 헥산 (70 mL)에 녹힌 후 다시 한번 녹지 않는 무기염을 셀라이트 필터를 통해 제거하였다. 얻은 여액을 -30℃에서 12시간 보관 후 노란색 고체 형태의 화합물 6을 수득하였다(54% 수율).
1H NMR (400 MHz, CDCl 3): δ 7.99 (d, 2H), 7.61 (s, 1H), 7.40 (s, 1H), 7.34 (d, 2H), 7.28 (s, 2H), 7.23-7.06 (m, 6H), 6.43-6.20 (m, 2H), 4.62 (s, 4H), 2.44 (s, 3H), 2.29 (s, 3H), 1.38 (s, 18H), 1.03-1.31 (m, 10H), -0.50 (s, 3H), -0.62 (s, 3H).
[비교예 1] 비교촉매 1의 제조
Figure PCT2017121-appb-img-000056
상기 실시예 1 내지 5의 방법을 비교촉매 1을 제조하였다.
1H NMR (CDCl 3): δ 7.73 (dt, 1H), 7.51 (dt, 1H), 7.32-7.35 (m, 3H), 6.89 (m, 1H), 5.48 (m, 1H), 3.41 (m, 2H, N(CH 2CH 2) 2), 2.32 (s, 3H, Ar-Me), 3.24 (m, 2H, N(CH 2-CH 2) 2), 1.51 (s, 9H, C(CH 3) 3), 1.39-1.42 (m, 4H, N(CH 2CH 2) 2), 0.76 (s, 3H, TiCH 3a), 0.63 (s, 3H, SiCH 3, C10), 0.59 (s, 3H, SiCH 3, C11), 0.08 (s, 3H, TiCH 3b).
[비교예 2] 비교촉매 2의 제조
Figure PCT2017121-appb-img-000057
상기 실시예 1 내지 5의 방법을 이용하여 비교촉매 2를 제조하였다.
1H NMR (CDCl 3): δ 8.01 (m, 1H), 7.82 (m, 1H), 7.76 (m, 1H), 7.72 (m, 1H), 7.51 (m, 1H), 7.31-7.39 (m, 3H), 7.23 (m, 1H), 6.25 (t, 2H), 5.99 (t, 2H), 1.77 (s, 3H), 1.45 (m, 3H), 1.39 (m, 3H), 0.78 (s, 3H), 0.57 (s, 3H), 0.55 (m, 3H)
[비교예 3] 비교촉매 3의 제조
Figure PCT2017121-appb-img-000058
화합물 a의 제조
1-브로모-2,6-디이소프로필벤젠 (37.1 g, 154 mmol, 1.5 equiv)을 무수 THF (150 mL)에 녹인 후 n-BuLi (68.0 mL, 170 mmol, 1.65 equiv)을 -78℃에서 천천히 적가하고, 1시간 교반 후 ZnCl 2 (25.3 g, 185 mmol, 1.8 equiv)을 빠르게 가하고, 1시간 교반한 후 실온으로 승온하고, 추가 1시간 교반하였다. 반응용액을 압력용기에 이송 후, Pd(dba) 2 (0.83 g, 1.00 mmol, 0.01 equiv), RuPhos [S. Buchwald, J. Am. Chem . Soc ., 2004, 126 (40), 13028-13032](1.92 g, 4.00 mmol, 0.04 equiv)와 2-브로모-1-(메톡시메톡시)-4-메틸벤젠 (23.7g, 103mmol, 1equiv)을 차례로 가하였다. 반응용액을 THF (50 mL)와 NMP (100 mL)로 희석하였다. 반응용액을 100℃에서 12시간 교반한 후, 증류수 (150 mL)를 가하여 반응을 종결한 후 에테르 (200 mL)로 2번 처리하여 추출하였다. 얻은 유기물은 증류수로 처리하였으며, 이후 무수 Na 2SO 4로 건조 후 진공으로 용매를 제거하였다. 생성된 결과물을 에탄올로 고체화 하였으며, 생성된 고체를 분리하여 희색 결정성 고체로 2',6'-디이소프로필-2-메톡시메톡시-5-메틸바이페닐 (23.1g, 72% 수율)을 얻었다. 얻은 흰색 고체 (23.1 g, 74.0 mmol)를 메탄올 (220 mL)와 THF (220 mL)의 혼합용액에 녹인 후 HCl(aq) (12M, 2.2 mL)을 가한 다음, 60℃에서 12시간 교반한 후, 증류수 (1000 mL)를 가하여 반응을 종결시켰다. 반응 종결 후 에테르 (200 mL x 2)로 처리하여 생성물을 추출하였으며, 증류수로 처리 후, 무수 Na 2SO 4로 건조 후 용매를 제거하여 화합물 a를 흰색 고체의 형태로 얻었다(19.3 g, 97%).
1H NMR (400 MHz, CDCl 3): δ 7.39 (t, J = 7.8 Hz, 1H), 7.27 (d, J = 7.7 Hz, 1H), 7.08 (d, J = 8.3 Hz, 1H), 6.88 (d, J = 8.3 Hz, 1H), 6.82 (s, 1H), 4.45 (s, 1H), 2.62 (m, 2H), 2.30 (s, 3H), 1.10 (d, J = 6.9 Hz, 6H), 1.07 (d, J = 6.8 Hz, 6H).
화합물 b의 제조
실시예 6의 화합물 6F와 동일한 방법으로 화합물 b를 제조하였다(95% 수율).
1H NMR (400 MHz, CDCl 3): δ 7.41 (t, J = 7.8 Hz, 1H), 7.35 (s, 1H), 7.27 (d, J = 7.8 Hz, 2H), 6.82 (s, 1H), 5.06 (s, 1H), 2.52-2.60 (m, 2H), 2.31 (s, 3H), 1.15 (d, J = 6.9 Hz, 6H), 1.09 (d, J = 6.9 Hz, 6H).
화합물 c의 제조
실시예 6의 화합물 G6과 동일한 방법으로 화합물 c를 제조하였다(79% 수율).
1H NMR (400 MHz, CDCl 3): δ 7.40 (s, 1H), 7.35 (t, J = 7.7 Hz, 1H), 7.20 (d, J = 7.7 Hz, 2H), 6.86 (s, 1H), 5.57-5.67 (m, 1H), 4.97-5.05 (m, 2H), 4.06 (d, J = 5.4 Hz, 2H), 2.53-2.63 (m, 2H), 2.32 (s, 3H), 1.18 (d , J = 6.9 Hz, 6H), 1.05 (d, J = 6.8 Hz, 6H).
화합물 d의 제조
실시예 6의 화합물 H6과 동일한 방법으로 화합물 d를 제조하였다(79% 수율).
1H NMR (400 MHz, CDCl 3): δ 7.47-7.48 (m, 1H), 7.33-7.37 (m, 1H), 7.21 (s, 1H), 7.19 (s, 1H), 6.96-6.97 (m, 1H), 5.51-5.61 (m, 1H), 4.93-5.00 (m, 2H), 3.88 (dt, J1 = 5.6 Hz, J2 = 1.4 Hz, 2H), 2.67 (m, 2H), 2.35 (s, 3H), 1.16 (d, J = 6.9 Hz, 6H), 0.98-1.10 (m, 16H).
화합물 e의 제조
실시예 6의 화합물 I6과 동일한 방법으로 화합물 e를 제조하였다(77% 수율).
1H NMR (400 MHz, CDCl 3): δ 7.47-7.48 (m, 1H), 7.33-7.37 (m, 1H), 7.15-7.30 (m, 6H), 7.05-7.15 (m, 2H), 6.93-7.05 (m, 2H), 6.88 (m, 1H), 6.03 (m, 1H), 5.57 (m, 1H), 5.29 (m, 1H), 4.56-4.70 (m, 2H), 4.49-4.62 (m, 2H), 4.35-4.49 (m, 2H), 3.96 (s, 1H), 2.75 - 2.62 (m, 2H), 2.27 (s, 3H), 1.90 (s, 3H), 0.88-1.05 (m, 22H).
화합물 f의 제조
실시예 6의 화합물 J6과 동일한 방법으로 화합물 f를 제조하였다(65% 수율).
1H NMR (400 MHz, CDCl 3): δ 8.19 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.63 (t, J = 7.60 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.47-7.48 (m, 2H), 7.33-7.37 (m, 3H), 7.26-7.29 (m, 2H), 7.16 (t, J = 7.7 Hz, 1H), 7.08 (d, J = 7.8 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H), 2.75 - 2.62 (m, 2H), 2.53 (s, 3H), 2.45 (s, 3H), 2.37-2.44 (m, 1H), 2.23-2.30 (m, 1H), 1.00-1.39 (m, 14H), 0.88-1.07 (m, 23H) 0.70 (d, J = 6.8 Hz, 1H).
비교촉매 3의 제조
실시예 6의 화합물 6과 동일한 방법으로 비교촉매 3을 제조하였다(91% 수율).
1H NMR (600 MHz, CD 2Cl 2): 1H NMR (400 MHz, CDCl 3): δ 8.21 (d, 1H), 7.70 (d, 1H), 7.63 (t, 1H), 7.57 (t, 1H), 7.47-7.48 (m, 2H), 7.33-7.37 (m, 3H), 7.26-7.30 (m, 2H), 7.18 (t, 1H), 7.12 (d, 1H), 6.95 (d, 1H), 6.94 (d, 1H), 2.75 - 2.60 (m, 2H), 2.56 (s, 3H), 2.43 (s, 3H), 2.37-2.40 (m, 1H), 2.23-2.30 (m, 1H), 1.00-1.39 (m, 14H), 0.88-1.07 (m, 23H) 0.70 (d, 1H), 0.25 (s, 3H), -0.79 (s, 3H). 13C{ 1H} NMR (151 MHz, CD 2Cl 2): δ 186.6, 170.8, 170.2, 160.9, 160.1, 158.2 157.5. 157.8, 157.3, 156.8, 154.9, 154.3, 153.9, 153.7, 152.1, 151.4, 151.0, 150.7, 150.6, 150.1, 149.9, 147.7, 147.0, 145.6, 134.7, 125.2, 82.9, 77.4, 77.2, 76.8, 76.6, 74.5, 54.1, 54.0, 48.3, 48.1, 46.8, 46.4, 44.2, 38.6, 31.0, 30.8, 29.2, 28.4.
[실시예 7 내지 20 및 비교예 4 내지 11] 에틸렌과 1-헥센의 공중합
에틸렌/1-헥센 공중합 과정은 다음과 같다:
중합은 기계식 교반기가 장착된 온도 조절이 가능한 연속중합반응기에서 수행하였다. 이 반응기에 scavenger로 TiBA/BHT (triisobutylaluminum/2,6-di-tert-butyl-4-methylphenol=1/1몰비, 30 μmol, 120 μL, 0.25 M 톨루엔 용액), 1-헥센 (120 μL, 180 μL, 200 μL, 250 μL, 300 μL, 350 μL 또는 400 μL)과 톨루엔을 가하여 전체 부피가 5mL가 되도록 하였다. 반응기의 온도는 중합온도 (110℃ 또는 150℃)로 맞춘 후 교반 속도를 800rpm으로 설정하였다. 에틸렌을 중합온도에 따라 일정하게 유지하기 위해 150℃의 경우 220psi, 110℃의 경우 200psi로 가하였다. 촉매 사용량은 10 nmole, 15 nmole 또는 20nmole을 적용하였으며 촉매 대비 조촉매의 양은 5당량으로 고정하였다. 중합 촉매를 반응기에 투입 후 5당량의 조촉매 TTB (triphenylmethylium tetrakis(pentafluorophenyl)borate)를 투입하면서 중합을 개시하였다. 중합반응은 하기 표 1에 기재된 시간동안 수행되었다.
중합 종료 후 반응기 온도를 실온으로 냉각하였으며, 반응기 내 에틸렌 압력을 천천히 배기시켜 제거하였다. 이 후 진공으로 생성된 중합체를 건조하였다.
[표 1] 에틸렌/1-헥센 공중합 조건 및 결과
Figure PCT2017121-appb-img-000059
상기 표 1에서 보는 바와 같이, 실시예 7 내지 20의 에틸렌/1-헥센 공중합 활성은 비교예 4 내지 11의 에틸렌/1-헥센 공중합 활성 대비 높음을 알 수 있다.
중합온도 150℃에서의 실시예 9, 11, 12, 14, 17, 18 및 20의 경우 비교예 6, 7, 9 및 11 대비 활성이 높아졌음을 알 수 있다. 특히, 중합촉매의 사용량이 동일하였을 때 실시예 18의 경우 비교예 6 및 7에 비해 63 내지 67 배 이상으로 높은 중합 활성을 나타내었다. 또한, 중합 온도 110℃에서의 실시예들의 경우에도 촉매들의 중합활성을 비교예 4, 5 및 8 대비 2.5 배 이상의 높은 중합 특성을 보이는 것을 확인하였다.
상기 표 1에서 A-CEF는 생성된 중합체의 무결정성 정도를 나타내는 수치로, 100%는 완전 무결정성 중합체를 의미하며, 공단량체가 많이 함유될수록 중합체는 무결정정이 된다. 비교예 1의 촉매를 사용한 중합결과의 비교예 4 내지 7의 경우 무결정성 중합체를 생성하기 위해 공단량체인 1-헥센을 400 μL를 투입해야 하는 반면, 본 발명의 실시예 1 내지 5의 촉매를 사용한 실시예 7 내지 18 및 20의 경우들은 180 μL 내지 350 μL의 적은 양의 공단량체를 투입하여도 무결정성 중합체가 생성됨을 알 수 있었다. 비교예 2의 촉매를 사용한 경우 150℃ 고온 중합에서 실시예 1 내지 5의 촉매로 중합하여 얻은 고분자 대비 결정성이 떨어짐을 알 수 있다. 즉, 실시예 1 내지 5의 촉매의 경우 비교예 1 내지 3의 촉매 대비 150℃ 이상의 고온에서 더 높은 공단량체 반응성을 보임을 확인할 수 있다. 즉, 중합반응시 공단량체인 1-헥센에 대한 상기 촉매들의 반응성에 있어 비교예 1의 촉매를 사용한 비교예 4 내지 7의 경우 공중합체 내의 1-헥센 함량이 10mol% 전후의 함량을 같기 위해서는 중합 시 400 μL의 공단량체를 투입하여야 하지만, 실시예 1 내지 5의 촉매를 사용한 중합 실시예 7 내지 18 및 20의 경우 180 μL 내지 350 μL의 공단량체를 투입하더라도 동등 수준의 공단량체 함량을 공중합체 내에 함유하였다. 이 중 중합 실시예 13 및 14의 경우 비교예 4 내지 7의 공단량체 투입 농도 대비 약 62.5% 농도에서도 동등 수준의 공단량체를 함유한 공중합체의 제조가 가능함을 확인하였다. 또한 비교예 9의 경우 200 μL의 1-헥센 투입 시 150℃ 중합 시 비결정화도가 98.9wt%인 반면, 실시예 촉매 5의 경우 중합결과 실시예 20에서 보는 바와 같이 180 μL의 1-헥센 투입 시 100wt%의 비결정성 고분자를 150 ℃에서 제조할 수 있음을 알 수 있다. 즉, 본 발명의 실시예 1 내지 5의 촉매를 중합촉매로 이용하는 경우 비교예 1의 촉매를 이용하는 경우에 비해 투입되는 공단량체의 양이 약 12 ~ 38% 낮은 수준의 공단량체 투입으로도 비결정성 고분자 제조가 가능함을 알 수 있었다. 또한, 본 발명의 실시예 5의 촉매를 중합촉매로 이용하는 경우 비교예 2의 촉매를 이용하는 경우에 비해 투입되는 공단량체의 양이 약 10 % 낮은 수준의 공단량체 투입으로도 비결정성 고분자 제조가 가능함을 알 수 있었다. 따라서, 본 발명의 촉매를 중합촉매로 사용하는 경우 공단량체의 사용량을 적게 사용하더라도 공단량체의 함량이 높은 공중합체를 제조할 수 있음을 알 수 있다.
이러한 특성은 본 발명의 실시예 1 내지 5의 촉매가 구조적으로 비교예 1 내지 3의 촉매 대비 공단량체에 대한 반응성이 높다는 것을 의미하며, 더 적은 양의 공단량체의 농도에서 더 낮은 밀도의 제품을 제조할 수 있음을 의미한다. 제조된 고분자 내의 공단량체 함량과 더불어 고분자 물성에 영향을 줄 수 있는 요소로 고분자의 분자량 분포를 고려할 수 있다.
비교예 1의 촉매를 이용하여 중합을 실시하는 경우 분자량 분포가 2.5에서 2.8의 분포를 갖는 반면(비교예 4 내지 7), 실시예 1 내지 5의 촉매를 이용하여 중합을 실시하는 경우 상대적으로 매우 좁은 분자량 분포인 2.4 이하의 분자량 분포를 갖는 것을 확인할 수 있다(실시예 7 내지 20). 이는 본 발명의 실시예 1 내지 5의 촉매들에 의해 제조된 공중합체의 경우 비교예 1의 촉매에 의해 제조된 공중합체 대비 균일한 분자량을 갖는 고분자를 제조할 수 있으며, 인장, 충격강도와 같은 특성에서 더 우수한 특성을 보일 수 있다는 것을 의미한다.
이상에서 살펴본 바와 같이 본 발명의 실시예에 대해 상세히 기술되었지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구범위에 정의된 본 발명의 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형하여 실시할 수 있을 것이다. 따라서 본 발명의 앞으로의 실시예들의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.
본 발명에 따른 전이금속 화합물 또는 상기 전이금속 화합물을 포함하는 촉매 조성물은 합성 과정이 단순하여 수율이 높고 경제적인 방법으로 용이하게 제조할 수 있으며, 또한 촉매의 열적 안정성이 뛰어나 고온에서도 높은 촉매활성을 유지하면서 다른 올레핀류와의 공중합 반응성이 좋고 고분자량의 중합체를 높은 수율로 제조할 수 있기 때문에 이미 알려진 메탈로센 및 비메탈로센계 단일활성점 촉매에 비해 상업적인 실용성이 높다. 따라서 본 발명에 따른 전이금속 및 이를 포함하는 촉매 조성물은 다양한 물성을 갖는 에틸렌 단독중합체 또는 α-올레핀과의 공중합체의 제조에 유용하게 사용될 수 있다.

Claims (13)

  1. 하기 화학식 1의 전이금속 화합물:
    [화학식 1]
    Figure PCT2017121-appb-img-000060
    상기 화학식 1에서,
    M은 주기율표 상 4 족의 전이금속이고;
    R 1 내지 R 5는 각각 독립적으로 수소, (C1-C20)알킬, (C6-C20)아릴, (C3-C20)헤테로아릴, -OR a1, -SR a2, -NR a3R a4 또는 -PR a5R a6이거나, 상기 R 1 내지 R 4는 인접한 치환체와 방향족고리를 포함하거나 포함하지 않는 (C4-C7)알킬렌 또는 (C4-C7)알케닐렌으로 연결되어 융합고리를 형성할 수 있고;
    R 6 및 R 7은 각각 독립적으로 (C1-C20)알킬, 할로(C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴, (C1-C20)알킬(C6-C20)아릴, (C6-C20)아릴(C1-C20)알킬, (C3-C20)헤테로아릴, -OR a1, -SR a2, -NR a3R a4 또는 -PR a5R a6이거나, 상기 R 6와 R 7은 (C4-C7)알킬렌으로 연결되어 고리를 형성할 수 있고;
    R 8 내지 R 10은 각각 독립적으로 수소, (C1-C20)알킬, 할로(C1-C20)알킬, 할로겐, (C6-C20)아릴, (C3-C20)헤테로아릴, -OR a1, -SR a2, -NR a3R a4 또는 -PR a5R a6이거나, R 8 내지 R 10는 인접한 치환체와 방향족고리를 포함하거나 포함하지 않는 (C4-C7)알케닐렌으로 연결되어 융합고리를 형성할 수 있고;
    R a1 내지 R a6는 각각 독립적으로 (C1-C20)알킬 또는 (C6-C20)아릴이고;
    R 11 및 R 12는 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이거나, 서로 연결되어 방향족 고리를 형성할 수 있고;
    Ar 1은 플루오레닐 또는 N-카바졸이고, 상기 Ar 1의 플루오레닐 또는 카바졸은 (C1-C20)알킬로 더 치환될 수 있고;
    X 1 및 X 2는 각각 독립적으로 할로겐, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴(C1-C20)알킬, ((C1-C20)알킬(C6-C20)아릴)(C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴옥시, (C1-C20)알킬(C6-C20)아릴옥시, (C1-C20)알콕시(C6-C20)아릴옥시, -OSiR aR bR c, -SR d, -NR eR f, -PR gR h 또는 (C1-C20)알킬리덴이고;
    R a 내지 R d은 서로 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아르(C1-C20)알킬, (C1-C20)알킬(C6-C20)아릴 또는 (C3-C20)시클로알킬이고;
    R e 내지 R h은 서로 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아르(C1-C20)알킬, (C1-C20)알킬(C6-C20)아릴, (C3-C20)시클로알킬, 트리(C1-C20)알킬실릴 또는 트리(C6-C20)아릴실릴이고;
    단 X 1 또는 X 2 중 하나가 (C1-C50)알킬리덴인 경우 나머지 하나는 무시되고;
    상기 헤테로아릴은 N, O 및 S로부터 선택되는 하나 이상의 헤테로 원자를 포함한다.
  2. 제 1항에 있어서,
    상기 전이금속 화합물은 하기 화학식 2, 3, 4 또는 5로 표시되는 것인 전이금속 화합물:
    [화학식 2]
    Figure PCT2017121-appb-img-000061
    [화학식 3]
    Figure PCT2017121-appb-img-000062
    [화학식 4]
    Figure PCT2017121-appb-img-000063
    [화학식 5]
    Figure PCT2017121-appb-img-000064
    상기 화학식 2 내지 5에서, M, R 6, R 7, R 9, R 10, X 1 및 X 2는 청구항 제1항의 화학식 1에서의 정의와 동일하고;
    R 1 내지 R 5는 각각 독립적으로 수소, (C1-C20)알킬, (C6-C20)아릴, (C3-C20)헤테로아릴, -OR a1, -SR a2, -NR a3R a4 또는 -PR a5R a6이고;
    R a1 내지 R a6는 각각 독립적으로 (C1-C20)알킬 또는 (C6-C20)아릴이고;
    R 11 및 R 12는 각각 독립적으로 수소이거나, 서로 연결되어 벤젠 고리를 형성할 수 있고;
    R 13 및 R 14 는 각각 독립적으로 (C1-C20)알킬이고;
    R 15, R 16 및 R 17은 각각 독립적으로 수소 또는 (C1-C20)알킬이다.
  3. 제 2항에 있어서,
    상기 전이금속 화합물은 하기 화합물들로부터 선택되는 것인 전이금속 화합물.
    Figure PCT2017121-appb-img-000065
    Figure PCT2017121-appb-img-000066
    Figure PCT2017121-appb-img-000067
    Figure PCT2017121-appb-img-000068
    Figure PCT2017121-appb-img-000069
    Figure PCT2017121-appb-img-000070
    Figure PCT2017121-appb-img-000071
    Figure PCT2017121-appb-img-000072
    Figure PCT2017121-appb-img-000073
    Figure PCT2017121-appb-img-000074
    Figure PCT2017121-appb-img-000075
    Figure PCT2017121-appb-img-000076
    Figure PCT2017121-appb-img-000077
    Figure PCT2017121-appb-img-000078
    Figure PCT2017121-appb-img-000079
    Figure PCT2017121-appb-img-000080
    Figure PCT2017121-appb-img-000081
    Figure PCT2017121-appb-img-000082
    Figure PCT2017121-appb-img-000083
    Figure PCT2017121-appb-img-000084
    Figure PCT2017121-appb-img-000085
    Figure PCT2017121-appb-img-000086
    Figure PCT2017121-appb-img-000087
    Figure PCT2017121-appb-img-000088
    (상기 M은 티타늄, 지르코늄 또는 하프늄이다.)
  4. 제 1항 내지 제 3항의 어느 한 항에 따른 전이금속 화합물; 및
    알루미늄 화합물, 붕소 화합물 또는 이들의 혼합물로부터 선택된 조촉매;
    를 포함하는 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조용 전이금속 촉매 조성물.
  5. 제 4항에 있어서,
    상기 조촉매로 사용되는 알루미늄 화합물은 알킬알루미녹산 또는 유기알루미늄으로부터 선택되는 하나 또는 둘 이상의 혼합물로서, 메틸알루미녹산, 개량 메틸알루미녹산, 테트라이소부틸알루미녹산, 트리메틸알루미늄, 트리에틸알루미늄 및 트리이소부틸알루미늄 중에서 선택되는 단독 또는 이들의 혼합물인 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조용 전이금속 촉매 조성물.
  6. 제 4항 또는 제 5항에 있어서,
    상기 알루미늄 화합물 조촉매는 전이금속(M): 알루미늄 원자(Al)의 비가 몰비 기준으로 1: 10 내지 5,000인 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조용 전이금속 촉매 조성물.
  7. 제 4항에 있어서,
    상기 조촉매로 사용되는 붕소 화합물은 N,N-디메틸아닐리니움 테트라키스(펜타플루오로페닐)보레이트, 트리페닐메틸리니움 테트라키스(펜타플루오로페닐)보레이트 및 트리스(펜타플루오르페닐)보레인 중에서 선택되는 단독 또는 이들의 혼합물인 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조용 전이금속 촉매 조성물.
  8. 제 4항 또는 제 7항에 있어서,
    상기 전이금속 화합물과 조촉매의 비율이 전이금속(M): 붕소원자(B): 알루미늄원자(Al)의 몰비가 1 : 0.1 내지 100 : 10 내지 3,000의 범위인 것을 특징으로 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조용 전이금속 촉매 조성물.
  9. 제 8항에 있어서,
    상기 전이금속 화합물과 조촉매의 비율이 전이금속(M): 붕소원자(B): 알루미늄원자(Al)의 몰비가 1 : 0.5 내지 5 : 100 내지 30,00의 범위인 것을 특징으로 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조용 전이금속 촉매 조성물.
  10. 제 4항에 따른 전이금속 촉매 조성물을 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법.
  11. 제 10항에 있어서,
    상기 에틸렌과 공중합되는 α-올레핀은 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-옥타데센, 1-아이토센, 시클로펜텐, 시클로헥센, 노르보넨(Norbonene), 페닐노보넨, 스티렌(styrene), 알파-메틸스티렌, p-메틸스티렌 및 3-클로로메틸스티렌 중에서 선택되는 1종 이상이고, 상기 에틸렌과 α-올레핀의 공중합체 중 에틸렌 함량은 30 내지 99 중량%인 것을 특징으로 하는 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법.
  12. 제 11항에 있어서,
    상기 에틸렌 단독 중합 또는 에틸렌 단량체와 α-올레핀과의 공중합 반응기 내의 압력은 1 내지 1000 기압이고, 중합 반응 온도는 25 내지 200℃인 것을 특징으로 하는 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체를 제조하는 방법.
  13. 제 12항에 있어서,
    상기 에틸렌 단독 중합 또는 에틸렌 단량체와 α-올레핀과의 공중합 반응기 내의 압력은 10 내지 150 기압이고, 중합 반응 온도는 50 내지 180℃인 것을 특징으로 하는 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법.
PCT/IB2018/050008 2017-01-06 2018-01-02 신규한 인덴계 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법 WO2018127795A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170002458 2017-01-06
KR10-2017-0002458 2017-01-06
KR1020170179356A KR101980683B1 (ko) 2017-01-06 2017-12-26 신규한 인덴계 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
KR10-2017-0179356 2017-12-26

Publications (1)

Publication Number Publication Date
WO2018127795A1 true WO2018127795A1 (ko) 2018-07-12

Family

ID=62791145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/050008 WO2018127795A1 (ko) 2017-01-06 2018-01-02 신규한 인덴계 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법

Country Status (1)

Country Link
WO (1) WO2018127795A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050154158A1 (en) * 2002-02-08 2005-07-14 Hidenori Hanaoka Transition metal complexes, ligands, polymerization catalysts for olefins, and process for production of olefin polymers
JP2008297287A (ja) * 2007-06-04 2008-12-11 Sumitomo Chemical Co Ltd ハロゲン化遷移金属錯体の製造方法
JP2010095519A (ja) * 2008-09-18 2010-04-30 Sumitomo Chemical Co Ltd 遷移金属錯体
US20140316085A1 (en) * 2013-04-11 2014-10-23 Exxonmobil Chemical Patents Inc. Process of Producing Polyolefins Using Metallocene Polymerization Catalysts and Copolymers Therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050154158A1 (en) * 2002-02-08 2005-07-14 Hidenori Hanaoka Transition metal complexes, ligands, polymerization catalysts for olefins, and process for production of olefin polymers
JP2008297287A (ja) * 2007-06-04 2008-12-11 Sumitomo Chemical Co Ltd ハロゲン化遷移金属錯体の製造方法
JP2010095519A (ja) * 2008-09-18 2010-04-30 Sumitomo Chemical Co Ltd 遷移金属錯体
US20140316085A1 (en) * 2013-04-11 2014-10-23 Exxonmobil Chemical Patents Inc. Process of Producing Polyolefins Using Metallocene Polymerization Catalysts and Copolymers Therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HANAOKA, H.: "Synthesis and characterization of titanium and zirconium complexes with silicone-bridged phenoxycyclopentadienyl ligands", JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2007, pages 4059 - 4066, XP022198617, DOI: doi:10.1016/j.jorganchem.2007.06.006 *

Similar Documents

Publication Publication Date Title
WO2017155149A1 (ko) 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
WO2017188602A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
WO2019038605A1 (en) NEW TRANSITION METAL COMPOUND, CATALYST COMPOSITION CONTAINING THE SAME, AND PROCESS FOR PREPARING HOMOPOLYMER OR ETHYLENE COPOLYMER AND ALPHA-OLEFIN USING THE SAME
EP2718303A2 (en) New cyclopenta[b]fluorenyl transition metal compound, catalyst composition containing the same, and method of preparing ethylene homopolymer or copolymer of ethylene and -olefin using the same
WO2017099491A1 (ko) 올레핀계 중합체
WO2013133595A1 (en) Hybrid supported metallocene catalyst, method for preparing the same, and process for preparing polyolefin using the same
WO2017176074A1 (ko) 용융 장력이 우수한 프로필렌-디엔 공중합체 수지
WO2010053264A2 (en) METHOD FOR PREPARING ELASTOMERIC COPOLYMERS OF ETHYLENE AND α-OLEFINS
WO2017003261A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2020105922A1 (ko) 올레핀 중합 촉매용 전이금속 화합물 및 이를 포함하는 올레핀 중합 촉매
WO2015057001A1 (ko) 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
WO2018127772A1 (ko) 신규한 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
WO2021111282A1 (ko) 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀 중합체의 제조방법
WO2017003262A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2023191519A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2021075788A1 (ko) 올레핀 중합용 혼성 촉매의 제조방법, 올레핀 중합용 혼성 촉매 및 올레핀계 중합체
WO2018122693A1 (ko) 신규한 시클로펜타[B]티오펜일 전이금속 화합물, 이를 포함하는 전이금속 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
WO2016153275A1 (ko) 올레핀계 중합체
WO2018127795A1 (ko) 신규한 인덴계 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
WO2018106029A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2021020778A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2019123028A1 (ko) 금속-리간드 착체, 이를 포함하는 에틸렌계 중합용 촉매 조성물 및 이를 이용한 에틸렌계 중합체의 제조방법
KR101980683B1 (ko) 신규한 인덴계 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
WO2022144650A1 (en) Metal-ligand complex, catalyst composition for preparing ethylene-based polymer containing the same, and preparation method of ethylene-based polymer using the same
WO2019182290A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18736105

Country of ref document: EP

Kind code of ref document: A1