WO2018124219A1 - 動力伝達制御装置 - Google Patents

動力伝達制御装置 Download PDF

Info

Publication number
WO2018124219A1
WO2018124219A1 PCT/JP2017/047050 JP2017047050W WO2018124219A1 WO 2018124219 A1 WO2018124219 A1 WO 2018124219A1 JP 2017047050 W JP2017047050 W JP 2017047050W WO 2018124219 A1 WO2018124219 A1 WO 2018124219A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
power transmission
switching
engagement
reduction gear
Prior art date
Application number
PCT/JP2017/047050
Other languages
English (en)
French (fr)
Inventor
義隆 清水
充俊 神谷
Original Assignee
アイシン・エーアイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エーアイ株式会社 filed Critical アイシン・エーアイ株式会社
Priority to CN201780079327.4A priority Critical patent/CN110100123B/zh
Priority to US16/471,763 priority patent/US11092235B2/en
Priority to DE112017005819.8T priority patent/DE112017005819T5/de
Priority to JP2018559602A priority patent/JP6699760B2/ja
Publication of WO2018124219A1 publication Critical patent/WO2018124219A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/682Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings with interruption of drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/363Rate of change of input shaft speed, e.g. of engine or motor shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • F16H2059/462Detecting synchronisation, i.e. speed difference is approaching zero
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • F16H2061/0422Synchronisation before shifting by an electric machine, e.g. by accelerating or braking the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0488Smoothing ratio shift during range shift from neutral (N) to drive (D)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting
    • F16H2306/32Preparing the opening or release of the torque transmitting element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting
    • F16H2306/40Shifting activities
    • F16H2306/48Synchronising of new gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2710/00Control devices for speed-change mechanisms, the speed change control is dependent on function parameters of the gearing
    • F16H2710/04Control dependent on speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a power transmission control device.
  • Patent Document 1 discloses an automatic transmission that controls the rotation of an input shaft so that engagement with another transmission can be performed after engagement release.
  • a controller is disclosed.
  • the automatic transmission control device includes a control unit, a shift member that is moved by the actuator to perform engagement and release operations, and a power source connected to the input shaft.
  • the control unit controls the movement of the shift member by the actuator and controls the rotation of the input shaft by the power source.
  • FIG. 4 shows (a) temporal change in engine (or rotational shaft) rotational speed, (b) temporal change in sleeve stroke position, and (c) temporal change in gear in a vehicle employing an actuator.
  • FIG. 4 assuming that a gear change request is made at time A, the actuator is controlled to slide the stroke position of the sleeve in the direction in which the gear is completely removed from the gear pressing completion position. The actuator moves the sleeve even after reaching the engagement start position where the engagement is released (point B) to move the sleeve to the neutral position. The actuator then moves the sleeve relative to the next gear.
  • processing for synchronizing the rotational speed of the idle gear of the next gear and the rotational speed of the rotating shaft connected to the sleeve is performed from the point of time when the engagement release after B is determined.
  • point of C After completion of the rotation synchronization (point of C), the sleeve is started to slide in the direction of the idle gear of the next gear. Engagement starts when the sleeve reaches the engagement start position (time D) where the sleeve contacts the idle gear, and gear change is completed when the sleeve reaches the pressing completion position through the engagement completion position.
  • An object of the present invention is to reduce delay in response.
  • the after-switching rotation number calculation process for calculating the after-switching rotation number which is the first rotation number after switching so as to establish power transmission by the reduction mechanism, and after canceling the power transmission by the first reduction gear mechanism Synchronization control processing for controlling the number of rotations of the first rotation shaft by the power source so as to synchronize the first rotation speed with the after-switching rotation speed calculated by the after-switching rotation speed calculation process;
  • the switching mechanism is configured to establish power transmission by the second reduction gear mechanism after completing synchronization of the first rotation speed with the after-switching rotation speed calculated by the after-switching rotation speed calculation processing.
  • the switching control process to be controlled is configured to be executable, and in the switching control process, the first rotation speed is synchronized with the after-switching rotation speed calculated by the after-switching rotation speed calculation process before the synchronization is completed.
  • the control of the switching mechanism is started to establish power transmission by the second reduction mechanism.
  • the switching mechanism is integrally rotated with any one of the first rotation shaft and the second rotation shaft, and axially movable with respect to the one shaft, and the first reduction gear mechanism
  • An engagement member disposed between the second reduction gear mechanism and an actuator operable to move the engagement member in the axial direction, the first reduction gear including the engagement member
  • the power transmission is established by complete engagement with the engagement member when axially moved to the first reduction gear mechanism side, and in the second reduction gear mechanism, the engagement member is the second
  • the power transmission is established by engaging with the engagement member when axially moved to the reduction mechanism side, and the actuator includes an operation amount detection unit that detects an operation amount of the actuator, the control
  • the rotation speed of the after-switching rotation speed and the first rotation speed is Differential rotation calculation processing for calculating a differential rotation change rate which is a change amount per unit time of the differential rotation and the differential rotation, and is necessary until the engagement member starts engagement with the second reduction gear mechanism
  • the necessary operation amount calculation processing for calculating the required operation amount which is the operation amount of
  • the positional relationship between the engagement member and the second reduction gear mechanism in the axial direction is at least a state where power transmission is not established between the engagement member and the second reduction gear, and a state where power transmission is established.
  • Neutral position in which power transmission is not established between the engagement completion position, which is a switching position, and between the engagement member and the first reduction gear mechanism, and between the engagement member and the second reduction gear mechanism.
  • the power transmission is not established between the engagement member and the second reduction gear mechanism, but the engagement member and the second reduction gear mechanism are located between the engagement completion position and the neutral position.
  • a position immediately before the start of engagement located between the neutral position and the engagement start position, wherein the required operation amount is the engagement position Before reaching the start position Or as an operation amount of the principal of the actuator.
  • the position immediately before the start of engagement may be a position separated from the engagement start position by a predetermined distance.
  • the first rotation speed may be controlled by the power source such that the differential rotation change rate calculated by the differential rotation calculation process becomes a predetermined change rate.
  • the control unit maintains the state in which power transmission by the second reduction gear mechanism is not established after releasing power transmission by the first reduction gear mechanism, and moves the engagement member closer to the second reduction gear mechanism. It is configured to be able to execute a process of operating the actuator by a predetermined amount of operation, and in the switching control process, after the actuator is operated by the predetermined amount of operation, the first number of rotations is calculated by the number of rotations after switching process.
  • the control of the switching mechanism may be started toward establishment of power transmission by the second reduction gear mechanism before synchronization completion of the calculated post-switching rotational speed is completed.
  • FIG. 1 is an explanatory view showing the configuration of a vehicle related to the power transmission control device of the present invention.
  • 11 is an engine as a power source
  • 12 is an input shaft as a first rotation shaft
  • 13 is a motor generator as another power source
  • 14 is axially movable to the input shaft 12 as an engagement member.
  • a sleeve supported integrally rotatably 15 is a shift fork
  • 16 is a shift shaft
  • 17 is a damper
  • 18 is an actuator
  • 19a and 19b are power transmission mechanisms
  • 20 is an output shaft as a second rotation shaft
  • 21 is a control
  • a first rotation number detector 31 detects a first rotation number which is the rotation number of the input shaft 12
  • a second rotation number detector 32 which detects a second rotation number which is the rotation number of the output shaft 20. is there.
  • An idle gear GA1 and an idle gear GB1 as engaged members are connected to the input shaft 12 so as to be capable of relative rotation
  • a gear GA2 and a gear GB2 are connected to the output shaft 20 for integral rotation.
  • the first reduction gear mechanism 51 is configured by the free rotation gear GA1 and the gear GA2
  • the second reduction gear mechanism 52 is configured by the free rotation gear GB1 and the gear GB2.
  • first reduction gear mechanism 51 is configured by the free rotation gear GA1 and the gear GA2 and the second reduction gear mechanism 52 is configured by the free rotation gear GB1 and the gear GB2 for convenience of explanation,
  • the first reduction gear mechanism 51 may be configured by the transfer gear GB1 and the gear GB2, and the second reduction mechanism 52 may be configured by the free rotation gear GA1 and the gear GA1.
  • a configuration of a power transmission unit using three or more axes, such as an input shaft, a counter shaft, and an output shaft is also assumed.
  • the power transmission mechanisms 19a and 19b are used to transmit the power of the actuator 18 to the shift shaft 16, this configuration is not necessary, and any operation of the sleeve 14 can be controlled by the power of the actuator 18. It may be a configuration. In the present invention, whether or not to adopt the synchro mechanism is not an essential problem and can be adopted for any of them, but in this example, the explanation will be made assuming that it is a non-synchronized transmission without the synchro mechanism. Do. Further, as long as the gear change is performed by the actuator 18, the gear change may be performed according to a gear change request based on the operation of the driver, or the conditions for gear change are set in advance and the conditions are satisfied. In this case, the gear change may be performed automatically.
  • an engine 11 rotationally drives an input shaft 12.
  • a motor generator 13 capable of rotationally driving the input shaft 12 may be disposed.
  • a clutch, a torque converter, or the like may be disposed between the engine 11 and the motor generator 13.
  • the idle gear GA1 and the idle gear GB1 are connected so as to be relatively rotatable, and in the neutral state, the sleeve 14 is positioned between the two without engaging with each other. The position of the sleeve 14 at this time is the neutral position.
  • the idle gear GA1 and the input shaft 12 are fixed so as not to relatively rotate by the switching mechanism.
  • the switching mechanism includes a shift fork 15, a shift shaft 16, a damper 17, an actuator 18, a power transmission mechanism 19 a, and a power transmission mechanism 19 b.
  • the power from the actuator 18 is transmitted to the shift shaft 16 via the power transmission mechanism 19a, the damper 17, and the power transmission mechanism 19b to operate the sleeve 14.
  • the actuator 18 includes, for example, a motor (not shown), a conversion mechanism that converts the torque of the motor into a thrust, and an operation amount detection unit 18a that is a sensor that monitors the operation amount of the conversion mechanism.
  • the actuator 18 receives the information output from the control unit 21 and controls the output of the motor to control the amount of movement of the sleeve 14 in the axial direction, and as a result, the amount of stroke (movement) of the sleeve 14 in the axial direction. Control with high precision.
  • control unit 21 has a function of performing various processes for performing a gear change in the non-synchronous transmission.
  • the control unit 21 of the present example has a function of executing at least an after-switching rotation number calculation process, a synchronization control process, a switching control process, a differential rotation calculation process, and a necessary operation amount calculation process.
  • a process for calculating a first rotational speed when switching the power transmission is performed by the switching mechanism.
  • the control unit 21 switches the state in which the power transmission by the first reduction gear mechanism 51 is established to the state in which the power transmission by the second reduction gear mechanism 52 is established
  • the control unit 21 detects the second rotation speed detector 32 Based on the two rotational speeds, a post-switching rotational speed, which is the first rotational speed after switching to establish power transmission by the second reduction gear mechanism 52, is calculated.
  • a process for controlling the output of the engine 11 is executed based on the after-switching rotational speed calculated by the after-switching rotational speed calculation process.
  • the control unit 21 controls the engine 11 to synchronize the first rotation speed with the after-switching rotation speed calculated by the after-switching rotation speed calculation processing after releasing the power transmission by the first reduction gear mechanism 51.
  • the control unit 21 controls the operation of the switching mechanism so as to establish power transmission by the second reduction gear mechanism 52 after completing synchronization with the first rotation speed after switching, and causes synchronization completion. Prior to the establishment of power transmission by the second reduction gear mechanism 52, control of the switching mechanism is started.
  • the control unit 21 is a change amount per unit time of differential rotation which is a difference between the after-switching rotational speed and the first rotational speed at that time detected by the first rotational speed detection unit 31.
  • a process is performed to calculate a certain differential rotational change rate.
  • the control unit 21 calculates the required actuation amount, which is the actuation amount of the actuator 18 from the position detected by the actuation amount detection unit 18a to the position just before the sleeve 14 starts engagement with the second reduction gear mechanism 52. Do.
  • the example of the structure of calculation of a required operating quantity is not restricted to this, For example, the operating quantity of the actuator 18 between the sleeve 14 and the 2nd deceleration mechanism 52 completion may be sufficient.
  • the control unit 21 calculates a necessary operation amount which is an operation amount of the actuator 18 up to a position immediately before the sleeve 14 starts engagement with the idle gear GB1.
  • the control unit 21 also includes first rotation number information 22 related to the first rotation number detected by the first rotation number detection unit 31 and a second rotation number related to the second rotation number detected by the second rotation number detection unit 32.
  • Number information 23 and other sensor information 24 are input.
  • the other sensor information 24 includes vehicle speed information, accelerator opening information, and accelerator opening change rate information, which is the amount of change in accelerator opening per unit time.
  • the terms used in the following description are defined as follows.
  • (Engaged state) The engagement member and the engaged member are not in contact with each other and do not transmit power. That is, it is a state in which the spline of the sleeve and the spline of the idle gear are not in contact with each other in the present example, and when the idle gears are present on both sides, the neutral state is indicated.
  • (Engagement start state) The engagement member and the engaged member are in contact but do not transmit power. Specifically, when the spline tip of the sleeve and the idle gear is chamfered or R-shaped, contact between chamfers or between Rs causes reaction force to separate the sleeve and gear piece when power transmission is attempted.
  • (Engagement completion state) It refers to a state in which the engaging member and the engaged member are in contact with each other to transmit power. In this example, the splines of the sleeve are pushed into the gaps of the splines of the idle gear to ensure a firm meshing power transmission, and it does not include that only chamfers, Rs, or spline tips contact with each other. (Pressing completed) After the engagement member is moved to shift from the engagement start state to the engagement completion state, the engagement member is further moved to reach the boundary of the movement range. It is part of the engaged complete state.
  • this state is a state in which the actuator continues to be operated to move the engaging member further from the engaged state, and is controlled to be applied to the stopper which is the boundary of the movable range of the actuator itself.
  • the actuator is operated to press the stopper with a constant load and for a constant time.
  • This state is an image in which the sleeve moves further from the engaged state to the far side. (Position just before engagement start)
  • the sleeve 14 is located between the neutral position and the engagement start position in the operating axial direction of the sleeve 14, is a predetermined distance from the engagement start position, and is located within the neutral range.
  • (Engagement start position) It is a boundary position of whether or not the engaging member and the engaged member are in contact, which is a position at which the disengagement state and the engagement start state are switched. That is, this position is a position where the engaging member and the engaged member start to contact when the engaging member and the engaged member are engaged, and the engagement between the engaging member and the engaged member In the case of releasing the lock, the engagement member and the engaged member are not in contact with each other.
  • the engagement start position may be a position separated by a predetermined distance from the boundary position at which the engaging member and the engaged member are in contact or not in consideration of the operation amount detection accuracy of the actuator and the like.
  • (Engagement completion position) It is a position where the engaging member and the engaged member are in contact and at which the engagement start state and the engagement completion state are switched.
  • the engagement completion position may be a position separated by a predetermined distance on the engagement side from the position at which the engagement start state and the engagement completion state are switched in consideration of the operation amount detection accuracy of the actuator and the like.
  • (Pressing complete position) It is a position where the engaging member and the engaged member are in contact and is in the pressing completion state.
  • FIG. 2 is an explanatory view for explaining the concept of the engagement operation control in the present invention, and is an explanatory view showing a stroke amount of the sleeve 14.
  • the horizontal axis represents time
  • the vertical axis represents the stroke amount of the sleeve 14 detected by the sensor in the actuator 18.
  • the stroke of the sleeve 14 until the sleeve 14 engaged with the idle gear GA1 enters the idle gear GB1 is shown.
  • a shift control start position point of time F
  • shift control point of time F
  • shift control means control in which the sleeve 18 is moved to the engagement completion position by the actuator 18 and engaged with the gear.
  • the stroke amount is controlled so that the sleeve 14 stays in the neutral position until synchronization of the rotational speed is completed (up to time C). It had been.
  • the synchronization control is performed, and the shift control is started at least before the completion of the synchronization by the synchronization control, so that the synchronization of the rotational speed is completed (time C).
  • the stroke amount is controlled so as to be located at a position just before the start of the joint.
  • FIG. 3 is a flowchart showing the flow of engagement operation processing in the present invention.
  • the shift request is received while the vehicle is traveling, and the sleeve 14 in the engagement completion state with the idle gear GA1 moves to the engagement start position of the idle gear GA1, and the engagement is released.
  • An example of the later processing is described. That is, an example of processing after the engagement release state is described.
  • control unit 21 specifies the first rotation number at the time when free rotation gear GB1 and sleeve 14 are in the engagement start state as the post-switching rotation number (step S101).
  • the control unit 21 acquires second rotation number information 23 related to the second rotation number detected by the second rotation number detection unit 32 provided on the output shaft 20, and the second rotation number corresponding to the second rotation number.
  • One rotation number is calculated as the number of rotations after switching.
  • the control unit 21 specifies a first rotation number at the time of engagement release (step S102). For example, the control unit 21 acquires first rotation number information 22 related to the current first rotation number detected by the first rotation number detection unit 31.
  • the information specified here may be any information that can grasp the rotational speed of the sleeve 14 engaged with the idle gear GB1. That is, the information received by the control unit 21 may be information on the number of rotations of the sleeve 14 or information on the output of the engine 11.
  • control unit 21 calculates the differential rotation based on the first rotation number at the time of engagement release and the rotation number after switching.
  • the control unit 21 calculates a differential rotation change rate until the differential rotation becomes the target rotational difference (step S104).
  • the “target rotation difference” may be zero, but is preferably a minute value. That is, it is preferable that the sleeve 14 and the idle gear GB1 be in the engagement start state in a state where there is a slight differential rotation. Smooth engagement can be realized by the engagement start state of the sleeve 14 and the idle gear GB1 in the state where there is a slight differential rotation.
  • the fact that the differential rotation reaches the target rotation difference is expressed as the first rotation number reaches the rotation number after switching.
  • the differential rotation change rate becomes a positive value (that is, a change rate that increases the number of revolutions) when performing synchronous control for downshifting.
  • the differential rotation change rate becomes a negative value (that is, the change rate that reduces the rotational speed).
  • the differential rotation change rate may be calculated so as to be constant or substantially constant.
  • the time of synchronous control may be fixed, and the rate of change in differential rotation may be varied according to the difference in rotation.
  • it may be configured to calculate the differential rotation change rate that can obtain an efficient engine output with reference to the information on the torque of the engine 11.
  • control unit 21 executes a process for executing shift control.
  • the control unit 21 calculates the time required for the first rotational speed to reach the post-switching rotational speed from the differential rotation change rate as the synchronization time (step S105). That is, the time required for the differential rotation to reach the target rotational difference is calculated.
  • control unit 21 specifies the time required to move from the engagement start position of idle gear GA1 to the shift control start position, which is a position at or near the neutral position (step S106). ). That is, the control unit 21 specifies the time required to move from B to F in FIG. Since the actual stroke in B to F in FIG. 2 is constant, for example, the control unit 21 refers to the information on the actual stroke in B to F in FIG. It is possible to specify the time required to move from the position to the shift control start position.
  • control unit 21 moves from the engagement start position of idle gear GA1 to the shift control start position
  • the difference between the time required for synchronization and the synchronization time is calculated (step S107). That is, the control unit 21 calculates the moving time from the shift control start position to the position immediately before the engagement start on the free rotation gear GB1 side.
  • control unit 21 calculates the movement distance from the shift control start position to the position immediately before the engagement start on the free rotation gear GB1 (step S108). In other words, the control unit 21 specifies the necessary operation amount of the sleeve 14 based on the actuator 18 when moving the sleeve 14 from the shift control start position to the position just before the engagement start on the idle gear GB1 side.
  • the control unit 21 calculates the operation speed of the sleeve 14 based on the calculated movement time and movement distance (step S109). For example, when the rotation difference becomes the target rotation difference, the control unit 21 calculates the operation speed so that the sleeve 14 is positioned at a position immediately before the start of engagement of the idle gear GB1. The operation speed from the position immediately before the engagement start to the engagement completion position in the shift gear GB1 side in shift control is appropriately calculated with reference to the operation speed to the position just before the engagement start. Just do it.
  • control unit 21 executes synchronous control (step S110). Specifically, the control unit 21 generates instruction information for changing the first rotation speed based on the differential rotation change rate calculated in step S104, and transmits the instruction information to the engine 11.
  • the engine 11 having received the instruction information changes the rotational speed of the engine 11 based on the received instruction information. That is, by changing the rotational speed of the engine 11, synchronous control is performed to synchronize the rotational speeds of the input shaft 12 and the output shaft 20. In this example, synchronous control is performed so that engagement with another transmission can be performed by controlling the engine 11, but synchronous control is realized by controlling the motor generator 13. It may be done.
  • step S111 determines whether the shift control start position has been reached. If the control unit 21 determines that it has not reached (N in step S111), it proceeds to step S111 and determines whether it has reached the shift control start position again.
  • step S112 shift control is performed (step S112). Specifically, the control unit 21 generates instruction information for operating the sleeve 14 based on the operation speed calculated in step S109, and transmits the instruction information to the actuator 18.
  • the actuator 18 having received the instruction information operates the sleeve 14 based on the received instruction information. That is, by controlling the operation of the sleeve 14 by the actuator 18, shift control is performed to move the sleeve 14 to the engagement completion position on the idle gear GB 1 side and perform the engagement operation. Incidentally, after the sleeve 14 reaches the engagement completion position on the free rotation gear GB1 side, the sleeve 14 is further moved to the pressing completion position on the free rotation gear GB1 side.
  • control unit 21 is configured to determine whether or not the shift control start position has been reached, the present invention is not limited to such a configuration.
  • the control unit 21 is configured to operate the actuator 18 by a predetermined operation amount so as to approach the idle gear GB1 while maintaining the neutral state after releasing the sleeve 14 from engagement with the idle gear GA1. It is also good. Then, after the actuator 18 is actuated by a predetermined actuation amount, the control unit 21 may be configured to execute shift control.
  • the control unit 21 ends the processing here.
  • the control unit 21 executes the synchronous control and the shift control, the gear shift of the vehicle adopting the non-synchronized transmission can be shifted to the engagement completion state through the engagement start state, and the pressing is finally completed. It will be possible to transition to the state.
  • the timing to start shift control may be configured to be at least before completion of synchronization.
  • the stroke amount is controlled to be positioned immediately before the start of engagement at the time when synchronization of the rotational speed is completed.
  • “completion of synchronization” means that the first rotation speed is a rotation speed at which the engagement release state can be shifted to the engagement start state, and the first rotation speed is the rotation speed after switching. It means to reach.
  • the process of this example can be adopted at other than the engagement release time.
  • the power transmission control device 10 moves up to a position immediately before the engagement start of the sleeve 14 and the difference between the differential rotation and the target rotation difference at the start of the shift control. Based on the distance, the actuation speed of the sleeve 14 based on the actuator 18 can be determined so that the sleeve 14 reaches a position just before the start of engagement at the timing of completion of synchronization.
  • the power transmission control device 10 calculates the difference between the differential rotation and the target rotation difference, the rate of change of the differential rotation, and the distance immediately before the start of engagement of the sleeve 14 every time a shift control is being performed. Based on the above, the operating speed of the sleeve 14 based on the actuator 18 may be adjusted so that the sleeve 14 reaches the position just before the start of engagement at the timing of completion of synchronization.
  • control unit 21 has been described to execute various processes in the above-described flowchart in series, the present invention is not limited to such a configuration.
  • control unit 21 is configured to separately execute a process for executing synchronous control and a process for executing shift control, and execute synchronous control and shift control at the same timing. It is also good.
  • the power transmission control device 10 includes the sleeve 14 which is moved by the actuator 18 to perform the disengagement and engagement operations, the motor generator 13 connected to the input shaft 12, or the input
  • the engine 11 connected to the shaft 12 and a control unit 21 that controls the movement of the sleeve 14 by the actuator 18 and controls the rotation of the input shaft 12 by the engine 11 or the motor generator 13.
  • synchronization control is performed to synchronize the rotation of the input shaft 12 by the engine 11 or the motor generator 13 so that the engagement operation to the other gear is possible, and the actuator 18 completes the engagement completion position of the sleeve 14 Shift control to move Initiate at least before synchronization is complete.
  • the delay in response is reduced and the time required for the shift is shortened, so that the driving performance is improved.
  • the power transmission control device 10 is configured to start shift control at a position moved a predetermined distance from the engagement release position. According to such a configuration, the operation performance can be improved because an operation feeling close to the required stroke can be obtained.
  • the control unit 21 detects the state of detection of information at that time. Accordingly, synchronization control and shift control may be executed again. According to such a configuration, it is possible to realize the engagement operation with high accuracy in accordance with the situation which changes sequentially.
  • the sleeve 14 and the idle gears GA1, GB1 are engaged with each other.
  • the present invention is not limited to such a configuration.
  • one pulley for transmitting power by a belt, one sprocket for transmitting power by a chain, etc. may be made to rotate with respect to the shaft, and the dog clutch may be engaged with or disengaged from the shaft. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

応答の遅れを少なくすることを課題とする。 自動変速制御装置10は、アクチュエータ18によって移動作動して係合動作を行うスリーブ14と、インプットシャフト12に接続されたエンジン11と、アクチュエータ18によってスリーブ14の移動を制御するとともに、エンジン11又はモータジェネレータ13によってインプットシャフト12の回転を制御する制御部21とを備える。制御部21は、係合解除後、他の変速段への係合が可能なようにインプットシャフト12の回転を制御する同期制御を実行し、アクチュエータ18によってスリーブ14を係合完了位置まで移動させるシフト制御の実行を、少なくとも同期の完了前に開始させる。

Description

動力伝達制御装置
 この発明は、動力伝達制御装置に関する。
 トランスミッションの変速を行う種々の自動変速制御装置の一例として、特許文献1には、係合解除後、他の変速段への係合動作が可能なように、インプットシャフトの回転を制御する自動変速制御装置が開示されている。この自動変速制御装置は、制御部と、アクチュエータによって移動作動して係合解除及び係合動作を行うシフト部材と、インプットシャフトに接続された動力源とを備える。この制御部は、アクチュエータによってシフト部材の移動を制御するとともに、動力源によってインプットシャフトの回転を制御する。
特開2016-113039号公報
 近年、特許文献1に記載したような、アクチュエータによって変速段の制御を行うオートメイティッド・マニュアル・トランスミッション(AMT)による車両が増えてきており、また、AMTであって、変速機としてシンクロナイザリングを含むシンクロメッシュ機構を有さないタイプのもの(ノンシンクロトランスミッション)が開発されてきている。ノンシンクロトランスミッションを採用した車両におけるギヤチェンジの際には、スリーブがニュートラル位置にあるときに、変速段の切換時に遊転ギヤの回転数とスリーブの回転数を同期させる処理が行われる。
 図4は、アクチュエータを採用した車両における変速時の(a)エンジン(或いは、回転軸)の回転数の経時変化、(b)スリーブのストローク位置の経時変化、(c)変速段の経時変化をそれぞれ表した図である。この図4において、Aの時点でギヤチェンジ要求がなされたとすると、アクチュエータを制御して、スリーブのストローク位置をその時点のギヤの押付け完了位置からギヤを抜く方向にスライド移動させる。アクチュエータは、係合が解除される係合開始位置への到達(Bの時点)以降もスリーブを移動させて、スリーブをニュートラル位置まで移動させる。その後、アクチュエータは、次の変速段に対してスリーブを移動させる。ノンシンクロトランスミッションの場合には、B以降の係合解除を判別した時点から、次の変速段の遊転ギヤの回転数とスリーブの接続された回転軸の回転数を同期させる処理が行われる。回転同期完了(Cの時点)後にスリーブを次の変速段の遊転ギヤの方向にスライド移動を開始させる。スリーブが遊転ギヤと接する係合開始位置に到達した段階(Dの時点)から係合が始まり、係合完了位置を経て押付け完了位置までスリーブが到達した段階でギヤチェンジが完了する。
 ここで、図4における回転同期中(BからCまでの間)、スリーブの位置はニュートラル位置になるように要求される。そして、回転同期が完了した後(C以降)、ニュートラル位置から押付け完了位置に向けた移動が開始される。そのため、回転同期が完了することで係合できる状態になっているにもかかわらず、係合状態になっていない期間が存在し、シフト要求への応答の遅れの一因になっているという課題があった。
 本発明は、応答の遅れを少なくすることを課題とする。
 第1回転軸と、前記第1回転軸の回転数である第1回転数を調整可能に接続された動力源と、車軸と連動して回転する前記第1回転軸とは異なる第2回転軸と、前記第1回転数を検出する第1回転数検出部と、前記第2回転軸の回転数である第2回転数を検出する第2回転数検出部と、前記第1回転軸と前記第2回転軸との間で複数の動力伝達経路を有する動力伝達部と、制御部と、を有し、前記動力伝達部は、少なくとも、前記第1回転軸と前記第2回転軸との間で動力伝達を行う第1減速機構と、前記第1回転軸と前記第2回転軸との間で動力伝達を行う前記第1減速機構と減速比が異なる第2減速機構と、前記第1減速機構と前記第2減速機構との間で動力伝達の切り替えを行う切替機構と、を備え、前記制御部は、少なくとも、前記第1減速機構による動力伝達を確立した状態から前記第2減速機構による動力伝達を確立した状態に切り替える場合において、前記第2回転数検出部が検出した前記第2回転数に基づいて前記第2減速機構による動力伝達を確立するように切り替えた後の前記第1回転数である切替後回転数を算出する切替後回転数算出処理と、前記第1減速機構による動力伝達を解除した後に、前記第1回転数を前記切替後回転数算出処理により算出された切替後回転数に同期させるように前記動力源により前記第1回転軸の回転数を制御する同期制御処理と、前記同期制御処理において、前記第1回転数を前記切替後回転数算出処理により算出された切替後回転数に同期完了させた後に、前記第2減速機構による動力伝達を確立するように前記切替機構を制御する切替制御処理と、をそれぞれ実行可能に構成され、前記切替制御処理では、前記第1回転数を前記切替後回転数算出処理により算出された切替後回転数に同期完了させる前に、前記第2減速機構による動力伝達の確立に向けて前記切替機構の制御を開始することを特徴とする。
 上記構成としたことで、応答の遅れが少なくなり、変速に要していた時間が短くなる。
 前記切替機構は、前記第1回転軸又は前記第2回転軸の何れか一方の軸と一体回転、かつ、前記一方の軸に対して軸方向に移動可能に設けられ、前記第1減速機構と前記第2減速機構との間に配置される係合部材と、前記係合部材を軸方向に移動させるように作動するアクチュエータと、を有し、前記第1減速機構は、前記係合部材が前記第1減速機構側に軸方向移動した際に前記係合部材と係合完了することで前記動力伝達を確立するように構成され、前記第2減速機構は、前記係合部材が前記第2減速機構側に軸方向移動した際に前記係合部材と係合することで前記動力伝達を確立するように構成され、前記アクチュエータは自身の作動量を検出する作動量検出部を備え、前記制御部は、前記切替後回転数と前記第1回転数との回転数差である差回転及び前記差回転の単位時間あたりの変化量である差回転変化率を算出する差回転算出処理と、前記係合部材が前記第2減速機構と係合開始するまでの間に必要な前記アクチュエータの作動量である必要作動量を算出する必要作動量算出処理と、をそれぞれ実行可能に構成され、前記切替制御処理では、前記差回転算出処理により算出された前記差回転及び前記差回転変化率と、前記必要作動量算出処理により算出された前記必要作動量に基づいて前記アクチュエータの作動速度を決定するものとしてもよい。
 前記係合部材と前記第2減速機構との前記軸方向の位置関係は、少なくとも前記係合部材と前記第2減速機構との間で動力伝達が確立されない状態と動力伝達が確立される状態とが切り替わる位置である係合完了位置と、前記係合部材と前記第1減速機構との間、および、前記係合部材と前記第2減速機構との間の両方で動力伝達が確立されないニュートラル位置と、前記係合完了位置と前記ニュートラル位置との間に位置し、前記係合部材と前記第2減速機構との間で動力伝達が確立されないが、前記係合部材と前記第2減速機構との接触が発生し始める位置である係合開始位置と、前記ニュートラル位置と前記係合開始位置との間に位置する係合開始直前位置と、を有し、前記必要作動量は、前記係合開始直前位置に達するまでの間に必要な前記アクチュエータの作動量であるものとしてもよい。
 前記係合開始直前位置は、前記係合開始位置から所定距離離れた位置であるものとしてもよい。
 前記同期制御処理では、前記差回転算出処理により算出された前記差回転変化率が所定変化率になるように前記動力源により前記第1回転数を制御するものとしてもよい。
 前記制御部は、前記第1減速機構による動力伝達を解除した後に、前記第2減速機構による動力伝達が確立しない状態を維持しつつ、前記係合部材を前記第2減速機構に近づけるように前記アクチュエータを所定作動量作動させる処理を実行可能に構成され、前記切替制御処理では、前記アクチュエータを前記所定作動量作動させた後であって、前記第1回転数を前記切替後回転数算出処理により算出された切替後回転数に同期完了させる前に、前記第2減速機構による動力伝達の確立に向けて前記切替機構の制御を開始するものとしてもよい。
 上記の構成のため、応答の遅れが少なくなり、変速に要していた時間が短くなるため、運転性能が向上する。
本発明の動力伝達制御装置に関連する車両の構成を表した説明図である。 本発明における係合動作制御の概念を説明するための説明図であり、係合動作の際のスリーブのストローク量を表した説明図である。 本発明における係合動作制御の流れを表したフローチャート図である。 アクチュエータを採用した車両における変速時の(a)エンジン(或いは、回転軸)の回転数の経時変化、(b)スリーブのストローク位置の経時変化、(c)変速段の経時変化をそれぞれ表した図である。
 以下、図面を参照しながら、実施の形態に係る動力伝達制御装置10の例について説明する。図1は、本発明の動力伝達制御装置に関連する車両の構成を表した説明図である。図1において、11は動力源としてのエンジン、12は第1回転軸としてのインプットシャフト、13はもう一つの動力源としてのモータジェネレータ、14は係合部材としてインプットシャフト12に軸方向に移動可能且つ一体回転可能に支持されたスリーブ、15はシフトフォーク、16はシフトシャフト、17はダンパー、18はアクチュエータ、19a及び19bは動力伝達機構、20は第2回転軸としてのアウトプットシャフト、21は制御部、31はインプットシャフト12の回転数である第1回転数を検出する第1回転数検出部、32はアウトプットシャフト20の回転数である第2回転数を検出する第2回転数検出部である。インプットシャフト12には被係合部材としての遊転ギヤGA1及び遊転ギヤGB1が相対回転可能に接続されており、アウトプットシャフト20にはギヤGA2及びギヤGB2が一体回転可能に接続されている。遊転ギヤGA1とギヤGA2とにより第1減速機構51が構成されており、遊転ギヤGB1とギヤGB2とにより第2減速機構52が構成されている。
 なお、以下の説明においては、説明の簡略化のために、変速段を遊転ギヤGA1とギヤGA2の対と遊転ギヤGB1とギヤGB2の対のみを用い、かつ、遊転ギヤGA1と遊転ギヤGB1の間に1つのスリーブ14を配置して、この1つのスリーブ14でギヤチェンジを行う動力伝達部について説明を行う。しかし、実際の動力伝達部では、さらに多くの変速が可能なようにギヤが設けられることが想定され、また、アウトプットシャフト20側に相対回転可能な遊転ギヤGA1,GB1と一体回転可能且つ軸方向に移動可能なスリーブ14とが設けられ且つインプットシャフト12に一体回転可能にギヤGA2,GB2が設けられる構成も当然に想定される。なお、説明の便宜上、遊転ギヤGA1とギヤGA2とで第1減速機構51が構成されており、遊転ギヤGB1とギヤGB2とで第2減速機構52が構成されているとしたが、遊転ギヤGB1とギヤGB2とで第1減速機構51が構成されており、遊転ギヤGA1とギヤGA1とで第2減速機構52が構成されていてもよい。また、例えば、インプットシャフト、カウンターシャフト及びアウトプットシャフトというように、3軸以上を用いた動力伝達部の構成も想定される。また、アクチュエータ18の動力をシフトシャフト16に伝達するために動力伝達機構19a及び19bを介しているが、この構成である必要はなく、アクチュエータ18の動力でスリーブ14の動作を制御できればどのような構成であってもよい。また、本発明においてシンクロ機構を採用するか否かは本質的な問題ではなく何れに対しても採用し得るものであるが、本例ではシンクロ機構を持たないノンシンクロトランスミッションであるものとして説明を行う。また、アクチュエータ18によってギヤチェンジを行う構成であれば、ドライバーの操作に基づくギヤチェンジ要求によってギヤチェンジを行う構成であってもよいし、予め変速のための条件を設定しておいて条件を満たした場合に自動でギヤチェンジを行う構成であってもよい。
 図1において、エンジン11は、インプットシャフト12を回転駆動する。なお、必須の構成ではないが、インプットシャフト12を回転駆動可能なモータジェネレータ13を配置するようにしてもよい。また、エンジン11とモータジェネレータ13との間にクラッチやトルクコンバータ等を配置するようにしてもよい。インプットシャフト12上には、遊転ギヤGA1と遊転ギヤGB1が相対回転可能に接続されていて、ニュートラルの状態においては、いずれとも係合することなく両者の間にスリーブ14が位置する。このときのスリーブ14の位置がニュートラル位置である。何れかの変速段にシフトチェンジ、例えば、遊転ギヤGA1の変速段へシフトチェンジされると、切替機構により遊転ギヤGA1とインプットシャフト12とが相対回転不能に固定される。すなわち、スリーブ14が第1減速機構側51に軸方向移動した際には、スリーブ14と遊転ギヤGA1とが係合完了することで動力伝達が確立され、一方で、スリーブ14が第2減速機構側52に軸方向移動した際には、スリーブ14と遊転ギヤGB1とが係合完了することで動力伝達が確立される。
 図1において、切替機構は、シフトフォーク15、シフトシャフト16、ダンパー17、アクチュエータ18、動力伝達機構19a、及び動力伝達機構19bにより構成されている。切替機構において、アクチュエータ18からの動力は、動力伝達機構19a、ダンパー17、及び、動力伝達機構19bを介してシフトシャフト16に伝達され、スリーブ14を作動させる。アクチュエータ18は、例えば、図示されていないモータ、モータのトルクを推力に変換する変換機構、および変換機構の作動量を監視するセンサである作動量検出部18aによって構成される。アクチュエータ18は、制御部21から出力された情報を受けてモータの出力を制御し、スリーブ14の軸方向の動作量をコントロールし、結果としてスリーブ14の該軸方向のストローク量(移動量)を高精度にコントロールする。
 また、制御部21は、ノンシンクロトランスミッションにおけるギヤチェンジを実行するための各種処理を行う機能を有する。本例の制御部21は、少なくとも、切替後回転数算出処理と、同期制御処理と、切替制御処理と、差回転算出処理と、必要作動量算出処理とを実行する機能を有する。
 切替後回転数算出処理では、切替機構により動力伝達の切り替えを行う際の第1回転数を算出するための処理が実行される。本例では、制御部21は、第1減速機構51による動力伝達を確立した状態から第2減速機構52による動力伝達を確立した状態に切り替える場合において、第2回転数検出部32が検出した第2回転数に基づいて、第2減速機構52による動力伝達を確立するように切り替えた後の第1回転数である切替後回転数を算出する。
 同期制御処理では、切替後回転数算出処理により算出された切替後回転数に基づいてエンジン11の出力が制御するための処理が実行される。本例では、制御部21は、第1減速機構51による動力伝達を解除した後に、第1回転数を切替後回転数算出処理により算出された切替後回転数に同期させるようにエンジン11により制御する。
 切替制御処理では、切替機構を作動させるための情報を切替機構に出力するための処理が実行される。本例では、制御部21は、第1回転数を切替後回転数に同期完了させた後に、第2減速機構52による動力伝達を確立するように切替機構の動作を制御するとともに、同期完了させる前に、第2減速機構52による動力伝達の確立に向けて切替機構の制御を開始する。
 差回転算出処理では、切替機構により動力伝達の切り替えを行うまでに、どのように回転数の差が変化するのかを算出するための処理が実行される。本例では、制御部21は、前記切替後回転数と、前記第1回転数検出部31によって検出されるその時点での第1回転数の差である差回転の単位時間あたりの変化量である差回転変化率を算出するための処理を実行する。
 必要作動量算出処理では、アクチュエータ18を作動させる量を算出するための処理が実行される。本例では、制御部21は、作動量検出部18aによって検出される位置からスリーブ14が第2減速機構52と係合開始する直前の位置までのアクチュエータ18の作動量である必要作動量を算出する。なお、必要作動量の算出の構成の例は、これに限られず、例えば、スリーブ14と第2減速機構52とが係合完了する間における、アクチュエータ18の作動量であってもよい。
 必要作動量算出処理では、アクチュエータ18を作動させる量を算出するための処理が実行される。本例では、制御部21は、スリーブ14が遊転ギヤGB1との係合を開始する直前の位置までのアクチュエータ18の作動量である必要作動量を算出する。
 また、制御部21には、第1回転数検出部31により検出された第1回転数に関する第1回転数情報22、第2回転数検出部32により検出された第2回転数に関する第2回転数情報23、及びその他のセンサ情報24が入力されている。その他のセンサ情報24の中には、車速情報、アクセル開度情報、及び単位時間あたりのアクセル開度の変化量であるアクセル開度変化率情報などが含まれる。
 以下の説明において使用する用語を、以下のように定義する。
(係合解除状態)
 係合部材と被係合部材が接触しておらず、動力伝達しない状態をいう。すなわち、本例におけるスリーブのスプラインと遊転ギヤのスプラインが接触しない状態のことであり、両側に遊転ギヤが存在する場合はニュートラル状態のことを指すものとする。
(係合開始状態)
 係合部材と被係合部材が接触するが、動力伝達しない状態をいう。具体的には、スリーブ及び遊転ギヤのスプライン先端がチャンファ形状だったりR形状だったりした場合に、チャンファ同士やR同士で接触し、動力伝達しようとするとスリーブとギヤピースが離れるように反力が発生する状態を指している。また、スプライン先端が平面だった場合に先端同士で接触する場合も含む。
(係合完了状態)
 係合部材と被係合部材が接触し、動力伝達する状態をいう。本例では、遊転ギヤのスプラインの隙間にスリーブのスプラインが押し込まれてしっかり噛み合い動力伝達する状態をいい、チャンファ同士やR同士、スプラインの先端同士のみが接触することを含まない。
(押付け完了状態)
 係合部材を移動させて係合開始状態から係合完了状態に移行させた後、さらに係合部材を移動させて、係合部材が移動範囲の境界に到達した状態をいう。係合完了状態の一部である。この状態は、具体的には、係合完了状態からさらに係合部材を移動させるようにアクチュエータを動作させ続け、アクチュエータ自身の可動範囲の境界であるストッパに当てるように制御した状態であり、例えば、一定荷重で一定時間ストッパに押付けるようにアクチュエータを動作させた後の状態である。この状態は、スリーブが係合完了状態からさらに奥まで移動するイメージである。
(係合開始直前位置)
 前記スリーブ14の作動する軸方向においてニュートラル位置と係合開始位置との間の位置であり、係合開始位置からは所定距離離れており、ニュートラル範囲内に位置している。
(係合開始位置)
 係合部材と被係合部材が接触するかしないかの境界位置であって、係合解除状態と係合開始状態とが切り替わる位置のことをいう。すなわち、この位置は、係合部材と被係合部材とを係合する場合には係合部材と被係合部材が接触し始める位置であり、係合部材と被係合部材との係合を解除する場合には係合部材と被係合部材とが接触しなくなる位置である。なお、係合開始位置は、アクチュエータの作動量検出精度等を考慮して、係合部材と被係合部材が接触するかしないかの境界位置から所定距離離れた位置であってもよい。
(係合完了位置)
 係合部材と被係合部材が接触する位置であって、係合開始状態と係合完了状態とが切り替わる位置のことをいう。なお、係合完了位置は、アクチュエータの作動量検出精度等を考慮して、係合開始状態と係合完了状態とが切り替わる位置から係合側に所定距離離れた位置であってもよい。
(押付け完了位置)
 係合部材と被係合部材が接触する位置であって、押付け完了状態である場合の位置のことをいう。
 図2は、本発明における係合動作制御の概念を説明するための説明図であり、スリーブ14のストローク量を表した説明図である。この図2において、横軸は時間、縦軸はアクチュエータ18内のセンサで検出されたスリーブ14のストローク量を表す。そして、遊転ギヤGA1と係合した状態のスリーブ14が遊転ギヤGB1に入るまでのスリーブ14のストロークが示される。本例の動力伝達制御装置10においては、シフト制御を開始する位置としてシフト制御開始位置(Fの時点)が規定されている。そのため、シフト制御開始位置を過ぎた位置から、従来とは異なるストロークの軌跡が描かれる。なお、シフト制御とは、アクチュエータ18よってスリーブ14を係合完了位置まで移動させてギヤと係合させる制御を意味する。
 従来では、シフト制御開始位置を通過後(Fの時点を通過後)、回転数の同期が完了するまで(Cの時点まで)の間は、ニュートラル位置でスリーブ14が留まるようにストローク量が制御されていた。一方で、本例では、同期制御を実行するとともに、シフト制御の実行を、少なくとも同期制御による同期の完了前に開始させることで、回転数の同期が完了する時点(Cの時点)において、係合開始直前位置に位置するようにストローク量が制御される。
 図3は、本発明における係合動作処理の流れを表したフローチャート図である。このフローでは、車両の走行中にシフト要求を受け、遊転ギヤGA1と係合完了状態にあったスリーブ14が、遊転ギヤGA1の係合開始位置まで移動し、係合解除状態になった後における処理の例が説明される。すなわち、係合解除状態になった後における処理の例が説明される。
 係合動作処理において、シフト要求を受け付けると、先ず、制御部21は、遊転ギヤGB1とスリーブ14とが係合開始状態になる時点の第1回転数を切替後回転数として特定する(ステップS101)。本例では、制御部21が、アウトプットシャフト20に設けられた第2回転数検出部32が検出した第2回転数に関する第2回転数情報23を取得し、この第2回転数に対応する第1回転数を切替後回転数として算出する。
 次いで、制御部21は、係合解除時点の第1回転数を特定する(ステップS102)。例えば、制御部21は、第1回転数検出部31が検出した現在の第1回転数に関する第1回転数情報22を取得する。なお、ここで特定される情報は、遊転ギヤGB1に噛み合わせるスリーブ14の回転数を把握できる情報であればよい。すなわち、制御部21により受信される情報は、スリーブ14の回転数に関する情報や、エンジン11の出力に関する情報などであってもよい。
 次いで、制御部21は、係合解除時点の第1回転数及び切替後回転数に基づいて、差回転を算出する。
 差回転が算出されると、制御部21は、差回転が目標回転差になるまでの差回転変化率を算出する(ステップS104)。また、「目標回転差」はゼロであってもよいが、微小な値であることが好ましい。すなわち、わずかに差回転がある状態でスリーブ14と遊転ギヤGB1とが係合開始状態になることが好ましい。わずかに差回転がある状態でスリーブ14と遊転ギヤGB1とが係合開始状態になることにより、円滑な噛み合いが実現できる。なお、説明の便宜上、差回転が目標回転差に到達することを第1回転数が切替後回転数に到達すると表現する。差回転変化率は、シフトダウンのための同期制御の実行時には正の値(つまり、回転数を増加させる変化率)になる。一方で、シフトアップのための同期制御の実行時には差回転変化率は負の値(つまり、回転数を減少させる変化率)になる。
 なお、上記算出の一例として、差回転変化率が一定又は略一定になるように算出してもよい。また、他の例として、同期制御の時間を一定にして回転差に応じて差回転変化率を変動させる構成とされていてもよい。さらに、他の例として、エンジン11のトルクに関する情報を参照して効率的なエンジン出力が得られる差回転変化率を算出する構成とされていてもよい。
 次いで、制御部21は、シフト制御を実行するための処理を実行する。まず、制御部21は、差回転変化率から第1回転数が切替後回転数に到達するまでに要する時間を同期時間として算出する(ステップS105)。すなわち、差回転が目標回転差になるまでに要する時間が算出される。
 同期時間が算出されると、制御部21は、遊転ギヤGA1の係合開始位置からニュートラル位置又はその付近の位置であるシフト制御開始位置まで移動するために必要な時間を特定する(ステップS106)。すなわち、制御部21は、図2におけるBからFまで移動する必要な時間を特定する。図2におけるBからFまでにおける実ストロークは一定であるため、例えば、制御部21は、図2におけるBからFまでにおける実ストロークに関する情報を参照することで、遊転ギヤGA1の係合開始位置からシフト制御開始位置まで移動するために必要な時間を特定できる。
 遊転ギヤGA1の係合開始位置からシフト制御開始位置まで移動するために必要な時間が特定されると、制御部21は、遊転ギヤGA1の係合開始位置からシフト制御開始位置まで移動するために必要な時間と、同期時間と、の差を算出する(ステップS107)。すなわち、制御部21は、シフト制御開始位置から遊転ギヤGB1側の係合開始直前位置までの移動時間を算出する。
 次いで、制御部21は、シフト制御開始位置から遊転ギヤGB1側の係合開始直前位置までの移動距離を算出する(ステップS108)。換言すれば、制御部21は、シフト制御開始位置から遊転ギヤGB1側の係合開始直前位置までスリーブ14を移動させる際の、アクチュエータ18に基づくスリーブ14の必要作動量を特定する。
 算出された移動時間及び移動距離に基づいて、制御部21は、スリーブ14の作動速度を算出する(ステップS109)。例えば、制御部21は、回転差が目標回転差になる際に遊転ギヤGB1側の係合開始直前位置にスリーブ14が位置するように、作動速度を算出する。なお、シフト制御における遊転ギヤGB1側の係合開始直前位置から係合完了位置までの作動速度については、該係合開始直前位置までの作動速度を参照して適宜算出するように構成されていればよい。
 次いで、制御部21は、同期制御を実行する(ステップS110)。具体的には、制御部21は、ステップS104にて算出された差回転変化率に基づいて第1回転数を変動させるための指示情報を生成し、エンジン11に送信する。指示情報を受信したエンジン11は、受信した指示情報に基づいて、エンジン11の回転数を変化させる。すなわち、エンジン11の回転数を変化させることにより、インプットシャフト12及びアウトプットシャフト20の回転数を同期させる同期制御が実行される。なお、本例ではエンジン11が制御されることにより他の変速機への係合動作が実行できるように同期制御を実行しているが、同期制御は、モータジェネレータ13が制御されることにより実現されていてもよい。
 同期制御が実行されると、制御部21は、シフト制御開始位置に到達したか否かを判定する(ステップS111)。制御部21は、到達していないと判定した場合(ステップS111のN)には、ステップS111に移行し、再度シフト制御開始位置に到達したか否かを判定する。
 一方で、制御部21は、到達していると判定した場合(ステップS111のY)には、シフト制御を実行する(ステップS112)。具体的には、制御部21は、ステップS109にて算出された作動速度に基づいてスリーブ14を作動させるための指示情報を生成し、アクチュエータ18に送信する。指示情報を受信したアクチュエータ18は、受信した指示情報に基づいて、スリーブ14を作動させる。すなわち、アクチュエータ18によってスリーブ14の作動を制御することによって、スリーブ14を遊転ギヤGB1側の係合完了位置まで移動させて係合動作を行うシフト制御が実行される。ちなみに、前記スリーブ14は遊転ギヤGB1側の係合完了位置に到達した後、さらに遊転ギヤGB1側の押付け完了位置まで移動される。
 なお、制御部21は、シフト制御開始位置に到達したか否かを判定する構成としているが、このような構成には限られない。例えば、制御部21は、スリーブ14を、遊転ギヤGA1との係合解除後に、ニュートラル状態を維持しつつ、遊転ギヤGB1に近づけるようにアクチュエータ18を所定作動量作動させる構成とされていてもよい。そして、アクチュエータ18を所定作動量作動させた後、制御部21は、シフト制御を実行する構成とされていてもよい。
 同期制御及びシフト制御が完了すると、制御部21は、ここでの処理を終了する。以上の通り、制御部21が同期制御及びシフト制御を実行することにより、ノンシンクロトランスミッションを採用した車両のギヤチェンジにおいて、係合開始状態を経て係合完了状態に移行でき、最終的に押付け完了状態に移行することができるようになる。
 なお、シフト制御を開始するタイミングは、少なくとも同期の完了前になるように構成されていればよい。この場合には、シフト制御を実行するタイミングの調整とともに作動速度の算出方法を調整することにより、回転数の同期が完了する時点において、係合開始直前位置に位置するようにストローク量が制御される。ここで、「同期の完了」とは、第1回転数が係合解除状態から係合開始状態に移行してもよい回転数になることを意味し、第1回転数が切替後回転数に到達することを意味する。
 また、スリーブ14と遊転ギヤGA1とが係合解除状態になった時点における処理の例について説明したが、本例の処理は係合解除時点以外においても採用できる。例えば、動力伝達制御装置10は、シフト制御の実行時、シフト制御の開始時点での差回転と目標回転差との差と、差回転の変化率と、スリーブ14の係合開始直前位置までの距離とに基づいて、同期の完了のタイミングでスリーブ14が係合開始直前位置に到達するように、アクチュエータ18に基づくスリーブ14の作動速度を決定することができる。また、動力伝達制御装置10は、シフト制御の実行中の所定時間経過毎に、差回転と目標回転差との差と、差回転の変化率と、スリーブ14の係合開始直前位置までの距離に基づいて、同期の完了のタイミングでスリーブ14が係合開始直前位置に到達するように、アクチュエータ18に基づくスリーブ14の作動速度を調整できるようにしてもよい。
 また、制御部21が上記のフローチャートにおける各種処理を一連で実行するように説明を行ったが、このような構成には限られない。例えば、制御部21が、同期制御を実行するための処理と、シフト制御を実行するための処理とを別々に実行し、タイミングを合わせて同期制御とシフト制御とを実行する構成とされていてもよい。
 以上のように、本発明による動力伝達制御装置10は、アクチュエータ18によって移動作動して係合解除及び係合動作を行うスリーブ14と、インプットシャフト12に接続されたモータジェネレータ13、或は、インプットシャフト12に接続されたエンジン11と、アクチュエータ18によってスリーブ14の移動を制御するとともに、エンジン11又はモータジェネレータ13によってインプットシャフト12の回転を制御する制御部21とを備え、制御部21は、係合解除後、他の変速段への係合動作が可能なようにエンジン11又はモータジェネレータ13によってインプットシャフト12の回転を同期させる同期制御を実行するとともに、アクチュエータ18よってスリーブ14を係合完了位置まで移動させるシフト制御を、少なくとも同期の完了前に開始させる。このような構成によれば、応答の遅れが少なくなり、変速に要していた時間が短くなるため、運転性能が向上する。
 また、上述の実施の形態で言及したように、動力伝達制御装置10は、係合解除位置から所定距離移動した位置においてシフト制御を開始する構成とされている。このような構成によれば、要求ストロークに近い操作感を得られることから、運転性能が向上する。
 なお、上述の実施の形態では特に言及していないが、同期制御及びシフト制御の実行中において、所定間隔又は所定条件を満たした場合に、制御部21が、その時点での情報の検出状況に応じて同期制御及びシフト制御を再度実行する構成とされていてもよい。このような構成によれば、逐次変化する状況に合わせて精度の高い係合動作が実現できる。
 上述の実施の形態では、スリーブ14と遊転ギヤGA1,GB1と噛合わせる構成としていたが、このような構成には限られない。例えば、ベルトで動力伝達する際の一方のプーリや、チェーンで動力伝達する際の一方のスプロケットなどを軸に対して遊転させておき、ドグクラッチで軸と係脱する構成とされていてもよい。
  10       動力伝達制御装置
  11       エンジン(動力源)
  12       インプットシャフト(第1回転軸)
  13       モータジェネレータ
  14       スリーブ
  15       シフトフォーク
  16       シフトシャフト
  17       ダンパー
  18       アクチュエータ
  18a      作動量検出部
  19a,19b  動力伝達機構
  20       アウトプットシャフト(第2回転軸)
  21       制御部
  22       第1回転数情報
  23       第2回転数情報
  24       その他のセンサ情報
  31       第1回転数検出部
  32       第2回転数検出部
  51       第1減速機構
  52       第2減速機構

Claims (6)

  1.  第1回転軸と、
     前記第1回転軸の回転数である第1回転数を調整可能に接続された動力源と、
     車軸と連動して回転する前記第1回転軸とは異なる第2回転軸と、
     前記第1回転数を検出する第1回転数検出部と、
     前記第2回転軸の回転数である第2回転数を検出する第2回転数検出部と、
     前記第1回転軸と前記第2回転軸との間で複数の動力伝達経路を有する動力伝達部と、
     制御部と、
     を有し、
     前記動力伝達部は、少なくとも、
     前記第1回転軸と前記第2回転軸との間で動力伝達を行う第1減速機構と、
     前記第1回転軸と前記第2回転軸との間で動力伝達を行う前記第1減速機構と減速比が異なる第2減速機構と、
     前記第1減速機構と前記第2減速機構との間で動力伝達の切り替えを行う切替機構と、
     を備え、
     前記制御部は、少なくとも、
     前記第1減速機構による動力伝達を確立した状態から前記第2減速機構による動力伝達を確立した状態に切り替える場合において、前記第2回転数検出部が検出した前記第2回転数に基づいて前記第2減速機構による動力伝達を確立するように切り替えた後の前記第1回転数である切替後回転数を算出する切替後回転数算出処理と、
     前記第1減速機構による動力伝達を解除した後に、前記第1回転数を前記切替後回転数算出処理により算出された切替後回転数に同期させるように前記動力源により前記第1回転軸の回転数を制御する同期制御処理と、
     前記同期制御処理において、前記第1回転数を前記切替後回転数算出処理により算出された切替後回転数に同期完了させた後に、前記第2減速機構による動力伝達を確立するように前記切替機構を制御する切替制御処理と、
     をそれぞれ実行可能に構成され、
     前記切替制御処理では、前記第1回転数を前記切替後回転数算出処理により算出された切替後回転数に同期完了させる前に、前記第2減速機構による動力伝達の確立に向けて前記切替機構の制御を開始する
     動力伝達制御装置。
  2.  前記切替機構は、
     前記第1回転軸又は前記第2回転軸の何れか一方の軸と一体回転、かつ、前記一方の軸に対して軸方向に移動可能に設けられ、前記第1減速機構と前記第2減速機構との間に配置される係合部材と、
     前記係合部材を軸方向に移動させるように作動するアクチュエータと、
     を有し、
     前記第1減速機構は、前記係合部材が前記第1減速機構側に軸方向移動した際に前記係合部材と係合完了することで前記動力伝達を確立するように構成され、
     前記第2減速機構は、前記係合部材が前記第2減速機構側に軸方向移動した際に前記係合部材と係合することで前記動力伝達を確立するように構成され、
     前記アクチュエータは自身の作動量を検出する作動量検出部を備え、
     前記制御部は、
     前記切替後回転数と前記第1回転数との回転数差である差回転及び前記差回転の単位時間あたりの変化量である差回転変化率を算出する差回転算出処理と、
     前記係合部材が前記第2減速機構と係合開始するまでの間に必要な前記アクチュエータの作動量である必要作動量を算出する必要作動量算出処理と、
     をそれぞれ実行可能に構成され、
     前記切替制御処理では、前記差回転算出処理により算出された前記差回転及び前記差回転変化率と、前記必要作動量算出処理により算出された前記必要作動量に基づいて前記アクチュエータの作動速度を決定する
     請求項1に記載の動力伝達制御装置。
  3.  前記係合部材と前記第2減速機構との前記軸方向の位置関係は、少なくとも
     前記係合部材と前記第2減速機構との間で動力伝達が確立されない状態と動力伝達が確立される状態とが切り替わる位置である係合完了位置と、
     前記係合部材と前記第1減速機構との間、および、前記係合部材と前記第2減速機構との間の両方で動力伝達が確立されないニュートラル位置と、
     前記係合完了位置と前記ニュートラル位置との間に位置し、前記係合部材と前記第2減速機構との間で動力伝達が確立されないが、前記係合部材と前記第2減速機構との接触が発生し始める位置である係合開始位置と、
     前記ニュートラル位置と前記係合開始位置との間に位置する係合開始直前位置と、
    を有し、
     前記必要作動量は、前記係合開始直前位置に達するまでの間に必要な前記アクチュエータの作動量である
     請求項2に記載の動力伝達制御装置。
  4.  前記係合開始直前位置は、前記係合開始位置から所定距離離れた位置である
     請求項3に記載の動力伝達制御装置。
  5.  前記同期制御処理では、前記差回転算出処理により算出された前記差回転変化率が所定変化率になるように前記動力源により前記第1回転数を制御する
     請求項2乃至請求項4の何れか一項に記載の動力伝達制御装置。
  6.  前記制御部は、前記第1減速機構による動力伝達を解除した後に、前記第2減速機構による動力伝達が確立しない状態を維持しつつ、前記係合部材を前記第2減速機構に近づけるように前記アクチュエータを所定作動量作動させる処理を実行可能に構成され、
     前記切替制御処理では、前記アクチュエータを前記所定作動量作動させた後であって、前記第1回転数を前記切替後回転数算出処理により算出された切替後回転数に同期完了させる前に、前記第2減速機構による動力伝達の確立に向けて前記切替機構の制御を開始する
     請求項2乃至請求項5の何れか一項に記載の動力伝達制御装置。
PCT/JP2017/047050 2016-12-27 2017-12-27 動力伝達制御装置 WO2018124219A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780079327.4A CN110100123B (zh) 2016-12-27 2017-12-27 动力传递控制装置
US16/471,763 US11092235B2 (en) 2016-12-27 2017-12-27 Power transmission control device
DE112017005819.8T DE112017005819T5 (de) 2016-12-27 2017-12-27 Leistungsübertragungssteuerungsvorrichtung
JP2018559602A JP6699760B2 (ja) 2016-12-27 2017-12-27 動力伝達制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-253214 2016-12-27
JP2016253214 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018124219A1 true WO2018124219A1 (ja) 2018-07-05

Family

ID=62707633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047050 WO2018124219A1 (ja) 2016-12-27 2017-12-27 動力伝達制御装置

Country Status (5)

Country Link
US (1) US11092235B2 (ja)
JP (1) JP6699760B2 (ja)
CN (1) CN110100123B (ja)
DE (1) DE112017005819T5 (ja)
WO (1) WO2018124219A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112709813B (zh) * 2020-12-31 2022-05-17 三一汽车制造有限公司 自动换挡方法、换挡装置、变速器及履带式移动设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068584A1 (ja) * 2013-11-06 2015-05-14 日産自動車株式会社 自動変速機の制御装置
JP2016113039A (ja) * 2014-12-16 2016-06-23 日野自動車株式会社 ハイブリッド車両の自動変速制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4021317B2 (ja) * 2002-12-26 2007-12-12 本田技研工業株式会社 接触機構の制御装置
JP4760955B2 (ja) * 2008-07-30 2011-08-31 株式会社デンソー 負荷駆動装置及び負荷駆動装置の制御システム
JP5189524B2 (ja) * 2009-02-19 2013-04-24 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP5881342B2 (ja) * 2011-09-07 2016-03-09 アイシン・エーアイ株式会社 デュアルクラッチ式自動変速機およびその変速制御方法
JP6205853B2 (ja) * 2013-05-31 2017-10-04 アイシン精機株式会社 自動変速機用ドグクラッチ制御装置
US9057434B2 (en) * 2013-05-31 2015-06-16 GM Global Technology Operations LLC Method of identifying a synchronous position of a synchronizer actuator fork of a dual clutch transmission
JP6364460B2 (ja) * 2016-09-13 2018-07-25 本田技研工業株式会社 ハイブリッド車両の制御装置
US10439525B2 (en) * 2017-06-05 2019-10-08 Canon Kabushiki Kaisha Motor drive device and method for driving motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068584A1 (ja) * 2013-11-06 2015-05-14 日産自動車株式会社 自動変速機の制御装置
JP2016113039A (ja) * 2014-12-16 2016-06-23 日野自動車株式会社 ハイブリッド車両の自動変速制御装置

Also Published As

Publication number Publication date
JP6699760B2 (ja) 2020-05-27
US20200088293A1 (en) 2020-03-19
DE112017005819T5 (de) 2019-08-08
CN110100123A (zh) 2019-08-06
US11092235B2 (en) 2021-08-17
CN110100123B (zh) 2020-11-06
JPWO2018124219A1 (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
US8205516B2 (en) Speed control method of automatic transmission
WO2017209229A1 (ja) デュアルクラッチ式変速機の制御装置
JP2011098679A (ja) 機械式自動変速機の制御装置
JP5880779B2 (ja) 車両の変速制御装置
JP5331387B2 (ja) 変速機及び変速機の制御方法
JP6716561B2 (ja) マルチクラッチトランスミッションを制御する方法、コンピュータで実行するコンピュータプログラム、
WO2018124219A1 (ja) 動力伝達制御装置
JP5313938B2 (ja) 自動変速機の制御方法および制御装置
US11603924B2 (en) Power transmission control device
WO2013176074A1 (ja) 電気自動車の変速制御方法および変速制御装置
JP2008151194A (ja) 自動変速機の制御方法および制御装置
KR101655547B1 (ko) 변속기 제어방법
JP2006153173A (ja) 自動変速制御装置
JP5868095B2 (ja) 車両変速機の制御方法
JP3682641B2 (ja) 歯車式変速機の自動クラッチ装置
JP3812529B2 (ja) 車両のマニュアル変速装置
JP2013036567A (ja) 機械式自動変速装置の制御システム
JP4242189B2 (ja) 変速制御装置
JP6428578B2 (ja) 動力伝達装置の制御装置
WO2018124217A1 (ja) 動力伝達制御装置
JP2011133032A (ja) 車両用有段変速機の制御装置
WO2017040051A1 (en) System and method for electronic synchronization of speeds for shifting gears in transmissions
JP2017101747A (ja) シンクロ装置
JP2018168913A (ja) 車両用自動変速機
JP2018103860A (ja) 動力伝達制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559602

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17888902

Country of ref document: EP

Kind code of ref document: A1