WO2018124161A1 - プリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板 - Google Patents

プリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板 Download PDF

Info

Publication number
WO2018124161A1
WO2018124161A1 PCT/JP2017/046843 JP2017046843W WO2018124161A1 WO 2018124161 A1 WO2018124161 A1 WO 2018124161A1 JP 2017046843 W JP2017046843 W JP 2017046843W WO 2018124161 A1 WO2018124161 A1 WO 2018124161A1
Authority
WO
WIPO (PCT)
Prior art keywords
printed wiring
resin composition
wiring board
resin
compound
Prior art date
Application number
PCT/JP2017/046843
Other languages
English (en)
French (fr)
Inventor
孝史 久保
知樹 濱嶌
翔平 山口
環 伊藤
英祐 志賀
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2018559565A priority Critical patent/JP7025729B2/ja
Priority to KR1020197016461A priority patent/KR102431012B1/ko
Priority to CN201780081388.4A priority patent/CN110121531B/zh
Publication of WO2018124161A1 publication Critical patent/WO2018124161A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Definitions

  • the present invention relates to a resin composition for printed wiring boards, a prepreg, a resin sheet, a laminated board, a metal foil-clad laminated board, a printed wiring board, and a multilayer printed wiring board.
  • One of the measures is to reduce the thermal expansion of the insulating layer used for the printed wiring board. This is a technique for suppressing warpage by bringing the thermal expansion coefficient of a printed wiring board close to the thermal expansion coefficient of a semiconductor element, and is currently being actively worked on (see, for example, Patent Documents 1 to 3). *
  • methods for suppressing the warpage of the semiconductor plastic package include increasing the rigidity of the laminated board (higher rigidity) and increasing the glass transition temperature of the laminated board (high Tg). (For example, see Patent Documents 4 and 5).
  • JP 2013-216684 A Japanese Patent No. 3173332 JP 2009-035728 A JP 2013-001807 A JP2011-177892A
  • the present inventors have heretofore been concerned about the warping behavior of a printed wiring board for a semiconductor plastic package.
  • a resin composition capable of realizing a higher elastic modulus maintenance factor has been effective, it has been found that this is not always the case.
  • the present inventors have found that the above-mentioned problems can be solved by using a cyanate ester compound and / or an epoxy compound in addition to the allylphenol compound and the maleimide compound. It came to be completed.
  • the content of the allylphenol compound (A) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 10 to 50 parts by mass
  • the content of the maleimide compound (B) with respect to 100 parts by mass of the resin solid content in the resin composition for printed wiring boards is 40 to 80 parts by mass.
  • the total content of the cyanate ester compound (C) and the epoxy compound (D) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 5 to 45 parts by mass.
  • the content of the cyanate ester compound (C) with respect to 100 parts by mass of the resin solid content in the resin composition for printed wiring boards is 0 to 25 parts by mass.
  • the content of the epoxy compound (D) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 0 to 25 parts by mass.
  • the filler (E) is at least one selected from the group consisting of silica, alumina, and boehmite, [5] The resin composition for printed wiring boards according to [5].
  • the content of the filler (E) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 120 to 250 parts by mass.
  • the allylphenol compound (A) includes a compound represented by any of the following formulas (I) to (III): [1] The resin composition for printed wiring boards according to any one of [7].
  • R 1 and R 2 are each independently a hydrogen atom, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec- (It represents a butyl group, a t-butyl group, or a phenyl group.)
  • the maleimide compound (B) is bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) ) Including at least one selected from the group consisting of methane and a maleimide compound represented by the following formula (1): [1] The resin composition for printed wiring boards according to any one of [8].
  • R 5 each independently represents a hydrogen atom or a methyl group, and n 1 represents an integer of 1 or more.
  • the cyanate ester compound (C) includes a compound represented by the following formula (2) and / or (3): [1] The resin composition for printed wiring boards according to any one of [9] to [9].
  • each R 6 independently represents a hydrogen atom or a methyl group, and n 2 represents an integer of 1 or more.
  • R 7 each independently represents a hydrogen atom or a methyl group, and n 3 represents an integer of 1 or more.
  • Cured products obtained by thermally curing a prepreg containing the resin composition for printed wiring boards and a substrate under the conditions of 230 ° C. and 100 minutes include the following formulas (4) to (8): E ′ (200 ° C.) / E ′ (30 ° C.) ⁇ 0.90 (4) E ′ (260 ° C.) / E ′ (30 ° C.) ⁇ 0.85 (5) E ′ (330 ° C.) / E ′ (30 ° C.) ⁇ 0.80 (6) E ′′ max / E ′ (30 ° C.) ⁇ 3.0% (7) E ′′ min / E ′ (30 ° C.) ⁇ 0.5% (8) (In each formula, E ′ represents the storage elastic modulus of the cured product at the temperature shown in parentheses, and E ′′ max is the maximum value of the loss elastic modulus of the cured product in the temperature range of 30 ° C.
  • E ′′ min represents the minimum value of the loss elastic modulus of the cured product in the temperature range of 30 ° C. to 330 ° C.) Satisfy the numerical range of the physical property parameters for mechanical properties expressed by [1]
  • a substrate The resin composition for a printed wiring board according to any one of [1] to [11] impregnated or coated on the substrate; Prepreg with
  • the substrate is one or more selected from the group consisting of E glass fiber, D glass fiber, S glass fiber, T glass fiber, Q glass fiber, L glass fiber, NE glass fiber, HME glass fiber, and organic fiber. Made up of fibers, [12] The prepreg according to [12].
  • a support The resin composition for printed wiring boards according to any one of [1] to [11], laminated on one or both sides of the support; A resin sheet.
  • the insulating layer includes the resin composition for a printed wiring board according to any one of [1] to [11], Printed wiring board.
  • a plurality of insulating layers comprising the second insulating layer formed;
  • a plurality of conductor layers comprising a first conductor layer disposed between each of the plurality of insulating layers, and a second conductor layer disposed on a surface of the outermost layer of the plurality of insulating layers;
  • a multilayer printed wiring board having:
  • a printed wiring board there is no clear glass transition temperature (Tg-less), and a printed wiring board, particularly a printed wiring board that can sufficiently reduce warpage (achieve low warpage) of a multilayer coreless substrate.
  • Resin composition, and prepreg, resin sheet, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board using the resin composition for printed wiring board can be provided. .
  • FIG. 9 is a process flow diagram showing an example of a procedure for manufacturing a panel of a multilayer coreless substrate (however, the method of manufacturing the multilayer coreless substrate is not limited to this, and the same applies to FIGS. 2 to 8 below). It is a process flow figure which shows an example of the procedure which produces the panel of a multilayer coreless board
  • resin solid content means a component excluding the solvent and filler in the resin composition for a printed wiring board unless otherwise specified, and “resin solid content 100 parts by mass”.
  • total of the components excluding the solvent and the filler in the resin composition for printed wiring boards is 100 parts by mass.
  • the resin composition for printed wiring boards of this embodiment contains an allylphenol compound (A), a maleimide compound (B), a cyanate ester compound (C) and / or an epoxy resin (D).
  • A allylphenol compound
  • B maleimide compound
  • C cyanate ester compound
  • D epoxy resin
  • Tg-less clear glass transition temperature
  • the allylphenol compound (A) is not particularly limited as long as it is a compound in which at least one allyl group and one hydroxyl group are directly bonded to the aromatic ring.
  • the hydrogen atom of the aromatic ring is substituted with an allyl group.
  • the bisphenol is not particularly limited. For example, bisphenol A, bisphenol AP, bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol S, bisphenol P Bisphenol PH, bisphenol TMC, and bisphenol Z.
  • bisphenol A is preferable, and as the allylphenol compound (A), diallyl bisphenol A is more preferable, and a compound represented by the following formula (I) or formula (II) is more preferable.
  • a compound represented by the following formula (I) or formula (II) is more preferable.
  • R 1 and R 2 are each independently a hydrogen atom, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, a sec-butyl group, a t-butyl group, or a phenyl group;
  • the allyl group and the hydroxyl group are independently bonded to each other at a position excluding the Bis bond portion of the benzene ring.
  • the allylphenol compound (A) may further have a reactive functional group other than the allyl group and the hydroxyl group. Moreover, the compound by which the hydroxyl group directly couple
  • An allylphenol compound (A) may be used individually by 1 type, and may use 2 or more types together. When using 2 or more types together, reactive functional groups other than an allyl group and a hydroxyl group may be the same, and may differ.
  • the number of allyl groups in one molecule of the allylphenol compound (A) is preferably 1 to 5, more preferably 2 to 4, and still more preferably 2.
  • the bending strength, the bending elastic modulus, and the copper foil peel strength are further improved, the thermal expansion coefficient is low, and the thermal conductivity is improved. It tends to be excellent.
  • the number of the hydroxyl group in one molecule of the allylphenol compound (A) is preferably 1 to 5, more preferably 2 to 4, more preferably 2.
  • the number of the hydroxyl group in one molecule of the allylphenol compound (A) is within the above range, the bending strength, the bending elastic modulus, and the copper foil peel strength are further improved, the thermal expansion coefficient is low, and the thermal conductivity. It tends to be excellent.
  • the number of reactive functional groups other than the allyl group and hydroxyl group in one molecule of the allylphenol compound (A) is preferably It is 1 to 5, more preferably 2 to 4, and still more preferably 2.
  • the number of reactive functional groups other than allyl groups and hydroxyl groups in one molecule of allylphenol compound (A) is within the above range, the bending strength, the flexural modulus, and the copper foil peel strength are further improved, and the thermal expansion coefficient. Is low and tends to be excellent in thermal conductivity. .
  • the content of the allylphenol compound (A) is 10 to 50 parts by mass, preferably 10 to 35 parts by mass, more preferably 10 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition for printed wiring boards. 15 to 30 parts by mass.
  • the content of the allylphenol compound (A) is within the above range, the flexibility, bending strength, bending elastic modulus, thermal expansion coefficient, thermal conductivity, and copper foil peel strength of the resulting cured product are further improved. Tend to.
  • the maleimide compound (B) is not particularly limited as long as it has one or more maleimide groups in the molecule.
  • maleimide compound (B) bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, and At least one selected from the group consisting of maleimide compounds represented by the following formula (1) is preferable, and from the viewpoint of easily obtaining a resin composition having no clear glass transition temperature (Tg-less), the following formula (1) Is particularly preferable.
  • Tg-less clear glass transition temperature
  • a maleimide compound (B) may be used individually by 1 type, and may use 2 or more types together.
  • R 5 each independently represents a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • n1 represents an integer greater than or equal to 1 , Preferably it is an integer of 10 or less, More preferably, it is an integer of 7 or less.
  • the content of the maleimide compound (B) is 40 to 80 parts by mass, preferably 40 to 70 parts by mass, more preferably 45, based on 100 parts by mass of the resin solid content in the resin composition for printed wiring boards. ⁇ 65 parts by mass.
  • content of a maleimide compound (B) exists in the said range, it exists in the tendency for the thermal expansion coefficient of the hardened
  • the resin composition for printed wiring boards of this embodiment contains a cyanate ester compound (C) and / or an epoxy compound (D).
  • a cyanate ester compound (C) and / or an epoxy compound (D) together with the above-mentioned allylphenol compound (A) and maleimide compound (B), for example, in a cured product obtained by curing a prepreg, a clear glass
  • the resin composition has no transition temperature (Tg-less) and can sufficiently reduce the warpage of a printed wiring board, particularly a multilayer coreless substrate (achieve low warpage).
  • Cylinde ester compound (C) Although it does not specifically limit as cyanate ester compound (C), for example, the naphthol aralkyl type cyanate ester shown by following formula (2), the novolak type cyanate ester shown by following formula (3), biphenyl aralkyl type cyanide Acid ester, bis (3,5-dimethyl 4-cyanatophenyl) methane, bis (4-cyanatophenyl) methane, 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,3,5- Tricyanatobenzene, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1,6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2,6-dicyanatonaphthalene, 2,7-dicyanato Naphthalene, 1,3,6-tricyanatonaphthalene, 4,4′-dicyanatobiphenyl, bis (4-cyanatofe
  • each R 6 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
  • n 2 represents an integer of 1 or more. The upper limit value of n 2 is usually 10, and preferably 6.
  • R 7 each independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable.
  • n 3 represents an integer of 1 or more. upper limit of n 3 is usually a 10, preferably a 7.
  • the cyanate ester compound (C) is composed of a naphthol aralkyl cyanate ester represented by the formula (2), a novolak cyanate ester represented by the formula (3), and a biphenyl aralkyl cyanate ester. It is preferable to include at least one selected from the group, and at least one selected from the group consisting of a naphthol aralkyl-type cyanate ester represented by the formula (2) and a novolac-type cyanate ester represented by the formula (3) It is more preferable to contain.
  • a cyanate ester compound (C) By using such a cyanate ester compound (C), a cured product that is superior in flame retardancy, has higher curability, and has a lower thermal expansion coefficient tends to be obtained.
  • the production method of these cyanate ester compounds (C) is not particularly limited, and a known method can be used as a synthesis method of the cyanate ester compounds.
  • the known method is not particularly limited.
  • a method of reacting a phenol resin and cyanogen halide in an inert organic solvent in the presence of a basic compound, a salt of the phenol resin and the basic compound, water examples thereof include a method of forming in a solution to be contained, and then causing the obtained salt and cyanogen halide to undergo a two-phase interfacial reaction.
  • the phenol resin used as a raw material for these cyanate ester compounds (C) is not particularly limited, and examples thereof include naphthol aralkyl type phenol resins, novolak type phenol resins, and biphenyl aralkyl type phenol resins represented by the following formula (9). Can be mentioned.
  • R 8 each independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable.
  • n 4 represents an integer of 1 or more. The upper limit value of n 4 is usually 10 and preferably 6.
  • the naphthol aralkyl type phenol resin represented by the formula (9) can be obtained by condensing a naphthol aralkyl resin and cyanic acid.
  • the naphthol aralkyl type phenol resin is not particularly limited, and examples thereof include naphthols such as ⁇ -naphthol and ⁇ -naphthol, p-xylylene glycol, ⁇ , ⁇ '-dimethoxy-p-xylene, and 1,4- Examples thereof include those obtained by reaction with benzenes such as di (2-hydroxy-2-propyl) benzene.
  • the naphthol aralkyl cyanate ester can be selected from those obtained by condensing the naphthol aralkyl resin obtained as described above and cyanic acid.
  • the content of the cyanate ester compound (C) is preferably 0 to 25 parts by mass, more preferably 0 to 20 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition for printed wiring boards. is there.
  • the content of the cyanate ester compound is within the above range, the heat resistance and chemical resistance of the obtained cured product tend to be further improved.
  • the epoxy compound (D) is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule.
  • the epoxy compound (D) is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule.
  • the epoxy compound (D) is more preferably a non-halogenated epoxy compound (a non-halogen-containing epoxy compound or a halogen-free epoxy compound).
  • the epoxy compound (D) is other than the allylphenol compound (A) having an epoxy group.
  • the content of the epoxy compound (D) is preferably 0 to 25 parts by mass, more preferably 0 to 20 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition for printed wiring boards.
  • content of an epoxy compound (D) exists in the said range, it exists in the tendency for the softness
  • the resin composition for printed wiring boards of this embodiment contains a cyanate ester compound (C) and / or an epoxy compound (D).
  • the total content of the cyanate ester compound (C) and the epoxy compound (D) with respect to 100 parts by mass of the resin solid content in the resin composition for printed wiring boards is preferably 5 to 45 masses. Part, more preferably 5 to 40 parts by weight, and more preferably 10 to 30 parts by weight.
  • the total content of the cyanate ester compound (C) and the epoxy compound (D) is within the above range, flexibility of the obtained cured product, copper foil peel strength, heat resistance, chemical resistance, and desmear resistance Tend to improve more.
  • the total content of the cyanate ester compound (C) and the epoxy compound (D) is within the above range, for example, in a cured product obtained by curing a prepreg, there is no clear glass transition temperature (Tg Less) and a printed wiring board, in particular, a multilayered coreless substrate, tends to be a resin composition that can further reduce warpage (achieve low warpage).
  • the resin composition for printed wiring boards of this embodiment further contains a filler (E).
  • a filler E
  • an inorganic filler and an organic filler are mentioned, It is preferable to contain the inorganic filler among both, and an organic filler is used with an inorganic filler. Is preferred.
  • the inorganic filler examples include, but are not limited to, silicas such as natural silica, fused silica, synthetic silica, amorphous silica, aerosil, and hollow silica; silicon compounds such as white carbon; titanium white, zinc oxide, magnesium oxide, Metal oxides such as zirconium oxide; metal nitrides such as boron nitride, agglomerated boron nitride, silicon nitride, and aluminum nitride; metal sulfates such as barium sulfate; aluminum hydroxide, aluminum hydroxide heat-treated products (heating aluminum hydroxide) Treated and reduced in part of crystal water), metal hydrates such as boehmite and magnesium hydroxide; molybdenum compounds such as molybdenum oxide and zinc molybdate; zinc compounds such as zinc borate and zinc stannate; alumina Clay, kaolin, talc, calcined clay, calcined kaolin,
  • the organic filler is not particularly limited, and examples thereof include rubber powders such as styrene type powder, butadiene type powder, and acrylic type powder; core shell type rubber powder; silicone resin powder; silicone rubber powder; It is done.
  • a filler (E) may be used individually by 1 type, or may use 2 or more types together.
  • the inorganic filler may contain at least one selected from the group consisting of silica, alumina, magnesium oxide, aluminum hydroxide, boehmite, boron nitride, aggregated boron nitride, silicon nitride, and aluminum nitride.
  • it contains at least one selected from the group consisting of silica, alumina, and boehmite.
  • the content of the filler (E) (particularly inorganic filler) with respect to 100 parts by mass of the resin solid content in the resin composition for printed wiring boards is preferably 120 to 250 parts by mass, more preferably 150 to 230 parts by mass. More preferably, it is 180 to 220 parts by mass.
  • the content of the filler (E) is within the above range, the obtained cured product tends to have higher rigidity and lower warpage.
  • the silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for surface treatment of inorganic substances.
  • ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ Aminosilane compounds such as aminopropyltrimethoxysilane; epoxysilane compounds such as ⁇ -glycidoxypropyltrimethoxysilane; acrylic silane compounds such as ⁇ -acryloxypropyltrimethoxysilane; N- ⁇ - (N— Cationic silane compounds such as vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane hydrochloride; phenylsilane compounds and the like.
  • a silane coupling agent may be used individually by 1 type, or may use 2 or more types together.
  • the wetting dispersant is not particularly limited as long as it is a dispersion stabilizer used for paints.
  • the resin composition for a printed wiring board according to the present embodiment includes an allyl group-containing compound (hereinafter, also referred to as “other allyl group-containing compound”), a phenol resin other than the above-described allylphenol compound (A), if necessary. , Oxetane resin, benzoxazine compound, and one or more selected from the group consisting of compounds having a polymerizable unsaturated group may be further contained.
  • the copper foil peel strength, bending strength, bending elastic modulus and the like of the obtained cured product tend to be further improved.
  • allyl group-containing compounds examples include, but are not limited to, allyl chloride, allyl acetate, allyl ether, propylene, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl isophthalate, diallyl maleate, and the like. Can be mentioned.
  • the content of the other allyl group-containing compound is preferably 0 to 50 parts by mass, and more preferably 10 to 45 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition for printed wiring boards. More preferably, it is 15 to 45 parts by mass, and still more preferably 20 to 35 parts by mass.
  • the content of the other allyl group-containing compound is within the above range, the bending strength, bending elastic modulus, heat resistance, and chemical resistance of the obtained cured product tend to be further improved.
  • phenol resin generally known resins can be used as long as they are phenol resins having two or more hydroxy groups in one molecule, and the kind thereof is not particularly limited. Specific examples thereof include bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolac resin, bisphenol A novolac type phenol resin, glycidyl ester type phenol resin, aralkyl novolac type.
  • the content of the phenol resin is preferably 0 to 99 parts by weight, more preferably 1 to 90 parts by weight, still more preferably 100 parts by weight of the resin solid content in the resin composition for printed wiring boards. 3 to 80 parts by mass.
  • the content of the phenol resin is within the above range, the obtained cured product tends to be more excellent in adhesiveness, flexibility, and the like.
  • oxetane resin As the oxetane resin, generally known oxetane resins can be used, and the kind thereof is not particularly limited. Specific examples thereof include alkyloxetanes such as oxetane, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, and 3,3-dimethyloxetane, 3-methyl-3-methoxymethyloxetane, 3,3 ′ -Di (trifluoromethyl) perfluoxetane, 2-chloromethyloxetane, 3,3-bis (chloromethyl) oxetane, biphenyl type oxetane, OXT-101 (trade name, manufactured by Toagosei), OXT-121 (produced by Toagosei) Product name). These oxetane resins can be used alone or in combination of two or more. By including such an o
  • the content of the oxetane resin is preferably 0 to 99 parts by weight, more preferably 1 to 90 parts by weight, even more preferably 3 parts by weight based on 100 parts by weight of the resin solid content in the resin composition for printed wiring boards. ⁇ 80 parts by mass.
  • the content of the oxetane resin is within the above range, the obtained cured product tends to be more excellent in adhesion and flexibility.
  • benzoxazine compound As the benzoxazine compound, generally known compounds can be used as long as they have two or more dihydrobenzoxazine rings in one molecule, and the kind thereof is not particularly limited. Specific examples include bisphenol A type benzoxazine BA-BXZ (trade name, manufactured by Konishi Chemical) bisphenol F type benzoxazine BF-BXZ (trade name, manufactured by Konishi Chemical), bisphenol S type benzoxazine BS-BXZ (product manufactured by Konishi Chemical). Name). These benzoxazine compounds can be used alone or in combination. By including such a benzoxazine compound, the obtained cured product tends to be more excellent in flame retardancy, heat resistance, low water absorption, low dielectric constant, and the like.
  • the content of the benzoxazine compound is preferably 0 to 99 parts by weight, more preferably 1 to 90 parts by weight, and still more preferably based on 100 parts by weight of the resin solid content in the resin composition for printed wiring boards. Is 3 to 80 parts by mass. When the content of the benzoxazine compound is within the above range, the resulting cured product tends to be more excellent in heat resistance and the like. *
  • Compound having a polymerizable unsaturated group As the compound having a polymerizable unsaturated group, generally known compounds can be used, and the kind thereof is not particularly limited. Specific examples thereof include vinyl compounds such as ethylene, propylene, styrene, divinylbenzene and divinylbiphenyl; methyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polypropylene glycol di ( Mono- or polyhydric alcohol (meth) such as (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate Acrylates; Epoxy (meth) acrylates such as bisphenol A type epoxy (meth) acrylate and bisphenol F type
  • the content of the compound having a polymerizable unsaturated group is preferably 0 to 99 parts by mass, more preferably 1 to 90 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition for printed wiring boards. Part, more preferably 3 to 80 parts by weight.
  • the content of the polymerizable unsaturated group-containing compound is within the above range, the cured product obtained tends to be more excellent in heat resistance, toughness, and the like.
  • the resin composition for printed wiring boards of this embodiment may further contain a curing accelerator.
  • the curing accelerator is not particularly limited, and examples thereof include imidazoles such as triphenylimidazole; benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert-butyl-diperphthalate, and the like.
  • Organic peroxides azo compounds such as azobisnitrile; N, N-dimethylbenzylamine, N, N-dimethylaniline, N, N-dimethyltoluidine, N, N-dimethylpyridine, 2-N-ethylanilino Tertiary amines such as ethanol, tri-n-butylamine, pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, N-methylpiperidine; phenol, xylenol, cresol, resorcin, cateco Phenols such as lead; organic metal salts such as lead naphthenate, lead stearate, zinc naphthenate, zinc octylate, tin oleate, dibutyltin malate, manganese naphthenate, cobalt naphthenate, iron acetylacetone; these organic metal salts Inorganic metal salts
  • the resin composition for printed wiring boards of this embodiment may further contain a solvent.
  • a solvent By containing a solvent, the viscosity at the time of preparation of the resin composition for printed wiring boards is lowered, the handling property is further improved, and the impregnation property to a substrate described later tends to be further improved.
  • the solvent is not particularly limited as long as it can dissolve a part or all of the resin component in the resin composition for printed wiring boards.
  • ketones such as acetone, methyl ethyl ketone, and methyl cellosolve
  • toluene Aromatic hydrocarbons such as xylene
  • Amides such as dimethylformamide
  • Propylene glycol monomethyl ether and its acetate A solvent may be used individually by 1 type, or may use 2 or more types together.
  • the manufacturing method of the resin composition for printed wiring boards of this embodiment is not specifically limited, For example, the method of mix
  • known processes such as stirring, mixing, and kneading can be performed.
  • the dispersibility of the filler (E) with respect to the resin composition for a printed wiring board can be improved by performing the stirring and dispersing treatment using a stirring tank provided with a stirrer having an appropriate stirring ability.
  • the above stirring, mixing, and kneading treatment can be appropriately performed using, for example, a known device such as a ball mill or a bead mill for mixing, or a revolving or rotating mixing device.
  • an organic solvent can be used as necessary.
  • the type of the organic solvent is not particularly limited as long as it can dissolve the resin in the resin composition for printed wiring boards. Specific examples thereof are as described above.
  • E ′ represents the storage elastic modulus of the cured product at the temperature indicated in parentheses
  • E ′′ max is the maximum value of the loss elastic modulus of the cured product in the temperature range of 30 ° C. to 330 ° C
  • E ′′ min indicates the minimum loss elastic modulus of the cured product in a temperature range of 30 ° C. to 330 ° C. (E ′′ indicates the loss elastic modulus of the cured product).
  • the warping behavior of a printed wiring board, in a cured product of a prepreg it has been considered that a resin composition capable of realizing a larger storage modulus during heat and a higher elastic modulus retention rate is effective.
  • the numerical values of the physical property parameters relating to the mechanical properties of the cured product obtained by thermally curing the prepreg at 230 ° C. for 100 minutes are not necessarily limited to the above formulas (4) to (8), preferably the formula (4A) to By being within the range of (8A), the glass transition temperature (Tg) can be sufficiently increased, and the amount of warping of the laminated board, the metal foil-clad laminated board, the printed wiring board, particularly the multilayer coreless board itself is sufficient. It becomes possible to reduce it.
  • the numerical values of the physical property parameters relating to the mechanical properties of the cured product obtained by thermosetting the prepreg at 230 ° C. for 100 minutes are the above formulas (4) to (8), preferably the formulas (4A) to (8A).
  • Tg-less clear glass transition temperature
  • the warpage of the printed wiring board (particularly, the multilayer coreless substrate) is sufficiently reduced (low warpage is achieved). It becomes possible. That is, satisfying the formulas (7) and (8) relating to the loss elastic modulus, preferably the formulas (7A) and (8A) is synonymous with the absence of a clear glass transition temperature (Tg-less).
  • the formulas (4) to (6) preferably those that do not satisfy the formulas (4A) to (6A)
  • the rate itself is small and difficult to stretch, when it is used as a printed wiring board, the difficulty of stretching is damaged, making it difficult to achieve low warpage.
  • the cured product satisfies not only formulas (7) and (8), preferably formulas (7A) and (8A), but also formulas (4) to (8), preferably formulas (4A) and (8A).
  • the method for measuring the mechanical properties (storage elastic modulus E ′ and loss elastic modulus E ′′) of the cured prepreg is not particularly limited, and can be measured, for example, by the following method. That is, copper foil (3EC-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd., thickness 12 ⁇ m) is arranged on both upper and lower surfaces of one prepreg, and laminated molding (thermosetting) at a pressure of 30 kgf / cm 2 and a temperature of 230 ° C. for 100 minutes. ) To obtain a copper foil-clad laminate having a predetermined insulating layer thickness.
  • the resin composition for printed wiring boards of this embodiment can be suitably used as a prepreg, resin sheet, insulating layer, laminated board, metal foil-clad laminated board, printed wiring board, or multilayer printed wiring board.
  • a prepreg, a resin sheet, a laminate, a metal foil-clad laminate, and a printed wiring board (including a multilayer printed wiring board) will be described.
  • the prepreg of this embodiment contains a base material and a resin composition for printed wiring boards impregnated or applied to the base material.
  • the manufacturing method of a prepreg can be performed according to a conventional method, and is not specifically limited. For example, after impregnating or coating the substrate with the resin composition for a printed wiring board in the present embodiment, it is heated in a dryer at 100 to 200 ° C. for 1 to 30 minutes, and then semi-cured (B stage conversion). ), The prepreg of this embodiment can be manufactured.
  • the content of the resin composition for a printed wiring board (including the filler (E)) in the prepreg of the present embodiment is preferably 30 to 90% by volume, more preferably 35 to 50%, based on the total amount of the prepreg. It is 85% by volume, and more preferably 40 to 80% by volume. When the content of the resin composition is within the above range, the moldability tends to be further improved.
  • the substrate is not particularly limited, and known materials used for various printed wiring board materials can be appropriately selected and used depending on the intended use and performance.
  • the substrate include a glass substrate, an inorganic substrate other than glass, an organic substrate, and the like.
  • a glass substrate is particularly preferable from the viewpoint of high rigidity and heat dimensional stability.
  • Specific examples of the fibers constituting these base materials are not particularly limited.
  • glass base materials for example, from E glass, D glass, S glass, T glass, Q glass, L glass, NE glass, and HME glass.
  • inorganic base materials other than glass inorganic fibers other than glass, such as quartz, are mentioned.
  • polyparaphenylene terephthalamide (Kevlar (registered trademark), manufactured by DuPont), copolyparaphenylene 3,4'oxydiphenylene terephthalamide (Technola (registered trademark), Teijin Techno Products Ltd.
  • Wholly aromatic polyamides polyesters such as 2,6-hydroxynaphthoic acid and parahydroxybenzoic acid (Vectran (registered trademark), manufactured by Kuraray Co., Ltd.), Zexion (registered trademark, manufactured by KB Seiren);
  • organic fibers such as phenylene benzoxazole (Zylon (registered trademark), manufactured by Toyobo Co., Ltd.) and polyimide.
  • These base materials may be used individually by 1 type, or may use 2 or more types together. *
  • a shape of a base material For example, a woven fabric, a nonwoven fabric, roving, a chopped strand mat, a surfacing mat, etc. are mentioned.
  • the weaving method of the woven fabric is not particularly limited, and for example, plain weave, Nanako weave, twill weave and the like are known, and can be appropriately selected from these known ones depending on the intended use and performance. .
  • the thing which spread-processed these, and the glass woven fabric surface-treated with the silane coupling agent etc. are used suitably.
  • the thickness and mass of the base material are not particularly limited, but usually about 0.01 to 0.3 mm is preferably used.
  • the base material is preferably a glass woven fabric having a thickness of 200 ⁇ m or less and a mass of 250 g / m 2 or less, and a glass woven fabric made of glass fibers of E glass, S glass, and T glass. More preferred.
  • the prepreg of the present embodiment has a cured product obtained by thermally curing it at 230 ° C. for 100 minutes, the above formulas (4) to (8), preferably the formulas (4A) to (4) If the numerical value range of the physical property parameters related to the mechanical properties represented by 8A) is satisfied, the laminate, the metal foil-clad laminate, the printed wiring board, or the multilayer printed wiring board does not have a clear glass transition temperature. (Tg-less) and warp can be sufficiently reduced (low warpage can be achieved), which is preferable.
  • the resin sheet of this embodiment has a sheet base material (support) and the above-mentioned resin composition for printed wiring boards laminated on one side or both sides of the sheet base material.
  • the resin sheet is used as one means of thinning, for example, a thermosetting resin (including a filler (E)) used for a prepreg directly on a support such as a metal foil or a film. It can be produced by coating and drying.
  • seat base material The well-known thing used for various printed wiring board materials can be used. Examples thereof include a polyimide film, a polyamide film, a polyester film, a polyethylene terephthalate (PET) film, a polybutylene terephthalate (PBT) film, a polypropylene (PP) film, a polyethylene (PE) film, an aluminum foil, a copper foil, and a gold foil. Among these, electrolytic copper foil and PET film are preferable.
  • Examples of the application method include a method in which a solution obtained by dissolving the resin composition for a printed wiring board of the present embodiment in a solvent is applied onto a sheet substrate with a bar coater, a die coater, a doctor blade, a baker applicator, or the like. It is done.
  • the resin sheet is preferably obtained by applying the resin composition for a printed wiring board to a sheet base material and then semi-curing (B-stage). Specifically, for example, after the resin composition for printed wiring board is applied to a sheet substrate such as copper foil, it is semi-cured by a method of heating in a dryer at 100 to 200 ° C. for 1 to 60 minutes. And a method for producing a resin sheet.
  • the adhesion amount of the resin composition for printed wiring boards to the sheet substrate is preferably in the range of 1 to 300 ⁇ m in terms of the resin thickness of the resin sheet.
  • the laminated board of this embodiment has the prepreg of this embodiment and / or the resin sheet of this embodiment laminated at least one sheet.
  • the metal foil-clad laminate of the present embodiment includes the laminate of the present embodiment (that is, the prepreg of the present embodiment and / or the resin sheet of the present embodiment laminated at least one sheet), It has metal foil (conductor layer) arranged on one side or both sides of the laminate.
  • the conductor layer can be a metal foil such as copper or aluminum.
  • the metal foil used here will not be specifically limited if it is used for printed wiring board material, Well-known copper foils, such as a rolled copper foil and an electrolytic copper foil, are preferable.
  • the thickness of the conductor layer is not particularly limited, but is preferably 1 to 70 ⁇ m, more preferably 1.5 to 35 ⁇ m.
  • the molding method and molding conditions of the laminate or metal foil-clad laminate are not particularly limited, and general techniques and conditions of a laminate for a printed wiring board and a multilayer board can be applied.
  • a multi-stage press machine, a multi-stage vacuum press machine, a continuous molding machine, an autoclave molding machine, etc. can be used at the time of forming a laminar laminate or a metal foil-clad laminate.
  • the temperature is generally 100 to 300 ° C.
  • the pressure is 2 to 100 kgf / cm 2
  • the heating time is generally 0.05 to 5 hours. It is.
  • post-curing can be performed at a temperature of 150 to 300 ° C., if necessary.
  • a temperature of 200 ° C. to 250 ° C., a pressure of 10 to 40 kgf / cm 2 , and a heating time of 80 minutes to 130 minutes are preferable. More preferably, the temperature is 215 ° C. to 235 ° C., the pressure is 25 to 35 kgf / cm 2 , and the heating time is 90 minutes to 120 minutes.
  • a multilayer board can be formed by laminating and molding the above-described prepreg and / or resin sheet and a separately prepared wiring board for an inner layer.
  • the printed wiring board of the present embodiment is a printed wiring board having an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer includes the resin composition for printed wiring board.
  • the resin composition for printed wiring board can be suitably used as a printed wiring board by forming a predetermined wiring pattern on the metal foil-clad laminate described above.
  • the metal foil tension laminated board using the resin composition for printed wiring boards of this embodiment does not have a clear glass transition temperature (Tg-less), and sufficiently reduces warpage (achieves low warpage). Therefore, it can be used particularly effectively as a printed wiring board that requires such performance.
  • the printed wiring board of the present embodiment can be manufactured by the following method, for example.
  • the metal foil-clad laminate such as a copper-clad laminate
  • An inner layer circuit is formed by etching the surface of the metal foil-clad laminate to produce an inner layer substrate.
  • the inner layer circuit surface of the inner layer substrate is subjected to a surface treatment to increase the adhesive strength as necessary, and then the required number of the above-mentioned prepregs and / or resin sheets are stacked on the inner layer circuit surface, and the outer layer circuit is further outside.
  • the metal foil is laminated and heated and pressed to perform integral molding (laminate molding).
  • a multilayer laminate is produced in which an insulating layer made of a cured material of the base material and the thermosetting resin composition is formed between the inner layer circuit and the metal foil for the outer layer circuit.
  • the method of lamination molding and the molding conditions thereof are the same as those of the above-described laminate or metal foil-clad laminate.
  • desmear treatment is performed to remove smears, which are resin residues derived from the resin component contained in the cured product layer. .
  • a plated metal film is formed on the wall surface of this hole to connect the inner layer circuit and the metal foil for the outer layer circuit, and the outer layer circuit is formed by etching the metal foil for the outer layer circuit to produce a printed wiring board. Is done.
  • the above-mentioned prepreg (the substrate and the above-mentioned resin composition for a printed wiring board attached thereto), the resin composition layer of the metal foil-clad laminate (the layer comprising the above-mentioned resin composition for a printed wiring board) is provided.
  • the insulating layer containing the above-described resin composition for printed wiring boards is constituted.
  • a printed wiring board may be produced by forming a conductor layer to be a circuit on the prepreg or the resin composition for a printed wiring board. At this time, a method of electroless plating can be used for forming the conductor layer.
  • the printed wiring board of the present embodiment includes a first insulating layer formed of at least one selected from the group consisting of the above-described prepreg and resin sheet laminated (at least one sheet). 1) and at least one selected from the group consisting of the above-mentioned prepreg and resin sheet laminated at least one sheet in the one-side direction (the lower surface direction in the drawing) of the first insulating layer (1).
  • a plurality of insulating layers comprising the second insulating layer (2), a first conductor layer (3) disposed between each of the plurality of insulating layers (1, 2), and the plurality of those It is preferable to have a plurality of conductor layers composed of the second conductor layer (3) disposed in the outermost layer of the insulating layers (1, 2).
  • a normal laminated board for example, a group consisting of another prepreg and a resin sheet in at least one double-sided direction selected from the group consisting of a prepreg and a resin sheet which are one core substrate.
  • the multilayer printed wiring board is formed by laminating at least one selected from the above, but at least one selected from the group consisting of the prepreg and the resin sheet of the present embodiment is the first insulating layer Selected from the group consisting of another prepreg and resin sheet forming the second insulating layer (2) only in one direction of at least one selected from the group consisting of one prepreg and resin sheet forming (1) Particularly effective for a coreless type multilayer printed wiring board (multilayer coreless substrate) manufactured by laminating at least one selected from the above Theft has been confirmed.
  • the prepreg, resin sheet, and printed wiring board resin composition of the present embodiment can effectively reduce the amount of warpage when used for a printed wiring board, and are not particularly limited.
  • it is particularly effective in a multilayer coreless substrate among printed wiring boards. That is, a normal printed wiring board generally has a symmetrical structure on both sides, and thus tends to be warped.
  • a multilayer coreless board tends to have a double-sided asymmetric structure, and thus is more likely to warp than a normal printed wiring board. There is a tendency. Therefore, by using the prepreg, resin sheet, and printed wiring board resin composition of the present embodiment, it is possible to particularly effectively reduce the amount of warping of the multilayer coreless substrate that has been prone to warping.
  • FIG. 9 a configuration in which two second insulating layers (2) are stacked on one first insulating layer (1) (that is, a configuration in which a plurality of insulating layers are three layers) is provided.
  • the number of the second insulating layer (2) may be one or two or more. Therefore, the first conductor layer (3) may be one layer or two or more layers.
  • the above-described resin composition for a printed wiring board of the present embodiment is, for example, a cured product obtained by curing a prepreg.
  • the mechanical properties such as elastic modulus can be controlled within a specific range suitable for low warpage, so that there is no clear glass transition temperature (Tg-less) and warping of printed wiring boards, particularly multilayer coreless substrates. Can be sufficiently effectively used as a printed wiring board for a semiconductor package and a multilayer coreless substrate.
  • Example 1 Diallyl bisphenol A (DABPA, manufactured by Daiwa Kasei Kogyo Co., Ltd., hydroxyl group equivalent: 154 g / eq.) 24.1 parts by mass, maleimide compound (B) (BMI-2300, Daiwa Kasei Kogyo) Co., Ltd., maleimide equivalent: 186 g / eq.) 60.9 parts by mass, ⁇ -naphthol aralkyl-type cyanate ester compound (SN495VCN, cyanate equivalent: 261 g / eq) of cyanate ester compound (C) .) 5.0 parts by mass, epoxy compound (D) (NC-3000FH, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 328 g / eq.) 10.0 parts by mass, slurry silica as filler (E) ( SC-2050MB, manufactured by Admatechs Co., Ltd.) 200 parts by mass and
  • Example 2 19.9 parts by mass of allylphenol compound (A) (DABPA), 50.1 parts by mass of maleimide compound (B) (BMI-2300), cyanate ester compound (C) (SN495VCN) Resin composition content for printed wiring board in the same manner as in Example 1 except that 10.0 parts by mass and 20.0 parts by mass of epoxy compound (D) (NC-3000FH) were used. A 73% by volume prepreg was obtained.
  • Example 3 Printed wiring was obtained in the same manner as in Example 1 except that the cyanate ester compound (C) (SN495VCN) was not used and that the epoxy compound (D) (NC-3000FH) was 15.0 parts by mass. A prepreg having a resin composition content for board of 73% by volume was obtained.
  • Example 4 Printed wiring was obtained in the same manner as in Example 1 except that the amount of cyanate ester compound (C) (SN495VCN) was 15.0 parts by mass and the epoxy compound (D) (NC-3000FH) was not used. A prepreg having a resin composition content for board of 73% by volume was obtained.
  • carrier copper foil surfaces of an ultrathin copper foil with carrier (b1) (MT18Ex, manufactured by Mitsui Mining & Smelting Co., Ltd., thickness 5 ⁇ m) are provided on both sides of the prepreg to be the support (a).
  • the prepreg (c1) obtained in Examples 1 to 4 and Comparative Examples 1 to 4 was further arranged on the copper foil (d) (3EC-VLP, Mitsui Mining & Mining) Co., Ltd., thickness 12 ⁇ m) was placed, and laminate molding was performed at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes to obtain a copper foil-clad laminate shown in FIG.
  • the copper foil (d) of the obtained copper foil-clad laminate shown in FIG. 2 was etched into a predetermined wiring pattern as shown in FIG. 3, for example, to form a conductor layer (d ′).
  • the prepregs (c2) obtained in Examples 1 to 4 and Comparative Examples 1 to 4 are arranged on the laminate shown in FIG. 3 on which the conductor layer (d ′) is formed.
  • an ultrathin copper foil with carrier (b2) (MT18Ex, manufactured by Mitsui Mining & Smelting Co., Ltd., thickness 5 ⁇ m) is further placed thereon, and laminated molding is performed at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes.
  • a copper foil clad laminate shown in FIG. 5 was obtained.
  • the carrier copper foil and the ultrathin copper foil of the carrier-attached ultrathin copper foil (b1) placed on the support (a) (cured support prepreg) are peeled off.
  • the two laminated plates were peeled from the support (a), and the carrier copper foil was further peeled from the ultrathin copper foil with carrier (b2) on the upper portion of each laminated plate.
  • processing by a laser processing machine was performed on the upper and lower ultrathin copper foils of each obtained laminate, and a predetermined via (v) was formed by chemical copper plating as shown in FIG. Then, for example, as shown in FIG.
  • a conductor layer was formed by etching into a predetermined wiring pattern to obtain a panel (size: 500 mm ⁇ 400 mm) of a multilayer coreless substrate. Then, the amount of warpage at a total of eight locations of the four corners and the center of the four sides of the obtained panel was measured with a metal ruler, and the average value was defined as the “warpage amount” of the panel of the multilayer coreless substrate.
  • Copper foil (3EC-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd., thickness 12 ⁇ m) was placed on the upper and lower surfaces of one prepreg obtained in Examples 1 to 4 and Comparative Examples 1 to 4, and the pressure was 30 kgf / cm 2. Then, lamination was performed at a temperature of 220 ° C. for 120 minutes to obtain a copper foil-clad laminate. Next, the obtained copper foil-clad laminate was drilled at nine points uniformly in a grid pattern with a drill, and then the copper foil was removed.
  • the distance between the holes in the laminate from which the copper foil was removed was measured (distance A).
  • the laminate was subjected to a reflow treatment at a maximum temperature of 260 ° C. using a salamander reflow apparatus. Thereafter, the distance between the holes in the laminate was measured again (distance b).
  • the measured distance A and distance B were substituted into the following formula (I) to determine the dimensional change rate of the substrate in the reflow process, and the value was used as the substrate shrinkage rate before and after the reflow process. ((Distance A)-(Distance B)) / Distance A x 100 ...
  • Formula (I) ((Distance A)-(Distance B)) / Distance A x 100 ...
  • the resin composition for a printed wiring board of the present embodiment has industrial applicability as a material for a prepreg, a resin sheet, a laminated board, a metal foil-clad laminated board, a printed wiring board, or a multilayer printed wiring board.
  • This application is based on Japanese Patent Application No. 2016-255272 filed on Dec. 28, 2016, and the description is incorporated herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

明確なガラス転移温度が存在せず(Tgレス)、かつ、プリント配線板、特に、多層コアレス基板の反りを十分に低減(低反りを達成)することができるプリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板を提供するべく、本発明による樹脂組成物は、アリルフェノール化合物(A)と、マレイミド化合物(B)と、シアン酸エステル化合物(C)及び/又はエポキシ化合物(D)と、を含有する。また、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対するアリルフェノール化合物(A)の含有量が、10~50質量部であり、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対するマレイミド化合物(B)の含有量が、40~80質量部である。

Description

プリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
 本発明は、プリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板に関する。
 近年、電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体パッケージの高機能化、小型化が進むに従い、半導体パッケージ用の各部品の高集積化や高密度実装化が近年益々加速している。これに伴い、半導体パッケージ用のプリント配線板に求められる諸特性はますます厳しいものとなっている。かかるプリント配線板に求められる特性としては、例えば、低吸水性、吸湿耐熱性、難燃性、低誘電率、低誘電正接、低熱膨張率、耐熱性、耐薬品性、高めっきピール強度等が挙げられる。また、それらに加えて、プリント配線板、特に、多層コアレス基板の反りを抑制する(低反りを達成する)ことが、近時、重要な課題となっており、様々な対策が講じられてきている。 
 その対策の一つとして、プリント配線板に用いられる絶縁層の低熱膨張化が挙げられる。これは、プリント配線板の熱膨張率を半導体素子の熱膨張率に近づけることで反りを抑制する手法であり、現在盛んに取り組まれている(例えば、特許文献1~3参照)。 
 半導体プラスチックパッケージの反りを抑制する手法としては、プリント配線板の低熱膨張化以外にも、積層板の剛性を高くすること(高剛性化)や積層板のガラス転移温度を高くすること(高Tg化)が検討されている(例えば、特許文献4及び5参照)。
特開2013-216884号公報 特許第3173332号公報 特開2009-035728号公報 特開2013-001807号公報 特開2011-178992号公報
 しかしながら、本発明者らの詳細な検討によれば、上記従来の技術をもってしても、プリント配線板、特に、多層コアレス基板の反りを未だ十分に低減することはできず、更なる改良が望まれている。
 すなわち、本発明は、明確なガラス転移温度が存在せず(いわゆるTgレス)、かつ、プリント配線板、特に、多層コアレス基板の反りを十分に低減(低反りを達成)することができるプリント配線板用樹脂組成物、並びに、該プリント配線板用樹脂組成物を用いた、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、従来、半導体プラスチックパッケージ用のプリント配線板の反り挙動に関しては、プリプレグの硬化物において、より大きな熱時貯蔵弾性率、及びより高い弾性率維持率を実現し得る樹脂組成物が有効であると考えられてきたものの、必ずしもそうとは限らないことが判明してきた。さらに、本発明者らは、鋭意研究を進めた結果、アリルフェノール化合物及びマレイミド化合物に加え、シアン酸エステル化合物及び/又はエポキシ化合物を用いることにより、上記問題点を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下のとおりである。
〔1〕
 アリルフェノール化合物(A)と、
 マレイミド化合物(B)と、
 シアン酸エステル化合物(C)及び/又はエポキシ化合物(D)と、を含有するプリント配線板用樹脂組成物であって、
 前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記アリルフェノール化合物(A)の含有量が、10~50質量部であり、
 前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記マレイミド化合物(B)の含有量が、40~80質量部である、
プリント配線板用樹脂組成物。
〔2〕
 前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記シアン酸エステル化合物(C)及び前記エポキシ化合物(D)の合計含有量が、5~45質量部である、
〔1〕に記載のプリント配線板用樹脂組成物。
〔3〕
 前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記シアン酸エステル化合物(C)の含有量が、0~25質量部である、
〔1〕又は〔2〕に記載のプリント配線板用樹脂組成物。
〔4〕
 前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記エポキシ化合物(D)の含有量が、0~25質量部である、
〔1〕又は〔2〕に記載のプリント配線板用樹脂組成物。
〔5〕
 充填材(E)を更に含有する、
〔1〕~〔4〕のいずれかに記載のプリント配線板用樹脂組成物。
〔6〕
 前記充填材(E)が、シリカ、アルミナ、及びベーマイトからなる群より選択される少なくとも1種である、
〔5〕に記載のプリント配線板用樹脂組成物。
〔7〕
 前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記充填材(E)の含有量が、120~250質量部である、
〔5〕又は〔6〕に記載のプリント配線板用樹脂組成物。
〔8〕
 前記アリルフェノール化合物(A)が、下記式(I)~(III)のいずれかで表される化合物を含む、
〔1〕~〔7〕のいずれかに記載のプリント配線板用樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
(式(I)中、R及びRは、各々独立して、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、又はフェニル基を示す。)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
〔9〕
 前記マレイミド化合物(B)が、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン及び下記式(1)で表されるマレイミド化合物からなる群より選択される少なくとも1種を含む、
〔1〕~〔8〕のいずれかに記載のプリント配線板用樹脂組成物。
Figure JPOXMLDOC01-appb-C000010
(式(1)中、Rは、各々独立して、水素原子又はメチル基を示し、nは、1以上の整数を表す。)
〔10〕
 前記シアン酸エステル化合物(C)が、下記式(2)及び/又は(3)で表される化合物を含む、
〔1〕~〔9〕のいずれか1項に記載のプリント配線板用樹脂組成物。
Figure JPOXMLDOC01-appb-C000011
(式(2)中、Rは、各々独立して、水素原子又はメチル基を示し、nは、1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000012
(式(3)中、Rは、各々独立して、水素原子又はメチル基を示し、nは、1以上の整数を表す。)
〔11〕
 前記プリント配線板用樹脂組成物と、基材と、を含有するプリプレグを230℃及び100分の条件で熱硬化させて得られる硬化物が、下記式(4)~(8);
 E’(200℃)/E’(30℃)≦0.90 …(4)
 E’(260℃)/E’(30℃)≦0.85 …(5)
 E’(330℃)/E’(30℃)≦0.80 …(6)
 E’’max/E’(30℃)≦3.0%  …(7)
 E’’min/E’(30℃)≧0.5% …(8)
(各式中、E’は、括弧内に示す温度における前記硬化物の貯蔵弾性率を示し、E’’maxは、30℃から330℃の温度範囲における前記硬化物の損失弾性率の最大値を示し、E’’minは、30℃から330℃の温度範囲における前記硬化物の損失弾性率の最小値を示す。)
で表される機械特性に関する物性パラメータの数値範囲を満たす、
〔1〕~〔10〕のいずれか1項に記載のプリント配線板用樹脂組成物。
〔12〕
 基材と、
 該基材に含浸又は塗布された〔1〕~〔11〕のいずれか1項に記載のプリント配線板用樹脂組成物と、
を有するプリプレグ。
〔13〕
 前記基材が、Eガラス繊維、Dガラス繊維、Sガラス繊維、Tガラス繊維、Qガラス繊維、Lガラス繊維、NEガラス繊維、HMEガラス繊維、及び有機繊維からなる群より選択される1種以上の繊維で構成されたものである、
〔12〕に記載のプリプレグ。
〔14〕
 支持体と、
 該支持体の片面又は両面に積層された〔1〕~〔11〕のいずれか1項に記載のプリント配線板用樹脂組成物と、
を有するレジンシート。
〔15〕
 少なくとも1枚以上積層された〔12〕及び〔13〕に記載のプリプレグ、並びに〔14〕に記載のレジンシートからなる群より選択される少なくとも1種を有する、
積層板。
〔16〕
 少なくとも1枚以上積層された〔12〕及び〔13〕に記載のプリプレグ、並びに〔14〕に記載のレジンシートからなる群より選択される少なくとも1種と、
 前記プリプレグ及び前記レジンシートからなる群より選択される少なくとも1種の片面又は両面に配された金属箔と、
を有する金属箔張積層板。
〔17〕
 絶縁層と、
 該絶縁層の表面に形成された導体層と、
を有し、
 前記絶縁層が、〔1〕~〔11〕いずれか1項に記載のプリント配線板用樹脂組成物を含む、
プリント配線板。
〔18〕
 少なくとも1枚以上積層された〔12〕及び〔13〕に記載のプリプレグ、並びに〔14〕に記載のレジンシートからなる群より選択される少なくとも1種で形成された第1の絶縁層、及び、前記第1の絶縁層の片面方向に少なくとも1枚以上積層された〔12〕及び〔13〕に記載のプリプレグ、並びに〔14〕に記載のレジンシートからなる群より選択される少なくとも1種で形成された第2の絶縁層からなる複数の絶縁層と、
 前記複数の絶縁層の各々の間に配置された第1の導体層、及び、前記複数の絶縁層の最外層の表面に配置された第2の導体層からなる複数の導体層と、
を有する多層プリント配線板。
 本発明によれば、明確なガラス転移温度が存在せず(Tgレス)、かつ、プリント配線板、特に、多層コアレス基板の反りを十分に低減(低反りを達成)することができるプリント配線板用樹脂組成物、並びに、並びに、該プリント配線板用樹脂組成物を用いた、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板を提供することができる。
多層コアレス基板のパネルを作製する手順の一例を示すプロセスフロー図である(但し、多層コアレス基板の製造方法はこれに限定されない。以下の図2~図8において同様である。)。 多層コアレス基板のパネルを作製する手順の一例を示すプロセスフロー図である。 多層コアレス基板のパネルを作製する手順の一例を示すプロセスフロー図である。 多層コアレス基板のパネルを作製する手順の一例を示すプロセスフロー図である。 多層コアレス基板のパネルを作製する手順の一例を示すプロセスフロー図である。 多層コアレス基板のパネルを作製する手順の一例を示すプロセスフロー図である。 多層コアレス基板のパネルを作製する手順の一例を示すプロセスフロー図である。 多層コアレス基板のパネルを作製する手順の一例を示すプロセスフロー図である。 多層コアレス基板のパネルの一例の構成を示す部分断面図である。
 以下、本発明を実施するための形態(以下「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。なお、本実施形態において、「樹脂固形分」とは、特に断りのない限り、プリント配線板用樹脂組成物における、溶剤、及び充填材を除いた成分をいい、「樹脂固形分100質量部」とは、プリント配線板用樹脂組成物における溶剤、及び充填材を除いた成分の合計が100質量部であることをいうものとする。
〔プリント配線板用樹脂組成物〕
 本実施形態のプリント配線板用樹脂組成物は、アリルフェノール化合物(A)と、マレイミド化合物(B)と、シアン酸エステル化合物(C)及び/又はエポキシ樹脂(D)とを含有する。プリント配線板用樹脂組成物が、このような組成を含有することで、例えば、プリプレグを硬化させた硬化物において、明確なガラス転移温度が存在せず(Tgレス)、かつ、プリント配線板、特に、多層コアレス基板の反りを十分に低減(低反りを達成)できる傾向にある。
〔アリルフェノール化合物(A)〕
 アリルフェノール化合物(A)としては、芳香環に少なくともアリル基とヒドロキシル基がそれぞれ1個以上直接結合している化合物であれば、特に限定されないが、例えば、芳香環の水素原子がアリル基で置換されたビスフェノールが挙げられる。かかるビスフェノールとしては、特に限定されないが、例えば、ビスフェノールA、ビスフェノールAP、ビスフェノールAF、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビスフェノールC、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールM、ビスフェノールS、ビスフェノールP、ビスフェノールPH、ビスフェノールTMC、ビスフェノールZが挙げられる。このなかでも、ビスフェノールAが好ましく、アリルフェノール化合物(A)としては、ジアリルビスフェノールAがより好ましく、下記式(I)又は式(II)で表される化合物が更に好ましい。このようなアリルフェノール化合物(A)を用いることにより、曲げ強度、曲げ弾性率、熱膨張率、熱伝導率、及び銅箔ピール強度がより向上する傾向にある。
Figure JPOXMLDOC01-appb-C000013
 ここで、式(I)中、R及びRは、各々独立して、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、又はフェニル基を示す。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 ここで、式(I)乃至(III)中、アリル基及び水酸基は、ベンゼン環のBis結合部を除く位置に、それぞれ一つずつ独立して結合する。
 また、アリルフェノール化合物(A)は、アリル基及びヒドロキシル基以外の反応性官能基を更に有してもよい。また、芳香環に直接結合したヒドロキシル基が、アリル基及びヒドロキシル基以外の反応性官能基に変性された化合物であってもよい。アリル基及びヒドロキシル基以外の反応性官能基としては、特に限定されないが、例えば、シアネート基(シアン酸エステル基)、エポキシ基、アミン基、イソシアネート基、グリシジル基、及びリン酸基が挙げられる。これらを有することにより、曲げ強度、曲げ弾性率、熱膨張率、及び熱伝導率がより一層向上する傾向にある。アリルフェノール化合物(A)は、1種類を単独で用いてもよく、2種類以上を併用してもよい。2種類以上を併用する場合は、アリル基及びヒドロキシル基以外の反応性官能基は同一であってもよく、異なっていてもよい。
 アリルフェノール化合物(A)1分子中のアリル基の基数は、好ましくは1~5であり、より好ましくは2~4であり、更に好ましくは2である。アリルフェノール化合物(A)1分子中のアリル基の基数が上記範囲内であることにより、曲げ強度、曲げ弾性率、及び銅箔ピール強度がより向上し、熱膨張係数が低く、熱伝導率に優れる傾向にある。
 アリルフェノール化合物(A)が、芳香環に直接結合したヒドロキシル基を有する場合、アリルフェノール化合物(A)1分子中の当該ヒドロキシル基の基数は、好ましくは1~5であり、より好ましくは2~4であり、更に好ましくは2である。アリルフェノール化合物(A)1分子中の当該ヒドロキシル基の基数が上記範囲内であることにより、曲げ強度、曲げ弾性率、及び銅箔ピール強度がより向上し、熱膨張係数が低く、熱伝導率に優れる傾向にある。
 アリルフェノール化合物(A)が、上述したアリル基及びヒドロキシル基以外の反応性官能基を有する場合、アリルフェノール化合物(A)1分子中のアリル基及びヒドロキシル基以外の反応性官能基数は、好ましくは1~5であり、より好ましくは2~4であり、更に好ましくは2である。アリルフェノール化合物(A)1分子中のアリル基及びヒドロキシル基以外の反応性官能基数が上記範囲内であることにより、曲げ強度、曲げ弾性率、及び銅箔ピール強度がより向上し、熱膨張係数が低く、熱伝導率に優れる傾向にある。    
 アリルフェノール化合物(A)の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して10~50質量部であり、好ましくは10~35質量部であり、より好ましくは15~30質量部である。アリルフェノール化合物(A)の含有量が上記範囲内であることにより、得られる硬化物の柔軟性、曲げ強度、曲げ弾性率、熱膨張率、熱伝導率、及び銅箔ピール強度がより一層向上する傾向にある。
〔マレイミド化合物(B)〕
 マレイミド化合物(B)としては、分子中に1個以上のマレイミド基を有する化合物であれば特に限定されないが、例えば、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、下記式(1)で表されるマレイミド化合物、これらマレイミド化合物のプレポリマー、若しくはマレイミド化合物とアミン化合物のプレポリマーが挙げられる。このなかでも、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、及び下記式(1)で表されるマレイミド化合物からなる群より選択される少なくとも1種が好ましく、明確なガラス転移温度が存在しない(Tgレス)樹脂組成物を得やすい点から、下記式(1)で表されるマレイミド化合物が特に好ましい。上述したマレイミド化合物(B)を含むことにより、得られる硬化物の熱膨張率がより低下し、耐熱性、ガラス転移温度(Tg)がより向上する傾向にある。マレイミド化合物(B)は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000016
 ここで、式(1)中、Rは、各々独立して、水素原子又はメチル基を示し、好ましくは水素原子を示す。また、式(1)中、nは、1以上の整数を表し、好ましくは10以下の整数であり、より好ましくは7以下の整数である。
 マレイミド化合物(B)の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して40~80質量部であり、好ましくは40~70質量部であり、より好ましくは45~65質量部である。マレイミド化合物(B)の含有量が上記範囲内であることにより、得られる硬化物の熱膨張率がより低下し、耐熱性がより向上する傾向にある。
〔シアン酸エステル化合物(C)及び/又はエポキシ化合物(D)〕
 本実施形態のプリント配線板用樹脂組成物は、シアン酸エステル化合物(C)及び/又はエポキシ化合物(D)を含有する。シアン酸エステル化合物(C)及び/又はエポキシ化合物(D)を、上述したアリルフェノール化合物(A)、マレイミド化合物(B)とともに用いることで、例えば、プリプレグを硬化させた硬化物において、明確なガラス転移温度が存在せず(Tgレス)、かつ、プリント配線板、特に、多層コアレス基板の反りを十分に低減(低反りを達成)できる樹脂組成物となる傾向にある。
(シアン酸エステル化合物(C))
 シアン酸エステル化合物(C)としては、特に限定されないが、例えば、下記式(2)で示されるナフトールアラルキル型シアン酸エステル、下記式(3)で示されるノボラック型シアン酸エステル、ビフェニルアラルキル型シアン酸エステル、ビス(3,5-ジメチル4-シアナトフェニル)メタン、ビス(4-シアナトフェニル)メタン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-ジシアナトナフタレン、1,4-ジシアナトナフタレン、1,6-ジシアナトナフタレン、1,8-ジシアナトナフタレン、2,6-ジシアナトナフタレン、2、7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4、4’-ジシアナトビフェニル、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、及び2、2’-ビス(4-シアナトフェニル)プロパン;これらシアン酸エステルのプレポリマー等が挙げられる。これらのシアン酸エステル化合物(C)は、1種単独で、又は2種以上を組み合わせて使用してもよい。
Figure JPOXMLDOC01-appb-C000017
 式(2)中、Rは、各々独立に、水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、式(2)中、nは、1以上の整数を表す。nの上限値は、通常は10であり、好ましくは6である。
Figure JPOXMLDOC01-appb-C000018
 式(3)中、Rは、各々独立に、水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、式(3)中、nは、1以上の整数を表す。nの上限値は、通常は10であり、好ましくは7である。
 これらのなかでも、シアン酸エステル化合物(C)が、式(2)で示されるナフトールアラルキル型シアン酸エステル、式(3)で示されるノボラック型シアン酸エステル、及びビフェニルアラルキル型シアン酸エステルからなる群より選択される1種以上を含むことが好ましく、式(2)で示されるナフトールアラルキル型シアン酸エステル及び式(3)で示されるノボラック型シアン酸エステルからなる群より選択される1種以上を含むことがより好ましい。このようなシアン酸エステル化合物(C)を用いることにより、難燃性により優れ、硬化性がより高く、かつ熱膨張係数がより低い硬化物が得られる傾向にある。
 これらのシアン酸エステル化合物(C)の製造方法としては、特に限定されず、シアン酸エステル化合物の合成方法として公知の方法を用いることができる。公知の方法としては、特に限定されないが、例えば、フェノール樹脂とハロゲン化シアンとを不活性有機溶媒中で、塩基性化合物存在下反応させる方法、フェノール樹脂と塩基性化合物との塩を、水を含有する溶液中にて形成させ、その後、得られた塩とハロゲン化シアンとを2相系界面反応させる方法が挙げられる。
 これらのシアン酸エステル化合物(C)の原料となるフェノール樹脂としては、特に限定されないが、例えば、下記式(9)で示されるナフトールアラルキル型フェノール樹脂、ノボラック型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 式(9)中、Rは、各々独立して、水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、式(9)中、nは、1以上の整数を示す。nの上限値は、通常は10であり、好ましくは6である。
 式(9)で示されるナフトールアラルキル型フェノール樹脂は、ナフトールアラルキル樹脂とシアン酸とを縮合させて得ることができる。ナフトールアラルキル型フェノール樹脂としては、特に限定されないが、例えば、α-ナフトール及びβ-ナフトール等のナフトール類と、p-キシリレングリコール、α,α’-ジメトキシ-p-キシレン、及び1,4-ジ(2-ヒドロキシ-2-プロピル)ベンゼン等のベンゼン類と、の反応により得られるものが挙げられる。ナフトールアラルキル型シアン酸エステルは、上記のようにして得られるナフトールアラルキル樹脂とシアン酸とを縮合させて得られるものから選択することができる。
 シアン酸エステル化合物(C)の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~25質量部であり、より好ましくは0~20質量部である。シアン酸エステル化合物の含有量が上記範囲内であることにより、得られる硬化物の耐熱性と耐薬品性がより向上する傾向にある。
(エポキシ化合物(D))
 エポキシ化合物(D)としては、1分子中に2つ以上のエポキシ基を有する化合物であれば特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ポリオール型エポキシ樹脂、イソシアヌレート環含有エポキシ樹脂、或いはこれらのハロゲン化物が挙げられる。また、エポキシ化合物(D)としては、非ハロゲン化エポキシ化合物(非ハロゲン含有エポキシ化合物、ハロゲン不含有エポキシ化合物)がより好ましい。なお、アリルフェノール化合物(A)がエポキシ基を有する場合、エポキシ化合物(D)は、エポキシ基を有するアリルフェノール化合物(A)以外のものである。
 エポキシ化合物(D)の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して好ましくは0~25質量部であり、より好ましくは0~20質量部である。エポキシ化合物(D)の含有量が上記範囲内であることにより、得られる硬化物の柔軟性、銅箔ピール強度、耐薬品性、及び耐デスミア性がより向上する傾向にある。 
 なお、上述の如く、本実施形態のプリント配線板用樹脂組成物は、シアン酸エステル化合物(C)及び/又はエポキシ化合物(D)を含有するところ、シアン酸エステル化合物(C)及びエポキシ化合物(D)の両方を含有する場合、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対するシアン酸エステル化合物(C)及びエポキシ化合物(D)の合計含有量は、好ましくは5~45質量部であり、一層好ましくは5~40質量部であり、より好ましくは10~30質量部である。シアン酸エステル化合物(C)及びエポキシ化合物(D)の合計含有量が上記範囲内であることにより、得られる硬化物の柔軟性、銅箔ピール強度、耐熱性、耐薬品性、及び耐デスミア性がより向上する傾向にある。また、シアン酸エステル化合物(C)及びエポキシ化合物(D)の合計含有量が上記範囲内であることにより、例えば、プリプレグを硬化させた硬化物において、明確なガラス転移温度が存在せず(Tgレス)、かつ、プリント配線板、特に、多層コアレス基板の反りをより低減(低反りを達成)できる樹脂組成物となる傾向にある。
〔充填材(E)〕
 本実施形態のプリント配線板用樹脂組成物は、充填材(E)を更に含有することが好ましい。充填材(E)としては、特に限定されないが、例えば、無機充填材及び有機充填材が挙げられ、両者のうち無機充填材を含有していることが好ましく、有機充填材は無機充填材とともに用いることが好適である。無機充填材としては、特に限定されないが、例えば、天然シリカ、溶融シリカ、合成シリカ、アモルファスシリカ、アエロジル、中空シリカ等のシリカ類;ホワイトカーボン等のケイ素化合物;チタンホワイト、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム等の金属酸化物;窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化アルミニウム等の金属窒化物;硫酸バリウム等の金属硫酸化物;水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水和物;酸化モリブデン、モリブデン酸亜鉛等のモリブデン化合物;ホウ酸亜鉛、錫酸亜鉛等の亜鉛化合物;アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、E-ガラス、A-ガラス、NE-ガラス、C-ガラス、L-ガラス、D-ガラス、S-ガラス、M-ガラスG20、ガラス短繊維(Eガラス、Tガラス、Dガラス、Sガラス、Qガラス等のガラス微粉末類を含む。)、中空ガラス、球状ガラス等が挙げられる。また、有機充填材としては、特に限定されないが、例えば、スチレン型パウダー、ブタジエン型パウダー、アクリル型パウダー等のゴムパウダー;コアシェル型ゴムパウダー;シリコーンレジンパウダー;シリコーンゴムパウダー;シリコーン複合パウダー等が挙げられる。充填材(E)は、1種を単独で用いても、2種以上を併用してもよい。
 このなかでも、無機充填材である、シリカ、アルミナ、酸化マグネシウム、水酸化アルミニウム、ベーマイト、窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、及び窒化アルミニウムからなる群より選択される少なくとも1種を含むことが好ましく、シリカ、アルミナ、及びベーマイトからなる群より選択される少なくとも1種を含むことがより好ましい。このような充填材(E)を用いることにより、得られる硬化物の高剛性化、低反り化がより向上する傾向にある。
 プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する充填材(E)(特に無機充填材)の含有量は、好ましくは120~250質量部であり、より好ましくは150~230質量部であり、更に好ましくは180~220質量部である。充填材(E)の含有量が上記範囲内であることにより、得られる硬化物の高剛性化、低反り化がより一層向上する傾向にある。
〔シランカップリング剤及び湿潤分散剤〕
 本実施形態のプリント配線板用樹脂組成物は、シランカップリング剤や湿潤分散剤を更に含有してもよい。シランカップリング剤や湿潤分散剤を含むことにより、上記充填材(E)の分散性、樹脂成分、充填材(E)、及び後述する基材の接着強度がより向上する傾向にある。
 シランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されないが、例えば、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン等のアミノシラン系化合物;γ-グリシドキシプロピルトリメトキシシラン等のエポキシシラン系化合物;γ-アクリロキシプロピルトリメトキシシラン等のアクリルシラン系化合物;N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩等のカチオニックシラン系化合物;フェニルシラン系化合物等が挙げられる。シランカップリング剤は、1種を単独で用いても、2種以上を併用してもよい。
 湿潤分散剤としては、塗料用に使用されている分散安定剤であれば、特に限定されないが、例えば、ビッグケミー・ジャパン(株)製のDISPERBYK-110、111、118、180、161、BYK-W996、W9010、W903等が挙げられる。    
〔その他の樹脂等〕
 本実施形態のプリント配線板用樹脂組成物は、必要に応じて、上述したアリルフェノール化合物(A)以外の、アリル基含有化合物(以下、「その他のアリル基含有化合物」ともいう)、フェノール樹脂、オキセタン樹脂、ベンゾオキサジン化合物、及び重合可能な不飽和基を有する化合物からなる群より選択される1種又は2種以上を更に含有してもよい。このようなその他の樹脂等を含むことにより、得られる硬化物の銅箔ピール強度、曲げ強度、及び曲げ弾性率等がより向上する傾向にある。
〔その他のアリル基含有化合物〕
 その他のアリル基含有化合物としては、特に限定されないが、例えば、アリルクロライド、酢酸アリル、アリルエーテル、プロピレン、トリアリルシアヌレート、トリアリルイソシアヌレート、フタル酸ジアリル、イソフタル酸ジアリル、マレイン酸ジアリル等が挙げられる。
 その他のアリル基含有化合物の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して、好ましくは~50質量部であり、一層好ましくは10~45質量部であり、より好ましくは15~45質量部であり、更に好ましくは20~35質量部である。その他のアリル基含有化合物の含有量が上記範囲内であることにより、得られる硬化物の曲げ強度、曲げ弾性率、耐熱性、耐薬品性がより向上する傾向にある。    
〔フェノール樹脂〕
 フェノール樹脂としては、1分子中に2個以上のヒドロキシ基を有するフェノール樹脂であれば、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラック型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂、水酸基含有シリコーン樹脂類等が挙げられるが、特に制限されるものではない。これらのフェノール樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。このようなフェノール樹脂を含むことにより、得られる硬化物の接着性や可撓性等により優れる傾向にある。
 フェノール樹脂の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~99質量部であり、より好ましくは1~90質量部であり、更に好ましくは3~80質量部である。フェノール樹脂の含有量が上記範囲内であることにより、得られる硬化物の接着性や可撓性等により一層優れる傾向にある。
〔オキセタン樹脂〕
 オキセタン樹脂としては、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては、オキセタン、2-メチルオキセタン、2,2-ジメチルオキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン等のアルキルオキセタン、3-メチル-3-メトキシメチルオキセタン、3,3’-ジ(トリフルオロメチル)パーフルオキセタン、2-クロロメチルオキセタン、3,3-ビス(クロロメチル)オキセタン、ビフェニル型オキセタン、OXT-101(東亞合成製商品名)、OXT-121(東亞合成製商品名)等が挙げられる。これらのオキセタン樹脂は、1種又は2種以上を組み合わせて用いることができる。このようなオキセタン樹脂を含むことにより、得られる硬化物の接着性や可撓性等により優れる傾向にある。
 オキセタン樹脂の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して好ましくは0~99質量部であり、より好ましくは1~90質量部であり、更に好ましくは3~80質量部である。オキセタン樹脂の含有量が上記範囲内であることにより、得られる硬化物の密着性や可撓性等により一層優れる傾向にある。
〔ベンゾオキサジン化合物〕
 ベンゾオキサジン化合物としては、1分子中に2個以上のジヒドロベンゾオキサジン環を有する化合物であれば、一般に公知のものを用いることができ、その種類は特に限定されない。その具体例としては、ビスフェノールA型ベンゾオキサジンBA-BXZ(小西化学製商品名)ビスフェノールF型ベンゾオキサジンBF-BXZ(小西化学製商品名)、ビスフェノールS型ベンゾオキサジンBS-BXZ(小西化学製商品名)等が挙げられる。これらのベンゾオキサジン化合物は、1種又は2種以上混合して用いることができる。このようなベンゾオキサジン化合物を含むことにより、得られる硬化物の難燃性、耐熱性、低吸水性、低誘電等により優れる傾向にある。
 ベンゾオキサジン化合物の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~99質量部であり、より好ましくは1~90質量部であり、更に好ましくは3~80質量部である。ベンゾオキサジン化合物の含有量が上記範囲内であることにより、得られる硬化物の耐熱性等により一層優れる傾向にある。 
〔重合可能な不飽和基を有する化合物〕
 重合可能な不飽和基を有する化合物としては、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては、エチレン、プロピレン、スチレン、ジビニルベンゼン、ジビニルビフェニル等のビニル化合物;メチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の1価又は多価アルコールの(メタ)アクリレート類;ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類;ベンゾシクロブテン樹脂;(ビス)マレイミド樹脂等が挙げられる。これらの重合可能な不飽和基を有する化合物は、1種又は2種以上混合して用いることができる。このような重合可能な不飽和基を有する化合物を含むことにより、得られる硬化物の耐熱性や靱性等により優れる傾向にある。
 重合可能な不飽和基を有する化合物の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~99質量部であり、より好ましくは1~90質量部であり、更に好ましくは3~80質量部である。重合可能な不飽和基を有する化合物の含有量が上記範囲内であることにより、得られる硬化物の耐熱性や靱性等により一層優れる傾向にある。
〔硬化促進剤〕
 本実施形態のプリント配線板用樹脂組成物は、硬化促進剤を更に含有してもよい。硬化促進剤としては、特に限定されないが、例えば、トリフェニルイミダゾール等のイミダゾール類;過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パーフタレート等の有機過酸化物;アゾビスニトリル等のアゾ化合物;N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、N,N-ジメチルピリジン、2-N-エチルアニリノエタノール、トリ-n-ブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N-メチルピペリジン等の第3級アミン類;フェノール、キシレノール、クレゾール、レゾルシン、カテコール等のフェノール類;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、アセチルアセトン鉄等の有機金属塩;これら有機金属塩をフェノール、ビスフェノール等の水酸基含有化合物に溶解してなるもの;塩化錫、塩化亜鉛、塩化アルミニウム等の無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイド等の有機錫化合物等が挙げられる。これらのなかでも、トリフェニルイミダゾールが硬化反応を促進し、熱膨張率が優れる傾向にあるため、特に好ましい。 
〔溶剤〕
 本実施形態のプリント配線板用樹脂組成物は、溶剤を更に含有してもよい。溶剤を含むことにより、プリント配線板用樹脂組成物の調製時における粘度が下がり、ハンドリング性がより向上するとともに後述する基材への含浸性がより向上する傾向にある。    
 溶剤としては、プリント配線板用樹脂組成物中の樹脂成分の一部又は全部を溶解可能なものであれば、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルセルソルブ等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド等のアミド類;プロピレングリコールモノメチルエーテル及びそのアセテート等が挙げられる。溶剤は、1種を単独で用いても、2種以上を併用してもよい。
〔プリント配線板用樹脂組成物の製造方法〕
 本実施形態のプリント配線板用樹脂組成物の製造方法は、特に限定されないが、例えば、各成分を順次溶剤に配合し、十分に攪拌する方法が挙げられる。この際、各成分を均一に溶解或いは分散させるため、攪拌、混合、混練処理等の公知の処理を行うことができる。具体的には、適切な攪拌能力を有する攪拌機を付設した攪拌槽を用いて攪拌分散処理を行うことで、プリント配線板用樹脂組成物に対する充填材(E)の分散性を向上させることができる。上記の攪拌、混合、混練処理は、例えば、ボールミル、ビーズミル等の混合を目的とした装置、又は、公転又は自転型の混合装置等の公知の装置を用いて適宜行うことができる。
 また、本実施形態のプリント配線板用樹脂組成物の調製時においては、必要に応じて有機溶剤を使用することができる。有機溶剤の種類は、プリント配線板用樹脂組成物中の樹脂を溶解可能なものであれば、特に限定されない。その具体例は、上述したとおりである。
〔プリント配線板用樹脂組成物の特性〕
 本実施形態のプリント配線板用樹脂組成物は、それと基材とを含有するプリプレグを230℃及び100分の条件で熱硬化させて得られる硬化物が、下記式(4)~(8)で表される機械特性に関する物性パラメータの数値範囲を満たすものであると好ましく、下記式(4A)~(8A)で表される機械特性に関する物性パラメータの数値範囲を満たすとより好ましい。
 E’(200℃)/E’(30℃)≦0.90 …(4)
 E’(260℃)/E’(30℃)≦0.85 …(5)
 E’(330℃)/E’(30℃)≦0.80 …(6)
 E’’max/E’(30℃)≦3.0% …(7)
 E’’min/E’(30℃)≧0.5% …(8)
 0.40≦E’(200℃)/E’(30℃)≦0.90 …(4A)
 0.40≦E’(260℃)/E’(30℃)≦0.85 …(5A)
 0.40≦E’(330℃)/E’(30℃)≦0.80 …(6A)
 0.5%≦E’’max/E’(30℃)≦3.0% …(7A)
 3.0%≧E’’min/E’(30℃)≧0.5% …(8A)
 ここで、各式中、E’は、括弧内に示す温度における硬化物の貯蔵弾性率を示し、E’’maxは、30℃から330℃の温度範囲における硬化物の損失弾性率の最大値を示し、E’’minは、30℃から330℃の温度範囲における硬化物の損失弾性率の最小値を示す(E’’は、硬化物の損失弾性率を示す。)。
 従来、プリント配線板の反り挙動に関しては、プリプレグの硬化物において、より大きな熱時貯蔵弾性率、及びより高い弾性率維持率を実現し得る樹脂組成物が有効であると考えられてきたが、必ずしもそうとは限らず、プリプレグを230℃及び100分の条件で熱硬化させて得られる硬化物の機械特性に関する物性パラメータの数値が上記式(4)~(8)好ましくは式(4A)~(8A)の範囲内であることにより、ガラス転移温度(Tg)を十分に高めることができ、かつ、積層板、金属箔張り積層板、プリント配線板、特に多層コアレス基板自体の反り量を十分に低減することが可能となる。
 換言すれば、プリプレグを230℃及び100分の条件で熱硬化させて得られる硬化物の機械特性に関する物性パラメータの数値が上記式(4)~(8)好ましくは式(4A)~(8A)の範囲内であることにより、好適に、明確なガラス転移温度が存在せず(Tgレス)、かつ、プリント配線板(特に、多層コアレス基板)の反りを十分に低減(低反りを達成)することが可能となる。すなわち、損失弾性率に係る式(7)及び(8)好ましくは式(7A)及び(8A)を満たすことは、明確なガラス転移温度が存在しないこと(Tgレス)と同義といえるところ、硬化物が式(7)及び(8)好ましくは式(7A)及び(8A)のみを満たし、式(4)~(6)好ましくは式(4A)~(6A)を満たさないものは、損失弾性率自体は小さくて伸び難いものの、プリント配線板としたときに、その伸び難さが災いして、低反りを達成することが困難となる。これに対し、硬化物が式(7)及び(8)好ましくは式(7A)及び(8A)のみならず、式(4)~(8)好ましくは式(4A)及び(8A)をも満たすものは、Tgレスにより伸び難く、かつ、プリント配線板の低反りを達成し易くなる傾向にある。
 プリプレグの硬化物の機械特性(貯蔵弾性率E’及び損失弾性率E’’)の測定方法は、特に限定されず、例えば、以下の方法により測定することができる。すなわち、プリプレグ1枚の上下両面に、銅箔(3EC-VLP、三井金属鉱業(株)製、厚み12μm)を配置し、圧力30kgf/cm、温度230℃で100分間の積層成形(熱硬化)を行い、所定の絶縁層厚さの銅箔張積層板を得る。次いで、得られた銅箔張積層板をダイシングソーでサイズ5.0mm×20mmに切断後、表面の銅箔をエッチングにより除去し、測定用サンプルを得る。この測定用サンプルを用い、JIS C6481に準拠して動的粘弾性分析装置(TAインスツルメント製)でDMA法により、機械特性(貯蔵弾性率E’及び損失弾性率E’’)を測定することができる。このとき、n=3の平均値を求めてもよい。
〔用途〕
 本実施形態のプリント配線板用樹脂組成物は、プリプレグ、レジンシート、絶縁層、積層板、金属箔張積層板、プリント配線板、又は多層プリント配線板として好適に用いることができる。以下、プリプレグ、レジンシート、積層板、金属箔張積層板、及びプリント配線板(多層プリント配線板を含む。)について説明する。
〔プリプレグ〕
 本実施形態のプリプレグは、基材と、該基材に含浸又は塗布されたプリント配線板用樹脂組成物と、を含有する。プリプレグの製造方法は、常法にしたがって行うことができ、特に限定されない。例えば、本実施形態におけるプリント配線板用樹脂組成物を基材に含浸又は塗布させた後、100~200℃の乾燥機中で1~30分加熱する等して半硬化(Bステ-ジ化)させることで、本実施形態のプリプレグを作製することができる。      
 本実施形態のプリプレグにおけるプリント配線板用樹脂組成物(充填材(E)を含む。)の含有量は、プリプレグの総量に対して、好ましくは30~90体積%であり、より好ましくは35~85体積%であり、更に好ましくは40~80体積%である。樹脂組成物の含有量が上記範囲内であることにより、成形性がより向上する傾向にある。    
 基材としては、特に限定されず、各種プリント配線板材料に用いられている公知のものを、目的とする用途や性能により適宜選択して使用することができる。基材としては、例えば、ガラス基材、ガラス以外の無機基材、有機基材等が挙げられ、これらのなかでは、高剛性、及び加熱寸法安定性の観点から、ガラス基材が殊に好ましい。これらの基材を構成する繊維の具体例としては、特に限定されず、ガラス基材では、例えば、Eガラス、Dガラス、Sガラス、Tガラス、Qガラス、Lガラス、NEガラス、HMEガラスからなる群より選択される1種以上のガラスの繊維が挙げられる。また、ガラス以外の無機基材では、クォーツ等のガラス以外の無機繊維が挙げられる。さらに、有機基材では、ポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン株式会社製)、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド(テクノーラ(登録商標)、帝人テクノプロダクツ株式会社製)等の全芳香族ポリアミド;2,6-ヒドロキシナフトエ酸・パラヒドロキシ安息香酸(ベクトラン(登録商標)、株式会社クラレ製)、ゼクシオン(登録商標、KBセーレン製)等のポリエステル;ポリパラフェニレンベンズオキサゾール(ザイロン(登録商標)、東洋紡績株式会社製)、ポリイミド等の有機繊維が挙げられる。これら基材は、1種を単独で用いても、2種以上を併用してもよい。 
 基材の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマット等が挙げられる。織布の織り方としては、特に限定されないが、例えば、平織り、ななこ織り、綾織り等が知られており、これら公知のものから目的とする用途や性能により適宜選択して使用することができる。また、これらを開繊処理したものやシランカップリング剤等で表面処理したガラス織布が好適に使用される。基材の厚さや質量は、特に限定されないが、通常は0.01~0.3mm程度のものが好適に用いられる。とりわけ、強度と吸水性との観点から、基材は、厚み200μm以下、質量250g/m以下のガラス織布が好ましく、Eガラス、Sガラス、及びTガラスのガラス繊維からなるガラス織布がより好ましい。
 また、上述したとおり、本実施形態のプリプレグは、それを230℃及び100分の条件で熱硬化させて得られる硬化物が、上記式(4)~(8)好ましくは式(4A)~(8A)で表される機械特性に関する物性パラメータの数値範囲を満たすものであると、積層板、金属箔張積層板、プリント配線板、又は多層プリント配線板が、明確なガラス転移温度が存在せず(Tgレス)、かつ、反りを十分に低減(低反りを達成)できる傾向にあるので好ましい。
〔レジンシート〕
 本実施形態のレジンシートは、シート基材(支持体)と、該シート基材の片面又は両面に積層された、上記プリント配線板用樹脂組成物と、を有する。レジンシートとは、薄葉化の1つの手段として用いられるもので、例えば、金属箔やフィルム等の支持体に、直接、プリプレグ等に用いられる熱硬化性樹脂(充填材(E)を含む)を塗布及び乾燥して製造することができる。
 シート基材としては、特に限定されないが、各種プリント配線板材料に用いられている公知の物もの使用することができる。例えばポリイミドフィルム、ポリアミドフィルム、ポリエステルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム、アルミニウム箔、銅箔、金箔等が挙げられる。その中でも電解銅箔、PETフィルムが好ましい。
 塗布方法としては、例えば、本実施形態のプリント配線板用樹脂組成物を溶剤に溶解させた溶液を、バーコーター、ダイコーター、ドクターブレード、ベーカーアプリケーター等でシート基材上に塗布する方法が挙げられる。
 レジンシートは、上記プリント配線板用樹脂組成物をシート基材に塗布後、半硬化(Bステージ化)させたものであることが好ましい。具体的には、例えば、上記プリント配線板用樹脂組成物を銅箔等のシート基材に塗布した後、100~200℃の乾燥機中で、1~60分加熱させる方法等により半硬化させ、レジンシートを製造する方法等が挙げられる。シート基材に対するプリント配線板用樹脂組成物の付着量は、レジンシートの樹脂厚で1~300μmの範囲が好ましい。
〔積層板及び金属箔張積層板〕
 本実施形態の積層板は、少なくとも1枚以上積層された、本実施形態の上記プリプレグ及び/又は本実施形態の上記レジンシートを有するものである。また、本実施形態の金属箔張積層板は、本実施形態の積層板(すなわち、少なくとも1枚以上積層された、本実施形態の上記プリプレグ及び/又は本実施形態の上記レジンシート)と、その積層板の片面又は両面に配された金属箔(導体層)とを有するものである。
 導体層は、銅やアルミニウム等の金属箔とすることができる。ここで使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されないが、圧延銅箔や電解銅箔等の公知の銅箔が好ましい。また、導体層の厚みは、特に限定されないが、1~70μmが好ましく、より好ましくは1.5~35μmである。
 積層板又は金属箔張積層板の成形方法及びその成形条件は、特に限定されず、一般的なプリント配線板用積層板及び多層板の手法及び条件を適用することができる。例えば、瀬積層板又は金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機等を用いることができる。また、積層板又は金属箔張積層板の成形(積層成形)において、温度は100~300℃、圧力は面圧2~100kgf/cm、加熱時間は0.05~5時間の範囲が一般的である。さらに、必要に応じて、150~300℃の温度で後硬化を行うこともできる。特に多段プレス機を用いた場合は、プリプレグ及び/又はレジンシートの硬化を十分に促進させる観点から、温度200℃~250℃、圧力10~40kgf/cm、加熱時間80分~130分が好ましく、温度215℃~235℃、圧力25~35kgf/cm、加熱時間90分~120分がより好ましい。また、上述のプリプレグ及び/又はレジンシートと、別途作成した内層用の配線板とを組み合わせて積層成形することにより、多層板とすることも可能である。 
〔プリント配線板〕
 本実施形態のプリント配線板は、絶縁層と、該絶縁層の表面に形成された導体層とを有するプリント配線板であって、絶縁層が、上記プリント配線板用樹脂組成物を含む。例えば、上述した金属箔張積層板に、所定の配線パターンを形成することにより、プリント配線板として好適に用いることができる。そして、本実施形態のプリント配線板用樹脂組成物を用いた金属箔張積層板は、明確なガラス転移温度が存在せず(Tgレス)、かつ、反りを十分に低減(低反りを達成)できる傾向にあるので、そのような性能が要求されるプリント配線板として、殊に有効に用いることができる。
 本実施形態のプリント配線板は、具体的には、例えば、以下の方法により製造することができる。まず、上述の金属箔張積層板(銅張積層板等)を用意する。金属箔張積層板の表面にエッチング処理を施して内層回路の形成を行い、内層基板を作成する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いで、その内層回路表面に上述のプリプレグ及び/又はレジンシートを所要枚数重ね、更にその外側に外層回路用の金属箔を積層し、加熱加圧して一体成形(積層成形)する。このようにして、内層回路と外層回路用の金属箔との間に、基材及び熱硬化性樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。積層成形の方法及びその成形条件は、上述した積層板又は金属箔張積層板と同様である。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、硬化物層に含まれている樹脂成分に由来する樹脂の残渣であるスミアを除去するためデスミア処理が行われる。その後この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成し、更に外層回路用の金属箔にエッチング処理を施して外層回路を形成し、プリント配線板が製造される。
 例えば、上述のプリプレグ(基材及びこれに添着された上述のプリント配線板用樹脂組成物)、金属箔張積層板の樹脂組成物層(上述のプリント配線板用樹脂組成物からなる層)が、上述のプリント配線板用樹脂組成物を含む絶縁層を構成することになる。 
 また、金属箔張積層板を用いない場合には、上記プリプレグ又は上記プリント配線板用樹脂組成物からなるものに、回路となる導体層を形成しプリント配線板を作製してもよい。この際、導体層の形成に無電解めっきの手法を用いることもできる。
 さらに、本実施形態のプリント配線板は、図9に示す如く、少なくとも1枚以上積層された上述のプリプレグ及びレジンシートからなる群より選択される少なくとも1種で形成された第1の絶縁層(1)、及び、その第1の絶縁層(1)の片面方向(図示下面方向)に少なくとも1枚以上積層された上述のプリプレグ及びレジンシートからなる群より選択される少なくとも1種で形成された第2の絶縁層(2)からなる複数の絶縁層と、それらの複数の絶縁層(1,2)の各々の間に配置された第1の導体層(3)、及び、それらの複数の絶縁層(1,2)の最外層に配置された第2の導体層(3)からなる複数の導体層を有すると好適である。
 本発明者らの知見によれば、通常の積層板では、例えば一のコア基板であるプリプレグ及びレジンシートからなる群より選択される少なくとも1種の両面方向に別のプリプレグ及びレジンシートからなる群より選択される少なくとも1種を積層することで多層プリント配線板を形成することが行われるが、本実施形態のプリプレグ及びレジンシートからなる群より選択される少なくとも1種は、第1の絶縁層(1)を形成する一のプリプレグ及びレジンシートからなる群より選択される少なくとも1種の片面方向にのみ、第2の絶縁層(2)を形成する別のプリプレグ及びレジンシートからなる群より選択される少なくとも1種を積層することにより製造されるコアレスタイプの多層プリント配線板(多層コアレス基板)に特に有効であることが確認された。
 換言すれば、本実施形態のプリプレグ、レジンシート、及びプリント配線板用樹脂組成物は、プリント配線板に用いた場合に、その反り量を有効に低減することができ、特に限定するものではないが、プリント配線板のなかでも多層コアレス基板において特に有効である。すなわち、通常のプリント配線板は、一般に両面対称の構成となるため反り難い傾向にあるのに対し、多層コアレス基板は、両面非対称の構成となり易いため、通常のプリント配線板に比して反り易い傾向にある。従って、本実施形態のプリプレグ、レジンシート、及びプリント配線板用樹脂組成物を使用することにより、従来反り易い傾向にあった多層コアレス基板の反り量を特に有効に低減することができる。
 なお、図9においては、1枚の第1の絶縁層(1)に第2の絶縁層(2)が2枚積層されている構成(つまり、複数の絶縁層が3層である構成)を示したが、第2の絶縁層(2)は1枚でも2枚以上であってもよい。従って、第1の導体層(3)も1層でも2層以上であってもよい。
 このとおり、上述した構成を有する本実施形態のプリント配線板は、上述した本実施形態のプリント配線板用樹脂組成物が、例えば、プリプレグを硬化させた硬化物において、熱時貯蔵弾性率や損失弾性率等の機械特性を低反りに好適な特定の範囲に制御することができることにより、明確なガラス転移温度が存在せず(Tgレス)、かつ、プリント配線板、特に、多層コアレス基板の反りを十分に低減(低反りを達成)することから、半導体パッケージ用プリント配線板及び多層コアレス基板として、殊に有効に用いることができる。
 以下、本発明を実施例及び比較例を用いてより具体的に説明する。ただし、本発明は、以下の実施例によって何ら限定されるものではない。
〔合成例1〕α-ナフトールアラルキル型シアン酸エステル化合物(SN495VCN)の合成
 反応器内で、α-ナフトールアラルキル樹脂(SN495V、OH基当量:236g/eq.、新日鐵化学(株)製:ナフトールアラルキルの繰り返し単位数nは1~5のものが含まれる。)0.47モル(OH基換算)を、クロロホルム500mlに溶解させ、この溶液にトリエチルアミン0.7モルを添加した。温度を-10℃に保ちながら反応器内に0.93モルの塩化シアンのクロロホルム溶液300gを1.5時間かけて滴下し、滴下終了後、30分撹拌した。その後さらに、0.1モルのトリエチルアミンとクロロホルム30gの混合溶液を反応器内に滴下し、30分撹拌して反応を完結させた。副生したトリエチルアミンの塩酸塩を反応液から濾別した後、得られた濾液を0.1N塩酸500mlで洗浄した後、水500mlでの洗浄を4回繰り返した。これを硫酸ナトリウムにより乾燥した後、75℃でエバポレートし、さらに90℃で減圧脱気することにより、褐色固形の上記式(2)で表されるα-ナフトールアラルキル型シアン酸エステル化合物(式中のRはすべて水素原子である。)を得た。得られたα-ナフトールアラルキル型シアン酸エステル化合物を赤外吸収スペクトルにより分析したところ、2264cm-1付近にシアン酸エステル基の吸収が確認された。
〔実施例1〕
 アリルフェノール化合物(A)であるジアリルビスフェノールA(DABPA、大和化成工業(株)製、ヒドロキシル基当量:154g/eq.)24.1質量部、マレイミド化合物(B)(BMI-2300、大和化成工業(株)製、マレイミド当量:186g/eq.)60.9質量部、シアン酸エステル化合物(C)である合成例1のα-ナフトールアラルキル型シアン酸エステル化合物(SN495VCN、シアネート当量:261g/eq.)5.0質量部、エポキシ化合物(D)(NC-3000FH、日本化薬(株)製、エポキシ当量:328g/eq.)10.0質量部、充填材(E)であるスラリーシリカ(SC-2050MB、アドマテックス(株)製)200質量部及び同シリコーン複合パウダー(KMP-605M、信越化学工業(株)製)25質量部、シランカップリング剤(KBM-403、信越化学工業(株)製)5質量部、並びに硬化促進剤であるトリフェニルイミダゾール(東京化成工業(株)製)0.5質量部を混合し、メチルエチルケトンで希釈することでワニスを得た。このワニスをEガラス織布に含浸塗工し、160℃で3分間加熱乾燥して、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。
〔実施例2〕
 アリルフェノール化合物(A)(DABPA)を19.9質量部としたこと、マレイミド化合物(B)(BMI-2300)を50.1質量部としたこと、シアン酸エステル化合物(C)(SN495VCN)を10.0質量部としたこと、及びエポキシ化合物(D)(NC-3000FH)を20.0質量部としたこと以外は、実施例1と同様の方法により、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。
〔実施例3〕
 シアン酸エステル化合物(C)(SN495VCN)を用いなかったこと、及びエポキシ化合物(D)(NC-3000FH)を15.0質量部としたこと以外は、実施例1と同様の方法により、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。   
〔実施例4〕
 シアン酸エステル化合物(C)(SN495VCN)を15.0質量部としたこと、及びエポキシ化合物(D)(NC-3000FH)を用いなかったこと以外は、実施例1と同様の方法により、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。   
〔比較例1〕
 アリルフェノール化合物(A)(DABPA)を28.4質量部としたこと、マレイミド化合物(B)(BMI-2300)を71.6質量部としたこと、シアン酸エステル化合物(C)(SN495VCN)を用いなかったこと、及びエポキシ化合物(D)(NC-3000FH)を用いなかったこと以外は、実施例1と同様の方法により、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。
〔比較例2〕
 アリルフェノール化合物(A)(DABPA)を60.0質量部としたこと、マレイミド化合物(B)(BMI-2300)を32.1質量部としたこと、シアン酸エステル化合物(C)(SN495VCN)を2.6質量部としたこと、及びエポキシ化合物(D)(NC-3000FH)を5.3質量部としたこと以外は、実施例1と同様の方法により、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。
〔比較例3〕
 アリルフェノール化合物(A)(DABPA)を12.7質量部としたこと、マレイミド化合物(B)(BMI-2300)を32.1質量部としたこと、シアン酸エステル化合物(C)(SN495VCN)を50.0質量部としたこと、及びエポキシ化合物(D)(NC-3000FH)を5.2質量部としたこと以外は、実施例1と同様の方法により、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。 
〔比較例4〕
 アリルフェノール化合物(A)(DABPA)を5.0質量部としたこと、マレイミド化合物(B)(BMI-2300)を85.0質量部としたこと、シアン酸エステル化合物(C)(SN495VCN)を5.0質量部としたこと、及びエポキシ化合物(D)(NC-3000FH)を5.0質量部としたこと以外は、実施例1と同様の方法により、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。
〔物性測定評価〕
 実施例1~4及び比較例1~4で得られたプリプレグを用い、以下の各項目に示す手順により物性測定評価用のサンプルを作製し、機械特性(貯蔵弾性率、及び損失弾性率)、式(4)~(8)及び式(4A)~(8A)における機械特性に関する物性パラメータ、ガラス転移温度(Tg)、並びに反り量(3種類)を測定評価した。実施例の結果をまとめて表1に、比較例の結果をまとめて表2に示す。
〔機械特性〕
 実施例1~4及び比較例1~4で得られたプリプレグ1枚の上下両面に、銅箔(3EC-VLP、三井金属鉱業(株)製、厚み12μm)を配置し、圧力30kgf/cm、温度230℃で100分間の積層成形(熱硬化)を行い、絶縁層厚さ0.1mmの銅箔張積層板を得た。得られた銅箔張積層板をダイシングソーでサイズ20mm×5mmに切断後、表面の銅箔をエッチングにより除去し、測定用サンプルを得た。この測定用サンプルを用い、JIS C6481に準拠して動的粘弾性分析装置(TAインスツルメント製)でDMA法により、機械特性(貯蔵弾性率E’及び損失弾性率E’’)を測定した(n=3の平均値)。
〔ガラス転移温度(Tg)〕
 実施例1~4及び比較例1~4で得られたプリプレグ1枚の上下両面に、銅箔(3EC-VLP、三井金属鉱業(株)製、厚み12μm)を配置し、圧力30kgf/cm、温度230℃で100分間の積層成形を行い、絶縁層厚さ0.1mmの銅箔張積層板を得た。得られた銅箔張積層板をダイシングソーでサイズ12.7×2.5mmに切断後、表面の銅箔をエッチングにより除去し、測定用サンプルを得た。この測定用サンプルを用い、JIS C6481に準拠して動的粘弾性分析装置(TAインスツルメント製)でDMA法によりガラス転移温度(Tg)を測定した(n=3の平均値)。
〔反り量:バイメタル法〕
 まず、実施例1~4及び比較例1~4で得られたプリプレグ1枚の上下両面に、銅箔(3EC-VLP、三井金属鉱業(株)製、厚み12μm)を配置し、圧力30kgf/cm、温度220℃で120分間の積層成形型を行い、銅箔張積層板を得た。次に、得られた銅箔張積層板から上記銅箔を除去した。次いで、銅箔を除去した積層板の片面に、実施例1~4及び比較例1~4で得られたプリプレグ1枚を更に配置し、その上下両面に、上記銅箔(3EC-VLP、三井金属鉱業(株)製、厚み12μm)を配置し、圧力30kgf/cm、温度220℃で120分間の積層成形を行い、再び銅箔張積層板を得た。さらに、得られた銅箔張積層板から上記銅箔を除去し、積層板を得た。そして、得られた積層板から20mm×200mmの短冊状板を切りだし、2枚目に積層したプリプレグの面を上にして、長尺方向両端の反り量の最大値を金尺にて測定し、その平均値をバイメタル法による「反り量」とした。
〔反り量:多層コアレス基板〕
 まず、図1に示す如く、支持体(a)となるプリプレグの両面に、キャリア付極薄銅箔(b1)(MT18Ex、三井金属鉱業(株)製、厚み5μm)のキャリア銅箔面をプリプレグ側に向けて配置し、その上に実施例1~4及び比較例1~4で得られたプリプレグ(c1)を更に配置、その上に銅箔(d)(3EC-VLP、三井金属鉱業(株)製、厚み12μm)を配置し、圧力30kgf/cm、温度220℃で120分間の積層成形を行って図2に示す銅箔張積層板を得た。
 次いで、得られた図2に示す銅箔張積層板の上記銅箔(d)を、例えば図3に示すように所定の配線パターンにエッチングして導体層(d’)を形成した。次に、導体層(d’)が形成された図3に示す積層板の上に、図4に示すとおり、実施例1~4及び比較例1~4で得られたプリプレグ(c2)を配置し、その上にさらに、キャリア付極薄銅箔(b2)(MT18Ex、三井金属鉱業(株)製、厚み5μm)を配置し、圧力30kgf/cm、温度220℃で120分間の積層成形を行って図5に示す銅箔張積層板を得た。
 次いで、図5に示す銅箔張積層板において、支持体(a)(硬化した支持体用プリプレグ)に配置したキャリア付極薄銅箔(b1)のキャリア銅箔と極薄銅箔を剥離することにより、図6に示すとおり、支持体(a)から2枚の積層板を剥離し、さらに、それらの各積層板における上部のキャリア付極薄銅箔(b2)からキャリア銅箔を剥離した。次に、得られた各積層板の上下の極薄銅箔上にレーザー加工機による加工を行い、図7に示すとおり、化学銅メッキにて所定のビア(v)を形成した。それから、例えば図8に示すように、所定の配線パターンにエッチングして導体層を形成し、多層コアレス基板のパネル(サイズ:500mm×400mm)を得た。そして、得られたパネルの4つ角及び4辺中央部分の合計8箇所における反り量を金尺にて測定し、その平均値を多層コアレス基板のパネルの「反り量」とした。
〔リフロー工程前後基板収縮率〕
 実施例1~4及び比較例1~4で得られたプリプレグ1枚の上下両面に、銅箔(3EC-VLP、三井金属鉱業(株)製、厚み12μm)を配置し、圧力30kgf/cm、温度220℃で120分間の積層成形を行って、銅箔張積層板を得た。次に、得られた銅箔張積層板にドリルにて格子状均等に9点の穴あけ加工を実施した後、上記銅箔を除去した。
 それから、まず、銅箔が除去された積層板における穴間の距離を測定した(距離イ)。次に、その積層板に対し、サラマンダーリフロー装置にて260℃を最高温度としてリフロー処理を実施した。その後、積層板における穴間の距離を再度測定した(距離ロ)。そして、測定された距離イと距離ロを下記式(I)に代入し、リフロー処理における基板の寸法変化率を求め、その値をリフロー工程前後基板収縮率とした。
((距離イ)-(距離ロ))/距離イ×100 …式(I)
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 本実施形態のプリント配線板用樹脂組成物は、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、又は多層プリント配線板の材料として産業上の利用可能性を有する。なお、本出願は、2016年12月28日に出願された日本特許出願番号2016-255272に基づくものであり、ここにその記載内容を援用する。

Claims (18)

  1.  アリルフェノール化合物(A)と、
     マレイミド化合物(B)と、
     シアン酸エステル化合物(C)及び/又はエポキシ化合物(D)と、を含有するプリント配線板用樹脂組成物であって、
     前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記アリルフェノール化合物(A)の含有量が、10~50質量部であり、
     前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記マレイミド化合物(B)の含有量が、40~80質量部である、
    プリント配線板用樹脂組成物。
  2.  前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記シアン酸エステル化合物(C)及び前記エポキシ化合物(D)の合計含有量が、5~45質量部である、
    請求項1に記載のプリント配線板用樹脂組成物。
  3.  前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記シアン酸エステル化合物(C)の含有量が、0~25質量部である、
    請求項1又は2に記載のプリント配線板用樹脂組成物。
  4.  前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記エポキシ化合物(D)の含有量が、0~25質量部である、
    請求項1又は2に記載のプリント配線板用樹脂組成物。
  5.  充填材(E)を更に含有する、
    請求項1~4のいずれか1項に記載のプリント配線板用樹脂組成物。
  6.  前記充填材(E)が、シリカ、アルミナ、及びベーマイトからなる群より選択される少なくとも1種である、
    請求項5に記載のプリント配線板用樹脂組成物。
  7.  前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記充填材(E)の含有量が、120~250質量部である、
    請求項5又は6に記載のプリント配線板用樹脂組成物。
  8.  前記アリルフェノール化合物(A)が、下記式(I)~(III)のいずれかで表される化合物を含む、
    請求項1~7のいずれか1項に記載のプリント配線板用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、R及びRは、各々独立して、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、又はフェニル基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
  9.  前記マレイミド化合物(B)が、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン及び下記式(1)で表されるマレイミド化合物からなる群より選択される少なくとも1種を含む、
    請求項1~8のいずれか1項に記載のプリント配線板用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、Rは、各々独立して、水素原子又はメチル基を示し、nは、1以上の整数を表す。)
  10.  前記シアン酸エステル化合物(C)が、下記式(2)及び/又は(3)で表される化合物を含む、
    請求項1~9のいずれか1項に記載のプリント配線板用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(2)中、Rは、各々独立して、水素原子又はメチル基を示し、nは、1以上の整数を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (式(3)中、Rは、各々独立して、水素原子又はメチル基を示し、nは、1以上の整数を表す。)
  11.  前記プリント配線板用樹脂組成物と、基材と、を含有するプリプレグを230℃及び100分の条件で熱硬化させて得られる硬化物が、下記式(4)~(8);
     E’(200℃)/E’(30℃)≦0.90 …(4)
     E’(260℃)/E’(30℃)≦0.85 …(5)
     E’(330℃)/E’(30℃)≦0.80 …(6)
     E’’max/E’(30℃)≦3.0% …(7)
     E’’min/E’(30℃)≧0.5% …(8)
    (各式中、E’は、括弧内に示す温度における前記硬化物の貯蔵弾性率を示し、E’’maxは、30℃から330℃の温度範囲における前記硬化物の損失弾性率の最大値を示し、E’’minは、30℃から330℃の温度範囲における前記硬化物の損失弾性率の最小値を示す。)
    で表される機械特性に関する物性パラメータの数値範囲を満たす、
    請求項1~10のいずれか1項に記載のプリント配線板用樹脂組成物。
  12.  基材と、
     該基材に含浸又は塗布された請求項1~11のいずれか1項に記載のプリント配線板用樹脂組成物と、
    を有するプリプレグ。
  13.  前記基材が、Eガラス繊維、Dガラス繊維、Sガラス繊維、Tガラス繊維、Qガラス繊維、Lガラス繊維、NEガラス繊維、HMEガラス繊維、及び有機繊維からなる群より選択される1種以上の繊維で構成されたものである、
    請求項12に記載のプリプレグ。
  14.  支持体と、
     該支持体の片面又は両面に積層された請求項1~11のいずれか1項に記載のプリント配線板用樹脂組成物と、
    を有するレジンシート。
  15.  少なくとも1枚以上積層された請求項12及び13に記載のプリプレグ、並びに請求項14に記載のレジンシートからなる群より選択される少なくとも1種を有する、
    積層板。
  16.  少なくとも1枚以上積層された請求項12及び13に記載のプリプレグ、並びに請求項14に記載のレジンシートからなる群より選択される少なくとも1種と、
     前記プリプレグ及び前記レジンシートからなる群より選択される少なくとも1種の片面又は両面に配された金属箔と、
    を有する金属箔張積層板。
  17.  絶縁層と、
     該絶縁層の表面に形成された導体層と、
    を有し、
     前記絶縁層が、請求項1~11のいずれか1項に記載のプリント配線板用樹脂組成物を含む、
    プリント配線板。
  18.  少なくとも1枚以上積層された請求項12及び13に記載のプリプレグ、並びに請求項14に記載のレジンシートからなる群より選択される少なくとも1種で形成された第1の絶縁層、及び、前記第1の絶縁層の片面方向に少なくとも1枚以上積層された請求項12及び13に記載のプリプレグ、並びに請求項14に記載のレジンシートからなる群より選択される少なくとも1種で形成された第2の絶縁層からなる複数の絶縁層と、
     前記複数の絶縁層の各々の間に配置された第1の導体層、及び、前記複数の絶縁層の最外層の表面に配置された第2の導体層からなる複数の導体層と、
    を有する多層プリント配線板。 
PCT/JP2017/046843 2016-12-28 2017-12-27 プリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板 WO2018124161A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018559565A JP7025729B2 (ja) 2016-12-28 2017-12-27 プリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
KR1020197016461A KR102431012B1 (ko) 2016-12-28 2017-12-27 프린트 배선판용 수지 조성물, 프리프레그, 레진 시트, 적층판, 금속박 피복 적층판, 프린트 배선판, 및 다층 프린트 배선판
CN201780081388.4A CN110121531B (zh) 2016-12-28 2017-12-27 印刷电路板用树脂组合物、预浸料、树脂片、层叠板、覆金属箔层叠板、及印刷电路板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-255272 2016-12-28
JP2016255272 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018124161A1 true WO2018124161A1 (ja) 2018-07-05

Family

ID=62708139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046843 WO2018124161A1 (ja) 2016-12-28 2017-12-27 プリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板

Country Status (5)

Country Link
JP (1) JP7025729B2 (ja)
KR (1) KR102431012B1 (ja)
CN (1) CN110121531B (ja)
TW (1) TWI798194B (ja)
WO (1) WO2018124161A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262321A1 (ja) * 2019-06-26 2020-12-30 三菱瓦斯化学株式会社 レジンシート、金属箔張積層板、及びプリント配線板
WO2021157680A1 (ja) * 2020-02-07 2021-08-12 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、積層板、金属箔張積層板、及びプリント配線板
WO2023013710A1 (ja) * 2021-08-05 2023-02-09 三菱瓦斯化学株式会社 プリプレグ、金属箔張積層板及びプリント配線板
WO2023013712A1 (ja) * 2021-08-05 2023-02-09 三菱瓦斯化学株式会社 硬化性組成物、プリプレグ、金属箔張積層板、及びプリント配線板
WO2023013711A1 (ja) * 2021-08-05 2023-02-09 三菱瓦斯化学株式会社 熱硬化性樹脂組成物、プリプレグ及びプリント配線板
CN115996989A (zh) * 2020-06-24 2023-04-21 松下知识产权经营株式会社 树脂组合物、预浸料、具有树脂的膜、具有树脂的金属箔、覆金属层压体和印刷线路板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125121A1 (ja) * 2019-12-17 2021-06-24 三菱瓦斯化学株式会社 樹脂シート、及びプリント配線板
CN111019346B (zh) * 2019-12-26 2022-08-12 艾蒙特成都新材料科技有限公司 一种阻燃高耐热树脂组合物、覆铜板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693047A (ja) * 1991-11-18 1994-04-05 Toagosei Chem Ind Co Ltd 硬化性樹脂組成物
JPH07278268A (ja) * 1994-04-06 1995-10-24 Sumitomo Bakelite Co Ltd 熱硬化性樹脂組成物
CN102643543A (zh) * 2011-02-18 2012-08-22 中国科学院深圳先进技术研究院 复合电介质材料、采用其制作的覆铜箔半固化片以及覆铜箔层压板
JP2016141700A (ja) * 2015-01-30 2016-08-08 三菱瓦斯化学株式会社 シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5024205B2 (ja) 2007-07-12 2012-09-12 三菱瓦斯化学株式会社 プリプレグ及び積層板
TW201204548A (en) 2010-02-05 2012-02-01 Sumitomo Bakelite Co Prepreg, laminate, printed wiring board, and semiconductor device
CN102115600B (zh) * 2010-11-26 2013-05-01 苏州生益科技有限公司 一种热固性树脂组合物、半固化片及层压板
JP2013001807A (ja) 2011-06-16 2013-01-07 Panasonic Corp 電子回路基板材料用樹脂組成物、プリプレグ及び積層板
CN102276837B (zh) * 2011-08-19 2013-01-02 慧智科技(中国)有限公司 无卤含磷的阻燃聚酰亚胺树脂组合物及其制备方法
JP3173332U (ja) 2011-11-17 2012-02-02 奇▲こう▼科技股▲ふん▼有限公司 含油軸受ファン構造
JP2013216884A (ja) 2012-03-14 2013-10-24 Hitachi Chemical Co Ltd 熱硬化性樹脂組成物、プリプレグ及び積層板
WO2014061812A1 (ja) * 2012-10-19 2014-04-24 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、積層板、及びプリント配線板
KR102147632B1 (ko) * 2013-06-03 2020-08-25 미츠비시 가스 가가쿠 가부시키가이샤 프린트 배선판 재료용 수지 조성물, 그리고 그것을 사용한 프리프레그, 수지 시트, 금속박 피복 적층판, 및 프린트 배선판
KR102075195B1 (ko) * 2014-01-07 2020-02-07 미츠비시 가스 가가쿠 가부시키가이샤 프린트 배선판용 절연층 및 프린트 배선판
KR101755323B1 (ko) * 2014-02-19 2017-07-20 한국생산기술연구원 신규한 에폭시 화합물, 이를 포함하는 혼합물, 조성물, 경화물, 이의 제조 방법, 및 이의 용도
CN104164087B (zh) * 2014-07-10 2017-02-15 腾辉电子(苏州)有限公司 低树脂流动性半固化片及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693047A (ja) * 1991-11-18 1994-04-05 Toagosei Chem Ind Co Ltd 硬化性樹脂組成物
JPH07278268A (ja) * 1994-04-06 1995-10-24 Sumitomo Bakelite Co Ltd 熱硬化性樹脂組成物
CN102643543A (zh) * 2011-02-18 2012-08-22 中国科学院深圳先进技术研究院 复合电介质材料、采用其制作的覆铜箔半固化片以及覆铜箔层压板
JP2016141700A (ja) * 2015-01-30 2016-08-08 三菱瓦斯化学株式会社 シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262321A1 (ja) * 2019-06-26 2020-12-30 三菱瓦斯化学株式会社 レジンシート、金属箔張積層板、及びプリント配線板
WO2021157680A1 (ja) * 2020-02-07 2021-08-12 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、積層板、金属箔張積層板、及びプリント配線板
JP6986212B1 (ja) * 2020-02-07 2021-12-22 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、積層板、金属箔張積層板、及びプリント配線板
CN115996989A (zh) * 2020-06-24 2023-04-21 松下知识产权经营株式会社 树脂组合物、预浸料、具有树脂的膜、具有树脂的金属箔、覆金属层压体和印刷线路板
WO2023013710A1 (ja) * 2021-08-05 2023-02-09 三菱瓦斯化学株式会社 プリプレグ、金属箔張積層板及びプリント配線板
WO2023013712A1 (ja) * 2021-08-05 2023-02-09 三菱瓦斯化学株式会社 硬化性組成物、プリプレグ、金属箔張積層板、及びプリント配線板
WO2023013711A1 (ja) * 2021-08-05 2023-02-09 三菱瓦斯化学株式会社 熱硬化性樹脂組成物、プリプレグ及びプリント配線板
JP7276674B1 (ja) * 2021-08-05 2023-05-18 三菱瓦斯化学株式会社 プリプレグ、金属箔張積層板及びプリント配線板
JP7284945B1 (ja) * 2021-08-05 2023-06-01 三菱瓦斯化学株式会社 硬化性組成物、プリプレグ、金属箔張積層板、及びプリント配線板

Also Published As

Publication number Publication date
JP7025729B2 (ja) 2022-02-25
TW201840675A (zh) 2018-11-16
TWI798194B (zh) 2023-04-11
JPWO2018124161A1 (ja) 2019-10-31
CN110121531A (zh) 2019-08-13
KR20190095923A (ko) 2019-08-16
CN110121531B (zh) 2021-09-14
KR102431012B1 (ko) 2022-08-10

Similar Documents

Publication Publication Date Title
JP7121354B2 (ja) 樹脂組成物、プリプレグ、樹脂シート、積層樹脂シート、積層板、金属箔張積層板、及びプリント配線板
JP6388147B1 (ja) 樹脂組成物、プリプレグ、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
WO2018124161A1 (ja) プリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
JP7153243B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、及びプリント配線板
JP2022009445A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、及びプリント配線板
JP6452083B2 (ja) 樹脂組成物、プリプレグ、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
WO2015105109A1 (ja) プリント配線板用絶縁層及びプリント配線板
JP6681052B2 (ja) プリプレグ、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
JP7116370B2 (ja) 樹脂組成物、プリプレグ、レジンシート、積層板、及びプリント配線板
JPWO2019131574A1 (ja) 樹脂組成物、プリプレグ、積層板、金属箔張積層板、プリント配線板及び多層プリント配線板
JPWO2018216647A1 (ja) 樹脂組成物、プリプレグ、レジンシート、金属箔張積層板及びプリント配線板、並びに樹脂組成物の製造方法
WO2019203291A1 (ja) 熱硬化性組成物、プリプレグ、積層板、金属箔張積層板、プリント配線板及び多層プリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197016461

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018559565

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889030

Country of ref document: EP

Kind code of ref document: A1