WO2018123583A1 - リレーレンズおよびリレーレンズの製造方法 - Google Patents

リレーレンズおよびリレーレンズの製造方法 Download PDF

Info

Publication number
WO2018123583A1
WO2018123583A1 PCT/JP2017/044671 JP2017044671W WO2018123583A1 WO 2018123583 A1 WO2018123583 A1 WO 2018123583A1 JP 2017044671 W JP2017044671 W JP 2017044671W WO 2018123583 A1 WO2018123583 A1 WO 2018123583A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
cylinder
longitudinal direction
positive lens
relay
Prior art date
Application number
PCT/JP2017/044671
Other languages
English (en)
French (fr)
Inventor
加藤 貴之
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2018536900A priority Critical patent/JP6539787B2/ja
Priority to DE112017006634.4T priority patent/DE112017006634T5/de
Priority to CN201780080906.0A priority patent/CN110114708A/zh
Publication of WO2018123583A1 publication Critical patent/WO2018123583A1/ja
Priority to US16/400,871 priority patent/US11262561B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0095Relay lenses or rod lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2446Optical details of the image relay
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/002Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor having rod-lens arrangements

Definitions

  • the present invention relates to a relay lens and a method for manufacturing the relay lens.
  • a relay lens that relays an object image from the objective optical system at the distal end of the insertion portion to the eyepiece optical system on the proximal end side of the insertion portion is used (see, for example, Patent Documents 1 to 3).
  • the relay lens is composed of a plurality of lenses arranged in a long and thin tube.
  • the resolution of the rigid endoscope can be improved by increasing the numerical aperture.
  • the tube that accommodates the relay lens has a length corresponding to substantially the entire length of the insertion portion, it is technically difficult to manufacture the tube so that the inner diameter is uniform over the entire length. Variation occurs. Therefore, the lens in the tube may be inclined due to a gap generated between the periphery of the lens and the inner peripheral surface of the tube.
  • the tilt of the lens arranged in the vicinity of the pupil is a major cause of axial coma, and the axial coma due to the tilt of the lens increases as the numerical aperture increases.
  • the present invention has been made in view of the above-described circumstances, and provides a relay lens and a relay lens manufacturing method capable of suppressing the occurrence of axial coma by suppressing the tilt of the lens near the pupil. For the purpose.
  • a first aspect of the present invention includes a plurality of relay optical systems arranged along a longitudinal direction in a long and rigid tube to re-image an image, and each of the relay optical systems is spaced in the longitudinal direction.
  • a pair of rod lenses disposed with a gap therebetween, a tube disposed along the longitudinal direction between the pair of rod lenses, and a positive lens fixed inside the tube and having a positive refractive power
  • the length of the cylinder in the longitudinal direction is a relay lens that is larger than the thickness of the periphery of the positive lens in the longitudinal direction.
  • the object image formed on one side of the tube by the objective optical system or the like can be relayed to the other side of the tube by the plurality of relay optical systems arranged in the tube.
  • the positive lens arranged near the pupil located between the pair of rod lenses is fixed in the cylinder. Since the cylinder has a length larger than the thickness of the peripheral edge of the positive lens, the inclination of the cylinder in the tube is such that the positive lens is fixed directly to the inner peripheral surface of the tube without providing the cylinder. As a result, the inclination of the positive lens in the cylinder is also suppressed. Thereby, generation
  • the outer diameter of the cylinder may be equal to the outer diameter of the rod lens.
  • the length of the tube may be larger than a maximum thickness of the positive lens in the longitudinal direction.
  • a second aspect of the present invention includes a plurality of relay optical systems arranged along a longitudinal direction in a long and rigid tube to re-image an image, and each of the relay optical systems is spaced in the longitudinal direction.
  • a pair of rod lenses arranged with a gap therebetween, a cylinder arranged along the longitudinal direction between the pair of rod lenses, and a positive lens fixed inside the cylinder and having a positive refractive power A method for manufacturing a relay lens, the step of fixing the positive lens to the inside of the cylinder, and processing the end surface of the cylinder to which the positive lens is fixed to the inside to be perpendicular to the optical axis of the positive lens. And a process for manufacturing a relay lens.
  • the end surface of the cylinder is processed so as to be perpendicular to the optical axis of the positive lens.
  • the tube is arranged so that the optical axis of the positive lens is parallel to the longitudinal direction of the tube only by abutting the end surface of the cylinder against the plane of the adjacent rod lens. It is possible to determine the attitude of the cylinder in the interior, and it is possible to manufacture a relay lens in which the occurrence of axial coma is suppressed.
  • a third aspect of the present invention includes a plurality of relay optical systems arranged along the longitudinal direction in a long and rigid tube to re-image the image, and each of the relay optical systems is spaced in the longitudinal direction.
  • a pair of rod lenses arranged with a gap therebetween, a cylinder arranged along the longitudinal direction between the pair of rod lenses, and a positive lens fixed inside the cylinder and having a positive refractive power
  • a method of manufacturing a relay lens the step of fixing the positive lens inside the cylinder, and the outer peripheral surface of the cylinder where the positive lens is fixed inside, the central axis of the outer peripheral surface being the light of the positive lens And a process for manufacturing the relay lens so as to coincide with the axis.
  • the outer peripheral surface of the cylinder is processed so as to be coaxial with the optical axis of the positive lens.
  • the optical axis of the positive lens is parallel to the longitudinal direction of the tube just by fitting the tube into the tube in the longitudinal direction.
  • the position of the cylinder can be determined, and a relay lens in which the occurrence of axial coma is suppressed can be manufactured.
  • FIG. 1 is an overall configuration diagram of a relay lens according to an embodiment of the present invention. It is a block diagram of the relay optical system in the relay lens of FIG. It is a figure which shows the unit which consists of a pipe
  • relay lens 1 concerning one embodiment of the present invention is explained with reference to drawings.
  • a relay lens 1 according to this embodiment is mounted on an elongated insertion portion rigid endoscope has, as shown in Figure 1, the insertion portion of the object image I 1 which is formed by the objective optical system 10 of the distal end of the insertion portion It relays to the eyepiece optical system 20 provided on the base end side.
  • the relay lens 1 includes a plurality of relay optical systems 2 arranged in a long and cylindrical and rigid tube 6 along the longitudinal direction of the tube 6.
  • each relay optical system 2 is disposed between a pair of rod lenses 31 and 32 that are spaced apart in the longitudinal direction of the tube 6, and the pair of rod lenses 31 and 32.
  • An optical image I i + 1 is formed by re-imaging with the lens 5 at the same magnification.
  • Reference numeral In denotes a final image relayed by the relay lens 1
  • reference numeral P denotes a pupil position of each relay optical system 2.
  • Each of the rod lenses 31 and 32 is a cylindrical lens having a plane perpendicular to the major axis at one end on the pupil P side and a convex surface on the other end opposite to the pupil P. Have equal outer diameter.
  • the pair of rod lenses 31 and 32 are disposed symmetrically in the longitudinal direction with respect to the pupil P located between the pair of rod lenses 31 and 32.
  • the cylinder 4 is disposed in the tube 6 along the longitudinal direction, and is open at both ends.
  • the cylinder 4 has an outer diameter equal to the outer diameter of the rod lenses 31 and 32 and an inner diameter substantially equal to the outer diameter of the positive lens 5.
  • the end faces 4 a and 4 b of the cylinder 4 at least the end face 4 a adjacent to the plane of the rod lenses 31 and 32 is formed perpendicular to the optical axis of the positive lens 5.
  • the positive lens 5 is a cemented lens that includes a plurality of lenses that are cemented with each other and is suitable for correcting chromatic aberration.
  • the positive lens 5 is fixed to the inner peripheral surface of the cylinder 4 at the periphery. As shown in FIG. 2, when a plurality of positive lenses 5 are provided between the pair of rod lenses 31 and 32, the same number of cylinders 4 as the positive lenses 5 are provided, and each positive lens 5 is a separate cylinder 4. Fixed inside. Alternatively, a plurality of positive lenses 5 may be fixed in the single cylinder 4.
  • the length L in the longitudinal direction of the cylinder 4 is larger than the maximum thickness Tmax in the optical axis direction of the positive lens 5, and the entire positive lens 5 is disposed in the cylinder 4.
  • both ends of the cylinder 4 protrude from both lens surfaces of the positive lens 5.
  • the cylinder 4 functions also as a spacer for ensuring a space between the two positive lenses 5 and between the positive lens 5 and the rod lens 31 or 32.
  • FIG. 2 shows two positive lenses 5 made of cemented lenses, but the type and number of positive lenses arranged between the rod lenses 31 and 32 can be changed as appropriate.
  • a single cemented lens 51, 52 composed of three or two lenses may be employed, or a positive lens composed of a single lens may be employed.
  • the manufacturing method of the relay lens 1 includes a first step of fixing the positive lens 5 inside the tube 4 to form a unit 45 composed of the tube 4 and the positive lens 5, and the first step.
  • a second step of processing at least the end surface 4a adjacent to the plane of the rod lenses 31 and 32 among the both end surfaces 4a and 4b of the cylinder 4 to which the positive lens 5 is fixed by the rod lens 31, 32 and the unit
  • the unit 45 is formed by fixing the peripheral edge of the positive lens 5 to the inner peripheral surface of the cylinder 4 so that the optical axis of the positive lens 5 is parallel to the central axis of the cylinder 4.
  • the optical axis of the positive lens 5 is aligned with the rotation axis 30b perpendicular to the grinding surface 30a of the grinding wheel 30, and in this state, the unit 45 is moved to the rotation axis 30b.
  • the end surface 4a of the cylinder 4 is ground by the grinding surface 30a.
  • the end face 4a can be processed so that the end face 4a is perpendicular to the optical axis of the positive lens 5.
  • the alignment of the optical axis of the positive lens 5 with respect to the rotation axis 30b is performed by irradiating the rotating positive lens 5 with light from the light source 40, detecting the position of the reflected light from the positive lens 5 by the detector 50, and the position of the reflected light. This can be done by adjusting the position and inclination of the unit 45 so that is constant.
  • the rod lenses 31 and 32 and the unit 45 are placed in the tube 6 so that the unit 45 manufactured by the first and second steps is sandwiched between the pair of rod lenses 31 and 32. Insert into.
  • the cylinder 4 is positioned and positioned in the tube 6 by abutting the end face 4a of the cylinder 4 against the plane of the adjacent rod lens 31 or 32.
  • the tube 6 has a length corresponding to substantially the entire length of the insertion portion of the rigid endoscope, it is difficult to manufacture the tube 6 so as to have a uniform inner diameter over the entire length. Manufacturing variation occurs. If the positive lens 5 is inserted into the tube 6 alone so that the peripheral edge of the positive lens 5 is in direct contact with the inner peripheral surface of the tube 6, a gap generated between the peripheral edge of the positive lens 5 and the inner peripheral surface of the tube 6. Therefore, the inclination of the positive lens 5 in the tube 6 is likely to occur.
  • the inclination of the positive lens 5 located in the vicinity of the pupil P is a main cause of the on-axis coma aberration generated in the light relayed by the relay lens 1. Therefore, in order to improve the optical performance of the relay lens 1, the inclination of the positive lens 5 in the tube 6 is suppressed and the optical axis of the positive lens 5 is made parallel to the longitudinal direction of the tube 6. It is important to arrange the lens 5.
  • the cylinder 4 has a length L that is larger than the maximum thickness Tmax of the positive lens 5 in the longitudinal direction of the tube 6, so that the cylinder in the tube 6 due to variations in the inner diameter of the tube 6.
  • the inclination of the positive lens 5 fixed in the cylinder 4 can be suppressed.
  • the rod lenses 31 and 32 having a long axis in the longitudinal direction of the tube 6 are not easily inclined in the tube 6 and are arranged in parallel to the longitudinal direction of the tube 6.
  • the optical axis of the positive lens 5 is parallel to the longitudinal direction of the tube 6 by abutting the end surface 4a of the cylinder 4 processed perpendicularly to the optical axis of the positive lens 5 against the flat surfaces of the rod lenses 31 and 32.
  • the length L of the cylinder 4 is larger than the maximum thickness Tmax of the positive lens 5, but in order to obtain the effect of suppressing the inclination of the positive lens 5 by providing the cylinder 4,
  • the length L of 4 only needs to be larger than the thickness T (see FIG. 3) of the periphery of the positive lens 5 in the optical axis direction.
  • the length L of the cylinder 4 satisfies the following expression (1).
  • D is the outer diameter of the cylinder 4.
  • the dimensional tolerances of the inner diameter and outer diameter of the cylinder 4 increase, and the manufacturing error of the inner diameter and outer diameter of the cylinder 4 also increases.
  • the tolerance of the inner diameter of the cylinder 4 and the outer diameter D and manufacturing errors can be reduced, and the inclination of the positive lens 5 is suppressed. The effect to do can be heightened more.
  • the rod lenses 31 and 32 may be accommodated in a cylinder separate from the cylinder 4.
  • the positive lens 5 is fixed by the first step instead of the second step or in addition to the second step before the third step.
  • a fourth step of processing the outer peripheral surface 4c of the cylinder 4 may be included.
  • the optical axis of the positive lens 5 is aligned with the rotation axis 30c parallel to the grinding surface 30a of the grinding wheel 30, and the unit 45 is rotated around the rotation axis 30c in this state.
  • the outer peripheral surface 4c of the cylinder 4 is ground by the grinding surface 30a.
  • the outer peripheral surface 4c can be processed so that the central axis of the outer peripheral surface 4c coincides with the optical axis of the positive lens 5.
  • the alignment of the optical axis of the positive lens 5 with respect to the rotation axis 30c is performed by irradiating the rotating positive lens 5 with light from the light source 40, detecting the position of the reflected light from the positive lens 5 by the detector 50, and the position of the reflected light. This can be done by adjusting the position and inclination of the unit 45 so that is constant.
  • the optical axis of the positive lens 5 is parallel to the longitudinal direction of the tube 6 simply by inserting the unit 45 into the tube 6.
  • the unit 45 can be arranged in the tube 6 so that the inclination of the positive lens 5 can be suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Astronomy & Astrophysics (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Analytical Chemistry (AREA)
  • Lenses (AREA)
  • Lens Barrels (AREA)
  • Endoscopes (AREA)

Abstract

瞳近傍のレンズの傾きを抑制して軸上コマ収差の発生を抑制する。長尺で硬性のチューブ6内に長手方向に沿って配列され像を再結像する複数のリレー光学系2を備え、各リレー光学系2が、長手方向に間隔をあけて配置された一対のロッドレンズ31,32と、該一対のロッドレンズ31,32の間に長手方向に沿って配置された筒4と、該筒4の内側に固定され正の屈折力を有する正レンズ5とを備え、筒4の長手方向における長さが、正レンズ5の周縁の長手方向における肉厚よりも大きいリレーレンズを提供する。

Description

リレーレンズおよびリレーレンズの製造方法
 本発明は、リレーレンズおよびリレーレンズの製造方法に関するものである。
 従来、硬性鏡において、挿入部の先端の対物光学系から挿入部の基端側の接眼光学系まで物体像をリレーするリレーレンズが使用されている(例えば、特許文献1~3参照。)。リレーレンズは、長尺で細径のチューブ内に配列された複数のレンズから構成されている。
 一方、近年、カメラの高解像度化に伴い、硬性鏡の解像力の向上が要求されている。硬性鏡の解像力は、開口数の増大によって向上することができる。
特開平7-5377号公報 特開平8-122667号公報 特開2007-133175号公報
 リレーレンズを収容するチューブは、挿入部の略全長に相当する長さを有するため、全長にわたって内径が均一になるように製造することが技術的に難しく、チューブの内径には寸法公差の範囲内のばらつきが生じる。そのため、チューブ内のレンズには、レンズの周縁とチューブの内周面との間に生じた隙間によって傾きが生じ得る。特に瞳の近傍に配置されるレンズの傾きは軸上コマ収差の主な原因となり、開口数が増大する程、レンズの傾きに因る軸上コマ収差が増大する。
 本発明は、上述した事情に鑑みてなされたものであって、瞳近傍のレンズの傾きを抑制して軸上コマ収差の発生を抑制することができるリレーレンズおよびリレーレンズの製造方法を提供することを目的とする。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の第1の態様は、長尺で硬性のチューブ内に長手方向に沿って配列され像を再結像する複数のリレー光学系を備え、各前記リレー光学系が、前記長手方向に間隔をあけて配置された一対のロッドレンズと、該一対のロッドレンズの間に前記長手方向に沿って配置された筒と、該筒の内側に固定され正の屈折力を有する正レンズとを備え、前記筒の前記長手方向における長さが、前記正レンズの周縁の前記長手方向における肉厚よりも大きいリレーレンズである。
 本態様によれば、対物光学系等によってチューブの一側に形成された物体像を、チューブ内に配列された複数のリレー光学系によって、チューブの他側までリレーすることができる。
 この場合に、一対のロッドレンズ間に位置する瞳近傍に配置される正レンズは筒内に固定されている。筒は、正レンズの周縁の肉厚よりも大きな長さを有するので、チューブ内での筒の傾きは、筒を設けずに正レンズをチューブの内周面に直接固定する場合の正レンズの傾きに比べて抑制され、その結果、筒内の正レンズの傾きも抑制される。これにより、軸上コマ収差の発生を抑制することができる。
 上記第1の態様においては、前記筒の外径が、前記ロッドレンズの外径と等しくてもよい。
 このようにすることで、同一のチューブ内での筒およびロッドレンズの組み立てを容易にすることができる。
 上記第1の態様においては、前記筒の前記長さが、前記正レンズの前記長手方向における最大肉厚よりも大きくてもよい。
 このようにすることで、チューブ内での筒および正レンズの傾きをさらに抑制し、軸上コマ収差の発生をさらに抑制することができる。また、筒の端面が正レンズのレンズ面よりも光軸方向に突出するので、筒を、正レンズとロッドレンズとの間の間隔を確保するためのスペーサとしても利用することができる。
 本発明の第2の態様は、長尺で硬性のチューブ内に長手方向に沿って配列され像を再結像する複数のリレー光学系を備え、各前記リレー光学系が、前記長手方向に間隔をあけて配置された一対のロッドレンズと、該一対のロッドレンズの間に前記長手方向に沿って配置された筒と、該筒の内側に固定され正の屈折力を有する正レンズとを備えるリレーレンズの製造方法であって、前記筒の内側に前記正レンズを固定する工程と、前記正レンズが内側に固定された前記筒の端面を前記正レンズの光軸に垂直になるように加工する工程とを含むリレーレンズの製造方法である。
 本態様によれば、正レンズを筒内に固定した後に、筒の端面が正レンズの光軸と垂直になるように加工される。これにより、チューブ内へロッドレンズおよび正レンズを組み込む際に、筒の端面を隣接するロッドレンズの平面に突き当てるだけで、正レンズの光軸がチューブの長手方向と平行になるように、チューブ内での筒の姿勢決めを行うことができ、軸上コマ収差の発生が抑制されたリレーレンズを製造することができる。
 本発明の第3の態様は、長尺で硬性のチューブ内に長手方向に沿って配列され像を再結像する複数のリレー光学系を備え、各前記リレー光学系が、前記長手方向に間隔をあけて配置された一対のロッドレンズと、該一対のロッドレンズの間に前記長手方向に沿って配置された筒と、該筒の内側に固定され正の屈折力を有する正レンズとを備えるリレーレンズの製造方法であって、前記筒の内側に前記正レンズを固定する工程と、前記正レンズが内側に固定された前記筒の外周面を該外周面の中心軸が前記正レンズの光軸と一致するように加工する工程とを含むリレーレンズの製造方法である。
 本態様によれば、正レンズを筒内に固定した後に、筒の外周面が正レンズの光軸と同軸となるように加工される。これにより、チューブ内へロッドレンズおよび正レンズを組み込む際に、筒をチューブ内へ長手方向に嵌め込むだけで、正レンズの光軸がチューブの長手方向と平行になるように、チューブ内での筒の姿勢決めを行うことができ、軸上コマ収差の発生が抑制されたリレーレンズを製造することができる。
 本発明によれば、瞳近傍のレンズの傾きを抑制して軸上コマ収差の発生を抑制することができるという効果を奏する。
本発明の一実施形態に係るリレーレンズの全体構成図である。 図1のリレーレンズにおけるリレー光学系の構成図である。 筒と該筒内に固定された正レンズとからなるユニットを示す図である。 図2のリレー光学系の変形例の構成図である。 図2のリレー光学系の他の変形例の構成図である。 本発明の一実施形態に係るリレーレンズの製造方法において、リレー光学系の筒の端面を研削する工程を説明する図である。 本発明の一実施形態に係るリレーレンズの製造方法において、リレー光学系の筒の外周面を研削する工程を説明する図である。
 以下に、本発明の一実施形態に係るリレーレンズ1について図面を参照して説明する。
 本実施形態に係るリレーレンズ1は、硬性鏡が有する細長い挿入部に搭載され、図1に示されるように、挿入部の先端の対物光学系10によって形成された物体像Iを挿入部の基端側に設けられた接眼光学系20までリレーするものである。
 リレーレンズ1は、長尺で円筒状であり硬性のチューブ6内に該チューブ6の長手方向に沿って配列された複数のリレー光学系2を備えている。
 各リレー光学系2は、図2に示されるように、チューブ6の長手方向に間隔を空けて配置された一対のロッドレンズ31,32と、該一対のロッドレンズ31,32の間に配置された筒4と、該筒4内に固定され正の屈折力を有する正レンズ5とを備える。各リレー光学系2は、直前の対物光学系10または他のリレー光学系2によって形成された光学像I(i=1,2,…,n-1)を、ロッドレンズ31,32および正レンズ5によって等倍で再結像して光学像Ii+1を形成する。符号Iは、リレーレンズ1によってリレーされた最終像を示し、符号Pは、各リレー光学系2の瞳の位置を示している。
 各ロッドレンズ31,32は、瞳P側の一端に長軸に垂直な平面を有し、瞳Pとは反対側の他端に凸面を有する円柱状のレンズであり、チューブ6の内径と略等しい外径を有している。一対のロッドレンズ31,32は、該一対のロッドレンズ31,32の間に位置する瞳Pに対して長手方向に対称に配置されている。
 筒4は、チューブ6内に長手方向に沿って配置され、両端において開口している。筒4は、ロッドレンズ31,32の外径と等しい外径と、正レンズ5の外径と略等しい内径とを有している。筒4の2つの端面4a,4bの内、少なくとも、ロッドレンズ31,32の平面と隣接する端面4aは、正レンズ5の光軸に垂直に形成されている。
 正レンズ5は、互いに接合された複数枚のレンズからなり色収差の補正に好適な接合レンズである。正レンズ5は、周縁において筒4の内周面に固定されている。図2に示されるように複数の正レンズ5が一対のロッドレンズ31,32間に設けられている場合、正レンズ5と同じ数の筒4が設けられ、各正レンズ5が別々の筒4内に固定される。あるいは、複数の正レンズ5が単一の筒4内に固定されていてもよい。
 筒4の長手方向の長さLは、図3に示されるように、正レンズ5の光軸方向における最大肉厚Tmaxよりも大きくなっており、正レンズ5の全体が筒4内に配置されて、正レンズ5の両レンズ面よりも筒4の両端が突出している。これにより、筒4は、2つの正レンズ5の間および正レンズ5とロッドレンズ31または32との間に間隔を確保するためのスペーサとしても機能するようになっている。
 図2には、接合レンズからなる2つの正レンズ5が示されているが、ロッドレンズ31,32間に配置される正レンズの種類および数は適宜変更することができる。例えば、図4および図5に示されるように、3枚または2枚のレンズからなる単一の接合レンズ51,52を採用してもよく、単レンズからなる正レンズを採用してもよい。
 次に、リレーレンズ1の製造方法について説明する。
 本実施形態に係るリレーレンズ1の製造方法は、筒4の内側に正レンズ5を固定して筒4と正レンズ5とからなるユニット45を形成する第1の工程と、該第1の工程によって正レンズ5が固定された筒4の両端面4a,4bの内、少なくともロッドレンズ31,32の平面に隣接する側の端面4aを加工する第2の工程と、ロッドレンズ31,32およびユニット45をチューブ6内に組み込む第3の工程とを含む。
 第1の工程において、筒4の中心軸に対して正レンズ5の光軸が平行になるように、正レンズ5の周縁を筒4の内周面に固定してユニット45を形成する。
 次に、第2の工程において、図6に示されるように、研削砥石30の研削面30aに垂直な回転軸30bに正レンズ5の光軸を一致させ、この状態でユニット45を回転軸30b回りに回転させることで、筒4の端面4aを研削面30aで研削する。これにより、正レンズ5の光軸に対して端面4aが垂直になるように、該端面4aを加工することができる。回転軸30bに対する正レンズ5の光軸の位置合わせは、回転する正レンズ5へ光源40から光を照射し、正レンズ5からの反射光の位置を検出器50によって検出し、反射光の位置が一定となるようにユニット45の位置および傾きを調整することで、行うことができる。
 次に、第3の工程において、第1および第2の工程によって製造されたユニット45が一対のロッドレンズ31,32の間に挟まれるように、ロッドレンズ31,32およびユニット45をチューブ6内に挿入する。そして、筒4の端面4aを隣接するロッドレンズ31または32の平面に突き当てることで、チューブ6内での筒4の位置決めおよび姿勢決めを行う。
 ここで、チューブ6は、硬性鏡の挿入部の略全長に相当する長さを有するため、全長にわたって均一な内径を有するように製造することが困難であり、チューブ6の内径には公差の範囲内での製造ばらつきが生じる。仮に正レンズ5の周縁がチューブ6の内周面に直接接するように正レンズ5を単体でチューブ6内に挿入した場合、正レンズ5の周縁とチューブ6の内周面との間に生じる隙間によってチューブ6内での正レンズ5の傾きが生じ易い。瞳Pの近傍に位置する正レンズ5の傾きは、リレーレンズ1によってリレーされる光に生じる軸上コマ収差の主な原因となる。したがって、リレーレンズ1の光学性能を向上するためには、チューブ6内での正レンズ5の傾きを抑制し、チューブ6の長手方向に対して正レンズ5の光軸が平行となるように正レンズ5を配置することが重要である。
 本実施形態によれば、筒4は、チューブ6の長手方向に正レンズ5の最大肉厚Tmaxよりも大きな長さLを有するので、チューブ6の内径のばらつきに起因するチューブ6内での筒4の傾きが抑制され、その結果、筒4内に固定されている正レンズ5の傾きを抑制することができる。これにより、リレーレンズ1を開口数の大きな対物光学系10と組み合わせた場合にも、軸上コマ収差の発生を抑制することができる。
 さらに、チューブ6の長手方向に長軸を有するロッドレンズ31,32は、チューブ6内での傾きが生じ難く、チューブ6の長手方向に平行に配置される。このようなロッドレンズ31,32の平面に、正レンズ5の光軸に垂直に加工された筒4の端面4aを突き当てることで、正レンズ5の光軸がチューブ6の長手方向に平行となるようにチューブ6に対する筒4および正レンズ5の姿勢を決めることができ、正レンズ5の傾きをさらに高度に抑制することができる。
 本実施形態においては、筒4の長さLが正レンズ5の最大肉厚Tmaxよりも大きいこととしたが、筒4を設けることによる正レンズ5の傾きの抑制効果を得るためには、筒4の長さLは、正レンズ5の周縁の光軸方向における肉厚T(図3参照。)よりも大きければよい。
 また、筒4の長さLは、下式(1)を満足することが好ましい。Dは、筒4の外径である。
 D≦L≦3D・・・(1)
 筒4の長さLが大きい程、筒4の内径および外径の寸法公差が大きくなり、筒4の内径および外径の製造誤差も大きくなる。条件式(1)を満足するように外径Dに対する長さLを制限することによって、筒4の内径および外径Dの寸法公差および製造誤差を小さくすることがき、正レンズ5の傾きを抑制する効果をより高めることができる。
 本実施形態においては、正レンズ5と同様に、ロッドレンズ31,32も筒4とは別体の筒内に収容されていてもよい。
 本実施形態に係るリレーレンズ1の製造方法は、第3の工程の前に、第2の工程に代えて、または第2の工程に加えて、第1の工程によって正レンズ5が固定された筒4の外周面4cを加工する第4の工程を含んでいてもよい。
 第4の工程において、図7に示されるように、研削砥石30の研削面30aに平行な回転軸30cに正レンズ5の光軸を一致させ、この状態でユニット45を回転軸30c回りに回転させることで、筒4の外周面4cを研削面30aで研削する。これにより、正レンズ5の光軸に外周面4cの中心軸が一致するように、外周面4cを加工することできる。回転軸30cに対する正レンズ5の光軸の位置合わせは、回転する正レンズ5へ光源40から光を照射し、正レンズ5からの反射光の位置を検出器50によって検出し、反射光の位置が一定となるようにユニット45の位置および傾きを調整することで、行うことができる。
 このように、筒4の外周面4cを正レンズ5の光軸と同軸に形成することで、ユニット45をチューブ6内に挿入するだけで正レンズ5の光軸がチューブ6の長手方向に平行になるようにユニット45をチューブ6内に配置することができ、正レンズ5の傾きを抑制することができる。
 1 リレーレンズ
 2 リレー光学系
 31,32 ロッドレンズ
 4 筒
 4a,4b 端面
 4c 外周面
 5,51,52 正レンズ
 6 チューブ
 10 対物光学系
 20 接眼光学系
 30 研削砥石
 30a 研削面
 30b,30c 回転軸
 40 光源
 50 検出器

Claims (5)

  1.  長尺で硬性のチューブ内に長手方向に沿って配列され像を再結像する複数のリレー光学系を備え、
     各前記リレー光学系が、
     前記長手方向に間隔をあけて配置された一対のロッドレンズと、
     該一対のロッドレンズの間に前記長手方向に沿って配置された筒と、
     該筒の内側に固定され正の屈折力を有する正レンズとを備え、
     前記筒の前記長手方向における長さが、前記正レンズの周縁の前記長手方向における肉厚よりも大きいリレーレンズ。
  2.  前記筒の外径が、前記ロッドレンズの外径と等しい請求項1に記載のリレーレンズ。
  3.  前記筒の前記長さが、前記正レンズの前記長手方向における最大肉厚よりも大きい請求項1または請求項2に記載のリレーレンズ。
  4.  長尺で硬性のチューブ内に長手方向に沿って配列され像を再結像する複数のリレー光学系を備え、各前記リレー光学系が、前記長手方向に間隔をあけて配置された一対のロッドレンズと、該一対のロッドレンズの間に前記長手方向に沿って配置された筒と、該筒の内側に固定され正の屈折力を有する正レンズとを備えるリレーレンズの製造方法であって、
     前記筒の内側に前記正レンズを固定する工程と、
     前記正レンズが内側に固定された前記筒の端面を前記正レンズの光軸に垂直になるように加工する工程とを含むリレーレンズの製造方法。
  5.  長尺で硬性のチューブ内に長手方向に沿って配列され像を再結像する複数のリレー光学系を備え、各前記リレー光学系が、前記長手方向に間隔をあけて配置された一対のロッドレンズと、該一対のロッドレンズの間に前記長手方向に沿って配置された筒と、該筒の内側に固定され正の屈折力を有する正レンズとを備えるリレーレンズの製造方法であって、
     前記筒の内側に前記正レンズを固定する工程と、
     前記正レンズが内側に固定された前記筒の外周面を該外周面の中心軸が前記正レンズの光軸と一致するように加工する工程とを含むリレーレンズの製造方法。
PCT/JP2017/044671 2016-12-28 2017-12-13 リレーレンズおよびリレーレンズの製造方法 WO2018123583A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018536900A JP6539787B2 (ja) 2016-12-28 2017-12-13 リレーレンズの製造方法
DE112017006634.4T DE112017006634T5 (de) 2016-12-28 2017-12-13 Relaislinse und Verfahren zum Herstellen der Relaislinse
CN201780080906.0A CN110114708A (zh) 2016-12-28 2017-12-13 中继透镜和中继透镜的制造方法
US16/400,871 US11262561B2 (en) 2016-12-28 2019-05-01 Relay lens and method of manufacturing relay lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016254727 2016-12-28
JP2016-254727 2016-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/400,871 Continuation US11262561B2 (en) 2016-12-28 2019-05-01 Relay lens and method of manufacturing relay lens

Publications (1)

Publication Number Publication Date
WO2018123583A1 true WO2018123583A1 (ja) 2018-07-05

Family

ID=62707310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044671 WO2018123583A1 (ja) 2016-12-28 2017-12-13 リレーレンズおよびリレーレンズの製造方法

Country Status (5)

Country Link
US (1) US11262561B2 (ja)
JP (1) JP6539787B2 (ja)
CN (1) CN110114708A (ja)
DE (1) DE112017006634T5 (ja)
WO (1) WO2018123583A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021006899A (ja) * 2019-06-06 2021-01-21 オリンパス ビンテル ウント イーベーエー ゲーエムベーハーOlympus Winter & Ibe Gesellschaft Mit Beschrankter Haftung 内視鏡のための反転システムおよび内視鏡

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282815A (ja) * 1985-06-10 1986-12-13 Olympus Optical Co Ltd 硬性内視鏡
JPH02272512A (ja) * 1989-04-14 1990-11-07 Olympus Optical Co Ltd 像伝達光学系
JP2002540454A (ja) * 1999-03-20 2002-11-26 オリンパス ビンテル ウント イーベーエー ゲーエムベーハー レンズ位置確保装置を有する内視鏡
JP2005017615A (ja) * 2003-06-25 2005-01-20 Fujinon Corp レンズ取付方法、レンズアッセンブリ、レンズ取付部材およびレンズ間隔保持部材
JP2007133175A (ja) * 2005-11-10 2007-05-31 Pentax Corp 硬性内視鏡

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4779613A (en) * 1986-03-13 1988-10-25 Olympus Optical Co., Ltd. Endoscope with means for preventing an observing optical system from being fogged
US5142410A (en) * 1989-04-14 1992-08-25 Olympus Optical Co., Ltd. Image relaying optical system
US5206759A (en) 1989-04-14 1993-04-27 Olympus Optical Co., Ltd. Image relaying optical system
JPH075377A (ja) * 1993-06-17 1995-01-10 Olympus Optical Co Ltd 変倍光学系およびこれを持った内視鏡システム
US5632718A (en) 1994-03-11 1997-05-27 Olympus Optical Co., Ltd. Non-flexible endoscope with objective lens system and relay lens system
JPH08122667A (ja) * 1994-09-02 1996-05-17 Olympus Optical Co Ltd 硬性鏡光学系
GB2368659B (en) * 2000-11-02 2004-01-21 Keymed An apparatus for providing an image of a remote object accessible only through an aperture of finite diameter
DE10136117A1 (de) * 2001-07-26 2003-04-03 Storz Karl Gmbh & Co Kg Bildübertragungssystem aus drei Stablinsen für starre Endoskope
US6863651B2 (en) * 2001-10-19 2005-03-08 Visionscope, Llc Miniature endoscope with imaging fiber system
JP2007094241A (ja) * 2005-09-30 2007-04-12 Fujinon Corp レンズブロック及びこれを保持するレンズ保持具並びにこれを用いるプロジェクタ
DE102008056830B4 (de) * 2008-11-11 2011-05-19 Olympus Winter & Ibe Gmbh Endoskopoptik mit geschlitztem Rohr
JP5253688B1 (ja) * 2011-08-10 2013-07-31 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP2013178417A (ja) * 2012-02-29 2013-09-09 Hoya Corp キャリブレーション装置
JP2016177042A (ja) * 2015-03-19 2016-10-06 オリンパス株式会社 コンバーターレンズ装置及びそれを備えた撮影システム
CN205080301U (zh) * 2015-10-14 2016-03-09 佳能企业股份有限公司 镜头模块及应用其的电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282815A (ja) * 1985-06-10 1986-12-13 Olympus Optical Co Ltd 硬性内視鏡
JPH02272512A (ja) * 1989-04-14 1990-11-07 Olympus Optical Co Ltd 像伝達光学系
JP2002540454A (ja) * 1999-03-20 2002-11-26 オリンパス ビンテル ウント イーベーエー ゲーエムベーハー レンズ位置確保装置を有する内視鏡
JP2005017615A (ja) * 2003-06-25 2005-01-20 Fujinon Corp レンズ取付方法、レンズアッセンブリ、レンズ取付部材およびレンズ間隔保持部材
JP2007133175A (ja) * 2005-11-10 2007-05-31 Pentax Corp 硬性内視鏡

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021006899A (ja) * 2019-06-06 2021-01-21 オリンパス ビンテル ウント イーベーエー ゲーエムベーハーOlympus Winter & Ibe Gesellschaft Mit Beschrankter Haftung 内視鏡のための反転システムおよび内視鏡
US11497385B2 (en) 2019-06-06 2022-11-15 Olympus Winter & Ibe Gmbh Reversal system for an endoscope and an endoscope

Also Published As

Publication number Publication date
US20190258034A1 (en) 2019-08-22
JP6539787B2 (ja) 2019-07-03
US11262561B2 (en) 2022-03-01
CN110114708A (zh) 2019-08-09
JPWO2018123583A1 (ja) 2019-01-10
DE112017006634T5 (de) 2019-10-02

Similar Documents

Publication Publication Date Title
US7903352B2 (en) Lens mounting system for use in lens relay systems
US10921571B2 (en) Observation optical system, observation imaging device, observation imaging system, image forming lens system, and method of adjusting observation optical system
JP5989292B1 (ja) 内視鏡用対物光学系
WO2014147856A1 (ja) 立体撮像光学系、立体撮像装置及び内視鏡
EP3252522B1 (en) Lens apparatus and an image pickup apparatus including same
WO2013065294A1 (ja) 対物光学系およびこれを用いた内視鏡装置
WO2018186100A1 (ja) 硬性鏡
WO2016208367A1 (ja) 内視鏡用対物光学系
WO2018135192A1 (ja) 硬性鏡
WO2018123583A1 (ja) リレーレンズおよびリレーレンズの製造方法
JP2009053339A (ja) 干渉対物レンズ
JPS61231517A (ja) 可変焦点距離レンズ
JP7210567B2 (ja) ステレオビデオ内視鏡の光学系
US8902515B2 (en) Objective optical system and endoscope using same
JP6230518B2 (ja) 内視鏡対物光学系
JP4498343B2 (ja) レンズユニット
JP2019117422A (ja) 撮像用の光学系および撮像装置
JP6890447B2 (ja) 光学レンズ装置
JP6602738B2 (ja) 観察光学系、観察撮像装置、観察撮像システム、結像レンズ系及び観察光学系の調整方法
US11497385B2 (en) Reversal system for an endoscope and an endoscope
WO2019176134A1 (ja) リレーシステム
CN217821054U (zh) 定焦光学适配器及4k内窥镜
CN217821056U (zh) 4k定焦光学适配器及4k内窥镜
JP2016080819A (ja) 光学鏡筒および内視鏡
JP2006317891A (ja) 立体電子内視鏡用光学系

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018536900

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887472

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17887472

Country of ref document: EP

Kind code of ref document: A1