WO2018120587A1 - 一种无卤热固性树脂组合物及含有它的预浸料、层压板和印制电路板 - Google Patents

一种无卤热固性树脂组合物及含有它的预浸料、层压板和印制电路板 Download PDF

Info

Publication number
WO2018120587A1
WO2018120587A1 PCT/CN2017/084315 CN2017084315W WO2018120587A1 WO 2018120587 A1 WO2018120587 A1 WO 2018120587A1 CN 2017084315 W CN2017084315 W CN 2017084315W WO 2018120587 A1 WO2018120587 A1 WO 2018120587A1
Authority
WO
WIPO (PCT)
Prior art keywords
type cyanate
group
halogen
weight
carbon atoms
Prior art date
Application number
PCT/CN2017/084315
Other languages
English (en)
French (fr)
Inventor
游江
黄天辉
林伟
杨中强
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Publication of WO2018120587A1 publication Critical patent/WO2018120587A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4071Curing agents not provided for by the groups C08G59/42 - C08G59/66 phosphorus containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/22Halogen free composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to the field of copper clad laminates, and more particularly to a halogen-free thermosetting resin composition and a prepreg, a laminate thereof and a printed circuit board containing the same.
  • CN105968321A discloses an epoxy resin containing an oxazolidinone ring, a process for producing the same, an epoxy resin composition, a cured product thereof, and a cured product thereof and use thereof.
  • the disclosed epoxy resin containing an oxazolidinone ring structure has high heat resistance, high adhesion, excellent flame retardancy and workability, but the dielectric constant and dielectric loss of the resin composition are generally.
  • the polyphosphonate is a curing agent for the above-mentioned epoxy resin containing an oxazolidinone ring, and the reaction does not generate secondary hydroxyl groups, and maintains excellent dielectric properties, high adhesion, excellent processability, and high Halogen-free flame retardant is achieved at the same glass transition temperature; the addition of cyanate resin not only greatly increases the glass transition temperature (Tg) and heat resistance of the cured product, but also further reduces the dielectric constant and dielectric loss of the cured product. value.
  • the excellent adhesion and processability of the epoxy group and the polyphosphonate containing an oxazolidinone ring can compensate for the weakness of the cyanate ester system, such as high brittleness and poor workability; in addition, polyphosphonate phosphorus High content, and the nitrogen element in the epoxy resin containing the oxazolidinone ring structure and the nitrogen element in the cyanate ester have the synergistic flame retardant effect of phosphorus and nitrogen, solving the problem of poor flame retardancy of the cyanate ester, and at the same time, the phosphorus-nitrogen synergy Flame retardant can reduce the flame retardancy of the cured product to the phosphorus content required by UL94 V-0 and reduce the water absorption rate, reducing the probability of the laminate in the process of moisture absorption and bursting.
  • one of the objects of the present invention is to provide a halogen-free thermosetting resin composition.
  • Prepregs, laminates, and printed circuit boards made using the halogen-free thermosetting resin composition have high glass transition temperature, excellent dielectric properties, high peel strength, high heat resistance, low water absorption, and good processes. Processability, and can achieve halogen-free flame retardant, reaching UL94 V-0.
  • halogen-free obtained by appropriately mixing a halogen-free epoxy resin having a specific structure, a polyphosphonate, a cyanate ester, and other optional materials.
  • the above object can be attained by a thermosetting resin composition.
  • thermosetting resin composition containing the following three substances as essential components, and 100 parts by weight of the organic solids, wherein:
  • the invention adopts a halogen-free epoxy resin with a specific structure as a main resin, which has a symmetrical molecular structure and an oxazolidinone ring structure, and has high heat resistance, high adhesion, high glass transition temperature and good flame retardancy.
  • the excellent adhesion and processability of the epoxy and polyphosphonate having an oxazolidinone ring structure can compensate for the weakness of the cyanate ester system, such as poor brittleness and large workability; the polyphosphonate has a high phosphorus content, and
  • the nitrogen element in the epoxy resin containing the oxazolidinone ring structure and the nitrogen element in the cyanate ester have the synergistic flame retarding effect of phosphorus and nitrogen, solving the problem of poor flame retardancy of the cyanate ester, and the synergistic resistance of phosphorus and nitrogen. Combustion can reduce the flame retardancy of the cured product to the phosphorus content required by UL94 V-0 and reduce the water absorption rate, reducing the probability of the laminate absorbing moisture in the processing.
  • the present invention maximizes the advantages of each component through the synergy between the two, so that the obtained cured product has a high glass transition temperature and is excellent. Dielectric properties, high peel strength, high heat resistance, low water absorption and good processability, and can achieve halogen-free flame retardant, reaching UL94 V-0.
  • the component (A) in the present invention that is, a halogen-free epoxy resin, can provide heat resistance, adhesion, flame retardancy, dielectric properties, and mechanical properties required for the cured resin and the laminate thereof. .
  • the halogen-free epoxy resin has a structure represented by the following formula (I):
  • X represents a ring number of 5-8 having at least one substituent selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aralkyl group having 6 to 10 carbon atoms.
  • a cycloalkylene group; the cycloalkane ring constituting these cycloalkylene groups is any of a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, or a cyclooctane ring, preferably a cyclopentane ring or a cyclohexane ring.
  • Alkane ring alkane ring.
  • the alkyl group having 1 to 4 carbon atoms may, for example, be a methyl group, an ethyl group, a propyl group, a n-butyl group, an isopropyl group, an isobutyl group, a sec-butyl group or a t-butyl group; and an aryl group having a carbon number of 6 to 10; Examples thereof include a phenyl group, a naphthyl group, a benzyl group, a tolyl group, and an o-xylylene group.
  • the present invention is not limited to these groups. When a plurality of these groups are present, they may be the same or different.
  • a preferred substituent is a methyl group or a phenyl group from the viewpoint of availability and physical properties such as adhesion in a laminate.
  • R independently represents a hydrogen atom, an alkyl group having 1-8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms, and an aromatic group having 6 to 10 carbon atoms.
  • examples of the alkyl group having 1-8 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a n-butyl group, a t-butyl group, and a hexyl group.
  • examples of the cycloalkyl group having a carbon number of 5-8 include a cyclohexyl group and the like.
  • Examples of the aryl or aralkyl group having 6 to 10 carbon atoms include a phenyl group, a naphthyl group, a benzyl group, a phenethyl group, a 1-phenylethyl group and the like, and an aryloxy group or an aralkoxy group having a carbon number of 6 to 10. Examples thereof include a phenoxy group, a naphthyloxy group, a benzyloxy group, and a naphthylmethoxy group.
  • the present invention is not limited to these groups, and they may be the same or different. From the viewpoint of easiness of availability and physical properties such as heat resistance at the time of producing a cured product, preferred R is a hydrogen atom, a 1-phenylethyl group or a methyl group.
  • substitution position of R may be an arbitrary position or a meta position relative to the carbon atom bonded to X, and is preferably an ortho position.
  • Y is a residue which removes two isocyanate groups from the polyisocyanate compound, and represents a divalent or higher functional group which may have a substituent, and preferably has a structure represented by the formula (1a) to the formula (1k).
  • Y is a group derived from a trifunctional or higher polyisocyanate compound, a group containing an oxazolidinone ring, a group containing a urethane bond, or the like may be used as a substituent.
  • the halogen-free epoxy resin of the present invention has a structure represented by the following formula (II):
  • Z represents a divalent group, and 5 mol% to 100 mol% in Z is a divalent group represented by the following formula (a);
  • Y represents a residue from which an isocyanate group is removed from a diisocyanate compound; and G represents shrinkage Glyceryl;
  • n represents the number of repeats, the average is 1-5;
  • X represents a ring number of 5-8 having at least one substituent selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aralkyl group having 6 to 10 carbon atoms.
  • a cycloalkylene group R independently represents a hydrogen atom, an alkyl group having 1-8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms, and a aryl group having 6 to 10 carbon atoms.
  • X and R are each synonymous with X and R of the formula (I).
  • the halogen-free epoxy resin has a weight average molecular weight of 1000-8000, such as 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500 or 8000.
  • the specific point values between the above-mentioned values, and the present invention is not limited to the specific point values included in the scope.
  • the halogen-free epoxy resin has an epoxy equivalent of 200 g/eq.-550 g/eq., for example, 200 g/eq., 220 g/eq., 240 g/eq., 260 g/eq., 280 g/eq., 300 g/eq., 320 g/eq., 340 g/eq., 360 g/eq., 380 g/eq., 400 g/eq., 420 g/eq., 440 g/eq., 460 g/eq., 480 g/eq., 500g/eq., 520g/eq., 540g/eq. or 550g/eq., and the specific point values between the above values, which are limited in scope and for the sake of brevity, the present invention is not exhaustively enumerated. Specific point value.
  • the component (A) halogen-free epoxy resin is added in an amount of 35 to 65 parts by weight, such as 35 parts by weight, 36 parts by weight, 38 parts by weight, 40 parts by weight, based on 100 parts by weight of the organic solid. Parts by weight, 44 parts by weight, 46 parts by weight, 48 parts by weight, 50 parts by weight, 52 parts by weight, 54 parts by weight, 56 parts by weight, 58 parts by weight, 60 parts by weight, 62 parts by weight, 64 parts by weight or 65 parts by weight.
  • the specific point values between the above and the above values are limited, and for the sake of brevity, the present invention is not exhaustively enumerated.
  • the component (B) in the present invention that is, a polyphosphonate, imparts flame retardancy to the cured product, excellent dielectric properties, high adhesion, and good processability.
  • the component (B) polyphosphonate is added in an amount of 10 to 35 parts by weight, for example, 10 parts by weight, 12 parts by weight, 14 parts by weight, 16 parts by weight, and 18 parts by weight based on 100 parts by weight of the organic solid. Parts, 20 parts by weight, 22 parts by weight, 24 parts by weight, 26 parts by weight, 28 parts by weight, 30 parts by weight, 32 parts by weight, 34 parts by weight or 35 parts by weight, and specific points between the above values, limited to the length And for the sake of brevity, the present invention is no longer exhaustive of the specific point values included in the scope.
  • the component (B) polyphosphonate has the formula:
  • Ar is an aryl group
  • the -O-Ar-O- is selected from the group consisting of a resorcinol reactive group, a hydroquinone reactive group, a bisphenol A reactive group, a bisphenol F reactive group, 4, 4 '-Diphenol, phenolphthalein reactive group, 4,4'-thiodiphenol reactive group, 4,4'-sulfonyl diphenol reactive group or 3,3,5-trimethylcyclohexyl diphenol Any one;
  • Q is a C1-C20 substituted or unsubstituted linear alkyl group, a C1-C20 substituted or unsubstituted branched alkyl group, a C2-C20 substituted or unsubstituted linear olefin group, C2 a substituted or unsubstituted branched alkene group of C20, a C2-C20 substituted or unsubstituted linear alkylene group, a C2-C20 substituted or unsubstit
  • the polyphosphonate has a weight average molecular weight of 1,000 to 50,000, such as 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 10000, 15000, 18000, 20000, 22000, 25000, 30000, 35000, 4000, 45000 or 50000, and the specific point values between the above values, limited to the length and for the sake of brevity, the present invention is no longer exhaustively enumerated.
  • the specific point value to be included is preferably from 1,000 to 10,000, further preferably from 1,000 to 4,500.
  • polyphosphonate structural formula is as follows:
  • q is any integer from 2 to 20, such as 2, 4, 6, 8, 10, 12, 15, 18 or 20, and the specific point values between the above values, limited by space and for the sake of brevity, the present invention
  • the specific point values included in the range are not exhaustive, and q is preferably any integer from 3 to 10.
  • the component (C) cyanate resin described in the present invention imparts a high glass transition temperature, heat resistance, and excellent dielectric properties to the cured product.
  • the component (C) cyanate is added in an amount of 10 to 30 parts by weight, for example, 10 parts by weight, 12 parts by weight, 14 parts by weight, 16 parts by weight, and 18 parts by weight, based on 100 parts by weight of the organic solid. 20 parts by weight, 22 parts by weight, 24 parts by weight, 26 parts by weight, 28 parts by weight or 30 parts by weight, and the specific point values between the above values, limited to the length and for the sake of brevity, the present invention is no longer exhaustive The range includes specific point values.
  • the component (C) cyanate resin is not particularly limited, and is selected from a cyanate resin or a cyanate prepolymer having at least two cyanate groups in a molecular structure, preferably from a double.
  • the cyanate resin is further preferably a novolac type cyanate resin, a naphthol type cyanate resin, a naphthol novolac type cyanate resin, or a phenolphthalein.
  • the cyanate resin may be used singly or in combination as needed.
  • the halogen-free thermosetting resin composition of the present invention may further contain other phosphorus-containing flame retardants, if necessary.
  • the phosphorus-containing flame retardant is tris(2,6-dimethylphenyl)phosphine, 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa- 10-phosphinophen-10-oxide, 2,6-bis(2,6-dimethylphenyl)phosphinobenzene, 10-phenyl-9,10-dihydro-9-oxa-10-phosphine Any one of phenanthrene-10-oxide, phenoxyphosphazene compound, phosphate ester, polyphosphate, or a mixture of at least two.
  • the halogen-free thermosetting resin composition in the present invention may further comprise a filler, which is mainly used to adjust some physical properties of the composition, such as lowering coefficient of thermal expansion (CTE), lowering water absorption rate and improving heat.
  • CTE coefficient of thermal expansion
  • the conductivity and the like are, based on 100 parts by weight of the organic solid matter, and the filler is added in an amount of from 0 to 200 parts by weight.
  • the filler is selected from the group consisting of organic or inorganic fillers, preferably inorganic fillers, further preferably surface treated inorganic fillers, most preferably surface treated silica.
  • the surface treated surface treatment agent is selected from any one or a mixture of at least two of a silane coupling agent, a silicone oligomer or a titanate coupling agent.
  • the surface treatment agent is used in an amount of from 0.1 to 5.0%, preferably from 0.5 to 3.0%, further preferably from 0.75 to 2.0%, based on 100% by mass of the inorganic filler.
  • the inorganic filler is selected from any one of a non-metal oxide, a metal nitride, a non-metal nitride, an inorganic hydrate, an inorganic salt, a metal hydrate or an inorganic phosphorus or a mixture of at least two, preferably molten Silica, crystalline silica, spherical silica, hollow silica, aluminum hydroxide, alumina, talc, aluminum nitride, boron nitride, silicon carbide, barium sulfate, barium titanate, titanium Any one or a mixture of at least two of acid strontium, calcium carbonate, calcium silicate, mica or glass fiber powder.
  • the mixture is, for example, a mixture of fused silica and crystalline silica, a mixture of spherical silica and hollow silica, a mixture of aluminum hydroxide and aluminum oxide, a mixture of talc and aluminum nitride, and nitrided.
  • the organic filler is selected from any one of a polytetrafluoroethylene powder, a polyphenylene sulfide or a polyethersulfone powder or a mixture of at least two.
  • the mixture is, for example, a mixture of polytetrafluoroethylene powder and polyphenylene sulfide, a mixture of polytetrafluoroethylene powder and polyethersulfone powder, a mixture of polyphenylene sulfide and polyethersulfone powder, polytetrafluoroethylene powder, polyphenylene a mixture of thioether and polyethersulfone powder.
  • the optimum filler is silica
  • the filler has a median particle size of 1-15 ⁇ m, preferably the median value of the filler is 1-10 ⁇ m, and the filler located in the particle size segment has good dispersibility.
  • the filler of the present invention is preferably added in an amount of from 0 to 100 parts by weight, such as 1 part by weight, 5 parts by weight, 10 parts by weight, 15 parts by weight, 20 parts by weight, based on 100 parts by weight of the organic solid.
  • the halogen-free thermosetting resin composition of the present invention may further contain a curing accelerator to cure the resin and accelerate the curing speed of the resin, if necessary.
  • the curing accelerator is not particularly limited as long as it can catalyze the curing reaction of cyanate ester, cyanate ester and epoxy resin, and may be selected from organometallic salt compounds such as copper, zinc, cobalt, nickel, iron, and imidazole compounds. And a derivative thereof, a piperidine compound or a tertiary ammonia or a mixture of at least two.
  • Exemplary curing accelerators are selected from the group consisting of 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, tri-n-butylamine, triphenylphosphine, boron trifluoride complex, octanoic acid Any one or a mixture of at least two of a metal salt, a metal acetylacetonate, a metal naphthenate, a metal salt of salicylic acid or a metal stearate, such as a metal stearate and a salicylic acid a mixture of metal salts, a mixture of a metal salt of naphthenic acid and a metal acetylacetonate, a mixture of a metal octoate and a boron trifluoride complex, a mixture of triphenylphosphine and tri-n-butylamine, 2-ethyl-4 a mixture of methylimidazole and 2-phenylimidazo
  • the curing accelerator is added in an amount of 0.01 to 1 part by weight, for example, 0.02 part by weight, 0.2 part by weight based on 100 parts by weight based on the total mass of the component (A), the component (B), and the component (C). , 0.3 parts by weight, 0.5 weight
  • the parts, 0.7 parts by weight, 0.9 parts by weight, 0.95 parts by weight, and the specific point values between the above values are limited to the extent and for the sake of brevity, the present invention will not exhaustively enumerate the specific point values included in the range, preferably 0.05 to 0.85 parts by weight, further preferably 0.1 to 0.8 parts by weight.
  • the "organic solid content in terms of 100 parts by weight” in the present invention means that the solid content of the organic component in the halogen-free thermosetting resin composition of the present invention is added in an amount of 100 parts by weight.
  • the parts by weight of the organic solids are the sum of the parts by weight of the solids of the resin, the curing agent and the flame retardant, and the filler and the curing accelerator are not included in the organic solid, and in the present invention, the halogen-free
  • the solids of the epoxy resin, polyphosphonate, cyanate ester, and flame retardant are all included in the organic solids of the present invention.
  • composition means that it may include other components in addition to the components, and these other components impart different characteristics to the halogen-free thermosetting resin composition.
  • the "comprising” described in the present invention may also be replaced by a closed “for” or “consisting of”.
  • the halogen-free thermosetting resin composition may further contain various additives, and specific examples thereof include an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a pigment, a colorant, a lubricant, and the like. These various additives may be used singly or in combination of two or more kinds.
  • the conventional preparation method of the glue of the halogen-free thermosetting resin composition of the invention is as follows: firstly, the solid matter is put in, then the liquid solvent is added, and the mixture is stirred until the solid matter is completely dissolved, and then the liquid resin and the curing accelerator are added, and the stirring is continued evenly. Yes, finally, the solvent is adjusted to a solid content of 65%-75% with a solvent to prepare a glue.
  • a prepreg comprising a reinforcing material and a halogen-free thermosetting resin composition as described above adhered thereto by impregnation and drying.
  • the prepreg of the present invention is obtained by heat drying using the above halogen-free thermosetting resin composition, and the binder used is a non-woven fabric or other fabric such as natural fibers, organic synthetic fibers, and inorganic fibers.
  • the impregnated reinforcing material in an oven at 155 ° C
  • the prepreg is prepared by heating and drying for 5-10 minutes.
  • a laminate comprising at least one prepreg as described above.
  • a metal foil-clad laminate comprising at least one laminated prepreg as described above, and a metal foil pressed on one or both sides of the laminated prepreg, which can be formed by heat and pressure be made of. That is, the metal foil-clad laminate of the present invention comprises a laminate obtained by bonding one or more prepregs together by heat and pressure, and a metal bonded to one or both sides of the laminate. Foil.
  • An exemplary metal foil-clad laminate is laminated using a prepreg as described above and two 0.5 oz (18 ⁇ m thick) metal foils, laminated by a hot press, and pressed into a double-sided metal foil-coated Laminate.
  • the lamination must meet the following requirements: 1
  • the heating rate of lamination should be controlled at 1.5-2.5 ° C / min at a material temperature of 80-120 ° C; 2 pressure setting of lamination, the temperature of the outer layer is 120-150 °C applies full pressure, the full pressure is about 350 psi; 3 when curing, the control temperature is 200 ° C, and the temperature is maintained for 90min-120min.
  • the metal foil is copper foil, nickel foil, aluminum foil, SUS foil, etc., and the material thereof is not limited.
  • a printed circuit board comprising at least one prepreg as described above.
  • the present invention has the following beneficial effects:
  • the invention adopts a halogen-free epoxy resin with a specific structure as a main resin, and the halogen-free epoxy resin has high symmetry structure and contains an oxazolidinone ring structure, and is co-cured with a polyphosphonate and a cyanate ester, and the composition is the largest
  • the limit exerts the advantages of each component, balancing the advantages and disadvantages of each component, such as the excellent adhesion and processability of the epoxy and polyphosphonate containing the oxazolidinone ring structure.
  • the ester system has weak brittleness and poor processability; the polyphosphonate reacts with the epoxy resin to form no secondary hydroxyl group and has excellent dielectric properties, and since the polyphosphonate and the halogen-free epoxy resin do not contain themselves and the reaction does not form a pole
  • the group avoids the problem that the chemical reaction is uncontrollable due to the polar group catalyzing the cyanate reaction; at the same time, the cyanate ester can increase the glass transition temperature and further reduce the dielectric constant and dielectric loss of the cured product;
  • the epoxy resin and cyanate ester containing an oxazolidinone ring structure contain an N element, and the P element of the polyphosphonate has The synergistic flame retardant effect can reduce the flame retardancy of the cured product to the phosphorus content required by UL94 V-0 and reduce the water absorption rate, thereby reducing the probability of the laminate absorbing moisture in the processing.
  • prepregs and laminates made using the halogen-free thermosetting resin composition have a high glass transition temperature of 205 ° C, excellent dielectric properties, and a dielectric constant of 3.75-4.08, dielectric loss.
  • the value can be as low as 0.0070, with high peel strength, high heat resistance, low water absorption, water absorption can be as low as 0.05%, and good processability, and can achieve halogen-free flame retardant, reaching UL94 V-0.
  • the preparation method of the copper clad laminate used in the present invention is as follows:
  • the halogen-free epoxy resin, polyphosphonate, cyanate ester, phosphorus-containing flame retardant, curing accelerator and filler are uniformly mixed in a certain ratio in the solvent, and the solid content of the glue is controlled to be 65%, and the 2116 fiberglass cloth is used.
  • the above glue is impregnated, the appropriate thickness is controlled, and then prepreg is prepared by baking in an oven at 115-175 ° C for 2-15 minutes, then several prepregs are stacked together, and 18 ⁇ RTF copper foil is stacked on both sides thereof.
  • the copper clad laminate is prepared at a curing temperature of 170-250 ° C, a curing pressure of 25-60 kg/cm 2 , and a curing time of 60-300 min.
  • Glass transition temperature (Tg) Measured according to the DSC method specified in IPC-TM-6502.4.25 by differential scanning calorimetry (DSC).
  • the plate material Tg obtained by curing the dicyclopentadiene type epoxy resin, the polyphosphonate, and the cyanate ester in Comparative Example 1 is higher than that of Example 3. Excellent dielectric properties, but low peel strength and flame retardant can only reach V-1 grade; in Comparative Example 2, the epoxy resin containing naphthalene ring is cured with polyphosphonate and cyanate.
  • the copper plate has high Tg and peel strength and good heat resistance and flame retardancy, but also high dielectric constant and dielectric loss; in Comparative Example 3, epoxy and polyphosphonate having the structure of the formula (I) are used alone to cure.
  • the obtained sheet When the active ester and cyanate ester are cured, the obtained sheet has high Tg and high peeling strength and excellent dielectric properties, but the flame retardancy is poor, and it can only reach V-2 level. If a flame retardant is additionally added, it may cause other Deterioration in performance.
  • prepregs and laminates made using the halogen-free thermosetting resin composition of the present invention have a high glass transition temperature of 205 ° C, excellent dielectric properties, and a dielectric constant of 3.75-4.08.
  • the electrical loss value can be as low as 0.0070, with high peel strength, high heat resistance, low water absorption, water absorption as low as 0.05%, and good processability, and can achieve halogen-free flame retardant, reaching UL94 V-0. Has excellent overall performance.

Abstract

本发明提供了一种无卤热固性树脂组合物及含有它的预浸料、层压板和印制电路板。所述无卤热固性树脂组合物,其含有以下三种物质作为必要组分,以有机固形物按100重量份计,其中:(A)无卤环氧树脂:35-65重量份;(B)聚膦酸酯:10-35重量份;(C)氰酸酯:10-30重量份。本发明所提供的无卤热固性树脂组合物及含有它的预浸料、层压板和印制电路板,具有高玻璃化转变温度、优异的介电性能、高剥离强度、高耐热性、低吸水率以及良好工艺加工性,并能实现无卤阻燃,达到UL94 V-0。

Description

一种无卤热固性树脂组合物及含有它的预浸料、层压板和印制电路板 技术领域
本发明涉及覆铜板技术领域,尤其涉及一种无卤热固性树脂组合物及含有它的预浸料、层压板和印制电路板。
背景技术
随着电子产品信息处理的高速化和多功能化,应用频率不断提高,3-6GHz将成为主流,基板材料不再是扮演传统意义下的机械支撑角色,而将与电子组件一起成为PCB和终端厂商设计者提升产品性能的一个重要途径。因为高Dk会使信号传递速率变慢,高Df会使信号部分转化为热能损耗在基板材料中,因而降低Dk/Df已成为基板业者的追逐热点。在此背景下,介电性能优异的氰酸酯树脂成了备受瞩目的热点之一。但氰酸酯树脂由于其自身的局限性,脆性大加工性差,且阻燃性能不理想。
CN105968321A披露了含有噁唑烷酮环的环氧树脂、其制造方法、环氧树脂组合物、其固化物及其应用其固化物及其应用。其披露的含有噁唑烷酮环结构的环氧树脂具有高耐热性、高粘结性、优异的阻燃性能和加工性,但是其树脂组合物的介电常数以及介电损耗均一般。
本发明以聚膦酸酯为上述含有噁唑烷酮环的环氧树脂的固化剂,反应不生成二次羟基,在保持优异的介电性能、高粘结性、优异的加工性和较高玻璃化转变温度的同时实现了无卤阻燃;加入氰酸酯树脂,不仅可以大大提高固化物玻璃化转变温度(Tg)和耐热性,还可以进一步降低固化物介电常数和介电损耗值。本发明中,含有噁唑烷酮环的环氧和聚膦酸酯所具有的优异的粘结性和加工性可弥补氰酸酯体系脆性大、加工性差等弱点;此外,聚膦酸酯磷含量高, 且与含噁唑烷酮环结构的环氧树脂中的氮元素以及氰酸酯中的氮元素有着磷氮协同阻燃的功效,解决了氰酸酯阻燃较差的问题,同时磷氮协同阻燃可以减少固化物阻燃性达到UL94 V-0所需磷含量并降低吸水率,降低了层压板在加工中吸潮爆板的几率。
发明内容
基于此,本发明的目的之一在于提供一种无卤热固性树脂组合物。使用该无卤热固性树脂组合物制作的预浸料、层压板和印制电路板具有高玻璃化转变温度、优异的介电性能、高剥离强度、高耐热性、低吸水率以及良好的工艺加工性,并能实现无卤阻燃,达到UL94 V-0。
发明人为实现上述目的,进行了反复深入的研究,结果发现:通过将包含具有特定结构的无卤环氧树脂、聚膦酸酯、氰酸酯及其他任选地物质适当混合而得到的无卤热固性树脂组合物,可达到上述目的。
为了实现上述目的,本发明采用了如下技术方案:
一种无卤热固性树脂组合物,其含有以下三种物质作为必要组分,以有机固形物按100重量份计,其中:
(A)无卤环氧树脂:35-65重量份;
(B)聚膦酸酯:10-35重量份;
(C)氰酸酯:10-30重量份。
本发明采用特定结构的无卤环氧树脂为主体树脂,其分子结构对称,且含有噁唑烷酮环结构,拥有高耐热性、高粘结性、高玻璃化转变温度及良好的阻燃性等优点;此外,其还有着良好的介电性能;以聚膦酸酯为固化剂,与该环氧树脂反应不生成二次羟基,在保持优异的介电性能、高粘结性和较高玻璃化转变温度的同时实现了无卤阻燃,并赋予固化物优异的加工性;加入氰酸酯树 脂,不仅可以大大提高固化物玻璃化转变温度(Tg)和耐热性,还可进一步降低固化物介电常数和介电损耗值。此外,含有噁唑烷酮环结构的环氧和聚膦酸酯所具有的优异的粘结性和加工性可弥补氰酸酯体系脆性大加工性差等弱点;聚膦酸酯磷含量高,与该含噁唑烷酮环结构的环氧树脂中的氮元素以及氰酸酯中的氮元素有着磷氮协同阻燃的功效,解决了氰酸酯阻燃较差的问题,同时磷氮协同阻燃可以减少固化物阻燃性达到UL94 V-0所需磷含量并降低吸水率,降低层压板在加工中吸潮爆板的几率。
本发明除充分利用上述三种组分各自的优势之外,还通过其之间的协同作用,最大程度地发挥了各组分的优势,使得到的固化物具有高玻璃化转变温度、优异的介电性能、高剥离强度、高耐热性、低吸水率以及良好工艺加工性,并能实现无卤阻燃,达到UL94 V-0。
本发明中的组分(A),即无卤环氧树脂,可以提供固化后树脂及其制成的层压板所需的耐热性、粘结性、阻燃性能、介电性能以及力学性能。
根据本发明,所述无卤环氧树脂,其具有下述式(I)所表示的结构:
Figure PCTCN2017084315-appb-000001
式(I)中,X表示具有至少一个选自碳数1-4的烷基、碳数6-10的芳基及碳数6-10的芳烷基的取代基的环元数5-8的亚环烷基;构成这些亚环烷基的环烷环是环戊烷环、环己烷环、环庚烷环、或环辛烷环的任意者,优选为环戊烷环或环己烷环。
在该环烷环上取代有至少一个所述取代基。例如,碳数1-4的烷基可列举甲基、乙基、丙基、正丁基、异丙基、异丁基、仲丁基、叔丁基等;碳数6-10的芳基可列举苯基、萘基、苄基、甲苯基、邻二甲苯基等,但并不限定于这些基,在存在多个的情况下,可各自相同也可以不同。自获得的容易性及层叠板中的粘接性等物性的观点考虑,优选的取代基是甲基或苯基。
式(I)中,R分别独立地表示氢原子、碳数1-8的烷基、碳数1-8的烷氧基、碳数5-8的环烷基、碳数6-10的芳基、碳数6-10的芳烷基、碳数6-10的芳氧基或碳数6-10的芳烷氧基。例如,碳数1-8的烷基可列举甲基、乙基、丙基、异丙基、正丁基、叔丁基、己基等,碳数5-8的环烷基可列举环己基等,碳数6-10的芳基或芳烷基可列举苯基、萘基、苄基、苯乙基、1-苯基乙基等,碳数6-10的芳氧基或芳烷氧基可列举苯氧基、萘氧基、苄氧基、萘基甲氧基等,但并不限定于这些基,各自可相同也可以不同。自获得的容易性及制成固化物时的耐热性等物性的观点考虑,优选的R是氢原子、1-苯基乙基或甲基。
R的取代位置可以是相对于与X键结的碳原子而言为邻位、间位的任意位置,优选为邻位。
式(I)中,Y是自聚异氰酸酯化合物除去两个异氰酸酯基的残基,表示可具有取代基的2价以上的官能基,优选为式(1a)-式(1k)所表示的结构。在Y为自3官能以上的聚异氰酸酯化合物产生的基的情况下,可具有含有噁唑烷酮环的基、含有氨基甲酸酯键的基等作为取代基。
Figure PCTCN2017084315-appb-000002
Figure PCTCN2017084315-appb-000003
优选地,本发明所述无卤环氧树脂具有下述式(II)所表示的结构:
Figure PCTCN2017084315-appb-000004
式(II)中,Z表示2价基,Z中的5mol%-100mol%是下述式(a)所表示的2价基;Y表示自二异氰酸酯化合物除去异氰酸酯基的残基;G表示缩水甘油基;n表示重复数,平均值为1-5;
Figure PCTCN2017084315-appb-000005
式(a)中,X表示具有至少一个选自碳数1-4的烷基、碳数6-10的芳基及碳数6-10的芳烷基的取代基的环元数5-8的亚环烷基;R分别独立地表示氢原子、碳数1-8的烷基、碳数1-8的烷氧基、碳数5-8的环烷基、碳数6-10的芳基、碳数6-10的芳烷基、碳数6-10的芳氧基或碳数6-10的芳烷氧基。
式(a)中,X及R分别与式(I)的X及R同义。
本发明中,所述无卤环氧树脂重均分子量为1000-8000,例如1000、1500、2000、2500、3000、3500、4000、4500、5000、5500、6000、6500、7000、7500或8000,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,所述无卤环氧树脂环氧当量为200g/eq.-550g/eq.,例如200g/eq.、220g/eq.、240g/eq.、260g/eq.、280g/eq.、300g/eq.、320g/eq.、340g/eq.、360g/eq.、380g/eq.、400g/eq.、420g/eq.、440g/eq.、460g/eq.、480g/eq.、500g/eq.、520g/eq.、540g/eq.或550g/eq.,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
以有机固形物按100重量份计,所述组分(A)无卤环氧树脂的添加量为35-65重量份,例如35重量份、36重量份、38重量份、40重量份、42重量份、44重量份、46重量份、48重量份、50重量份、52重量份、54重量份、56重量份、58重量份、60重量份、62重量份、64重量份或65重量份,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
本发明中的组分(B),即为聚膦酸酯,赋予了固化物阻燃性能、优异的介电性能、高粘结性和良好的加工性。
以有机固形物按100重量份计,所述组分(B)聚膦酸酯的添加量为10-35重量份,例如10重量份、12重量份、14重量份、16重量份、18重量份、20重量份、22重量份、24重量份、26重量份、28重量份、30重量份、32重量份、34重量份或35重量份,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
根据本发明,所述组分(B)聚膦酸酯具有如下结构式:
Figure PCTCN2017084315-appb-000006
其中Ar为芳基,所述-O-Ar-O-选自间苯二酚活性基团、对苯二酚活性基团、双酚A活性基团、双酚F活性基团、4,4′-二苯酚、酚酞活性基团、4,4′-硫代二酚活性基团、4,4′-磺酰二酚活性基团或3,3,5-三甲基环己基二苯酚中的任意一种;Q为C1-C20的取代或未取代的直链烷基、C1-C20的取代或未取代的支链烷基、C2-C20的取代或未取代的直链烯烃基、C2-C20的取代或未取代的支链烯烃基、C2-C20的取代或未取代的直链亚烷基、C2-C20的取代或未取代的支链亚烷基、C5-C20的取代或未取代的环烷基或C6-C20取代或未取代的芳基;m为1-75的任意整数。
本发明中,所述聚膦酸酯的重均分子量为1000-50000,例如1000、1500、2000、2500、3000、3500、4000、4500、5000、5500、6000、6500、7000、7500、8000、10000、15000、18000、20000、22000、25000、30000、35000、40000、45000或50000,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值,优选为1000-10000,进一步优选为1000-4500。
优选地,所述聚膦酸酯结构式如下所示:
Figure PCTCN2017084315-appb-000007
其中q为2-20的任意整数,例如2、4、6、8、10、12、15、18或20,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值,优选q为3-10的任意整数。
本发明中所述组分(C)氰酸酯树脂,赋予固化物高玻璃化转变温度、耐热性和优异的介电性能等。
以有机固形物按100重量份计,所述组分(C)氰酸酯的添加量为10-30重量份,例如10重量份、12重量份、14重量份、16重量份、18重量份、20重量份、22重量份、24重量份、26重量份、28重量份或30重量份,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
本发明中,所述的组分(C)氰酸酯树脂没有特别的限制,选自分子结构中含有至少两个氰酸酯基的氰酸酯树脂或氰酸酯预聚物,优选自双酚A型氰酸酯树脂、双酚F型氰酸酯树脂、四甲基双酚F型氰酸酯树脂、双酚M型氰酸酯树脂、双酚S型氰酸酯树脂、双酚E型氰酸酯树脂、双酚P型氰酸酯树脂、线性酚醛型氰酸酯树脂、甲酚酚醛型氰酸酯树脂、萘酚型氰酸酯树脂、萘酚酚醛型氰酸酯树脂、双环戊二烯型氰酸酯树脂、酚酞型氰酸酯树脂、芳烷基型氰酸酯树脂、芳烷基酚醛型氰酸酯树脂、双酚A型氰酸酯预聚物、双酚F型氰酸酯预聚物、四甲基双酚F型氰酸酯预聚物、双酚M型氰酸酯预聚物、双酚S型氰酸酯预聚物、双酚E型氰酸酯预聚物、双酚P型氰酸酯预聚物、线性酚醛型氰酸酯预聚物、甲酚酚醛型氰酸酯预聚物、萘酚型氰酸酯预聚物、萘酚酚醛型氰酸酯预聚物、双环戊二烯型氰酸酯预聚物、酚酞型氰酸酯预聚物、芳烷基型氰酸酯预聚物或芳烷基酚醛型氰酸酯预聚物中的任意一种或者至少两种的混合物,所述混合物例如双酚A型氰酸酯树脂和双酚F型氰酸酯树脂的混合物,四甲基双酚F型氰酸酯树脂和双酚M型氰酸酯树脂的混合物,双酚S型氰酸酯树脂和双酚E型氰酸酯树脂的混合物,双酚P型氰酸酯树脂和线性酚醛型氰酸酯树脂的混合物,甲酚酚醛型氰酸酯树脂和萘酚酚醛型氰酸酯树脂的混合物,双环戊 二烯型氰酸酯树脂和酚酞型氰酸酯树脂的混合物,芳烷基型氰酸酯树脂、芳烷基酚醛型氰酸酯树脂和双酚A型氰酸酯预聚物的混合物,双酚F型氰酸酯预聚物、四甲基双酚F型氰酸酯预聚物和双酚M型氰酸酯预聚物的混合物,双酚S型氰酸酯预聚物、双酚E型氰酸酯预聚物和双酚P型氰酸酯预聚物的混合物,线性酚醛型氰酸酯预聚物、甲酚酚醛型氰酸酯预聚物、萘酚酚醛型氰酸酯预聚物和双环戊二烯型氰酸酯预聚物的混合物,酚酞型氰酸酯预聚物、芳烷基型氰酸酯预聚物和芳烷基酚醛型氰酸酯预聚物的混合物。
为了提高氰酸酯树脂组合物的耐热性、阻燃性,该氰酸酯树脂进一步优选线性酚醛型氰酸酯树脂、萘酚型氰酸酯树脂、萘酚酚醛型氰酸酯树脂、酚酞型氰酸酯树脂、芳烷基型氰酸酯树脂、芳烷基酚醛型氰酸酯树脂、线性酚醛型氰酸酯预聚物、萘酚型氰酸酯预聚物、萘酚酚醛型氰酸酯预聚物、酚酞型氰酸酯预聚物、芳烷基型氰酸酯预聚物或芳烷基酚醛型氰酸酯预聚物中的任意一种或者至少两种的混合物,特别优选线性酚醛型氰酸酯树脂、萘酚酚醛型氰酸酯树脂、芳烷基酚醛型氰酸酯树脂、线性酚醛型氰酸酯预聚物、萘酚酚醛型氰酸酯预聚物或芳烷基酚醛型氰酸酯预聚物中的任意一种或者至少两种的混合物。氰酸酯树脂可以单独使用,也可以根据需要混合使用。
如有需要,本发明中所述无卤热固性树脂组合物还可以包含其它含磷阻燃剂。优选地,所述含磷阻燃剂为三(2,6-二甲基苯基)膦、10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、2,6-二(2,6-二甲基苯基)膦基苯、10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、苯氧基磷腈化合物、磷酸酯、聚磷酸酯中的任意-种或者至少两种的混合物。
优选地,本发明中所述无卤热固性树脂组合物还可以包含填料,主要用来调整组合物的一些物性效果,如降低热膨胀系数(CTE)、降低吸水率和提高热 导率等,以有机固形物按100重量份计,所述填料的添加量为0-200重量份。
优选地,所述填料选自有机填料或无机填料,优选无机填料,进一步优选经过表面处理的无机填料,最优选经过表面处理的二氧化硅。
优选地,所述表面处理的表面处理剂选自硅烷偶联剂、有机硅低聚物或钛酸酯偶联剂中的任意一种或至少两种的混合物。
优选地,以无机填料质量为100%计,所述表面处理剂的用量为0.1-5.0%,优选0.5-3.0%,进一步优选0.75-2.0%。
优选地,所述无机填料选自非金属氧化物、金属氮化物、非金属氮化物、无机水合物、无机盐、金属水合物或无机磷中的任意一种或者至少两种的混合物,优选熔融二氧化硅、结晶型二氧化硅、球型二氧化硅、空心二氧化硅、氢氧化铝、氧化铝、滑石粉、氮化铝、氮化硼、碳化硅、硫酸钡、钛酸钡、钛酸锶、碳酸钙、硅酸钙、云母或玻璃纤维粉中的任意一种或者至少两种的混合物。所述混合物例如熔融二氧化硅和结晶型二氧化硅的混合物,球型二氧化硅和空心二氧化硅的混合物,氢氧化铝和氧化铝的混合物,滑石粉和氮化铝的混合物,氮化硼和碳化硅的混合物,硫酸钡和钛酸钡的混合物,钛酸锶、碳酸钙和硅酸钙的混合物,云母、玻璃纤维粉、熔融二氧化硅和结晶型二氧化硅的混合物,球型二氧化硅、空心二氧化硅、氢氧化铝和氧化铝的混合物,滑石粉、氮化铝、氮化硼、碳化硅、硫酸钡和钛酸钡的混合物,钛酸锶、碳酸钙、硅酸钙、云母和玻璃纤维粉的混合物。
优选地,所述有机填料选自聚四氟乙烯粉末、聚苯硫醚或聚醚砜粉末中的任意一种或者至少两种的混合物。所述混合物例如聚四氟乙烯粉末和聚苯硫醚的混合物,聚四氟乙烯粉末和聚醚砜粉末的混合物,聚苯硫醚和聚醚砜粉末的混合物,聚四氟乙烯粉末、聚苯硫醚和聚醚砜粉末的混合物。
优选地,最佳填料为二氧化硅,填料的粒径中度值为1-15μm,优选填料的中度值为1-10μm,位于此粒径段的填料具有良好的分散性。
优选地,以有机固形物按100重量份计,本发明所述填料的添加量优选为0-100重量份,例如1重量份、5重量份、10重量份、15重量份、20重量份、25重量份、30重量份、35重量份、40重量份、45重量份、50重量份、55重量份、60重量份、65重量份、70重量份、75重量份、80重量份、85重量份、90重量份、95重量份或100重量份,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
如有需要,本发明中所述无卤热固性树脂组合物还可以包含固化促进剂,使树脂固化并加快树脂固化速度。所述固化促进剂无特别限定,只要可以催化氰酸酯、氰酸酯和环氧树脂的固化反应即可,可以选自有机金属盐化合物,如铜、锌、钴、镍、铁,咪唑化合物及其衍生物,哌啶类化合物或三级氨中的任意一种或者至少两种的混合物。示例性的固化促进剂选自2-甲基咪唑、2-苯基咪唑、2-乙基-4-甲基咪唑、三正丁胺、三苯基磷、三氟化硼络合物、辛酸金属盐、乙酰丙酮金属盐、环烷酸金属盐、水杨酸金属盐或硬脂酸金属盐中的任意一种或者至少两种的混合物,所述混合物例如硬脂酸金属盐和水杨酸金属盐的混合物,环烷酸金属盐和乙酰丙酮金属盐的混合物,辛酸金属盐和三氟化硼络合物的混合物,三苯基磷和三正丁胺的混合物,2-乙基-4-甲基咪唑和2-苯基咪唑的混合物,辛酸金属盐和三正丁胺的混合物,2-乙基-4-甲基咪唑、三正丁胺和2-苯基咪唑的混合物,其中,所述金属选自锌、铜、铁、锡、钴或铝中的任意一种或者至少两种的混合物。
以组份(A)、组份(B)及组份(C)的总重为100重量份计,所述固化促进剂的添加量为0.01-1重量份,例如0.02重量份、0.2重量份、0.3重量份、0.5重 量份、0.7重量份、0.9重量份、0.95重量份,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值,优选0.05-0.85重量份,进一步优选0.1-0.8重量份。
本发明所述“有机固形物按100重量份计”是指本发明所述无卤热固性树脂组合物中有机组分的固含量相加为100重量份。所述有机固形物的重量份数为树脂、固化剂和阻燃剂的固形物重量份数之和,所述填料和固化促进剂不计入有机固形物,本发明中,所述的无卤环氧树脂、聚膦酸酯、氰酸酯、阻燃剂的固形物均计入本发明所述有机固形物中。
本发明所述的“包含”,意指其除所述组份外,还可以包括其他组份,这些其他组份赋予所述无卤热固性树脂组合物不同的特性。除此之外,本发明所述的“包含”,还可以替换为封闭式的“为”或“由……组成”。
例如,所述无卤热固性树脂组合物还可以含有各种添加剂,作为具体例,可以举出抗氧剂、热稳定剂、抗静电剂、紫外线吸收剂、颜料、着色剂或润滑剂等。这些各种添加剂可以单独使用,也可以两种或者两种以上混合使用。
本发明无卤热固性树脂组合物的胶液的常规制备方法为:先将固形物放入,然后加入液态溶剂,搅拌至固形物完全溶解后,再加入液态树脂和固化促进剂,继续搅拌均匀即可,最后用溶剂调整溶液固体含量至65%-75%而制成胶液。
一种预浸料,包括增强材料及通过含浸干燥后附着其上的如上所述的无卤热固性树脂组合物。
本发明的预浸料是使用上述的无卤热固性树脂组合物加热干燥制得的,所使用的基料为无纺织物或其它织物,例如天然纤维、有机合成纤维以及无机纤维。
使用上述胶液含浸玻璃布等增强材料,将含浸好的增强材料在155℃的烘箱 中加热干燥5-10分钟制成预浸料。
一种层压板,其包括至少1张如上所述的预浸料。
一种覆金属箔层压板,其包括至少1张叠合的如上所述的预浸料、及压覆在叠合的预浸料一侧或两侧的金属箔,可经过加热加压成形而制得。即,本发明的覆金属箔层压板包括通过加热和加压使一张或一张以上的预浸料粘合在一起而制成的层压板,以及粘合在层压板一面或两面以上的金属箔。
示例性的覆金属箔层压板是使用上述的预浸料1片和2片0.5盎司(18μm厚度)的金属箔叠合在一起,通过热压机层压,从而压制成双面覆金属箔的层压板。所述的层压须满足以下要求:①层压的升温速率通常在料温80-120℃时应控制在1.5-2.5℃/min;②层压的压力设置,外层料温在120-150℃施加满压,满压压力为350psi左右;③固化时,控制料温在200℃,并保温90min-120min。所述的金属箔为铜箔、镍箔、铝箔及SUS箔等,其材质不限。
一种印制电路板,其包括至少1张如上所述的预浸料。
与已有技术相比,本发明具有如下有益效果:
本发明采用特定结构的无卤环氧树脂为主体树脂,该无卤环氧树脂结构对称性高且含有噁唑烷酮环结构,配合聚膦酸酯和氰酸酯共固化,该组合物最大限度的发挥了个组分的优势,平衡各组分的优势与缺点,如通过含有噁唑烷酮环结构的环氧和聚膦酸酯所具有的优异的粘结性和加工性可弥补氰酸酯体系脆性大加工性差等弱点;聚膦酸酯与环氧树脂反应不生成二次羟基从而介电性能优异,且因为聚膦酸酯和无卤环氧树脂本身不含有以及反应不生成极性基团,避免了因极性基团催化氰酸酯反应导致化学反应不可控等问题;同时氰酸酯又可以提高玻璃化转变温度并进一步降低固化物介电常数和介电损耗;此外,该含有噁唑烷酮环结构的环氧树脂和氰酸酯含有N元素,与聚膦酸酯的P元素有 协同阻燃效果,能减少固化物阻燃性达到UL94 V-0所需磷含量并降低吸水率,降低了层压板在加工中吸潮爆板的几率。
综上,使用该无卤热固性树脂组合物制成的预浸料和层压板具有高玻璃化转变温度,可达到205℃,优异的介电性能,其介电常数在3.75-4.08,介电损耗值可低至0.0070,具有高剥离强度、高耐热性、低吸水率,其吸水率可低至0.05%,以及良好工艺加工性,并能实现无卤阻燃,达到UL94 V-0。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
针对制成的印制电路用层压板(4片预浸料)测试其玻璃化转变温度、介电常数、介电损耗因素、剥离强度、耐热性、吸水性、阻燃性等性能,如下实施例进一步详细说明与描述。
本发明中所采用的覆铜板的制备方法为:
将无卤环氧树脂、聚膦酸酯、氰酸酯、含磷阻燃剂以及固化促进剂、填料按一定比例于溶剂中混合均匀,控制胶液固含量为65%,用2116玻纤布浸渍上述胶液,控制合适厚度,然后在115-175℃的烘箱中烘烤2-15min制成预浸料,然后将数张预浸料叠在一起,在其两侧叠上18μRTF铜箔,在固化温度为170-250℃,固化压力为25-60kg/cm2,固化时间为60-300min条件下制成覆铜板。
兹将本发明实施例详细说明如下,但本发明并非局限在实施例范围。下文中无特别说明,其份代表“重量份”,其%代表“重量%”。
实施例和比较例涉及的材料及牌号信息如下:
(A)无卤环氧树脂
(A-1)具有式(I)的无卤环氧树脂
Figure PCTCN2017084315-appb-000008
(A-1′)具有式(II)的无卤环氧树脂
Figure PCTCN2017084315-appb-000009
(A-2)双环戊二烯型环氧树脂HP-7200H(大日本油墨商品名)
(A-3)含萘环环氧HP-9500(大日本油墨商品名)
(B)固化剂
(B-1)聚膦酸酯OL3001(美国FRX商品名)
(B-2)苯乙烯马来酸酐共聚物EF40(沙多玛商品名)
(B-3)活性酯HPC-8000-65T(大日本油墨商品名)
(C)氰酸酯:CE01PS(扬州天启商品名)
(D)阻燃剂:含磷酚醛XZ-92741(美国DOW商品名)
(E)促进剂:异辛酸锌BICAT Z(领先化学)
(F)填料
(F-1)球型熔融硅微粉(平均粒径为1至10μm,纯度99%以上)(F-2)聚四氟乙烯粉末(平均粒径为1至10μm,纯度99%以上)如下表中分别是实施例和比较例的配方组成及其物性数据。
表1
Figure PCTCN2017084315-appb-000010
表2
Figure PCTCN2017084315-appb-000011
Figure PCTCN2017084315-appb-000012
表3
Figure PCTCN2017084315-appb-000013
以上特性的测试方法如下:
(a)玻璃化转变温度(Tg):根据差示扫描量热法(DSC),按照IPC-TM-6502.4.25所规定的DSC方法进行测定。
(b)介电常数、介电损耗因素:按照IPC-TM-6502.5.5.13测定10GHz下的介电损耗、介电损耗因素。
(c)剥离强度:按照IPC-TM-6502.4.8方法中的“热应力后”的实验条件,测试金属盖层的剥离强度。
(d)吸水性:按照IPC-TM-6502.6.2.1方法进行测定。
(e)耐浸焊性:按照IPC-TM-6502.4.13.1观察分层起泡时间。
(f)难燃烧性:依据UL 94垂直燃烧法测定。
从表1~3的物性数据可知,与实施例3相比,比较例1中使用双环戊二烯型环氧树脂与聚膦酸酯、氰酸酯固化时,所制得的板材Tg高且介电性能优异,但剥离强度较低且阻燃只能达到V-1级;比较例2中使用含萘环的环氧树脂与聚膦酸酯、氰酸酯固化时,所制成的覆铜板Tg和剥离强度高且耐热性和阻燃性较好,但介电常数和介电损耗也较高;比较例3中使用具有式(I)结构的环氧与聚膦酸酯单独固化时,所制得的板材Tg较低,介电性能一般,且耐热性较差;比较例4中使用具有式(I)结构的环氧与氰酸酯单独固化时,所制得的板材Tg高,但介电损耗一般,且阻燃性能差,只能达到V-2级;比较例5中使用具有式(I)结构的环氧与苯乙烯马来酸酐共聚物、氰酸酯固化时,所制得的板材Tg和剥离强度很低,且阻燃性能不足,只能达到V-2级;比较例6中使用具有式(I)结构的环氧与活性酯、氰酸酯固化时,所制得的板材Tg和剥离强度高、介电性能优异,但阻燃性能差,只能达到V-2级,若另外添加阻燃剂,可能会导致其他性能的恶化。
综上,使用本发明的无卤热固性树脂组合物制成的预浸料和层压板具有高玻璃化转变温度,可达到205℃,优异的介电性能,其介电常数在3.75-4.08,介电损耗值可低至0.0070,具有高剥离强度、高耐热性、低吸水率,吸水率可低至0.05%,以及良好工艺加工性,并能实现无卤阻燃,达到UL94 V-0,具有优异的综合性能。
以上所述,仅为本发明的较佳实施例,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的范围。

Claims (10)

  1. 一种无卤热固性树脂组合物,其特征在于,含有以下三种物质作为必要组分,以有机固形物按100重量份计,其中:
    (A)无卤环氧树脂:35-65重量份;
    (B)聚膦酸酯:10-35重量份;
    (C)氰酸酯:10-30重量份;
    所述无卤环氧树脂具有下述式(I)所表示的结构:
    Figure PCTCN2017084315-appb-100001
    式(I)中,X表示具有至少一个选自碳数1-4的烷基、碳数6-10的芳基及碳数6-10的芳烷基的取代基的环元数5-8的亚环烷基;R分别独立地表示氢原子、碳数1-8的烷基、碳数1-8的烷氧基、碳数5-8的环烷基、碳数6-10的芳基、碳数6-10的芳烷基、碳数6-10的芳氧基或碳数6-10的芳烷氧基;Y表示自聚异氰酸酯化合物除去两个异氰酸酯基的残基。
  2. 如权利要求1所述的无卤热固性树脂组合物,其特征在于,所述无卤环氧树脂具有下述式(II)所表示的结构:
    Figure PCTCN2017084315-appb-100002
    式(II)中,Z表示2价基,Z中的5mol%-100mol%是下述式(a)所表示 的2价基;Y表示自二异氰酸酯化合物除去异氰酸酯基的残基;G表示缩水甘油基;n表示重复数,平均值为1-5;
    Figure PCTCN2017084315-appb-100003
    式(a)中,X表示具有至少一个选自碳数1-4的烷基、碳数6-10的芳基及碳数6-10的芳烷基的取代基的环元数5-8的亚环烷基;R分别独立地表示氢原子、碳数1-8的烷基、碳数1-8的烷氧基、碳数5-8的环烷基、碳数6-10的芳基、碳数6-10的芳烷基、碳数6-10的芳氧基或碳数6-10的芳烷氧基;
    优选地,所述环氧树脂的重均分子量为1000-8000,环氧当量为200g/eq.-550g/eq.。
  3. 如权利要求1或2所述的无卤热固性树脂组合物,其特征在于,所述聚膦酸酯结构式如下所示:
    Figure PCTCN2017084315-appb-100004
    其中,Ar为芳基,所述-O-Ar-O-选自间苯二酚活性基团、对苯二酚活性基团、双酚A活性基团、双酚F活性基团、4,4′-二苯酚、酚酞活性基团、4,4′-硫代二酚活性基团、4,4′-磺酰二酚活性基团或3,3,5-三甲基环己基二苯酚中的任意一种;Q为C1-C20的取代或未取代的直链烷基、C1-C20的取代或未取代的支链烷基、C2-C20的取代或未取代的直链烯烃基、C2-C20的取代或未取代的支链烯烃基、C2-C20的取代或未取代的直链亚烷基、C2-C20的取代或未取代的支链亚烷基、C5-C20的取代或未取代的环烷基或C6-C20取代或未取代的芳基; m为1-75的任意整数;
    优选地,所述聚膦酸酯的重均分子量为1000-50000,优选1000-10000,进一步优选1000-4500;
    优选地,所述聚膦酸酯结构式如下所示:
    Figure PCTCN2017084315-appb-100005
    其中q为2-20的任意整数,优选q为3-10的任意整数。
  4. 如权利要求1-3之一所述的无卤热固性树脂组合物,其特征在于,所述氰酸酯为双酚A型氰酸酯树脂、双酚F型氰酸酯树脂、四甲基双酚F型氰酸酯树脂、双酚M型氰酸酯树脂、双酚S型氰酸酯树脂、双酚E型氰酸酯树脂、双酚P型氰酸酯树脂、线性酚醛型氰酸酯树脂、甲酚酚醛型氰酸酯树脂、萘酚型氰酸酯树脂、萘酚酚醛型氰酸酯树脂、双环戊二烯型氰酸酯树脂、酚酞型氰酸酯树脂、芳烷基型氰酸酯树脂、芳烷基酚醛型氰酸酯树脂、双酚A型氰酸酯预聚物、双酚F型氰酸酯预聚物、四甲基双酚F型氰酸酯预聚物、双酚M型氰酸酯预聚物、双酚S型氰酸酯预聚物、双酚E型氰酸酯预聚物、双酚P型氰酸酯预聚物、线性酚醛型氰酸酯预聚物、甲酚酚醛型氰酸酯预聚物、萘酚型氰酸酯预聚物、萘酚酚醛型氰酸酯预聚物、双环戊二烯型氰酸酯预聚物、酚酞型氰酸酯预聚物、芳烷基型氰酸酯预聚物或芳烷基酚醛型氰酸酯预聚物中的任意一种或者至少两种的混合物,优选线性酚醛型氰酸酯树脂、萘酚型氰酸酯树脂、萘酚酚醛型氰酸酯树脂、酚酞型氰酸酯树脂、芳烷基型氰酸酯树脂、芳烷基酚醛型氰酸酯树脂、线性酚醛型氰酸酯预聚物、萘酚型氰酸酯预聚物、萘酚酚醛型氰酸酯预聚物、酚酞型氰酸酯预聚物、芳烷基型氰酸酯预聚物或芳烷基酚醛型 氰酸酯预聚物中的任意一种或者至少两种的混合物,进一步优选线性酚醛型氰酸酯树脂、萘酚酚醛型氰酸酯树脂、芳烷基酚醛型氰酸酯树脂、线性酚醛型氰酸酯预聚物、萘酚酚醛型氰酸酯预聚物或芳烷基酚醛型氰酸酯预聚物中的任意一种或者至少两种的混合物。
  5. 如权利要求1-4之一所述的无卤热固性树脂组合物,其特征在于,所述无卤热固性树脂组合物还包含其它含磷阻燃剂;
    优选地,所述含磷阻燃剂为三(2,6-二甲基苯基)膦、10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、2,6-二(2,6-二甲基苯基)膦基苯、10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、苯氧基磷腈化合物、磷酸酯或聚磷酸酯中的任意一种或者至少两种的混合物。
  6. 如权利要求1-5之一所述的无卤热固性树脂组合物,其特征在于,所述无卤热固性树脂组合物还包含填料;
    优选地,以有机固形物按100重量份计,所述填料的添加量为0-200重量份;
    优选地,所述填料选自有机填料或无机填料,优选无机填料,进一步优选经过表面处理的无机填料,最优选经过表面处理的二氧化硅;
    优选地,所述表面处理的表面处理剂为硅烷偶联剂、有机硅低聚物或钛酸酯偶联剂中的任意一种或者至少两种的混合物;
    优选地,以无机填料质量为100%计,所述表面处理剂的用量为0.1-5.0%,优选0.5-3.0%,进一步优选0.75-2.0%;
    优选地,所述无机填料为非金属氧化物、金属氮化物、非金属氮化物、无机水合物、无机盐、金属水合物或无机磷中的任意一种或者至少两种的混合物,优选熔融二氧化硅、结晶型二氧化硅、球型二氧化硅、空心二氧化硅、氢氧化铝、氧化铝、滑石粉、氮化铝、氮化硼、碳化硅、硫酸钡、钛酸钡、钛酸锶、 碳酸钙、硅酸钙、云母或玻璃纤维粉中的任意一种或者至少两种的混合物;
    优选地,所述有机填料为聚四氟乙烯粉末、聚苯硫醚或聚醚砜粉末中的任意一种或者至少两种的混合物;
    优选地,所述填料的粒径中度值为1-15μm,优选1-10μm。
  7. 如权利要求1-6之一所述的无卤热固性树脂组合物,其特征在于,所述无卤热固性树脂组合物还包含固化促进剂;
    优选地,所述固化促进剂为有机金属盐化合物、咪唑化合物及其衍生物、哌啶类化合物或三级胺中的任意一种或者至少两种的混合物;
    优选地,所述固化促进剂为2-甲基咪唑、2-苯基咪唑、2-乙基-4-甲基咪唑、三正丁胺、三苯基磷、三氟化硼络合物、辛酸金属盐、乙酰丙酮金属盐、环烷酸金属盐、水杨酸金属盐或硬脂酸金属盐中的任意一种或者至少两种的混合物,其中,所述金属为锌、铜、铁、锡、钴或铝中的任意一种或者至少两种的混合物;
    优选地,以组份(A)、组份(B)及组份(C)的总量为100重量份计,所述固化促进剂的添加量为0.01-1重量份,优选0.05-0.85重量份,进一步优选0.1-0.8重量份。
  8. 一种预浸料,包括增强材料及通过含浸干燥后附着其上的如权利要求1-7之一所述的无卤热固性树脂组合物。
  9. 一种层压板,其包括至少1张如权利要求8所述的预浸料。
  10. 一种印制电路板,其包括至少1张如权利要求8所述的预浸料。
PCT/CN2017/084315 2016-12-28 2017-05-15 一种无卤热固性树脂组合物及含有它的预浸料、层压板和印制电路板 WO2018120587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611236980.0 2016-12-28
CN201611236980.0A CN106751524A (zh) 2016-12-28 2016-12-28 一种无卤热固性树脂组合物及含有它的预浸料、层压板和印制电路板

Publications (1)

Publication Number Publication Date
WO2018120587A1 true WO2018120587A1 (zh) 2018-07-05

Family

ID=58924922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084315 WO2018120587A1 (zh) 2016-12-28 2017-05-15 一种无卤热固性树脂组合物及含有它的预浸料、层压板和印制电路板

Country Status (2)

Country Link
CN (1) CN106751524A (zh)
WO (1) WO2018120587A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538278A (zh) * 2020-12-11 2021-03-23 惠州市宁泰林环境科技有限公司 一种树脂玻纤防火阻燃材料及其制备方法
CN113292839A (zh) * 2021-05-31 2021-08-24 郴州功田电子陶瓷技术有限公司 一种应用于高密度互联基材的树脂组合物
CN114031940A (zh) * 2021-10-28 2022-02-11 航天特种材料及工艺技术研究所 一种低介电常数无卤阻燃环氧-氰酸酯树脂及其制备方法
CN114106517A (zh) * 2021-10-25 2022-03-01 航天特种材料及工艺技术研究所 一种高强度高韧性阻燃环氧树脂及其制备方法
CN115572458A (zh) * 2022-10-17 2023-01-06 天津凯华绝缘材料股份有限公司 一种氰酸酯树脂改性环氧树脂粉末包封料、制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107298857A (zh) * 2017-07-20 2017-10-27 苏州益可泰电子材料有限公司 一种无卤阻燃电子材料及其制备方法
CN107353640A (zh) * 2017-07-20 2017-11-17 苏州益可泰电子材料有限公司 一种无卤高介电性能电子材料及其制备方法
US20190104612A1 (en) * 2017-09-29 2019-04-04 Iteq Corporation Polymer matrix composite for eliminating skew and fiber weave effect
GB2568995B (en) * 2017-09-29 2022-07-13 Iteq Corp Polymer matrix composite, prepreg and printed circuit board thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272226A (zh) * 2009-01-06 2011-12-07 陶氏环球技术有限责任公司 无溴阻燃环氧树脂中的金属化合物
CN103694642A (zh) * 2013-12-27 2014-04-02 广东生益科技股份有限公司 一种热固性树脂组合物及其用途
CN104736592A (zh) * 2012-10-17 2015-06-24 陶氏环球技术有限公司 用于高温应用的韧化、可固化的环氧组合物
CN105968320A (zh) * 2015-03-13 2016-09-28 新日铁住金化学株式会社 含有噁唑烷酮环的环氧树脂、其制造方法、环氧树脂组合物与其用途及环氧树脂硬化物
CN105968321A (zh) * 2015-03-13 2016-09-28 新日铁住金化学株式会社 含有噁唑烷酮环的环氧树脂、其制造方法、环氧树脂组合物、其固化物及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527403A (ja) * 2007-05-16 2010-08-12 ダウ グローバル テクノロジーズ インコーポレイティド 難燃性組成物
CN102020830B (zh) * 2010-12-23 2012-06-27 广东生益科技股份有限公司 无卤阻燃性树脂组合物及其应用
CN103360605B (zh) * 2013-06-13 2015-06-17 上海交通大学 一种超支化聚磷酰胺酯及其制备方法和应用
CN103756257B (zh) * 2013-12-27 2016-01-13 广东生益科技股份有限公司 一种热固性环氧树脂组合物及其用途
CN103965587A (zh) * 2014-05-28 2014-08-06 苏州生益科技有限公司 一种无卤树脂组合物及使用其制作的半固化片及层压板
CN105482076A (zh) * 2015-12-15 2016-04-13 广东广山新材料有限公司 一种异氰酸酯改性环氧树脂及用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272226A (zh) * 2009-01-06 2011-12-07 陶氏环球技术有限责任公司 无溴阻燃环氧树脂中的金属化合物
CN104736592A (zh) * 2012-10-17 2015-06-24 陶氏环球技术有限公司 用于高温应用的韧化、可固化的环氧组合物
CN103694642A (zh) * 2013-12-27 2014-04-02 广东生益科技股份有限公司 一种热固性树脂组合物及其用途
CN105968320A (zh) * 2015-03-13 2016-09-28 新日铁住金化学株式会社 含有噁唑烷酮环的环氧树脂、其制造方法、环氧树脂组合物与其用途及环氧树脂硬化物
CN105968321A (zh) * 2015-03-13 2016-09-28 新日铁住金化学株式会社 含有噁唑烷酮环的环氧树脂、其制造方法、环氧树脂组合物、其固化物及其应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538278A (zh) * 2020-12-11 2021-03-23 惠州市宁泰林环境科技有限公司 一种树脂玻纤防火阻燃材料及其制备方法
CN113292839A (zh) * 2021-05-31 2021-08-24 郴州功田电子陶瓷技术有限公司 一种应用于高密度互联基材的树脂组合物
CN113292839B (zh) * 2021-05-31 2023-09-12 郴州功田电子陶瓷技术有限公司 一种应用于高密度互联基材的树脂组合物
CN114106517A (zh) * 2021-10-25 2022-03-01 航天特种材料及工艺技术研究所 一种高强度高韧性阻燃环氧树脂及其制备方法
CN114106517B (zh) * 2021-10-25 2023-11-21 航天特种材料及工艺技术研究所 一种高强度高韧性阻燃环氧树脂及其制备方法
CN114031940A (zh) * 2021-10-28 2022-02-11 航天特种材料及工艺技术研究所 一种低介电常数无卤阻燃环氧-氰酸酯树脂及其制备方法
CN115572458A (zh) * 2022-10-17 2023-01-06 天津凯华绝缘材料股份有限公司 一种氰酸酯树脂改性环氧树脂粉末包封料、制备方法和应用

Also Published As

Publication number Publication date
CN106751524A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018120587A1 (zh) 一种无卤热固性树脂组合物及含有它的预浸料、层压板和印制电路板
KR101915918B1 (ko) 열경화성 수지 조성물 및 이로 제조한 프리프레그와 적층판
JP6514335B2 (ja) シリコーン樹脂組成物、並びにそれを用いたプリプレグ、積層板、銅張積層板、及びアルミ基板
WO2016011705A1 (zh) 一种无卤树脂组合物以及使用它的预浸料和印制电路用层压板
CN110527037B (zh) 一种无卤聚苯醚树脂组合物及使用其制作的半固化片和层压板
US20140072818A1 (en) Epoxy resin composition, and prepreg and copper clad laminate made therefrom
WO2020047920A1 (zh) 热固性树脂组合物及含有它的预浸料、层压板和高频电路基板
WO2017152602A1 (zh) 一种无卤热固性树脂组合物及使用它的预浸料和印制电路用层压板
US20150189745A1 (en) Epoxy resin composition, and, prepreg and copper clad laminate manufactured using the composition
WO2014190526A1 (zh) 氰酸酯树脂组合物及其用途
WO2018103199A1 (zh) 一种热固性树脂组合物
CN109851997A (zh) 一种热固性树脂组合物及使用其的预浸料、层压板和覆金属箔层压板
CN109651763A (zh) 一种热固性树脂组合物及使用其的预浸料、层压板和覆金属箔层压板
TWI548667B (zh) A halogen-free thermosetting resin composition, and a prepreg for use and a laminate for printed circuit
WO2018103276A1 (zh) 一种热固性树脂组合物
WO2020124673A1 (zh) 一种热固性树脂组合物及使用其的预浸料、层压板和覆金属箔层压板
CN110615876B (zh) 无卤聚苯醚树脂组合物及使用其制作的半固化片和层压板
CN111849122B (zh) 一种树脂组合物及其应用
CN109535653B (zh) 含磷环氧树脂组合物及应用其制备的半固化片和层压板
WO2020248501A1 (zh) 活性酯化合物、树脂组合物及具有其的半固化片、绝缘薄膜、覆金属箔层压板、印制线路板
TWI617614B (zh) Epoxy resin composition and prepreg and copper clad laminate prepared using same
TW201319154A (zh) 無鹵素樹脂組成物及其應用之銅箔基板及印刷電路板
WO2018098908A1 (zh) 一种热固性树脂组合物
CN109970952B (zh) 氰酸酯树脂组合物及其用途
JP6098908B2 (ja) 硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及び、ビルドアップフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889502

Country of ref document: EP

Kind code of ref document: A1